Finite Groundings for ASP with Functions: A Journey through Consistency
(Technical Report)

Lukas Gerlach' , David Carral®>, Markus Hecher®

'Knowledge-Based Systems Group, TU Dresden, Dresden, Germany
2LIRMM, Inria, University of Montpellier, CNRS, Montpellier, France
3Massachusetts Institute of Technology, United States
lukas.gerlach@tu-dresden.de, david.carral @inria.fr, hecher @mit.edu

Abstract

Answer set programming (ASP) is a logic pro-
gramming formalism used in various areas of arti-
ficial intelligence like combinatorial problem solv-
ing and knowledge representation and reasoning. It
is known that enhancing ASP with function sym-
bols makes basic reasoning problems highly un-
decidable. However, even in simple cases, state
of the art reasoners, specifically those relying on
a ground-and-solve approach, fail to produce a re-
sult. Therefore, we reconsider consistency as a ba-
sic reasoning problem for ASP. We show reductions
that give an intuition for the high level of undecid-
ability. These insights allow for a more fine-grained
analysis where we characterize ASP programs as
“frugal” and “non-proliferous”. For such programs,
we are not only able to semi-decide consistency but
we also propose a grounding procedure that yields
finite groundings on more ASP programs with the
concept of “forbidden” facts.

1 Introduction

Answer set programming [Brewka et al., 2011; Gebser er al.,
2012] is a logic-based formalism used in multiple fields of
artificial intelligence research such as knowledge representa-
tion and reasoning but also combinatorial problem solving.
State-of-the-art ASP solvers like clasp [Gebser ef al., 2009]
or wasp [Alviano et al., 2022] rely on a ground-and-solve
approach. During (i) grounding' a given ASP program is in-
stantiated with all relevant terms. Then, when (ii) solving the
ground program, the ASP solver, which is a SAT solver ex-
tended by unfounded set propagation, excludes sets of atoms
that lack foundation (i.e. unfounded sets), thereby efficiently
computing answer sets. Unfortunately, with function symbols
involved, already the grounding step may not terminate.

Example 1. The program {(1),(2),r(a,b)} admits exactly
one answer set: {r(a,b), stop(b),r(b, f(b)), stop(f(b))}.
Still, the grounding is infinite with terms b, f(b), f(f(b)), ...

r(Y, f(Y)) = r(X,Y), ~stop(X). ¢y
stop(Y) «+ r(X,Y).)

'In the introduction, grounding (informally) refers to the result
of a (naive) grounding procedure. We formalize this later on.

<) 7

\ -
o & -9
— 7 Yo %
<&
Figure 1: Wolf, Goat, Cabbage Puzzle

Such problems indeed manifest in real world applications
e.g. in knowledge respresentation contexts. One promi-
nent example is an approach for simulating sets in ASP (us-
ing function symbols) [Gaggl et al., 2022]. For combinato-
rial problems, bounds on the size of natural numbers (which
could be modelled using function symbols) are often in-
troduced to ensure termination of the ground-and-solve ap-
proach. This is observable in many typical ASP examples.

Example 2. We consider the famous puzzle of a farmer who
needs to cross a river with a wolf, a goat, and a cabbage. They
may only take one item at a time and must not leave the wolf
and the goat or the goat and the cabbage alone since then the
former will eat the latter (see Figure 1). One essential part of
the considered modelling is a rule as the following together
with enough generated atoms, e.g. steps(0...100).%

position(X,C, N + 1) < transport(X, N),
position(X, B, N), opposite(B,C), steps(N + 1).

That is, if we guess that item X is transported in step N,
then its position is updated to the opposite river bank if we
are not out of steps yet. Additional rules are introduced to
detect and avoid redundant positions; we ellaborate on this
idea later in Example 5. However, despite the redundancy
check, we need to bound (guard) the term N+1, as otherwise
the grounding is infinite. Such guards are common in ASP.

Related Work. Due to the complications with function
symbols, some works avoid them altogether [Marek and
Remmel, 2011]. However, some existing reasoning ap-
proaches seem promising. We observe that lazy-grounding,
as used by Alpha [Weinzierl et al., 2020], achieves termi-
nation on more programs than ground-and-solve approaches.
For example, Alpha yields the expected finite answer set in
Example 1 but still fails in Example 2 (without the N+1
guard). As an extension of ground-and-solve approaches, in-
cremental solving have been proposed [Gebser et al., 2019],

Full example in the technical appendix.

where one can increment the maximal number of steps used
for grounding and interatively reground. Thereby, one could
prevent the issue of infinite groundings when only finite an-
swer sets exist. Various efforts have also gone into char-
acterizing ASP programs into classes that e.g. yield finite
groundings [Alviano et al., 2012]. One particular idea de-
fines the semi-decidable class of finitely ground programs in-
cluding the decidable restriction of finite domain programs
[Calimeri et al., 2008]. This approach has been implemented
in the DLV solver [Alviano et al., 2010]. Still, we observe
that (i) DLV [Calimeri et al., 2017] does not (seem to) ter-
minate on Examples 1 and 2, (without the N+1 guard).
Grounding is active research, ranging from traditional in-
stantiation [Kaminski and Schaub, 2021], over size estima-
tions [Hippen and Lierler, 2021], lazy grounding [Weinzierl
et al., 2020], ASP modulo theory [Banbara et al., 2017;
Janhunen et al., 2017; Cabalar et al., 2020], and treewidth-
based methods [Bichler et al., 2020].

Contributions. We aim to improve existing reasoning tech-
niques further in terms of termination. As a prerequisite, a
better understanding of the hardness of reasoning is required.

* In Section 3, we consider consistency as our exemplary
highly undecidable (Xi-complete) reasoning problem.
We give easy to follow reductions that give an intuition
into the cause of the high level of undecidability.

Based on these studies, in Section 4, we characterize
ASP programs by two essential causes for undecidabil-
ity of reasoning and infinite groundings. Surprisingly,
even if a program is frugal (only finite answer sets) and
non-proliferous (only finitely many finite answer sets),
we still obtain undecidability for program consistency.

L]

To still tackle consistency, in Section 5, we propose a
semi-decision algorithm for frugal and non-proliferous
programs that also terminates on many inconsistent pro-
grams. Based on the underlying idea of forbidden atoms,
we moreover define a grounding procedure that termi-
nates in more cases; like the above examples.

2 Preliminaries

We assume familiarity with propositional satisfiability
(SAT) [Kleine Biining and Lettman, 1999; Biere et al., 2009],
where we use clauses, formulas, and assignments as usual.

Ground Answer Set Programming (ASP). We follow
standard definitions of propositional ASP [Brewka er al.,
2011; Janhunen and Niemeld, 2016]. Let ¢, m, and n be
non-negative integers with 0 < ¢, 0 < m < n, and let
b1,...,bs,01,...a, be propositional atoms. Moreover, a [it-
eral is an atom or its negation. A ground rule r is an implica-
tion of the form by,...,by < a1,...,Qm, " AQmt1,-.., 0y
where 0 < ¢ < 1; that is, a formula with at most one atom
before <. For such a rule, we define H, = {by,...,bs}
and B, = {a1,...,Qm, "@m+1, ..., a, . Note that ground
rules are non-disjunctive since |H,.| < 1; for constraints we

have |H,| = 0. Moreover, for a set of literals L (such as
B,), let L™ be the set of all positive literals in L and let
L= = {a | —a € L}. A (normal) ground program is a

set of ground rules (and constraints).

An interpretation I is a set of atoms. An interpretation
satisfies a ground rule r if (H, U B,) N I # (or B\
I # (; it is a model of a ground program P if it satisfies
all rules is P. For a set A of atoms, a function ¢ : A —
N is an ordering over A. Consider a model I of a ground
program P, and an ordering ¢ over I. An atom a € [is
proven (justified) if there is a ground rule r € P with a € H,
such that (i) B;f C I, (i) IN B, =0 and I N (H, \ {a}) =
0, as well as (iii) p(b) < ¢(a) for every b € B;". Then,
I is an answer set of P if (I) I is a model of P, and (II)
1 is proven, i.e., every a € I is proven. Deciding whether
a ground program has an answer set is called consistency,
which is NP-complete [Marek and Truszczytiski, 1991] for
normal ground programs. For non-ground normal programs
without functions, this is NEXPTIME-complete [Eiter et al.,
1994]; 3:F-complete with bounded arities [Eiter et al., 2007].

