
Parallel Implementation of Interval Analysis
for Equations Solving

Yves Papegay, David Daney, and Jean-Pierre Merlet

INRIA Sophia Antipolis – COPRIN Team,
2004 route des Lucioles, F-06902 Sophia Antipolis, France,

Yves.Papegay@sophia.inria.fr

Abstract. alias is a C++ library implementing interval analysis and
constraint programming methods for studying and solving set of equation
over the reals. In this paper, we describes a distributed implementation
of the library.

1 Introduction

alias1 is a c++ library of algorithms for solving set of equations and related
problems, e.g finding an approximation of the real roots of a 0-dimensional sys-
tem, giving bounds of the roots of an univariate polynomial, or performing global
optimization of a function with interval coefficients. Most of this algorithms are
based on interval analysis and constraint programming methods and their scope
is not restricted to algebraic expressions.

Although if most of the algorithms of the library have a structure that allows
a parallel implementation, we will focus in this paper on the systems solving
algorithms.

2 Interval Analysis and Systems Solving

Interval Analysis is based on interval arithmetics which is a well-known extension
of classical arithmetics. Even if there are numerous ways to calculate the mapping
Y of an interval X by a function f (see [1,2]), interval arithmetics guarantee that
∀x ∈ X, f(x) ∈ Y and allows to take into account round-off errors[3].

The basic solving algorithm of interval analysis is based on interval evaluation
and bissection:

Let B = {X1, . . . , Xn} be a box and {Fi(X1, . . . , Xn) = 0} a set of equa-
tions to be solved within B. Let L be a list of boxes initially restricted to
{B}. Let ε be a threshold for width of intervals. The algorithm proceed
as follows:

boxes loop: while L is not empty, let select a box b from L and
– if ∀i, 0 ∈ Fi(b) and size of b is less than epsilon,

1 http://www.inria-sop.fr/coprin/logiciel/ALIAS/ALIAS.html

J. Dongarra, D. Laforenza, S. Orlando (Eds.): Euro PVM/MPI 2003, LNCS 2840, pp. 555–559, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



556 Y. Papegay, D. Daney, and J.-P. Merlet

– then store b in the solution list and remove b from L
– else, if it exists at least one Fj(b) not containing 0, then

remove b from L
– else, select one of the direction i and bisect B among this

direction, creating 2 new boxes. Store them in L.

This basic method may be drastically improved by filtering i.e. decreasing the
width of the current box “in place”. alias implements namely the 2B method [4]
which is a local method as it proceeds equation by equation without looking at
the whole system but global methods also exist, such as the classical Newton
interval method [5]. A second type of improvement relies on the use of unicity
operators whose purpose is to determine eventually a box, called a unicity box,
that contains a unique solution of the system, that furthermore can be numer-
ically computed in a certified manner. The most classical unicity operator is
based on Kantorovitch theorem [6].

3 Parallel Implementation of ALIAS

A simple distributed implementation scheme based on a master computer and a
set of slave computers may be used:

– The master will maintains a list of unprocessed boxes. These boxes will be
dispatched to the slave computers.

– The slave computers run the solving algorithm with as initial search space
the box received from the master. This slave program performs iterations
within the boxes loop until either some stop criteria is fulfilled or if the
boxes list has been exhausted. The list of unprocessed boxes (that may be
empty) and, eventually, the solutions that have been found is sent back to
the master.

– The master will periodically check if any slave computer has terminated its
job and may eventually process a box in the meantime.

We use different stop criterion to stop an ongoing slave process:

1. The number of boxes still to be processed is greater than a given threshold
N : this allows to limit the size of the message that is sent back to the master.
However it may be acceptable to have more than N boxes in the boxes list of
the slave process if we may assume that the slave will be able to process all
the boxes in a reasonable amount of time. Indeed not stopping the slave will
avoid a large number of message exchanges between the master and slave
processes. For that purpose if the width of the box received by the slave is
lower than a given threshold the slave process is allowed to perform at most
M iterations of the solving algorithm. If the process is not completed after
this number of iteration a FAIL message is sent to the master process.

2. the computation time has exceeded a fixed amount of time, in which case a
FAIL message is sent to the master process: this indicates that it is necessary
to distribute the treatment of the processed box among different slaves.



Parallel Implementation of Interval Analysis for Equations Solving 557

3.1 Efficiency

To obtain an efficient parallelization of the procedure it is necessary to choose
carefully the threshold values for the stopping criteria and the values of the
solving parameters for the slave process.

Indeed if the time necessary for the slave process to produce the N returned
boxes is very small, then most of the computation time will be devoted to message
passing, thus leading to a poor efficiency. On the other hand if this time is too
large for a given box it may happen that the computer receiving this box will
do most of the job, while the other slaves are free.

There is no general rule of a thumb for finding the right compromise but
in our experience a first run with standard value for the parameters and then
eventually a few additional run for fine tuning the parameters allows to determine
near optimal values for the parameters, that are valid not only for the current
problem but for a class of problems.

3.2 Implementation

A particularity of the alias library is that it is mostly interfaced with Maple.
Without going into the details the system of equations may be written in Maple
and can be solved directly within Maple. The procedures invoqued create the
necessary C++ code specific of the equations for solving the system, compile
it and then execute it, returning the results to the Maple session (furthermore
the symbolic treatment of the equations allows also for a better efficiency of the
solving algorithm). The purpose of our implementation is to allow the use of
a distributed implementation within Maple with a minimal modification of the
Maple code.

For a parallel implementation it is hence necessary to have a message passing
mechanism that enable to send a box to a slave program on another computer
and to receive data from the slave computers. For the parallel implementation
we use the message passing mechanism pvm10.1.

