
Finite Groundings for ASP with Functions
A Journey through Consistency

Lukas Gerlach¹ David Carral² Markus Hecher³

¹Knowledge-Based Systems Group, TU Dresden, Germany
²LIRMM, Inria, University of Montpellier, CNRS, France
³Massachusetts Institute of Technology, United States

08.08.2024

How are Functions used in ASP?

General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

1

How are Functions used in ASP?

General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Prog.

Ground
Prog.

{…}
Model

Ground

&

Solve

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

1

How are Functions used in ASP?

General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Prog.

Ground
Prog.

{…}
Model

Ground

&

Solve

Example: Bring wolf, goat, and cabbage over river.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

1

How are Functions used in ASP?

General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Prog.

Ground
Prog.

{…}
Model

Ground

&

Solve

Example: Bring wolf, goat, and cabbage over river.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

1

How are Functions used in ASP?
General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Prog.

Ground
Prog.

{…}
Model

Ground

&

Solve

Example: Bring wolf, goat, and cabbage over river.
WolfGoatCabbage-GameRules.asp

bank(east). bank(west).
opposite(east, west). opposite(west,east).
passenger(wolf). passenger(goat). passenger(cabbage).
position(wolf, west, 0). position(goat, west, 0).
position(cabbage, west, 0). position(farmer, west, 0).
eats(wolf, goat). eats(goat, cabbage).

win(N) :- position(wolf, east, N),
 position(goat, east, N),
 position(cabbage, east, N).
winEnd :- win(N).
lose :- position(X, B, N),
 position(Y, B, N), eats(X, Y),
 position(farmer, C, N), opposite(B, C).
:- not winEnd. % we must win eventually
:- lose. % we must not lose

Encode Basic Game Rules

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

1

How are Functions used in ASP?

General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Prog.

Ground
Prog.

{…}
Model

Ground

&

Solve

Example: Bring wolf, goat, and cabbage over river.

WolfGoatCabbage-ChooseMove.asp

% farmer either goes alone ...
goAlone(N) :- position(farmer, B, N),
 not takeSome(N), not win(N).
% ... or takes some passenger ...
takeSome(N) :- position(farmer, B, N),
 passenger(Y), position(Y, B, N),
 not goAlone(N), not win(N).
% ... and needs to pick exactly one
transport(X, N) :- takeSome(N),
 position(X, B, N), position(farmer, B, N),
 passenger(X), not othertransport(X, N).
othertransport(X, N) :- position(X, B, N),
 transport(Y, N), X != Y.

Choose whom to transport
(in each step)

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

1

How are Functions used in ASP?
General Procedure:
ASP systems like
Clingo and (i)DLV
work as follows.

Prog.

Ground
Prog.

{…}
Model

Ground

&

Solve

Example: Bring wolf, goat, and cabbage over river.
WolfGoatCabbage-UpdatePositions-LimitStepsAndRedundancies.asp

% Numbers are functions! e.g. 2 = s(s(0)); N+1 = s(N)
steps(0..100). % Common Hack to contain Ground program

% based on the choice, we update positions
position(X, C, N+1) :- transport(X, N), position(X, B, N),
 opposite(B, C), steps(N+1).
position(X, B, N+1) :- position(X, B, N), passenger(X),
 not transport(X, N), not win(N), steps(N+1).
position(farmer, C, N+1) :- position(farmer, B, N),
 opposite(B, C), not win(N), steps(N+1).

% we forbid configurations that already occurred
change(N, M) :- position(X, B, N), position(X, C, M),
 opposite(B, C), N < M.
redundant :- position(X, B, N), position(X, B, M),
 N < M, not change(N, M).
:- redundant.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

1

Why are Functions so hard and what to do about it?
Understand:
• Consistency is Σ11-complete. [Dan+01, MNR94]
• We reprove e.g. hardness by reduction from a variant of

the tiling problem. [Har86]
• We characterize frugal and non-proliferous programs.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

2

Why are Functions so hard and what to do about it?
Understand:
• Consistency is Σ11-complete. [Dan+01, MNR94]
• We reprove e.g. hardness by reduction from a variant of

the tiling problem. [Har86]
• We characterize frugal and non-proliferous programs.

Overcome:
We propose GroundNotForbidden as a
grounding procedure ignoring forbidden
atoms that yields finite grounding for
frugal and non-proliferous programs.