Non-Ground ASP. We define Preds, Funs, Cons, and
Vars to be mutually disjoint and countably infinite sets of
predicates, function symbols, constants, and variables, re-
spectively. Every s € Preds U Funs is associated with some
arity ar(s) > 0. For every i > 0, both Preds, = {P €
Preds | ar(P) = i} and Funs; = {f € Funs | ar(f) = i}
are countably infinite. The set Terms of terms includes Cons
and Vars; and contains f(¢1,...,t;) for every i > 1, ev-
ery f € Funs;, and every t1,...,t; € Terms. A term
t ¢ Vars U Cons is functional. A (ground) substitution is
partial function from variables to ground terms; that is, to
variable-free terms. We write [x1/t1,...,z,/t,] to denote
the substitution mapping z1,...,x, to t1,...,t,, respec-
tively. For an expression ¢ and a substitution o, let ¢o be
the expression resulting from ¢ by uniformly replacing every
syntactic occurrence of every variable = by o(z) if defined.

Let ¢1,...,9¢,P1,-.-,pn € Preds be predicates and
S1y.-.,8¢,T1,...,T,, be vectors over Terms. A (non-
ground) program P is a set of (non-ground) rules of the form
H <« pl(Tl)a s 7pm(Tm)7 “pm+1(Tm+1)7 sy jpn(T‘n)
where H = Q1(Sl)7 BRI QZ(S[) with O < l <1, |Si|:ar(Q’i)
for every 1 < i < ¢, and |T;|=ar(p;) forevery 1 < i < n.
Note again that we do not consider disjunctive rules. We as-
sume that rules are safe; that is, every variable in a rule occurs
in some T; with 1 < ¢ < m. We define HUniv(P) as the set
of all (ground) terms that only feature function symbols and
constants in P. For a set of ground terms 7', let Ground(P, T')
be the set of ground rules containing po for every p € P and
every substitution o from the the variables of p into T'. Let
Ground(P) = Ground(P, HUniv(P)). Note that Ground(P)
might be infinite. An answer set of a program P is an answer
set of Ground(P). A ground program Py is a valid grounding
for a program P if P, and P have the same answer sets.

Recap: Arithmetical/Analitical Hierarchy. We view the
arithmetical hierarchy as classes of formal languages % with
i > 1 where XY is the class of all semi-decidable languages
and X9 1 results from %Y by a Turing jump. The respective
co-classes are denoted by I1Y. We also consider the first level
of the analytical hierarchy, i.e. ¥1 and I1}, which is beyond
the arithmetical hierarchy [Rogers, 1987]. These classes are
merely considered via reductions to and from languages con-
tained in or hard for the respective classes [Harel, 1986].

3 Checking Consistency of ASP Programs

In this section, we prove that the problem of checking if a pro-
gram admits an answer set is highly undecidable. The upper
bound follows from Lemma 1 and Proposition 1; the lower
bound from Lemma 2 and Proposition 2. We include com-
plete proofs for these lemmas in the technical appendix.

Theorem 1. Deciding program consistency is ¥:1-complete.
Although Theorem 1 has been proven before (see Corol-
lary 5.12 in [Marek et al., 1994] and Theorem 5.9 in [Dantsin

et al., 2001]), we present complete proofs using (more) intu-
itive reductions that also lay our foundation for Section 4.

3.1 An Upper Bound for ASP Consistency

Our only goal in this subsection is to show that checking con-
sistency is in X1 by reduction to the following problem.

Proposition 1 ([Harel, 1986, Corollary 6.213). Checking if
some run of a non-deterministic Turing machine on the empty
word visits the start state infinitely many times is in 1.

For a program P and an interpretation I, let Activer(P) be
the set of all rules in Ground(P) that are not satisfied by I. If
I is finite, then so is Active;(P) and Active; is computable.
Definition 1. For a program P, let Mp be the non-
deterministic machine that, regardless of the input, executes
the following instructions:

1. Initialise an empty set L of literals, and some counters

i:=0andj:= 0.
2. IfL;" and L; are not disjoint, halt.
3. If L:r is an answer set of P, loop on the start state.

4. Initialise L; 1 := L; UH, U{-a | a € B} where ris
some non-deterministically chosen rule in Active, + (P).

5. If L; satisfies all of the rules in Active,+(P), then in-
J
crement j ‘= j + 1 and visit the start state once.
6. Increment i := i+ 1 and go to Step 2.

Lemma 1. A program P is consistent iff some run of M p on
the empty word visits the start state infinitely many times.

Intuitively, a run of M p attempts to produce an answer
set for P; if successful, it visits the start state infinitely
many times. The answer set is materialised via the non-
deterministic choices that instantiate Ly, Lo, . . .; see Step 4.

It is important to realize that the machine M p only adds
proven atoms in the sequence LT, L;“, ... To show this, con-
sider some k£ > 1 and the ordering that maps the only atom in
LI\ L], toiforevery 1 <i < k. Hence, if L; is a model
of P, then L;r also an answer set of PP and the run loops at
the k-th iteration because of Step 3. Otherwise, Active Lt (P)

is non-empty and a rule from this set can be chosen in Step 4.

If the sequence L4, Lo, ... is infinite and M p visits the
start state infinitely many times during the considered run,
then Ui>1 Lj is amodel of P. This is because, for every j >

1, there is some ¢ > j such that Lj satisfies all of the rules
in Active Lt (P). Therefore, since every atom in J,, Lfis
proven, this interpretation is an answer set of P.

3The original result shows IT}-completeness for the complement.

TileLl :
s(s(co)) :

Dom, Below,

""" Tile;,
ti|to |t |
----- Tilg} s(co) :
tO tl tO TiletDom, Below,,
t1 to t1 o : Dom,
_ Below,
""" Tiley,

Figure 2: A Solution of X and the Corresponding Answer Set of Px

3.2 A Lower Bound for ASP Consistency
Our only goal in this subsection is to show that checking con-
sistency is Y1 -hard by reduction from the following problem.

Definition 2. A tiling system is a tuple (T, HI, VI, ty) where
T is a finite set of tiles, HI and VI are subsets of T x T, and t
is atile in T. Such a tiling system admits a recurring solution
if there is a function f : N x N — T such that:
1. Foreveryi,j > 0, we have that {f(i,7), f(i +1,7)) ¢
Hland (f(i,), f(i,j + 1)) & VI
2. There is an infinite subset S of N such that f(0,7) = to
forevery j € S.

Proposition 2 ([Harel, 1986, Theorem 6.41*). Checking if a
tiling system admits a recurring solution is ¥1-hard.

Condition 2 in Defintion 2 implies that, given any position
in the first column, we will eventually find the special tile if
we move upwards on the grid after a finite amount of steps.

Definition 3. For a tiling system ¥ = (T, HI, VI, t,), let Px
be the program that contains the ground atom Dom(cy) and
all of the following rules:

Dom(s(X)) + Dom(X) (3)
Tile;(X,Y) + Dom(X),Dom(Y),

{~Tiley(X,Y) | t' e T\ {t}} Yt €T (4)

< Tile)(X,Y), Tiley (s(X),Y) V(t,t') € HI (5)

« Tile,(X,Y), Tiley (X, s(Y)) V{t,t') € VI (6)

Below,, (Y') < Tiles,(co, s(Y)) (7)
Below, (Y') < Below,,(s(Y)) (8)
< Dom(Y'), =Below;,(Y"))

Lemma 2. A tiling system T admits a recurring solution iff
the program Px is consistent

Lemma 2 holds since each answer set of Pz faithfully en-
codes a recurring solution of a tiling system . We clarify
this brief intuition with an example.

Example 3. The riling system X = ({to,t1},HI, VI, ty)
where HI = VI = {{to,to), {t1,t1)} admits two recurring
solutions. The program Px admits two answer sets; each of
them encodes a solution of X. One of these solutions and the

“The original result shows ¥}-completeness.

corresponding answer set are depicted in Figure 2. Note how
the tile to covers the position (0, 1) of the positive quadrant;
this is encoded by the atom Tile,, (co, s(cq)) in the answer set.

Intuitively, Rule 3 in Definition 3 ensures that the domain
of every answer set is countably infinite to provide enough
space for a possible recurring solution. Rule 4 ensures that
every position in the positive quadrant is covered by exactly
one tile. Constraints 5 and 6 are violated if the horizontal
and vertical incompatibilities are not satisfied, respectively.
Formulas 7, 8, and 9 ensure that every position in the left
column is below a position covered with the special tile that
appears infinitely often in a valid recurring solution.

4 Frugal and Non-Proliferous Programs

In this section, we aim to develop a better understanding for
why consistency has such a high level of undecidability. One
particularly hard (undecidable) case to check is the existen-
tence of an infinite answer set, so it is straightforward to re-
strict to ASP programs that only admit finite answer sets (they
might not admit any or infinitely many of these). Especially
in cases, where we are not only interested in consistency but
in enumerating all answer sets, it is also of interest that there
is only finitely many of them.

