A Journey to the Frontiers of Query Rewritability

Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, and Sebastian Rudolph June 7, 2022

The setting: existential rules

Definition (by example)

The setting: existential rules

Definition (by example)

An \exists-rule or a Tuple Generating Dependency is an FO sentence of the following form:

The setting: existential rules

Definition (by example)
An \exists-rule or a Tuple Generating Dependency is an FO sentence of the following form:
$\forall x \operatorname{Human}(x) \rightarrow \exists y \operatorname{Mother}(x, y)$

The setting: existential rules

Definition (by example)
An \exists-rule or a Tuple Generating Dependency is an FO sentence of the following form:
$\forall x$ Human $(x) \rightarrow \exists y \operatorname{Mother}(x, y)$
$\forall x, y$ Mother $(x, y) \rightarrow$ Human (y)

The setting: existential rules

Definition (by example)
An \exists-rule or a Tuple Generating Dependency is an FO sentence of the following form:
$\forall x$ Human $(x) \rightarrow \exists y \operatorname{Mother}(x, y)$
$\forall x, y$ Mother $(x, y) \rightarrow$ Human (y)
Usually omitted

The setting: knowledge representation using \exists-rules

The setting: knowledge representation using \exists-rules

"Everyone has a mother"
Human $(x) \rightarrow \exists y$ Mother (x, y)
$\operatorname{Mother}(x, y) \rightarrow \operatorname{Human}(y)$

The setting: knowledge representation using \exists-rules

"Everyone has a mother"
" E is transitive"

$$
E(x, y), E(y, z) \rightarrow E(x, z)
$$

$$
\operatorname{Mother}(x, y) \rightarrow \operatorname{Human}(y)
$$

The setting: knowledge representation using \exists-rules

"Everyone has a mother"
"E is transitive"

$$
\begin{gathered}
\text { Human }(x) \rightarrow \exists y \text { Mother }(x, y) \\
\operatorname{Mother}(x, y) \rightarrow \text { Human }(y)
\end{gathered}
$$

$$
E(x, y), E(y, z) \rightarrow E(x, z)
$$

Query entailment problem

The setting: knowledge representation using \exists-rules

"Everyone has a mother" "E is transitive"

$$
\begin{gathered}
\operatorname{Human}(x) \rightarrow \exists y \text { Mother }(x, y) \\
\operatorname{Mother}(x, y) \rightarrow \text { Human }(y)
\end{gathered}
$$

$$
E(x, y), E(y, z) \rightarrow E(x, z)
$$

Query entailment problem

Given a ruleset \mathcal{R} and a database \mathcal{D} we ask if some query \mathcal{Q} holds in every model of \mathcal{R} and \mathcal{D} ?

The setting: knowledge representation using \exists-rules

"Everyone has a mother" "E is transitive"

$$
\begin{aligned}
& \text { Human }(x) \rightarrow \exists y \text { Mother }(x, y) \quad E(x, y), E(y, z) \rightarrow E(x, z) \\
& \operatorname{Mother}(x, y) \rightarrow \text { Human }(y)
\end{aligned}
$$

Query entailment problem

Given a ruleset \mathcal{R} and a database \mathcal{D} we ask if some query \mathcal{Q} holds in every model of \mathcal{R} and \mathcal{D} ?

To denote that a query holds in every model of \mathcal{R} and \mathcal{D} we write

$$
\mathcal{R}, \mathcal{D} \neq \mathcal{Q} .
$$

The main character: BDD class of \exists-rules

BDD class definition (By FO-rewritings)

The main character: BDD class of \exists-rules

BDD class definition (By FO-rewritings)

A ruleset \mathcal{R} admits Bounded Derivation Depth property (is FO-rewritable) if for every $\mathrm{CQ} \mathcal{Q}$ there exists a UCQ \mathcal{Q}^{\prime} such that for every database \mathcal{D} the following holds:

The main character: BDD class of \exists-rules

BDD class definition (By FO-rewritings)

A ruleset \mathcal{R} admits Bounded Derivation Depth property (is FO-rewritable) if for every $\mathrm{CQ} \mathcal{Q}$ there exists a UCQ \mathcal{Q}^{\prime} such that for every database \mathcal{D} the following holds:

$$
\mathcal{D}, \mathcal{R} \models \mathcal{Q} \Longleftrightarrow \mathcal{D} \models \mathcal{Q}^{\prime}
$$