GroundNotForbidden.pseudo; Output: 𝑃𝑔

1. Set 𝑖 ≔ 1,𝐴0 ≔ ∅,𝑃𝑔 ≔ ∅.
2. Set 𝐴𝑖 ≔ 𝐴𝑖−1. For each potential

ground rule 𝑟 = 𝐻𝑟 ← 𝐵+𝑟 , 𝐵−𝑟 with
𝐵+𝑟 ⊆ 𝐴𝑖−1, (a) if 𝐻𝑟 is forbidden add
← 𝐵+𝑟 , 𝐵−𝑟 to 𝑃𝑔 , (b) otherwise add 𝑟 to
𝑃𝑔 and 𝐻𝑟 to 𝐴𝑖.

3. Stop if 𝐴𝑖 = 𝐴𝑖−1; else inc 𝑖, go to 2.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

2

Oops, time is over :(

We hope to discuss details
at our poster with you :)

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

3

References

[Dan+01] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, “Complexity and
expressive power of logic programming,” ACM Comput. Surv., vol.
33, no. 3, pp. 374–425, Sep. 2001, doi: 10.1145/502807.502810.

[MNR94] V. W. Marek, A. Nerode, and J. B. Remmel, “The Stable Models of a
Predicate Logic Program,” The Journal of Logic Programming,
vol. 21, no. 3, pp. 129–154, Nov. 1994, doi: 10.1016/
S0743-1066(14)80008-3.

[Har86] D. Harel, “Effective transformations on infinite trees, with
applications to high undecidability, dominoes, and fairness,” J.
ACM, vol. 33, no. 1, pp. 224–248, Jan. 1986, doi: 10.1145/4904.4993.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

4

https://doi.org/10.1145/502807.502810
https://doi.org/10.1016/S0743-1066(14)80008-3
https://doi.org/10.1016/S0743-1066(14)80008-3
https://doi.org/10.1145/4904.4993

Consistency is (very) hard, i.e. Σ11-complete

Hardness: Reduction
from “Recurring Tiling”

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

5

Consistency is (very) hard, i.e. Σ11-complete

Hardness: Reduction
from “Recurring Tiling”

Given:

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

5

Consistency is (very) hard, i.e. Σ11-complete

Hardness: Reduction
from “Recurring Tiling”

Given:
Wanted:

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

5

Consistency is (very) hard, i.e. Σ11-complete

Hardness: Reduction
from “Recurring Tiling”

Given:
Wanted:

RecurringTiling.asp

dom(c0).
dom(s(X)) :- dom(X).
tile0(X, Y) :- dom(X), dom(Y), not tile1(X, Y)
tile1(X, Y) :- dom(X), dom(Y), not tile0(X, Y)
:- tile0(X, Y), tile0(s(X), Y).
:- tile0(X, Y), tile0(X, s(Y)).
:- tile1(X, Y), tile1(s(X), Y).
:- tile1(X, Y), tile1(X, s(Y)).
below0(Y) :- tile0(c0, s(Y)). % each tile in first
below0(Y) :- below0(s(Y)). % column is below a
:- dom(Y), not below0(Y). % tile of type 0

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

5

Consistency is (very) hard, i.e. Σ11-complete

Membership:
Reduction to NTM that
admits a run that visits
the start state infinitely
many times iff the
program is consistent.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

6

Consistency is (very) hard, i.e. Σ11-complete

Membership:
Reduction to NTM that
admits a run that visits
the start state infinitely
many times iff the
program is consistent.

𝐻𝑟 ← 𝐵+1 ,…,𝐵+𝑛 , ¬𝐵−1 ,…, ¬𝐵−𝑚
NTM-for-Consistency.pseudo; Input: Program 𝑃

1. Initialize an empty set 𝐿0 of literals, and some counters 𝑖 ≔ 0
and 𝑗 ≔ 0.

2. If 𝐿+𝑖 and 𝐿−𝑖 are not disjoint, halt.
3. If 𝐿+𝑖 is an answer set of P , loop on the start state.
4. Initialize 𝐿𝑖+1 ≔ 𝐿𝑖 ∪𝐻𝑟 ∪ {¬𝑎 | 𝑎 ∈ 𝐵−𝑟 } where 𝑟 is some non-

deterministically chosen rule in Active𝐿+𝑖 (𝑃).
5. If 𝐿𝑖 satisfies all of the rules in Active𝐿+𝑗 (𝑃), then set 𝑗 ≔ 𝑗 + 1

and visit the start state once.
6. Set 𝑖 ≔ 𝑖 + 1 and go to Step 2.

Active𝐼(𝑃) is the set of ground rules that are unsatisfied in 𝐼 .