Definition 4. A program is frugal if it only admits finite an-
swer sets; it is non-proliferous if it only admits finitely many
finite answer sets (but arbitrarily many infinite ones).

Not every frugal program is also non-proliferous.

Example 4. The following ASP program admits infinitely
many finite answer sets but no infinite one.

next(Y, f(Y)) +next(X,Y), ~last(Y).
last(Y) <—next(X,Y), nnext(Y, f(Y)).

done «last(Y). < —done. next(c,d).

Clearly, {next(c,d), last(d), done} is an answer set. Also,
any finite chain of next relations terminated by last is an
answer set. However, an infinite next-chain is not an answer
set as it cannot contain any last atom, hence does not feature
done, and therefore violates the constraint.

4.1 Undecidability of These Notions

Within the scope of this subsection, let P be an arbitrary pro-
gram. Both of the above problems, i.e. P being frugal or non-
proliferous, are undecidable and not even semi-decidable. We
start with the second problem since it is comparably “easy”.

Theorem 2. Deciding if P is non-proliferous is ¥.9-complete.
The previous result follows directly from Lemmas 3 and 4.

Lemma 3. Deciding if P is non-proliferous is in 3.

Proof. We show first (1) that one can semi-decide for a given
n if a program has at least n finite answer sets. This is pos-
sible by enumerating and checking all answer set candidates.
Once the n-th answer set has been found, the procedure halts
and accepts (otherwise it may run forever).

The decision problem from the lemma can now be semi-
decided with an oracle for (}) as follows. Enumerate all natu-
rals n and check for each, if P admits at least n finite answer

sets (with the oracle). If yes, continue with n + 1; otherwise
accept (since only finitely many finite answer sets exist). [

Lemma 4. Deciding if P is non-proliferous is ¥.9-hard.

Proof. Consider the universal halting problem, which is T13-
hard, i.e. the check if a Turing machine halts on all inputs.
We construct M’ for a given TM M that on input n runs M
on all inputs of length at most . We have that M’ terminates
on infinitely many inputs if and only if M halts on all inputs.
Hence, deciding if a TM halts on infinitely many inputs is
Hg-hard. Therefore, the complement, i.e. deciding if a TM
halts on only finitely many inputs, is ¥9-hard. We generate all
(finite) inputs with an ASP program and ensure that the pro-
gram has a finite answer set for a generated input iff the TM
halts on that input.’> Therefore, deciding if an ASP program
only admits finitely many finite answer sets is X9-hard. [

The Turing machine simulation utilizes a frugal program.
Therefore, checking if a program is non-proliferous remains
¥:9-hard for frugal programs. Deciding if an ASP program is
frugal on the other hand is way beyond 39 and not even in
the arithmetical hierarchy (just as checking consistency).

Theorem 3. Deciding if P is frugal is I13-complete.

Proof Sketch. For membership, we adjust the machine from
Definition 1 to halt instead of loop when it encounters a fi-
nite answer set. Hardness follows from the same reduction as
Lemma 2. To see that this holds, note that Px either has an
infinte answer set (i.e. is not frugal) if ¥ has a solution or has
no answer set at all (i.e. is frugal) if T has no solution. O

4.2 Consistency Becomes (Only) Semi-Decidable
If an ASP program is frugal, consistency is semi-decidable.

Theorem 4. Consistency for frugal programs is in 5.

Proof. Enumerate all answer set candidates and check if they
are answer sets. If there is an answer set, then there must be
a finite one so the procedure terminates in this case. O

Somewhat surprisingly, even for frugal and non-proliferous
programs consistency remains undecidable. The issue is that
the maximum answer set size is still unknown.

Theorem 5. Consistency for frugal and non-proliferous pro-
grams is X\-hard.

Proof. We reduce from the halting problem with part of the
program used for the TM simulation in Lemma 4. We omit
the part that generates all possible inputs. Instead, we encode
the input word with ground atoms directly. The program ad-
mits a (single) finite answer set if the machine halts on its
input. Otherwise, it does not admit any answer set. In any
case, the program is both frugal and non-proliferous. O

The programs in the introduction have a finite bound on the
size of their answer sets; they are frugal and non-proliferous.

SWe show the machine simulation in the technical appendix.

5 Improved Reasoning Procedures

In this section, we describe an approach for the computation
of answer sets that builds upon a basic procedure for consis-
tency checking. For frugal programs, this is a semi-decision
procedure. However, unsatisfiable programs are often not de-
tected as such. Therefore, we improve the procedure by ig-
noring forbidden atoms that may never occur in any answer
set. While it is undecidable to check if an atom is forbidden,
we give a proof-of-concept algorithm for a sufficient condi-
tion. For some simplified but unsatisfiable versions of Exam-
ples 1 and 2, we argue that the sufficient condition is powerful
enough to detect the essential forbidden atoms. This makes
the enhanced semi-decision procedure detect them as unsat-
isfiable. Later on, we also propose a procedure based on the
forbidden atoms idea to produce valid groundings that are fi-
nite more often compared to tranditional approaches.

5.1 Limits of Semi-Decision

Even when Ground(/P) is infinite, it is arguably not hard
to come up with a semi-decision procedure for consistency
when only considering frugal ASP programs P. This is the
same as asking if an arbitrary program has a finite answer set.
We have shown semi-decidability in Theorem 4 and we can
also achieve this by modifying M p from Definition 1 such
that it accepts when it encounters a finite answer set instead
of entering an infinite loop. While this machine resembles a
lazy-grounding idea, we may also describe a semi-decision
procedure that incrementally enlarges a ground program.

Definition 5. Consider the procedure IsConsistent(-) that
takes a program P as input where P, = Ground(P):

1. Initialize i := 1 and Ay := 0.

Set A;:= A1 UU{H, | r € Py; Bf C A;_1}.
Rejectif A; = A;_1.

Set P, :={r € P, | B}f C A;}.

Accept if P; has an answer set I with Active;(P) = (.
6. Seti:=1+ 1and go to Step 2.

Proposition 3. Given some program P, the procedure
IsConsistent(P) accepts (and halts) if and only if P has a
finite answer set.

RN SN

Proof. If P has a finite answer set I, then pick the small-
est ¢ such that A; O I. Since every atom in [is proven,
the procedure does not reject up until reaching 7. Moreover,
since [is an answer set of P, it is an answer set of P;; and
Active;(P) = (). Therefore, the procedure accepts in step i.
If the procedure accepts, it does so for some ¢ and there is
a (finite) answer set I of P;. Since Active;(P) is empty, all
rules in Ground(P) are satisfied by I. Since [is an answer
set of P;, all atoms in I are proven in P. Hence, [is a finite
answer set of P. O

Since IsConsistent semi-decides consistency for frugal
programs, it will necessarily yield a finite answer set for all
examples from the introduction. Still, inconsistent programs
P are rarely caught by IsConsistent, unless Ground(P) is
finite. To illustrate this, we condense the encoding of Exam-
ple 2 to a simple case of detecting redundancies.

Example 5. Consider the following program P.
fet(a,0). eq(X,X) « fet(X,N).
It(N, s(N)) + fet(X, s(N)).
I(N,N') < It(N, M), It(M, N").
fet(b, s(N)) + fet(a, N). fet(a,s(N)) < fet(b, N).
diff(N, M) < fet(X, N), fet(Y, M), —eq(X,Y), lt(N, M).
redundant < fct(X, N), fet(Y, M), lt(N, M), ~diff (N, M).

< redundant.

Intuitively, a timeline is constructed that always flips fact
(fet) a to b and vice versa in each step. We forbid redundan-
cies, e.g. we do not want fct a in time steps say 0 and 2. This is
impossible and we will always be forced to derive redundant
at some point because some of the diff(N, M) atoms cannot
be proven. However, the procedure IsConsistent simply does
not terminate here.

Note that we ran the example with Alpha, but encountered
a stack overflow. This may indicate that Alpha introduces too
many ground atoms. Also, (i)DLV as well as gringo/clingo do
not (seem to) terminate. The IsConsistent check also runs
into similar problems for a slight variation of Example 1.

Example 6. Consider the following extension of Example 1.
r(a,b). stop(Y) + r(X,Y). « r(b, f(b)).
T(Y7 f(Y)) A T(X7 Y)a ﬁStOp(X).

The program does not have any answer set. Furthermore, the
IsConsistent check does not terminate.

To our surprise, Alpha captures this as unsatisfiable. Still,
(1)DLV and gringo/clingo do not (seem to) terminate.

5.2 Ignoring Forbidden Atoms
We aim to extend IsConsistent further to capture the previ-
ous examples as unsatisfiable. We adjust the assignment of
A; in Item 2 as follows; keeping Proposition 3 intact.
2. Set A; := A;—1 U{a | anot forbidden in P and {a} =
H, for some r € Ground(P) with B;f C A;_1}.