The main character: BDD class of \exists-rules

BDD class definition (By FO-rewritings)

A ruleset \mathcal{R} admits Bounded Derivation Depth property (is FO-rewritable) if for every $\mathrm{CQ} \mathcal{Q}$ there exists a UCQ \mathcal{Q}^{\prime} such that for every database \mathcal{D} the following holds:

$$
\begin{aligned}
& \mathcal{D}, \mathcal{R} \models \mathcal{Q} \Longleftrightarrow \mathcal{D} \models \mathcal{Q}^{\prime} \\
& \text { entail }
\end{aligned}
$$

The main character: BDD class of \exists-rules

BDD class definition (By FO-rewritings)

A ruleset \mathcal{R} admits Bounded Derivation Depth property (is FO-rewritable) if for every $\mathrm{CQ} \mathcal{Q}$ there exists a UCQ \mathcal{Q}^{\prime} such that for every database \mathcal{D} the following holds:

$$
\begin{array}{ll}
\mathcal{D}, \mathcal{R} \models \mathcal{Q} \Longleftrightarrow \mathcal{D} \models \mathcal{Q}^{\prime} \\
\text { entail } \quad \text { holds }
\end{array}
$$

The BDD class

The BDD class

If a ruleset is BDD then the entailment problem for conjunctive queries is decidable.

The BDD class

If a ruleset is BDD then the entailment problem for conjunctive queries is decidable.
$B D D$ is an undecidable property.

The BDD class

If a ruleset is BDD then the entailment problem for conjunctive queries is decidable.

BDD is an undecidable property. Thus, a lot of decidable subclasses of BDD were invented, such as:
Linear, Sticky, Sticky-Join, Backward Shy...

The BDD class

If a ruleset is BDD then the entailment problem for conjunctive queries is decidable.

BDD is an undecidable property. Thus, a lot of decidable subclasses of BDD were invented, such as:
Linear, Sticky, Sticky-Join, Backward Shy...

It is thought that BDD is well understood.

The BDD class

If a ruleset is BDD then the entailment problem for conjunctive queries is decidable.

BDD is an undecidable property. Thus, a lot of decidable subclasses of BDD were invented, such as:
Linear, Sticky, Sticky-Join, Backward Shy...

It is thought that BDD is well understood. Soon, however, we will see that there is a lot more to learn about it.

Our contributions

Our contributions

We identify a class of "local theories" subsuming every known decidable subclass of BDD!

Our contributions

We identify a class of "local theories" subsuming every known decidable subclass of BDD!

We show that this class is strictly contained in BDD.

Our contributions

We identify a class of "local theories" subsuming every known decidable subclass of BDD!

We show that this class is strictly contained in BDD.

And we show that the FUS/FES conjecture
(BDD \cap Core Terminating $=$ Uniform BDD) holds for this class.

Our contributions

We identify a class of "local theories" subsuming every known decidable subclass of BDD!

We show that this class is strictly contained in BDD.

And we show that the FUS/FES conjecture
(BDD \cap Core Terminating = Uniform BDD) holds for this class.
(not a part of this talk)

The chase

The chase

$$
E(x, y) \rightarrow \exists z E(y, z)
$$

The chase

$$
\begin{aligned}
& E(x, y) \rightarrow \exists z E(y, z) \\
& A(x), E(x, y), E(y, z) \rightarrow E(x, z)
\end{aligned}
$$

The chase

$$
\begin{aligned}
& E(x, y) \rightarrow \exists z E(y, z) \\
& A(x), E(x, y), E(y, z) \rightarrow E(x, z)
\end{aligned}
$$

The chase

$$
\begin{aligned}
& E(x, y) \rightarrow \exists z E(y, z) \\
& A(x), E(x, y), E(y, z) \rightarrow E(x, z)
\end{aligned}
$$

A

The chase

$$
\begin{aligned}
& E(x, y) \rightarrow \exists z E(y, z) \\
& A(x), E(x, y), E(y, z) \rightarrow E(x, z)
\end{aligned}
$$

The chase

$$
\begin{aligned}
& E(x, y) \rightarrow \exists z E(y, z) \\
& A(x), E(x, y), E(y, z) \rightarrow E(x, z)
\end{aligned}
$$

The chase

$$
\begin{aligned}
& E(x, y) \rightarrow \exists z E(y, z) \\
& A(x), E(x, y), E(y, z) \rightarrow E(x, z)
\end{aligned}
$$

