
HAL Id: lirmm-03344217
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03344217

Submitted on 14 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Materializing Knowledge Bases via Trigger Graphs
Efthymia Tsamoura, David Carral, Enrico Malizia, Jacopo Urbani

To cite this version:
Efthymia Tsamoura, David Carral, Enrico Malizia, Jacopo Urbani. Materializing Knowledge Bases
via Trigger Graphs. Proceedings of the VLDB Endowment (PVLDB), 2021, 14 (6), pp.943-956.
�10.14778/3447689.3447699�. �lirmm-03344217�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03344217
https://hal.archives-ouvertes.fr

Materializing Knowledge Bases via Trigger Graphs
(Technical Report)

Efthymia Tsamoura∗, David Carral†, Enrico Malizia‡, Jacopo Urbani�
∗Samsung AI Research, United Kingdom; †TU Dresden, Germany;

‡ University of Bologna, Italy; �Vrije Universiteit Amsterdam, The Netherlands

ABSTRACT
The chase is a well-established family of algorithms used
to materialize Knowledge Bases (KBs), like Knowledge
Graphs (KGs), to tackle important tasks like query an-
swering under dependencies or data cleaning. A general
problem of chase algorithms is that they might perform
redundant computations. To counter this problem, we in-
troduce the notion of Trigger Graphs (TGs), which guide
the execution of the rules avoiding redundant computa-
tions. We present the results of an extensive theoretical
and empirical study that seeks to answer when and how
TGs can be computed and what are the benefits of TGs
when applied over real-world KBs. Our results include
introducing algorithms that compute (minimal) TGs.
We implemented our approach in a new engine, and our
experiments show that it can be significantly more effi-
cient than the chase enabling us to materialize KBs with
17B facts in less than 40 min on commodity machines.

PVLDB Reference Format:
. Materializing Knowledge Bases via Trigger Graphs. PVLDB,
12(xxx): xxxx-yyyy, 2020.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
Motivation. Knowledge Bases (KBs) are becoming
increasingly important with many industrial key players
investing on this technology. For example, Knowledge
Graphs (KGs) [32] have emerged as the main vehicle
for representing factual knowledge on the Web and en-
joy a widespread adoption [48]. Moreover, several tech
giants are building KGs to support their core business.
For instance, the KG developed at Microsoft contains
information about the world and supports question an-
swering, while, at Google, KGs are used to help Google

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

products respond more appropriately to user requests
by mapping them to concepts in the KG. The use of
KBs and KGs in such scenarios is not restricted only to
database-like analytics or query answering: KBs play
also a central role in neural-symbolic systems for efficient
learning and explainable AI [23,36].

A KB can be viewed as a classical database B with
factual knowledge and a set of logical rules P , called
program, allowing the derivation of additional knowledge.
One class of rules that is of particular interest both to
academia and to industry is Datalog [2]. Datalog is a
recursive language with declarative semantics that allows
users to succinctly write recursive graph queries. Be-
yond expressing graph queries, e.g., reachability, Datalog
allows richer fixed-point graph analytics via aggregate
functions. LogicBlox and LinkedIn used Datalog to
develop high-performance applications, or to compute
analytics over its KG [3,46]. Google developed their own
Datalog engine called Yedalog [21]. Other industrial
users include Facebook, BP [10] and Samsung [40].

Materializing a KB (P,B) is the process of deriving
all the facts that logically follow when reasoning over the
database B using the rules in P . Materialization is a core
operation in KB management. An obvious use is that of
caching the derived knowledge. A second use is that of
goal-driven query answering, i.e., deriving the knowledge
specific to a given query only, using database techniques
such as magic sets and subsumptive tabling [8, 9, 13, 55].
Beyond knowledge exploration, other applications of
materialization are data wrangling [35], entity resolu-
tion [37], data exchange [26] and query answering over
OWL [44] and RDFS [16] ontologies. Finally, material-
ization has been also used in probabilistic KBs [56].

Problem. The increasing sizes of modern KBs [48], and
the fact that materialization is not a one-off operation
when used for goal-driven query answering, make im-
proving the materialization performance critical. The
chase, which was introduced in 1979 by Maier et al. [42],
has been the most popular materialization technique and
has been adopted by several commercial and open source
engines such as VLog [58], RDFox [47] and Vadalog [10].