To keep the A; (and thus P;) small, we only consider atoms
that are not forbidden in P. Formally, an atom a is forbidden
(in a program P) if a does not occur in any answer set of P.
Intuitively, a forbidden atom will necessarily lead to a con-
tradiction or it will be impossible to show that it is proven.
Unfortunately, it is undecidable to check if an atom is for-
bidden in the formal sense, essentially because entailment of
ground atoms over ASP programs is undecidable.

Proposition 4. It is undecidable if an atom is forbidden.

Proof. We reuse the Turing machine simulation from Theo-
rem 5 to show a reduction from the complement of the halting
problem. If the machine halts, the simulation has a single an-
swer set with the atom Halt. Otherwise, the simulation does
not admit an answer set. Hence, the machine does not halt iff
Halt is forbidden. O

We introduce some auxiliary definitions with the aim of
giving a (rather tight) sufficient condition for finding forbid-
den atoms. Given a rule r in P and any two interpretations
LT and L, we define the following.

e v (L, L) as the minimal interpretation that contains
the single atom in H,.o (unless | H,.| = 0) for every sub-
stitution o with Bfo C Lt and B-o C L~; and, if
|B,"| = 1, also contains B, ¢ for every substitution o
with Bjfo C Lt and H,0 C L™.

e r=(L*,L7)is 0if | B;f| # 1; otherwise it is defined as
the minimal interpretation that contains B, o for every
substitution o with B0 C L™ and H,0 C L~

We define a way of applying rules “in reverse” here and re-
strict these cases to |B,”| = 1 and |B;T| = 1, respectively. In
principle one could relax this by considering every possible
choice for the atoms from B~ or B;". It remains for practical
evaluations to determine if this is a good trade-off between
simplicity and generality. For a program P and two interpre-
tations L+ and L, we define the following. For any interpre-
tation L, let the term-atoms TA” (L) be the set of all (ground)
atoms with predicates and ground terms from P, terms in L,
and arbitrary constants. Also, for each sign s € {+, —}:

e P§(LT,L™)is L®, and

* forevery i > 0, P7,, (L™, L™) is the minimal interpre-
tation that contains P (L™, L™) and, for every r € P,
r*(P(L*,L7), P (LT, L7))NTAY (LT U L™);

o P3 (LT, L7)isU;so PP(LT, L)

We intersect with TA” (L+ U L™) only to keep Ps(...) fi-
nite for all 5 (and hence for co); almost arbitrary extensions
are possible here. Intuitively, for sets of atoms that must be
true LT and must be false L™, PE and P close these sets
under certain (not all, as there might be infinitely many) in-
ferences to obtain larger sets of atoms that must be true or
false, respectively. By definition, we can show via induction
that P3 only makes sound inferences of atoms.

Lemma 5. For a program P any two interpretations L™ and
L~ and any answer set I of P; if LY C Tand L= N1 = 0,
then PL(LT,L™) C Iand P (LT, L7)N1I = .

To check if an atom a is forbidden in a program P, we
backtrack atoms that must be true (L1) and must be false
(L™) to be able to prove a. To this aim, we describe a proce-
dure with the help of some auxiliary definitions. We say that
an atom has support in P for interpretations L™ and L~ if
there is a rule » € P and a substitution o with H,.o = {a},
Bfo C LT and B0 C L~. Intuitively, having support is
almost like being proven but the set of non-derived atoms is
given explicitly using L~. For a rule » € P and a substi-
tution o, an r-extension of o is a substitution ¢’ that agrees
with o on variables from H, and additionally, for each vari-
able X in r that occurs in B;" but not in H,, if X occurs
in a position that can only feature constants, o’(X) is one of
these constants; otherwise, i.e. if functional terms may occur
in the position of X, o/(X) is a fresh constant.® To check
if a is forbidden, we call IsForbidden(P, {a},0) from Al-
gorithm 1. The general idea of the procedure is as follows.
We first check if L+ and L~ contradict each other. When we

8We can perform static analysis on the positive part of P to ob-
tain the possible constants for each position in P and also to deter-
mine if a function symbol might occur in a position.

Algorithm 1 IsForbidden

Require: program P, interpretations L™ and L™
Ensure: some atom in L™ is forbidden or LT N L~ # ()
I: Lt « PX(L*, L") and L~ « PL(L*, L)

2: if LT N L™ # () then
3: return true
4: end if
5: someFrbdn « false
6: for all @ € L without support do
7: aFrbdn < true
8: for all » € P and substitution 0 and g mapping all
fresh constant to arbitrary terms except such constants
with H,.0 = {g(a)} do
9: if g(a) features terms not in Lt U L™ then
10: aFrbdn < false
11: break
12: end if
13: Kt <+ g(LT)and K~ + g(L™)
14: for all r-extensions ¢’ of o do
15: Jt < Kt U (Bfo' nTAY(K*+ U K7)) and
J-« K- U(B-o'NTAP(KTUK™))
16: aFrbdn <« aFrbdn A IsForbidden(P, J*,J ™)
17: end for
18: end for
19: someFrbdn < someFrbdn V aFrbdn
20: end for

21: return someFrbdn

reach this base case, we know that our initial atom a must be
forbidden. Otherwise, we check if there is an unproven atom
a left in line 6. If so, we check all ways in which a could be
proven in line 8. If a can potentially be proven with some un-
known function symbols, we assume a not to be forbidden in
line 9. Otherwise, we perform recursive calls to ISForbidden
within the loop in line 14 such that a is marked as not forbid-
den if at least one recursive call does not involve forbidden
atoms or a contradiction. This means, a might be provable.
By a recursive analysis of the algorithm, one can verify cor-
rectness with the help of Lemma 5.

Theorem 6. If the output of IsForbidden(P,{a},0) is true,
then the atom a is forbidden in P.

We are able to show for Example 5 that fct(a, s(s(0)))
is forbidden since the atom diff(0, s(s(0))) cannot possibly
have support. This would require —eg(a,a), which con-
tradicts eq(a,a). For Example 6, it is key to notice that

r(f(b), f(f(b))) is forbidden.

Example 7. We show how Algorithm 1 verifies that
r(f(b), f(f(b))) is forbidden in Example 6.

e Initialize L™ with r(f(b), f(f(b))) and L~ with (.

e Inlinel, P_(L*,L™) = {r(b, f(b))}; PE(LT,L™) =
{r(f(0), f(f(D))),r(a,b), stop(b), stop(f(f (D))}

o In the loop in line 6, pick r(f(b), f(f(D))).

¢ In the loop in line 8, there is only one choice with r as
the last rule, g the identity, and o mapping Y to f(b).

* Since g is the identity, the condition in line 9 is false.

e KT and K~ are PX(L*,L™) and P_(L*,L™).

e For the r-extension of o in line 14, we pick o’ with
o'(X) = ¢, where ¢, is a fresh constant. (The first
position of r may feature function symbols.)

e In line 15, J* is set to KT extended with r(cs, f(b))
and J~ is set to K~ extended with stop(c;,).

o In the recursive call, we initialize Lt and L~ with J+
and J~ from outside the call.

e Inline 1, the atom closures are P._(L",L™) = L™ and
PL(L*, L7) = LT U {stop(f(b))}.

o In the loop in line 6, pick r(cy, f(b)).

e In the loop in line 8, there is only one choice with r as
the last rule, g mapping c, to b, and o mapping Y to b.

e In line 13, obtain K* and K~ from P} (L",L™) and
PZ (L™, L™) by replacing r(c,, f(b)) by r(b, f(b)) and
stop(e,) by stop(b), respectively.

e For the r-extension of o in line 14, we pick o’ with
o'(X) = ¢, where c, is again a fresh constant.

e Inline 15, J* is set to KT extended with r(cy,b) and
J~ is set to K~ extended with stop(cy).

e In the recursive call, we initialize L™ and L~ with J*
and J~ from outside the call.

e Inline 1, the atom closures are PZ(L™T,L™) = L™ and
PH(LT,L™) = LT U {stop(b)}.

* We return true in line 3 since stop(b) € LT N L.

Based on these insights, we conclude that the IsConsis-

tent check ignoring forbidden atoms according to the IsFor-
bidden check captures Examples 5 and 6 as unsatisfiable.

5.3 Towards Finite Valid Groundings

Avoiding forbidden atoms does not only improve the
IsConsistent procedure but can reduce grounding efforts.

Definition 6. Define GroundNotForbidden(-) that takes a
program P as input and executes the following instructions:

1. Initialize i :== 1, Ay := 0, and P, := (.

2. Initialize A; := A;_1 and for each r € Ground(P)
with Bf C A;_1, do the following. If all atoms in H,
are forbidden in P, add < B, to P,. Otherwise, add r
to Py and add the single atom in H, to A;.