A
$E(x, y) \quad E(y, z)$

The chase

$$
\begin{aligned}
& E(x, y) \rightarrow \exists z E(y, z) \\
& A(x), E(x, y), E(y, z) \rightarrow E(x, z)
\end{aligned}
$$

The chase

$$
\begin{aligned}
& E(x, y) \rightarrow \exists z E(y, z) \\
& A(x), E(x, y), E(y, z) \rightarrow E(x, z)
\end{aligned}
$$

The chase

$$
\begin{aligned}
& E(x, y) \rightarrow \exists z E(y, z) \\
& A(x), E(x, y), E(y, z) \rightarrow E(x, z)
\end{aligned}
$$

The chase

$$
\begin{aligned}
& E(x, y) \rightarrow \exists z E(y, z) \\
& A(x), E(x, y), E(y, z) \rightarrow E(x, z)
\end{aligned}
$$

The main character: BDD class of \exists-rules

BDD definition (by chase)

The main character: BDD class of \exists-rules

BDD definition (by chase)
A ruleset \mathcal{R} is BDD if:

The main character: BDD class of \exists-rules

BDD definition (by chase)

A ruleset \mathcal{R} is BDD if:

$$
\forall \mathcal{Q} \quad \exists k \quad \forall \mathcal{D} \quad \mathcal{D}, \mathcal{R} \vDash \mathcal{Q} \Longleftrightarrow \operatorname{Chase}_{k}(\mathcal{R}, \mathcal{D}) \mid=\mathcal{Q}
$$

The main character: BDD class of \exists-rules

BDD definition (by chase)

A ruleset \mathcal{R} is BDD if:

The main character: BDD class of \exists-rules

BDD definition (by chase)

A ruleset \mathcal{R} is BDD if:

The main character: BDD class of \exists-rules

BDD definition (by chase)

A ruleset \mathcal{R} is BDD if:

The main character: BDD class of \exists-rules

BDD definition (by chase)

A ruleset \mathcal{R} is BDD if:

The main character: BDD class of \exists-rules

BDD definition (by chase)

A ruleset \mathcal{R} is BDD if:

Transitivity is not BDD

$$
E(x, y), E(y, z) \rightarrow E(x, z)
$$

Transitivity is not BDD

$$
E(x, y), E(y, z) \rightarrow E(x, z)
$$

Transitivity is not BDD

$$
E(x, y), E(y, z) \rightarrow E(x, z)
$$

Transitivity is not BDD

$$
E(x, y), E(y, z) \rightarrow E(x, z)
$$

Transitivity is not BDD

$E(x, y), E(y, z) \rightarrow E(x, z)$

Transitivity is not BDD

$E(x, y), E(y, z) \rightarrow E(x, z)$

Transitivity is not BDD

$E(x, y), E(y, z) \rightarrow E(x, z)$

Transitivity is not BDD

$E(x, y), E(y, z) \rightarrow E(x, z)$

$$
(\neg \mathrm{BDD}) \exists \mathcal{Q} \forall k \exists \mathcal{D} \quad \mathcal{D}, \mathcal{R} \models \mathcal{Q} \wedge \operatorname{Chase}_{k}(\mathcal{R}, \mathcal{D}) \not \models \mathcal{Q}
$$

Transitivity is not BDD

$$
E(x, y), E(y, z) \rightarrow E(x, z)
$$

$$
(\neg \mathrm{BDD}) \exists \mathcal{Q} \quad \forall k \exists \mathcal{D} \quad \mathcal{D}, \mathcal{R} \models \mathcal{Q} \wedge \operatorname{Chase}_{k}(\mathcal{R}, \mathcal{D}) \not \models \mathcal{Q}
$$

$$
Q=E(a, b)
$$

Reachability is not BDD

$$
A(x), E(x, y) \rightarrow A(y)
$$

Reachability is not BDD

$$
A(x), E(x, y) \rightarrow A(y)
$$

Reachability is not BDD

$$
A(x), E(x, y) \rightarrow A(y)
$$

Reachability is not BDD

$$
A(x), E(x, y) \rightarrow A(y)
$$

Reachability is not BDD

$$
A(x), E(x, y) \rightarrow A(y)
$$

Reachability is not BDD

$$
A(x), E(x, y) \rightarrow A(y)
$$

Reachability is not BDD

$$
A(x), E(x, y) \rightarrow A(y)
$$

Reachability is not BDD

$$
A(x), E(x, y) \rightarrow A(y)
$$

Reachability is not BDD

$$
A(x), E(x, y) \rightarrow A(y)
$$

Reachability is not BDD

$$
A(x), E(x, y) \rightarrow A(y)
$$

$$
Q=A(b)
$$

Class of local theories

Definition of the class of local theories

Class of local theories

Definition of the class of local theories

We say that a ruleset \mathcal{R} is local if every atom of the chase can be derived only from a constant number of atoms of the database.