To improve the performance of materialization, differ-
ent approaches have focused on different inefficiency
aspects. One approach is to reduce the number of

1

ar
X

iv
:2

10
2.

02
75

3v
1

 [
cs

.D
B

]
 4

 F
eb

 2
02

1

facts added in the KB. This is the take of some of
the chase variants proposed by the database and AI
communities [11,24,49]. A second approach is to paral-
lelize the computation. For example, RDFox proposes
a parallelization technique for Datalog rules [47], while
WebPIE [59] and Inferray [54] propose parallelization
techniques for fixed RDFS rules. Orthogonal to those ap-
proaches are those employing compression and columnar
storage layouts to reduce memory consumption [34,58].

In this paper, we focus on a different aspect: that of
avoiding redundant computations. Redundant computa-
tions is a problem that concerns all chase variants and
has multiple causes. A first cause is the derivation of
facts that either have been derived in previous rounds, or
are logically redundant, i.e., they can be ignored without
compromising query answering. The above issue has
been partially addressed in Datalog with the well-known
seminäıve evaluation (SNE) [2]. SNE restricts the exe-
cution of the rules over at least one new fact. However,
it cannot block the derivation of the same or logically
redundant facts by different rules. A second cause of
redundant computations relates to the execution of the
rules: when executing a rule, the chase may consider
facts that cannot lead to any derivations.

Our approach. To reduce the amount of redundant
computations, we introduce the notion of Trigger Graphs
(TGs). A TG is an acyclic directed graph that captures
all the operations that should be performed to material-
ize a KB (P,B). Each node in a TG is associated with
a rule from P and with a set of facts, while the edges
specify the facts over which we execute each rule.

Intuitively, a TG can be viewed as a blueprint for
reasoning over the KB. As such, we can use it to “guide”
a reasoning procedure without resorting to an exhaustive
execution of the rules, as it is done with the chase. In
particular, our approach consists of traversing the TG,
executing the rule r associated with a node v over the
union of the facts associated with the parent nodes of
v and storing the derived facts “inside” v. After the
traversal is complete, then the materialization of the KB
is simply the union of the facts in all the nodes.

TG-guided materialization addresses at the same time
all causes of inefficiencies described above. In particu-
lar, TGs block the derivation of the same or logically
redundant facts that cannot be blocked by SNE. This
is achieved by effectively partitioning into smaller sub-
instances the facts currently in the KB. This partitioning
also enables us to reduce the cost of executing the rules.

Furthermore, in specific cases, TGs allow us reasoning
via either completely avoiding certain steps involved
when executing rules, or performing them at the end and
collectively for all rules. Our experiments show that we
get good runtime improvements with both alternatives.

Contributions. We propose techniques for computing
both instance-independent and instance-dependent TGs.
The former TGs are computed exclusively based on the
rules of the KB and allow us to reason over any possible
instance of the KB making them particularly useful when

the database changes frequently. In contrast, instance-
dependent TGs are computed based both on the rules
and the data of the KB and, thus, support reasoning over
the given KB only. We show that not every program
admits a finite instance-independent TG. We define a
special class, called FTG, including all programs that
admit a finite instance-independent TG and explore its
relationship with other known classes.

As a second contribution, we propose algorithms to
compute and minimize (instance-independent) TGs for
linear programs: a class of programs relevant in practice.
A program P not admitting a finite instance-independent
TG may still admit a finite instance-dependent TG.

As a third contribution, we show that all programs
that admit a finite universal model also admit a finite
instance-dependent TG. We use this finding to propose a
TG-guided materialization technique that supports any
such program (not necessarily in FTG). The technique
works by interleaving the reasoning process with the
computation of the TG, and it reduces the number of
redundant computations via query containment and via
a novel TG-based rule execution strategy.

We implemented our approach in a new reasoner,
called GLog, and compared its performance versus mul-
tiple state-of-the-art chase and RDFS engines including
RDFox, VLog, WebPIE [59] and Inferray [54], using
well-established benchmarks, e.g., ChaseBench [11]. Our
evaluation shows that GLog outperforms all its com-
petitors in all benchmarks. Moreover, in our largest
experiment, GLog was able to materialize a KB with
17B facts in 37 minutes on commodity hardware.