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

6

Two Characterizations of Programs

Frugal: Only finite answer sets. Π11-complete. (Membership: Use NTM-for-
Consistency.pseudo but halt instead of loop in step 3. Hardness:
RecurringTiling.asp is frugal iff the tiling problem has no solution.)
Non-proliferous: Only finitely many finite answer sets (infinite ones
allowed). Σ02-complete.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

7

Two Characterizations of Programs

Frugal: Only finite answer sets. Π11-complete. (Membership: Use NTM-for-
Consistency.pseudo but halt instead of loop in step 3. Hardness:
RecurringTiling.asp is frugal iff the tiling problem has no solution.)
Non-proliferous: Only finitely many finite answer sets (infinite ones
allowed). Σ02-complete.

FrugalButProliferous.asp

next(c,d).
next(Y, f(Y)) :- next(X, Y), not last (Y).
last(Y) :- next(X, Y), not next(Y, f(Y)).
done :- last(Y).
:- not done.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

7

Two Characterizations of Programs

Frugal: Only finite answer sets. Π11-complete. (Membership: Use NTM-for-
Consistency.pseudo but halt instead of loop in step 3. Hardness:
RecurringTiling.asp is frugal iff the tiling problem has no solution.)
Non-proliferous: Only finitely many finite answer sets (infinite ones
allowed). Σ02-complete.

FrugalButProliferous.asp

next(c,d).
next(Y, f(Y)) :- next(X, Y), not last (Y).
last(Y) :- next(X, Y), not next(Y, f(Y)).
done :- last(Y).
:- not done.

...

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

7

Two Characterizations of Programs

Frugal: Only finite answer sets. Π11-complete. (Membership: Use NTM-for-
Consistency.pseudo but halt instead of loop in step 3. Hardness:
RecurringTiling.asp is frugal iff the tiling problem has no solution.)
Non-proliferous: Only finitely many finite answer sets (infinite ones
allowed). Σ02-complete.

FrugalButProliferous.asp

next(c,d).
next(Y, f(Y)) :- next(X, Y), not last (Y).
last(Y) :- next(X, Y), not next(Y, f(Y)).
done :- last(Y).
:- not done.

...

When frugal and non-proliferous, consistency is (only) semi-decidable.
Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

7

Sketch for Σ02-hardness of Non-Proliferous Check

Reduction from universal halting (Π02-complete) for machine 𝑀 .
1. Checking if a TM halts on infinitely many inputs is Π02 hard. (Treat each

input as natural number 𝑛 and simulate 𝑀 on all inputs of length 𝑛. The
new machine halts on infinitely many inputs iff 𝑀 universally halts.)

2. The complement (i.e. checking if a TM halts on only finitely many
inputs) is Σ02 hard.

3. We can generate finite inputs to a TM with an ASP program such that
the program has a finite answer set for the input iff the TM halts on the
input. That is, the program has finitely many finite answer sets iff the
TM halts on finitely many inputs. (Generation uses idea from
FrugalButProliferous.asp and is actually frugal.)

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

8

Finite Groundings using Forbidden Atoms

GroundNotForbidden yields finite grounding
for frugal and non-proliferous programs by
detecting forbidden atoms, i.e. atoms that
do not occur in any answer set.
Checking if an atom is forbidden is
undecidable in general but we provide a
sufficient condition. For example, redundant
is forbidden in WolfGoatCabbage.asp.

GroundNotForbidden.pseudo; Output: 𝑃𝑔

1. Set 𝑖 ≔ 1,𝐴0 ≔ ∅,𝑃𝑔 ≔ ∅.
2. Set 𝐴𝑖 ≔ 𝐴𝑖−1. For each potential

ground rule 𝑟 = 𝐻𝑟 ← 𝐵+𝑟 , 𝐵−𝑟 with
𝐵+𝑟 ⊆ 𝐴𝑖−1, (a) if 𝐻𝑟 is forbidden
add ← 𝐵+𝑟 , 𝐵−𝑟 to 𝑃𝑔 , (b) otherwise
add 𝑟 to 𝑃𝑔 and 𝐻𝑟 to 𝐴𝑖.

3. Stop if 𝐴𝑖 = 𝐴𝑖−1; else inc 𝑖, go to 2.

Lukas Gerlach (TU Dresden), David Carral (Inria), Markus Hecher (MIT) Finite Groundings for ASP with Functions 08.08.2024

9

	How are Functions used in ASP?
	Why are Functions so hard and what to do about it?
	Oops, time is over :(
	References
	Consistency is (very) hard, i.e. Σ11-complete
	Consistency is (very) hard, i.e. Σ11-complete
	Two Characterizations of Programs
	Sketch for Σ02-hardness of Non-Proliferous Check
	Finite Groundings using Forbidden Atoms