3. Stopif A; = A;_1; else seti:= i+ 1 and go to Step 2.
The output of the procedure is P,

Observe that for any answer set I of a program P, P still
proves all atoms in I and the rules P, \ Ground(P) must be
satisfied by I. Vice versa, all atoms in any answer set I’ for
P, are also proven in Ground(P) and I’ satisfies all rules in
Ground(P) as otherwise a contradiction would follow from
one of the constraints in P, \ Ground(P).

Theorem 7. For a program P, GroundNotForbidden(P) is
a valid grounding, i.e. I is an answer set of P iff I is an

answer set of GroundNotForbidden(P).

Interestingly, the procedure always yields a finite ground
program P for frugal and non-proliferous programs.

Proposition 5. For a frugal and non-proliferous program P,
GroundNotForbidden(P) is finite.

Proof. By Definition 4, P has only finitely many answer sets
and all of them are finite. Hence, there is only a finite num-
ber of atoms in all answer sets of P and all other atoms are
forbidden. Therefore, GroundNotForbidden(P) only takes
a finite number of steps to compute. O

This result might be surprising but it is less so once we real-
ize that this only holds because the definition of GroundNot-
Forbidden assumes that we can decide if an atom is forbid-
den. So GroundNotForbidden is actually not computable.
In practice however, any sufficient check for forbiddenness
(like IsForbidden) can be used in the procedure to make it
computable without sacrificing the validity of P, as then P,
will only contain more rules from Ground(P) and Theorem 7
still holds. This allows us to compute finite valid groundings
for all of our Examples 1, 2, 5, and 6.

6 Conclusion

In this work, we have been undergoing an in-depth recon-
sideration of undecidability for ASP consistency. We have
shown intuitive reductions from and to similarly hard prob-
lems, which can be of interest even outside of the ASP com-
munity. We also considered two characteristics of ASP pro-
grams that can make reasoning hard, that is having infinite an-
swer sets or infinitely many answer sets. We identified frugal
and non-proliferous programs as a desirable class of programs
that at least ensures semi-decidability of reasoning. To cover
more negative cases with a semi-decision procedure, we ig-
nore forbidden atoms and show a proof-of-concept algorithm
implementing a sufficient condition that captures our main
examples. Furthermore, we can leverage forbidden atoms
also to compute a valid grounding. In principle, GroundNot-
Forbidden yields finite valid groundings for all frugal and
non-proliferous programs if we are able to ignore all forbid-
den atoms. Note that, while we considered non-disjunctive
programs for simplicity, our results can be extended towards
disjunctions as well. This requires careful reconsiderations
for Algorithm 1 but is almost immediate for all other results.

Future Research Directions and Outlook. We hope this
work will reopen the discussion about function symbols and
how we can design smart techniques to avoid non-terminating
grounding procedures. We expect that the ASP community
would benefit from incorporating recent research on termi-
nation conditions and updating their grounding strategies ac-
cordingly. After all, the ASP language is first-order based and
we are convinced that function symbols are a key ingredient
for elegant and convenient modeling of real-world scenarios.

An obvious future work is an efficient implementation
of sufficient checks for forbidden atoms, requiring a good
tradeoff between generality and performance. Our proposed
procedure can function as a reference for implementation.
Grounding procedures ignoring forbidden atoms can then be
evaluated for existing ASP solvers. Even in lazy-grounding,
termination of solvers can be improved by ignoring forbidden
atoms. We think this idea is promising for improving existing
reasoners like Alpha, gringo/clingo, and (i)DLV.

Acknowledgments

We want to acknowledge that the full modelling of the wolf,
goat cabbage puzzle from the introduction is inspired by lec-
ture slides created by Jean-Francgois Baget.

On TU Dresden side, this work was partly supported by
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) in project 389792660 (TRR 248, Center for
Perspicuous Systems); by the Bundesministerium fiir Bil-
dung und Forschung (BMBF) in the Center for Scalable Data
Analytics and Artificial Intelligence (ScaDS.Al); by BMBF
and DAAD (German Academic Exchange Service) in project
57616814 (SECAI, School of Embedded and Composite Al);
and by the Center for Advancing Electronics Dresden (cfaed).

Carral was financially supported by the ANR project
CQFD (ANR-18-CE23-0003).

Hecher is funded by the Austrian Science Fund (FWF),
grants J 4656 and P 32830, the Society for Re-
search Funding in Lower Austria (GFF, Gesellschaft fiir
Forschungsférderung NO) grant ExzF-0004, as well as the
Vienna Science and Technology Fund (WWTF) grant ICT19-
065. Parts of the research were carried out while Hecher was
visiting the Simons institute for the theory of computing at
UC Berkeley.

References

[Alviano et al., 2010] Mario Alviano, Wolfgang Faber,
Nicola Leone, Simona Perri, Gerald Pfeifer, and Giorgio
Terracina. The Disjunctive Datalog System DLV. In Oege
de Moor, Georg Gottlob, Tim Furche, and Andrew Jon
Sellers, editors, Datalog Reloaded - First International
Workshop, Datalog 2010, Oxford, UK, March 16-19,
2010. Revised Selected Papers, volume 6702 of Lecture
Notes in Computer Science, pages 282-301. Springer,
2010.

[Alviano et al., 2012] Mario Alviano, Francesco Calimeri,
Wolfgang Faber, Giovambattista Ianni, and Nicola Leone.
Function Symbols in ASP: Overview and Perspectives.
2012.

[Alviano et al., 2022] Mario Alviano, Carmine Dodaro, Sal-
vatore Fiorentino, Alessandro Previti, and Francesco
Ricca. Enumeration of Minimal Models and MUSes in
WASP. In LPNMR, volume 13416 of Lecture Notes in
Computer Science, pages 29-42. Springer, 2022.

[Banbara er al., 2017] Mutsunori Banbara, Benjamin Kauf-
mann, Max Ostrowski, and Torsten Schaub. Clingcon: The
next generation. Theory Pract. Log. Program., 17(4):408—
461, 2017.

[Bichler et al., 2020] Manuel Bichler, Michael Morak, and
Stefan Woltran. lpopt: A Rule Optimization Tool for An-
swer Set Programming. Fundamenta Informaticae, 177(3-
4):275-296, 2020.

[Biere et al., 2009] Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors. Handbook of Satisfi-
ability, volume 185 of Frontiers in Artificial Intelligence
and Applications. 10S Press, 2009.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92—-103, 2011.

[Cabalar er al., 2020] Pedro Cabalar, Jorge Fandinno,
Torsten Schaub, and Philipp Wanko. A uniform treatment
of aggregates and constraints in hybrid ASP. In KR, pages
193-202, 2020.

[Calimeri et al., 2008] Francesco Calimeri, Susanna Cozza,
Giovambattista Ianni, and Nicola Leone. Computable
functions in ASP: theory and implementation. In
Maria Garcia de la Banda and Enrico Pontelli, editors,
Logic Programming, 24th International Conference, ICLP
2008, Udine, Italy, December 9-13 2008, Proceedings,
volume 5366 of Lecture Notes in Computer Science, pages
407-424. Springer, 2008.

[Calimeri et al., 2017] Francesco Calimeri, Davide Fusca,
Simona Perri, and Jessica Zangari. I-DLV: the new intelli-
gent grounder of DLV. Intelligenza Artificiale, 11(1):5-20,
2017.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg
Gottlob, and Andrei Voronkov. Complexity and expres-
sive power of logic programming. ACM Comput. Surv.,
33(3):374-425, September 2001.

[Eiter et al., 1994] Thomas Eiter, Georg Gottlob, and Heikki
Mannila. Adding disjunction to datalog (extended ab-
stract). In PODS ’94, pages 267-278, New York, NY,
USA, 1994. Assoc. Comput. Mach., New York.

[Eiter er al., 2007] Thomas Eiter, Wolfgang Faber, Michael
Fink, and Stefan Woltran. Complexity results for answer
set programming with bounded predicate arities and impli-
cations. 51(2-4):123-165, 2007.

[Gaggl et al., 2022] Sarah Alice Gaggl, Philipp Hanisch, and
Markus Krétzsch. Simulating sets in answer set program-
ming. In Luc De Raedt, editor, Proceedings of the Thirty-
First International Joint Conference on Artificial Intel-
ligence, 1JCAI 2022, Vienna, Austria, 23-29 July 2022,
pages 2634-2640. ijcai.org, 2022.

[Gebser er al., 2009] Martin Gebser, Benjamin Kaufmann,
and Torsten Schaub. Solution enumeration for projected
boolean search problems. In CPAIOR’09, volume 5547,
pages 71-86, 2009.