Summary. We make the following contributions:
• (New idea) We propose a new reasoning technique

based on traversing acyclic graphs, called TGs, to
tackle multiple sources of inefficiency of the chase;
• (New theoretical contribution) We study the class

of programs admitting finite instance-independent
TGs and its relationship with other known classes;
• (New algorithms) We propose techniques for com-

puting minimal instance-independent TGs for lin-
ear programs, and techniques for computing mini-
mal instance-dependent TGs for Datalog programs;
• (New system) We introduce a new reasoner, GLog,

which has competitive performance, often superior
to the state-of-the-art, and has good scalability.

Supplementary material with all proofs, code and eval-
uation data is in https://bitbucket.org/tsamoura/

trigger-graphs/src/master/.

2. MOTIVATING EXAMPLE
We start our discussion with a simple example to

describe how the chase works, its inefficiencies, and how
they can be overcome with TGs. For the moment, we
give only an intuitive description of some key concepts to
aid the understanding of the main ideas. In the following
sections, we will provide a formal description.

The chase works in rounds during which it executes
the rules over the facts that are currently in the KB.

2

https://bitbucket.org/tsamoura/trigger-graphs/src/master/
https://bitbucket.org/tsamoura/trigger-graphs/src/master/

First roundInput Second round Third round

T (c2, c1, c2)

T (c2, c1, n1)

r(c1, c2)

R(c1, c2)

T (c2, c1, c2)

T (c2, c1, n1)

r(c1, c2)

R(c1, c2)

T (c2, c1, n1)

r(c1, c2)

R(c1, c2)

r(c1, c2)
r1

r4 r2

r2 r3 r1 r3 r4 r1 r2 r3

r4

T (c2, c1, n1)

R(c1, c2) T (c2, c1, c2)

R(c1, c2) T (c2, c1, c2)

(a)

(b) (c)

u1 (created by r1)

u2 (created by r4)

u3 (created by r2)

u1 (created by r1) u3 (created by r2)

Figure 1: (a) Chase execution for Example 1, (b) the TG G1,
(c) the TG G2. In (b) and (c), the facts shown inside the
nodes are the results of reasoning over B using the TG.

In most chase variants, the execution of a rule involves
three steps: retrieving all the facts that instantiate the
premise of the rule, then, checking whether the facts to
be derived logically hold in the KB and finally, adding
them to the KB if they do.

Example 1. Consider the KB B = {r(c1, c2)} with
a single fact and the program P1 = {r1, r2, r3, r4}:

r(X,Y)→ R(X,Y) (r1)

R(X,Y)→ T (Y,X, Y) (r2)

T (Y,X, Y)→ R(X,Y) (r3)

r(X,Y)→ ∃Z.T (Y,X,Z) (r4)

Figure 1 (a) depicts the rounds of the chase with such an
input. In the first round, the only rules that can derive
facts are r1 and r4. Rule r1 derives the fact R(c1, c2).
Since this fact is not in the KB, the chase adds it to the
KB. Let us now focus on r4. Notice that variable Z in
r4 does not occur in the premise of r4. The chase deals
with such variables by introducing fresh null (values).
Nulls can be seen as “placeholders” for objects that are
not known. In our case, r4 derives the fact T (c2, c1, n1),
where n1 is a null, and the chase adds it to the KB.

The chase then continues to the second round where
rules are executed over B′ = B∪{R(c1, c2), T (c2, c1, n1)}.
The execution of r2 derives the fact T (c2, c1, c2), which
is added to the KB, yielding B′′ = B′ ∪ {T (c2, c1, c2)}.
Finally, the chase proceeds to the third round where only
rule r3 derives R(c1, c2) from B′′. However, since this
fact is already in B′′, the chase stops.

The above steps expose two inefficiencies of the chase.
The first is that of incurring in the cost of deriving the
same or logically redundant facts.

Example 2. Let us return back to Example 1. The
chase pays the cost of executing r3 despite that r3’s exe-
cution always derives facts derived in previous rounds.
This is due to the cyclic dependency between rules r2 and
r3: r2 derives T -facts by flipping the arguments of the R-
facts, while r3 derives R-facts by flipping the arguments
of the T -facts. Despite that the SNE effectively blocks
the execution of r1 and r2 in the third chase round, it
cannot block the execution of r3 in the third chase round,
since T (c2, c1, c2) was derived in the second round.