Class of local theories

Definition of the class of local theories

We say that a ruleset \mathcal{R} is local if every atom of the chase can be derived only from a constant number of atoms of the database.

Every local ruleset is BDD!

Class of local theories

Definition of the class of local theories

We say that a ruleset \mathcal{R} is local if every atom of the chase can be derived only from a constant number of atoms of the database.

Every local ruleset is BDD!

Moreover, it contains every known decidable subclass of BDD.

Class of local theories

Definition of the class of local theories

We say that a ruleset \mathcal{R} is local if every atom of the chase can be derived only from a constant number of atoms of the database.

Every local ruleset is BDD!

Moreover, it contains every known decidable subclass of BDD.

BDD is not local!

$E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right)$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

y
z

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

This ruleset is not local and is BDD!

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

This ruleset is not local and is BDD!

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

This ruleset is not local and is BDD!

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

This ruleset is not local and is BDD!

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

This ruleset is not local and is BDD!

BDD is not local!

$$
\begin{aligned}
& E(x, y) \rightarrow \exists x^{\prime}, y^{\prime} \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Box}\left(x, y, x^{\prime}, y^{\prime}\right), E(x, y), E(y, z) \rightarrow \exists z^{\prime} \operatorname{Box}\left(y, z, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

This ruleset is not local and is BDD!

Linear-width rewritings

BDD definition (by FO-rewritings)

A ruleset \mathcal{R} is BDD (FO-rewritable) if for every CQ \mathcal{Q} there exists a UCQ \mathcal{Q}^{\prime} such that for every database \mathcal{D} the following holds

$$
\mathcal{D}, \mathcal{R} \models \mathcal{Q} \Longleftrightarrow \mathcal{D} \models \mathcal{Q}^{\prime}
$$

Linear-width rewritings

BDD definition (by FO-rewritings)

A ruleset \mathcal{R} is BDD (FO-rewritable) if for every $\mathrm{CQ} \mathcal{Q}$ there exists a UCQ \mathcal{Q}^{\prime} such that for every database \mathcal{D} the following holds

$$
\mathcal{D}, \mathcal{R} \models \mathcal{Q} \Longleftrightarrow \mathcal{D} \models \mathcal{Q}^{\prime}
$$

The linear-width rewritings class
The width of a UCQ is the maximal size of its disjuncts.

Linear-width rewritings

BDD definition (by FO-rewritings)

A ruleset \mathcal{R} is BDD (FO-rewritable) if for every $\mathrm{CQ} \mathcal{Q}$ there exists a UCQ \mathcal{Q}^{\prime} such that for every database \mathcal{D} the following holds

$$
\mathcal{D}, \mathcal{R} \models \mathcal{Q} \Longleftrightarrow \mathcal{D} \models \mathcal{Q}^{\prime}
$$

The linear-width rewritings class
The width of a UCQ is the maximal size of its disjuncts.
We say that a ruleset \mathcal{R} admits linear-width rewritings if it is BDD and for every CQ its UCQ rewriting is of linear size width.

Linear-width rewritings

BDD definition (by FO-rewritings)

A ruleset \mathcal{R} is BDD (FO-rewritable) if for every $\mathrm{CQ} \mathcal{Q}$ there exists a UCQ \mathcal{Q}^{\prime} such that for every database \mathcal{D} the following holds

$$
\mathcal{D}, \mathcal{R} \models \mathcal{Q} \Longleftrightarrow \mathcal{D} \models \mathcal{Q}^{\prime}
$$

The linear-width rewritings class
The width of a UCQ is the maximal size of its disjuncts.
We say that a ruleset \mathcal{R} admits linear-width rewritings if it is BDD and for every CQ its UCQ rewriting is of linear size width.

Every known decidable subclass of BDD admits linear-width rewritings!

