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The setting: knowledge representation using ∃-rules

“Everyone has a mother”

Human(x) → ∃y Mother(x , y)

Mother(x , y) → Human(y)

“E is transitive”

E (x , y),E (y , z) → E (x , z)

Query entailment problem

Given a ruleset R and a database D we ask if some query Q holds

in every model of R and D?

To denote that a query holds in every model of R and D we write

R,D |= Q.
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The main character: BDD class of ∃-rules

BDD class definition (By FO-rewritings)

A ruleset R admits Bounded Derivation Depth property (is

FO-rewritable) if for every CQ Q there exists a UCQ Q′ such that

for every database D the following holds:

D,R |= Q ⇐⇒ D |= Q′
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The BDD class

If a ruleset is BDD then the entailment problem for

conjunctive queries is decidable.

BDD is an undecidable property. Thus, a lot of decidable

subclasses of BDD were invented, such as:

Linear, Sticky, Sticky-Join, Backward Shy. . .

It is thought that BDD is well understood. Soon, however,

we will see that there is a lot more to learn about it.
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Our contributions

We identify a class of “local theories” subsuming every

known decidable subclass of BDD!

We show that this class is strictly contained in BDD.

And we show that the FUS/FES conjecture

(BDD ∩ Core Terminating = Uniform BDD)

holds for this class.
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Moreover, it contains every known decidable subclass of BDD.

Is converse true as well?
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BDD definition (by FO-rewritings)

A ruleset R is BDD (FO-rewritable) if for every CQ Q there exists

a UCQ Q′ such that for every database D the following holds

D,R |= Q ⇐⇒ D |= Q′

The linear-width rewritings class

The width of a UCQ is the maximal size of its disjuncts.

We say that a ruleset R admits linear-width rewritings if it is BDD

and for every CQ its UCQ rewriting is of linear size width.

Every known decidable subclass of BDD admits linear-width
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H(x , y),H(y , z),V (x , x ′) → ∃z ′ V (z , z ′),H(x ′, z ′)

Rewriting of V nHV−n contains a disjunct H2n!
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Why is this important?

It shows deficiency in the understanding of an impactful

class of existential rules.

How can we use it?

It gives a concrete example of behaviour that can be

formalized and used for more expressive knowledge

representation.
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