[Gebser et al., 2012] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Answer Set Solving
in Practice. Morgan & Claypool, 2012.

[Gebser et al., 2019] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Multi-shot ASP
solving with clingo. Theory Pract. Log. Program.,
19(1):27-82, 2019.

[Harel, 1986] David Harel. Effective transformations on in-
finite trees, with applications to high undecidability, domi-
noes, and fairness. J. ACM, 33(1):224-248, 1986.

[Hippen and Lierler, 2021] Nicholas Hippen and Yuliya
Lierler. Estimating grounding sizes of logic programs un-
der answer set semantics. In JELIA, volume 12678, pages
346-361. Springer, 2021.

https://www.perspicuous-computing.science/
https://www.perspicuous-computing.science/
https://www.scads.de
https://www.scads.de
https://secai.org/
https://secai.org/
https://cfaed.tu-dresden.de

[Janhunen and Niemelid, 2016] Tomi Janhunen and Ilkka
Niemeld. The answer set programming paradigm. Al
Mag., 37(3):13-24, 2016.

[Janhunen et al., 2017] Tomi Janhunen, Roland Kaminski,
Max Ostrowski, Sebastian Schellhorn, Philipp Wanko, and
Torsten Schaub. Clingo goes linear constraints over reals
and integers. Theory Pract. Log. Program., 17(5-6):872—
888, 2017.

[Kaminski and Schaub, 2021] Roland Kaminski and Torsten
Schaub. On the foundations of grounding in answer set
programming. CoRR, abs/2108.04769, 2021.

[Kleine Biining and Lettman, 1999] Hans Kleine Biining
and Theodor Lettman. Propositional logic: deduction
and algorithms. Cambridge University Press, Cambridge,
1999.

[Marek and Remmel, 2011] Victor Marek and Jeffrey B.
Remmel. Effectively Reasoning about Infinite Sets in
Answer Set Programming. In Marcello Balduccini and
Tran Cao Son, editors, Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning: Essays
Dedicated to Michael Gelfond on the Occasion of His 65th
Birthday, Lecture Notes in Computer Science, pages 131—
147. Springer, Berlin, Heidelberg, 2011.

[Marek and Truszczyfiski, 1991] Wiktor Marek and
Mirostaw Truszczyriski. Autoepistemic logic. J. of
the ACM, 38(3):588-619, 1991.

[Marek et al., 1994] V. Wiktor Marek, Anil Nerode, and Jef-
frey B. Remmel. The Stable Models of a Predicate Logic
Program. The Journal of Logic Programming, 21(3):129—
154, November 1994.

[Rogers, 1987] Hartley Rogers, Jr. Theory of recursive func-
tions and effective computability (Reprint from 1967). MIT
Press, 1987.

[Weinzierl et al., 2020] Antonius Weinzierl, Richard Taupe,
and Gerhard Friedrich. Advancing Lazy-Grounding ASP
Solving Techniques - Restarts, Phase Saving, Heuristics,
and More. Theory Pract. Log. Program., 20(5):609—624,
2020.

A Additional material for Section 1

We give the full modelling of the Wolf Goat Cabbage Puzzle
inspired by lecture slides from Jean-Francois Baget. We also
provide a Github repository containing all examples used in
the paper.”

I steps (0..100) .

3bank (east) .

4bank (west) .

5o0pposite (east,west) .

6 opposite (west,east) .
7passenger (wolf) .

s passenger (goat) .
9passenger (cabbage) .
l0position(wolf,west,0).
I1position (goat,west,0).
2position (cabbage,west,0) .
13position(farmer,west,0).
14eats (wolf,goat) .

15eats (goat, cabbage) .

17win (N) < position(wolf,east,N),

18 position(goat,east,N),

19 position (cabbage,east,N).

20winEnd <4 win (N) .

21 <+ hot winEnd.

2 lose <4 position(X,B,N),

23 position(Y,B,N), eats(X,Y),

24 position(farmer,C,N), opposite(B,C).
25 <= lose.

27goAlone (N) < position(farmer,B,N),
28 not takeSome (N), not win (N).

9 takeSome (N) < position(farmer,B,N),
30 passenger (YY), position(Y,B,N),

3. not goAlone (N), nhot win (N).

13 transport (X,N) < takeSome (N),

34 position(X,B,N), position(farmer,B,N),
35 passenger (X), hot othertransport (X,N) .
36 othertransport (X,N) < position(X,B,N),

37 transport (Y,N), X # Y.

vposition(X,C,N+1) < transport (X,N),

4 position(X,B,N), opposite(B,C), steps(N+1).
41 position(X,B,N+1) < position(X,B,N),

42 passenger (X), hot transport (X,N),

43 not win(N), steps (N+1).
s#position(farmer,C,N+1) <

45 position(farmer,B,N), opposite(B,C),

46 not win(N), steps (N+1).

4¢ change (N, M) < position(X,B,N),

49 position(X,C,M), opposite(B,C), N < M.
50 redundant < position (X,B,N),

51 position(X,B,M), N < M, not change(N,M).
52 «— redundant.

Listing 1: "Wolf Goat Cabbage Puzzle in ASP”

https://github.com/monsterkrampe/
ASP-Termination-Examples

B Proofs for Section 3
B.1 Proof of Lemma 1

In this subsection we prove Lemmas 6 and 7, which directly
imply Lemma 1.

Lemma 6. If a program P is consistent, then a run of Mp
on the empty word visits the start state infinitely many times.

Proof. Let I be an answer set of P, i.e. [is an answer set
of Ground(P). Hence, there is an ordering ¢ on the atoms
in I. Every atom a € [is proven by some ground rule r €
Ground(P) using only atoms that are ancestors of a with
respect to . There is a non-deterministic computation branch
of M p that chooses these rules in an order that respects . If
I is finite, there is an ¢ > 0 with LZT" = I and the machine
M p visits its start state infinitely many times. If [is infinite,
we still know that eventually Active;(P) = 0. Hence, for
every j > 0, there is an ¢ > j such that Active, + (P) and
J

Active, + (P) are disjoint. Also in this case, the machine M p
visits its start state infinitely many times. O

Lemma 7. A program P is consistent if a run of M p on the
empy word visits the start state infinitely many times.

Proof. If Mp has a non-deterministic computation path that
visits its start state infinitely many times, then there are two
cases to consider. First, L;-" is an answer set of P for some
¢t > 0. Then the claim follows. Second, j grows towards
infinity, i.e. for each j > 0, there is a & > j such that
ACtiveL;r(P) and ActiveLI(P) are disjoint. This also re-

quires that for every i > 0, L; and L; are disjoint. Now
on one hand by construction we get that for every ¢ > 0, ev-
ery ground atom in Lj is proven. (The construction directly
yields the necessary ordering since each step adds one addi-
tional atom to Lj'.) And on the other hand, for every rule
in r € Ground(P), there is an ¢ > 0 such that L:C satisfies
r for every i’ > i. Hence, for I = -, L;r, we have that
Active;(P) =) (and still that every atom in I is proven).
Therefore, I is an answer set of P. O

B.2 Proof of Lemma 2
In this subsection we prove Lemmas 8§ and 9, which directly
imply Lemma 2.

Lemma 8. If a tiling system T admits a recurring solution,
then the program Pz admits an answer set.

Proof. Consider a tiling system ¥ = (T, HI, VI, t,) that does
admit a recurring solution. That is, there is function f : N X
N — T such as the one described in Definition 2. To prove
the lemma we verify that the following set of ground atoms is
an answer set of Px:

I = {Dom(s"(co)), Belowy, (5" (co)) | i > 0}U
{Tiley(; jy(s'(co), 7 (o)) | i,5 > 0}

We first show that I satisfies every rule in Ground(Px)
with a case-by-case analysis:

* The atom Dom(cy), resulting from a rule with empty
body in Ground(Pz), must be in 1.

https://github.com/monsterkrampe/ASP-Termination-Examples
https://github.com/monsterkrampe/ASP-Termination-Examples

* Rules of Type (3) are satisfied since Dom(s'(co)) € I
for every ¢ > 1.

* Rules of Type (4) are satisfied because f is a total func-
tion and {s*(co) | 7 > 0} is the set of all terms in I.

* Rules of Type (5) and (6) are satisfied because
(f(i,5), f(i+1,7)) ¢ HIand (f(i, j), f(i,j+1)) ¢ VI
for every ¢, j > 0 by Definition 2.

* Rules of Type (7), (8) and (9) are satisfied since
Below,, (s'(cp)) € I forevery i > 0.

Moreover, we argue that every atom a € I is proven (ob-
taining an appropriate ordering of atoms in [is straightfor-
ward):

* Dom(s'(cg)) is proven for every i > 0 by the single
ground atom Dom(cy) and Rules of Type (3).

e Tiles(; jy(s'(co), s7(co)) is proven for every i,5 > 0 by
Rules of Type (4).