Now, consider the fact T (c2, c1, n1). This fact is logi-
cally redundant, because it provides no extra information
over T (c2, c1, c2), derived by r2. Despite being logically
redundant, the chase pays the cost of deriving it.

The second inefficiency that is exposed is that of subop-
timally executing the rules themselves: when computing
the facts instantiating the premise of a rule, the chase
considers all facts currently in the KB even the ones that
cannot instantiate the premise of the rule.

Example 3. Continuing with Example 1, consider
the execution of r3 in the second round of the chase.
No fact derived by r4 can instantiate the premise of r3,
since the premise of r3 requires the first and the third
arguments of the T -facts to be the same. Hence, the cost
paid for executing r3 over those facts is unnecessary.

The root of these inefficiencies is that the chase, in
each round, considers the entire KB as a source for
potential derivations, with only SNE as means to avoid
some redundant derivations. If we were able to “guide”
the execution of the rules in a more clever way, then we
can avoid the inefficiencies stated above.

For instance, consider an alternative execution strat-
egy where r2 is executed only over the derivations of r1,
while r3 and r4 are not executed at all. This strategy
would not face any of the inefficiencies highlighted above,
and it can be defined with a graph like the one in Figure 1
(c). Informally, a Trigger Graph (TG) is precisely such
a graph-based blueprint to compute the materialization.
In the remaining, we will first provide a formal definition
of TGs and study their properties. Then, we will show
that in some cases we can build a TG that is optimal for
any possible set of facts given as input. In other cases,
we can still build TGs incrementally. Such TGs allow to
avoid redundant computations that will occur with the
chase but only with the given input.

3. PRELIMINARIES
Let Consts, Nulls, Vars, and Preds be mutually disjoint,

(countably infinite) sets of constants, nulls, variables, and
predicates, respectively. Each predicate p is associated
with a non-negative integer arity(p) ≥ 0, called the arity
of p. Let EDP and IDP be disjoint subsets of Preds of
intensional and extensional predicates, respectively. A
term is a constant, a null, or a variable. A term is ground
if it is either a constant or a null. An atom A has the
form p(t1, . . . , tn), where p is an n-ary predicate, and
t1, . . . , tn are terms. An atom A is extensional (resp.,
intensional), if the predicate of A is in EDP (resp., IDP).
A fact is an atom of ground terms. A base fact is an
atom of constants whose predicate is extensional. An
instance I is a set of facts (possibly comprising null
terms). A base instance B is a set of base facts.

A rule is a first-order formula of the form

∀X∀Y
∧n

i=1
Pi(Xi,Yi)→ ∃ZP (Y,Z), (1)

where, P is an intensional predicate and for all 1 ≤ i ≤ n,
Xi ⊆ X and Y1 ⊆ Y (Xi and Yi might be empty). We

3

assume w.l.o.g. that the body of a rule includes only
extensional predicates or intensional predicates. We
will denote extensional predicates with lowercase let-
ters, while intensional predicates with uppercase letters.
Quantifiers are commonly omitted. The left-hand and
the right-hand side of a rule r are its body and head,
respectively, and are denoted by body(r) and head(r). A
rule is Datalog if it has no existentially quantified vari-
ables, extensional if body(r) includes only extensional
atoms, and linear if it has a single atom in its body.

A program is a set of rules. A knowledge base (KB) is
a pair (P,B) with P a program and B a base instance.

Symbol |= denotes logical entailment, where sets of
atoms and rules are viewed as first-order theories. Sym-
bol ≡ denotes logical equivalence, i.e., logical entailment
in both directions.