Simple master programs using pvm may be found in the alias distribution
along with its corresponding slave programs: these programs are used by Maple
for creating the distributed implementation of the general solving procedures.

Basically a message sent through pvm is composed of a few control characters
and a set of floating point numbers. Each box sent to a slave machine is saved in
a backup box. The slave process uses the same coding for returning the boxes to
process (if any): if there is no return box the slave process will return the keyword
N, while solutions are returned with a message starting with the keyword S.

Within the master program an array of integers is used to determine the state
of the slave machines: 0 if the machine is free, 1 if the machine is processing a box
and has not returned, 2 if the machine is out of order. If a machine has status
1 the master process checks periodically if the machine has returned a message
(using pvm nrecv) or is not responding (using pvm mstat): if this the case the
master process will use the backup box of the machine, performs a bisection of
this box and add the result in its list.



558 Y. Papegay, D. Daney, and J.-P. Merlet

Both master and slave process use the same C++ solving code but a flag
allows to determine if the algorithm is run by a slave or by the master. In the
first case at each iteration of the algorithm the slave process will check if a stop
criteria is verified while in the second case the master process checks at some
key points if a slave has returned a message, in which case the master program
stop the processing of the current box. The master process stops and the result
is returned in a file as soon as all the boxes have been processed and all the
machines are free.

4 Experiments

Our first experiment with the distributed implementation was to solve a very
difficult problem in mechanism theory: the synthesis of a spatial RRR manipu-
lator [7]. A RRR manipulator has three links connected by revolute joints and
the geometry of the mechanism is defined by 15 parameters. The problem is to
determine the possible values of these parameters under the constraints that the
robot should be able to reach a set of 5 defined positions. For each such position
we have new unknowns, namely the three angles of the revolute joints and the
full problem is to solve a set of 30 non-linear equations in 30 unknowns. A first
approach to solve this problem was to use a continuation method on a parallel
computer with 64 processors, but after one month of calculation the problem was
not solved. We then use the distributed implementation of alias on a cluster of
20 PC’s and get the solutions in about 5 days.

4.1 Chebyquad Function

For this experiments we compare the performances of the non-parallel version
running on an EVO 410 C (1.2 Ghz) and a cluster of 11 medium-level PC’s (850
MHz) with the master process running on a Sun Blade.

This system [8] is a system of n equations fi = 0 with

fi =
1
n

j=n∑

j=1

Ti(xj) + ai

where Ti is the ith Chebyshev polynomial and ai =0 if i is odd and ai = −1/(i2−
1) if i is even. This system has 24 solutions for n = 4 and 0 for n = 5, 6. The
computation times for a search space of [-100,100] are respectively 25s, 279s
and 11286s with the sequential implementation and 27s, 84s and 1523s with the
parallel one.

This example allows to establish a rough model for the gain of a distributed
implementation. For a sequential implementation the computation time ts is
roughly proportional to the number of boxes processed during the algorithm
which is 2n log(w/ε) where w is the initial width of the range in the search space
and ε the mean value of the width of a box that is either deleted or in which a
solution is found.

ts = a2n log(w/ε) + b (1)



Parallel Implementation of Interval Analysis for Equations Solving 559

Using the first line of the table we find a = 0.17e−5, b = 19, ε = 0.87. For the
distributed implementation the computation time td should be ts divided by the
number m of slaves, to which should be added a communication time which is
proportional to n:

td = ts/m + a1n + b1 (2)

Using the 2 first values of the second line of the table we get a1 = 24.418, b1 =
−73.88. Using these values for n = 6 we get td = 1520.44 which is coherent with
the experimental data. The theoretical maximal ratio ts/td in that case is about
7.8.

5 Conclusion

Interval analysis algorithms have a structure that is highly appropriate for a
distributed implementation. We have shown the use of pvm in the distributed
implementation of the alias C++ library and presented some examples.

Prospectives for this work are:

– an adaptive control of the solving parameters to improve the load distribu-
tion among the slaves.

– a possible modification of the parallel scheme in which expensive global fil-
tering methods will benefit of a distributed implementation while the core of
the solving algorithm will be run on a master computer (or a mix between
the current scheme and the proposed one).

References

1. Hansen E., Global Optimization using Interval Analysis. Marcel Dekker, 1992.
2. Moore R.E., Methods and Apllications of Interval Analysis. SIAM Studies in Applied

Mathematics, 1979.
3. Revol N. and Rouillier F., Motivations for an Arbitrary Precision Interval Arith-

metics and the MPFI Library. In Validated Computing Conference, Toronto, 2002.
4. Collavizza, H. Deloble, F. and Rueher M., Comparing Partial Consistencies. Reliable

Computing, 5:1–16, 1999.
5. Ratscheck H. and Rockne J., Interval Methods. In Horst R. and Pardalos P.M.

editors, Handbook of Global Optimization, pages 751–819. Kluwer, 1995
6. Tapia R.A., The Kantorovitch Theorem for Newton’s Method. american Mathe-

matic Monthly, 78(1.ea):389–392, 1971.
7. Lee E., Mavroidis C. and Merlet J-P., Five Precision Points Synthesis of Spatial

RRR Manipulators using Interval Analysis. In ASME 27th Biennal Mechanisms
and Robotics Conf. Montreal, 2002.

8. Moré J.J., Garbow B.S. and Hillstrom K.E., Testing Unconstrained Optimization
Software. ACM Trans. Math. Software, 7(1):136–140, March 1981.


	1 Introduction
	2 Interval Analysis and Systems Solving
	3 Parallel Implementation of ALIAS
	3.1 Efficiency
	3.2 Implementation

	4 Experiments
	4.1 Chebyquad Function

	5 Conclusion
	References