* Below,,(s’(cp)) is proven for every j > 0 by Rules of
Type (7) or (8) and the fact that there are is an infinite
set S C N with f(0,) = to forevery j € S.

O

Lemma 9. If the program Px admits an answer set for some
tiling system T, then T admits a recurring solution.

Proof. Consider some tiling system ¥ = (T, HI, VI, t) such
that Pz admits an answer set . Then, we argue that:

o The set of all terms in [is {s’(co) | ¢ > 0}. Note that
Dom(cg), Dom(s(X)) < Dom(X) € Px.

e For every ¢,j > 0, there is exactly one tile { € T
such that Tile;(s*(co), 87 (co)) € I because of rules of
Type (4) such that constraints in HI and VI are not vio-
lated by rules of Type (5) and (6).

* Rules of Type (7), (8), and (9) ensure that for every j >
0, there is a j' > j with Tile,,(co, ' (co)) € I. In
other words, there is an infinite set S C N such that
Tile, (co, s7(co)) € I forevery j € S.

For every i, j > 0, let f(i, j) = t where ¢ is the only element
in T with Tile,(s"(co), s? (co)) € I. As per Definition 2, the
existence of f implies that Pz admits a recurring solution.

O

C Proofs for Section 4

C.1 Turing Machine Simulation for Lemma 4

We give details about how to emulate the computation of a
Turing machine on all inputs with a program, as we discuss
in the proof of Lemma 4.

Definition 7. A (Turing) machine (TM) is a tuple
(Q,9,qs, qa, qr) where Q is a set of states, § is a total func-
tion from Q\ {qa, ¢} X {0,1, B} t0 Q x {0,1, B} x {L, R},
qs € Q is the starting state, q, € Q) is the accepting state, and
Gr € Q is the rejecting state. The machine M halts on a word
w € {0,1}* if the computation of M on input w reaches the
accepting or rejecting state.

We assume a binary input alphabet w.l.o.g. while the work-
ing tape of the TM additionally uses a blank symbol. The tape
is only one-way infinite to the right and the Turing machine
bumps on the left, i.e. when the TM tries to go to the left
beyond the first tape cell, it just stays on the first tape cell.

Definition 8. For a machine M = (Q, 6, qs, Ga, qr), let Py
be the program that contains the atoms H,_(c) and Input(c),
as well as all of the following rules:
Right(X,r(X)) + Input(X), —~Last(X) (10)
Last(X) < Input(X), - Right(X,r(X)) (11)
Input(r(X)) < Input(X), Right(X,r(X)) (12)

FiniteInput < Input(X), Last(X) (13)
— = Finitelnput (14)
Sp(X) < Last(X) (15)

(X)
So(X) < Input(X), =51 (X), ~Sp(X) (16)
S1(X) - Tuput(X), ~So(X), ~S5(X) (17)
Step(Y, s(Y)) + Right(X,Y), Step(X, s(X)) (18)
Step(Y, s(Y)) « Right(Y, X), Step(X,s(X)) (19)
Right(s(X), s(Y)) < Step(X, s(X
Right(s(X), r(s(X))) < Step(X, s(X)), Last(X) (21)
(

), Right(X,Y) (20)
) as
Last(r(s(X))) < Step(X, s X)),Last(X) (22)

Halt + H,, (X) (23)
Halt « H,,(X) 24)
— —Halt 25)

Moreover, for every q € Q \ {qa, g}, we add the rule
Step(X, s(X)) + Hy(X) (26)
For every a € {0,1, B}, we add
Sa(5(X)) = {~Hy(X) | ¢ € @},
Su(X), Step(X,5(X)) @)
For every (q,a) — (_,b,_) € 6, we add
Sp(s(X)) = Hy(X), Sa(X) (28)
For every (q,a) — (r,_, L) € 6, we add
H,.(Y) < Right(Y,s(X)), Hy(X), Se(X) (29
NotPirst(X) «+ Right(Y, X), Hy(X), So(X) (30)
H,(s(X)) < = NotFirst(X), Hy(X), S.(X) (3D
For every (q,a) — (r,_, R) € 6, we add
H,.(Y) < Right(s(X),Y), Hy(X), Sa(X) (32)
Consider a machine M and the following remarks:

1. Because of Rules (10-17), we have that for every answer
set I of Py, there is some (finite) word wy, . . ., w, over
the binary alphabet {0, 1} such that I includes {S,, (¢),
S, (1(€))y -+, Sw, (r™(c)), Sp(r"*T1(c))}. Hence, we
can associate every answer set I of Py, with a word,
which we denote with Word(7).

2. Consider some word w over {0, 1} such that M halts on
w. Then, there is a finite answer set for Py;; namely, the
only answer set I with Word(I) = w.

3. Consider some answer set I for Py;. Then, we can show
that M halts on Word(I).

4. The previous two items hold because Rules (18-32) en-
sure that every answer set of Py, encodes the computa-
tion of M on some input word over the binary alphabet.
Namely, an answer set [faithfully encodes the compu-
tation of M on Word(I).

C.2 Proof of Theorem 3
Theorem 3 follows from the upcoming Lemmas 10 and 11.

Definition 9. For a program P, let M’y be a modified version
of Mp (from the Section 3) that does not loop on its start
state if L;‘ is an answer set in step 3 but just halts.

Lemma 10. Deciding if an ASP program is frugal is in I13.

Proof. A program P admits only finite answer sets iff M5
does not admit an infinite run that visits its start state infinitely
many times.

If P has an infinite answer set, then by the proof of
Lemma 6, we already know that M p admits an infinite run
that visits its start state infinitely many times without encoun-
tering a finite answer set in this run. The same run is also
possible in M’ by construction.

If M5 admits an infinite run that visits its start state in-
finitely many times, and since M/, does not loop on its start
state if it encounters a finite answer set, ° must have an infi-
nite answer set as argued in the proof of Lemma 7. O

Lemma 11. Deciding if an ASP program is frugal is 113 -
hard.

Proof. We can make direct use of the tiling system T from
the proof of Lemma 2 since if ¥ has a solution, then Px has
an infinite model but otherwise, the program does not have
any model (i.e. all (0) models are finite). O

D Proofs for Section 5
D.1 Proof of Lemma 5

We show Lemma 5 as follows.

Proof. Assume that the precondition holds, i.e. we have a
program P and an answer set I of P and two interpretations
L*,L™ suchthat LY C T and L~ NI = (). We prove that
PH(L*,L™) C ITand P_(L*,L~) NI = () by showing the
respective property for each P;"(L*,L~) and P, (L*,L™)
via induction over ¢ > 0.

For the base of the induction (¢ = 0), the claim follows
directly from the precondition; that is, Py (L*,L™) = L+ C
Tand Py (L*,L7)N1I=0since Py (LT, L) =1L".

We show the induction step from i to 4 + 1. Let J* =
PH(L*,L™)and J~ = P, (L*, L™). By induction hypoth-
esis, wehave JT C JTand J- NI = 0.

For the claim for P}, (L™, L™), suppose for a contradic-
tion that there is a rule » € P and an atom a € r™(J*,J7)
with a ¢ I. Then, by the definition of rT, there are two cases:

1. ais the single atom in H,.c for some substitution o with
BtoCJtand B,o C J ,or

2. ais the single atom in B o for some substitution o with
BYo C J"and H.o C J~ with |B; | =1.

By the supposition that a ¢ I and the induction hypothesis,
we obtain that I does not satisfy the ground rule ro. This
contradicts I being an answer set of P.

For the claim for P, (L*, L), suppose for a contradic-
tion that there is a rule r € P and an atom a € r~ (J T, J7)
with a € I. By the definition of ~, a is the single atom in
B o for some substitution o with B0 C J~ and H.o C
J~ with |B;f| = 1. By the supposition that a € I and the
induction hypothesis, we obtain that I does not satisfy the
ground rule ro. This contradicts I being an answer set of P.
This concludes the induction step and the proof. [

D.2 Proof of Theorem 6

We show Theorem 6 as follows.

Proof. We prove that a is forbidden, i.e. that a cannot oc-
cur in any answer set of P, if IsForbidden(P, {a}, 0) returns
true. More precisely, we show the contrapositive, i.e. if a
occurs in some answer set of I, then IsForbidden(P, {a}, 0)
returns false.