BDD is not about linear-width rewritings

$$
\rightarrow \exists x H(x, x), V(x, x)
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
T(x) & \rightarrow \exists y, z H(x, y), V(x, z)
\end{aligned}
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
\top(x) & \rightarrow \exists y, z H(x, y), V(x, z) \\
H(x, y) & , H(y, z), V\left(x, x^{\prime}\right) \rightarrow \exists z^{\prime} V\left(z, z^{\prime}\right), H\left(x^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
\top(x) & \rightarrow \exists y, z H(x, y), V(x, z) \\
H(x, y) & , H(y, z), V\left(x, x^{\prime}\right) \rightarrow \exists z^{\prime} V\left(z, z^{\prime}\right), H\left(x^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
\top(x) & \rightarrow \exists y, z H(x, y), V(x, z) \\
H(x, y) & , H(y, z), V\left(x, x^{\prime}\right) \rightarrow \exists z^{\prime} V\left(z, z^{\prime}\right), H\left(x^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
\top(x) & \rightarrow \exists y, z H(x, y), V(x, z) \\
H(x, y) & , H(y, z), V\left(x, x^{\prime}\right) \rightarrow \exists z^{\prime} V\left(z, z^{\prime}\right), H\left(x^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
\top(x) & \rightarrow \exists y, z H(x, y), V(x, z) \\
H(x, y) & , H(y, z), V\left(x, x^{\prime}\right) \rightarrow \exists z^{\prime} V\left(z, z^{\prime}\right), H\left(x^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
\top(x) & \rightarrow \exists y, z H(x, y), V(x, z) \\
H(x, y) & , H(y, z), V\left(x, x^{\prime}\right) \rightarrow \exists z^{\prime} V\left(z, z^{\prime}\right), H\left(x^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
\top(x) & \rightarrow \exists y, z H(x, y), V(x, z) \\
H(x, y) & , H(y, z), V\left(x, x^{\prime}\right) \rightarrow \exists z^{\prime} V\left(z, z^{\prime}\right), H\left(x^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
\top(x) & \rightarrow \exists y, z H(x, y), V(x, z) \\
H(x, y) & , H(y, z), V\left(x, x^{\prime}\right) \rightarrow \exists z^{\prime} V\left(z, z^{\prime}\right), H\left(x^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
\top(x) & \rightarrow \exists y, z H(x, y), V(x, z) \\
H(x, y) & , H(y, z), V\left(x, x^{\prime}\right) \rightarrow \exists z^{\prime} V\left(z, z^{\prime}\right), H\left(x^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
\top(x) & \rightarrow \exists y, z H(x, y), V(x, z) \\
H(x, y) & , H(y, z), V\left(x, x^{\prime}\right) \rightarrow \exists z^{\prime} V\left(z, z^{\prime}\right), H\left(x^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
\top(x) & \rightarrow \exists y, z H(x, y), V(x, z) \\
H(x, y) & , H(y, z), V\left(x, x^{\prime}\right) \rightarrow \exists z^{\prime} V\left(z, z^{\prime}\right), H\left(x^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
\top(x) & \rightarrow \exists y, z H(x, y), V(x, z) \\
H(x, y) & , H(y, z), V\left(x, x^{\prime}\right) \rightarrow \exists z^{\prime} V\left(z, z^{\prime}\right), H\left(x^{\prime}, z^{\prime}\right)
\end{aligned}
$$

BDD is not about linear-width rewritings

$$
\begin{aligned}
& \rightarrow \exists x H(x, x), V(x, x) \\
& \top(x) \rightarrow \exists y, z H(x, y), V(x, z) \\
& H(x, y), H(y, z), V\left(x, x^{\prime}\right) \rightarrow \exists z^{\prime} V\left(z, z^{\prime}\right), H\left(x^{\prime}, z^{\prime}\right)
\end{aligned}
$$

H

Rewriting of $V^{n} H V^{-n}$ contains a disjunct $H^{2^{n}}$!

Why is this important?

Why is this important?

It shows deficiency in the understanding of an impactful class of existential rules.

Why is this important?

It shows deficiency in the understanding of an impactful class of existential rules.

How can we use it?

Why is this important?

It shows deficiency in the understanding of an impactful class of existential rules.

How can we use it?

It gives a concrete example of behaviour that can be formalized and used for more expressive knowledge representation.

Thank You