Let I be an answer set for P. We establish the fol-
lowing more general claim (f) over the execution of one
(recursive) call of IsForbidden. Given two interpretations
LT, L~ such that there is a mapping h from fresh constants
to terms with A(L*) C I and h(L™) NI = 0, we show
that either, IsForbidden(P, L™, L™) returns false immedi-
ately or there is a similar mapping h’ with h/(J*) C I and
R'(J=) NI = O where J* and J~ are the inputs to the
recursive call. The recursion is finite by intersecting with
TAY(K+ U K~) in line 15, and making sure g(a) only fea-
tures terms in Lt U L™ in line 9. This eventually also means
that IsForbidden(P, L™, L™) returns false.

We show in the following that (1) Line 1 retains the pre-
condition after updating L™ and L™, that is, we still have
h(L*) € T and h(L") NI = 0. For s € {+,—}
and n € N U {0}, let Pout; := h(P:(L*,L™)) and
Pin} = P$(h(LT),h(L™)). Now the precondition still
holds by Lemma 5 and the observation that Pout’_ C PinZ_
for each s € {4, —}. To see why the observation holds, con-
sider the following argument. We show Pout;” C Pin; via
induction over i. The proof for s = — is analogous. For the
base case with i = 0, Pout] = h(L*) C h(L*) = Pin}
holds trivially. For the induction step from ¢ to ¢ + 1, we
have Pouzf;r C Pinj by induction hypothesis. Note also
that h(TA” (LT U L)) € TA” (h(L*) U h(L7)). Now let
rOut™ = h(r* (P (L*,L7), P, (L*,L7))) and rIn™ =
rH (P (B(LH), (L)), P (L), h(L))). It only re-
mains to show that rOut™ C rIn™ for each r € P. For
every atom in a’ € rOut™, there are two cases to consider:

e There is a substitution o such that a’ is the single
atom h(H,o), Bfo C P (L* ,L7), and By o C
P7(L*,L™). Then, B} (ho o) C Pout;” C Pin; and
B (hoo) C Pout; C Pin; . Therefore, H.(hoo) =
h(H,o) C rin™.

» There is a substitution o such that o’ is the single
atom in h(B; o), Bfo C P(L*,L7), and H,o C
P (L*,L™). Then, B}t (ho o) C Pout; C Pin; and
H.(hoo)C Pout; C Pin; . Therefore, B, (hoo) =
B (hoo) C rint.

This concludes the induction step and the proof of (I).

By the precondition, i.e. A(LT) C I'and h(L™)N I = 0,
we have h(L1T)Nh(L™) = () and therefore also LTNL™ = (.
Thus, we do not reach line 3.

If all atoms in L™ have support, we do not enter the loop
in line 6. Then, the algorithm returns false as claimed. Oth-
erwise, let ' € LT be any atom picked in line 6. Since
h(a’) € I, h(a’) is proven in I and P. Therefore, there is
a suitable » € P and a substitution o with H.c = {h(a')}
in line 8. We pick g to be h. Since we already established
that h(a’) € I, we know that h(a") does not contain any fresh
constants. However, h(a’) might contain terms that are not in
Lt U L~. In this case, we enter the condition on line 9 and
return false as claimed. Otherwise, we proceed as follows.

For what follows, note that & is idempotent; fresh constants
are not mapped to other fresh constants and all other terms are
not mapped (i.e. effectively mapped to themselves). There-
fore, in line 13, h(K™) = h(h(LT)) = h(L™) C I holds
and h(K~) = h(h(L7)) = R(L7)so (K~)NT = §
holds as well. Again, since h(a’) is proven in I and P, there
is a substitution ¢” with H.oc = H,¢"”, Bf¢” C I, and
B o" NI = (. In line 14, we pick o’ to be the r-extension
of o with o/(X) = ¢”(X) for every body variable X that oc-
curs in a position that can only feature constants (and o’/ (Y")
being a fresh constant all other variables Y").

To wrap up (f) it remains to show that we find a map-
ping h' from fresh constants to terms with h/(J*) C [T
and B'(J7) NI = (). We define h’ as an extension of h
additionally mapping the newly introduced constants in ¢’
such that " = h’' o ¢/. We obtain h/(KT) = h(KT)
and h'(K~) = h(K~). Hence, according to line 15, the
proof of (1) concludes once we prove 1/(BFfo’) C I and
R (B, o’)NI = (. This is straightforward since 1/ (B;fo’) =
Bfo"” and W/ (B-0') = B c¢"” and we already know that
Bfc"” C Tand By o NI =0 hold.

The claim of the theorem now simply follows by applying
(1) to {a} and . We pick h to be the identity. Hence with
the assumption that ¢ € I, the precondition holds and we
therefore infer that IsForbidden(P, {a}, 0) returns false. O

D.3 Run of Algorithm 1 for Example 5
We show how Algorithm 1 verifies that fct(a, s(s(0))) is for-
bidden in Example 5.

* Initialize L™ with fct(a, s(s(0))) and L~ with (.

* In line 1, we obtain P_(L*,L™) = {redundant} as
well as P (LT, L™) = {fct(a,0),fct(b, 5(0)), eq(a,a),
eq(b, b), 11(0, 5(0)), 11(s(0), 5(5(0))), 11(0, 5(5(0))),
diff(0, 5(0)), diff(s(0), s(s(0))), diff(0, s(s(0))) }-

* In the loop in line 6, pick diff(0, s(s(0))).

¢ In the loop in line 8, there is only one possible choice

with 7 being the next to last rule, g being the identity,
and o mapping N to 0 and M to s(s(0)).

* For the r-extension of ¢ in line 14, there are four pos-
sible choices that we consider individually. Both X and
Y can each be mapped to a or b. No fresh constants are
involved since the first position of fct may only feature
constants, namely a or b.

. X—aand Y — a.
— In line 15, we add eg(a, a) to J .
— We reach line 3 since eq(a,a) € LT N L.
2. X—bandY —b.
— Inline 15, add eq(b, b) to J~. (J also changes.)
— We reach line 3 since eq(b,b) € LT N L~.
3. X—=bandY — a.

— Inline 15, add fct(b, 0) to J* and eq(b, a) to J .

— In line 6, we pick fct(b, 0).

— We cannot enter the loop in line 8; therefore we
return true in the end.

4. X —aandY — b.

— In line 15, we add fct(b, s(s(0))) to J* and
eq(a,b) to J~.

— In line 6, we pick fct(b, s(s(0))).

— In the loop in line 8, there is only one possible
choice with r being fct(b, s(N)) « fet(a, N)., g
being the identity, and o mapping N to s(0).

— Inline 14, ¢’ = 0.

— In line 15, we add fet(a, s(0)) to J .

— In line 6, we pick fct(a, s(0)).

— In the loop in line 8, there is only one possible
choice with 7 being fct(a, s(N)) < fet(b,N)., g
being the identity, and o mapping NN to 0.

— Inline 14, 0’ = 0.

— Inline 15, we add fct(b,0) to J .

— Now we eventually return true as in case 3.

D.4 Proof of Theorem 7

We show Theorem 7 as follows.

Proof. Let P, be the result of GroundNotForbidden(P).
For every answer set I of Ground(P), we have that I C
Uiso A4i (with the A; from the construction of Py). This
holds, since every atom a € I is proven and not forbidden
(as it occurs in an answer set), so there is an ¢ with a € A;.

So if I is an answer set of Ground(P), then all atoms in
I are still proven by P, and rules in Ground(P) N P, are
still satisfied. It only remains to show that all rules in P, \
Ground(P) are satisfied. Such rules must be of the form
< B, introduced for rules ' € Ground(P) where H,. is
forbidden. If I would not satisfy r, it would also not satisfy
r’ unless H,» € I, which contradicts I being an answer set of
Ground(P). This completes the “only if”” direction.

If I is an answer set of P,, every atom a € I’ is still proven
in Ground(P). It only remains to show that I’ is indeed a
model of Ground(P). Suppose for a contradiction that r €
Ground(P) is not satisfied by I’. By construction of P, this
can only be the case if all atoms in H, are forbidden. But
then, the rule <~ B,. in P, is also not satisfied by I’, which
contradicts I’ being an answer set of P,. This completes the
“if” direction. O

	Introduction
	Preliminaries
	Checking Consistency of ASP Programs
	An Upper Bound for ASP Consistency
	A Lower Bound for ASP Consistency

	Frugal and Non-Proliferous Programs
	Undecidability of These Notions
	Consistency Becomes (Only) Semi-Decidable

	Improved Reasoning Procedures
	Limits of Semi-Decision
	Ignoring Forbidden Atoms
	Towards Finite Valid Groundings

	Conclusion
	Additional material for Section 1
	Proofs for Section 3
	Proof of Lemma 1
	Proof of Lemma 2

	Proofs for Section 4
	Turing Machine Simulation for Lemma 4
	Proof of Theorem 3

	Proofs for Section 5
	Proof of Lemma 5
	Proof of Theorem 6
	Run of Algorithm 1 for Example 5
	Proof of Theorem 7