A term mapping σ is a (possibly partial) mapping of
terms to terms; we write σ = {t1 7→ s1, . . . , tn 7→ sn} to
denote that σ(ti) = si for 1 ≤ i ≤ n. Let α be a term,
an atom, a conjunction of atoms, or a set of atoms. Then
σ(α) is obtained by replacing each occurrence of a term
t in α that also occurs in the domain of σ with σ(t) (i.e.,
terms outside the domain of σ remain unchanged). A
substitution is a term mapping whose domain contains
only variables and whose range contains only ground
terms. For two sets, or conjunctions, of atoms A1 and
A2, a term mapping σ from the terms occurring in A1 to
the terms occurring in A2 is said to be a homomorphism
from A1 to A2 if the following hold: (i) σ maps each
constant in its domain to itself, (ii) σ maps each null
in its domain to Consts ∪ Nulls and (iii) for each atom
A ∈ A1, σ(A) ∈ A2. We denote a homomorphism σ
from A1 into A2 by σ : A1 → A2.

It is known that, for two sets of facts A1 and A2, there
exists a homomorphism from A1 into A2 iff A2 |= A1

(and hence, there exists a homomorphism in both ways
iff A1 ≡ A2). When A1 and A2 are null-free instances,
A2 |= A1 iff A1 ⊆ A2 and A2 ≡ A1 iff A1 = A2.

For a set of two or more atoms A = {A1, . . . , An} a
most general unifier (MGU) µ for A is a substitution
so that: (i) µ(A1) = · · · = µ(An); and (ii) for each other
substitution σ for which σ(A1) = · · · = σ(An), there ex-
ists a σ′ such that σ = σ′ ◦ µ [5].

Consider a rule r of the form (1) and an instance
I. A trigger for r in I is a homomorphism from the
body of r into I. We denote by hs the extension of a
trigger h mapping each Z ∈ Z into a unique fresh null.
A rule r holds or is satisfied in an instance I, if for each
trigger h for r in I, there exists an extension h′ of h to a
homomorphism from the head of r into I. A model of a
KB (P,B) is a set I ⊇ B, such that each r ∈ P holds in
I. A KB may admit infinitely many different models. A
model M is universal, if there exists a homomorphism
from M into every other model of (P,B). A program P
is Finite Expansion Set (FES), if for each base instance
B, (P,B) admits a finite universal model.

A conjunctive query (CQ) is a formula of the form
Q(X1, . . . , Xn)←

∧m
i=1 Ai, where Q is a fresh predicate

not occurring in P , Ai are null-free atoms and each Xj

occurs in some Ai atom. We usually refer to a CQ by
its head predicate. We refer to the left-hand and the
right-hand side of the formula as the head and the body
of the query, respectively. A CQ is atomic if its body
consists of a single atom. A Boolean CQ (BCQ) is a CQ
whose head predicate has no arguments. A substitution
σ is an answer to Q on an instance I if the domain of σ
is precisely its head variables, and if σ can be extended
to a homomorphism from

∧
iAi into I. We often identify

σ with the n-tuple (σ(X1), . . . , σ(Xn)). The output of
Q on I is the set Q(I) of all answers to Q on I. The
answer to a BCQ Q on an instance I is true, denoted
as I |= Q, if there exists a homomorphism from

∧
i=1 Ai

into I. The answer to a BCQ Q on a KB (P,B) is true,
denoted as (P,B) |= Q, if M |= Q holds, for each model
M of (P,B). Finally, a CQ Q1 is contained in a CQ Q2,
denoted as Q1 ⊆ Q2, if for each instance I, each answer
to Q1 on I is in the answers to Q2 on I [20].

The chase refers to a family of techniques for repairing
a base instance B relative to a set of rules P so that the
result satisfies the rules in P and contains all base facts
from B. In particular, the result is a universal model of
(P,B), which we can use for query answering [26]. By
“chase” we refer both to the procedure and its output.

The chase works in rounds during which it executes
one or more rules from the KB. The result of each round
i ≥ 0 is a new instance Ii (with I0 = B), which includes
the facts of all previous instances plus the newly derived
facts. The execution of a rule in the i-th chase round,
involves computing all triggers from the body of r into
Ii−1, then (potentially) checking whether the facts to
be derived satisfy certain criteria in the KB and finally,
adding to the KB or discarding the derived facts. Differ-
ent chase variants employ different criteria for deciding
whether a fact should be added to the KB or whether
to stop or continue the reasoning process [11, 49]. For
example, the restricted chase (adopted by VLog and
RDFox) adds a fact if there exists no homomorphism
from this fact into the KB and terminates when no new
fact is added. The warded chase (adopted by Vadalog)
replaces homomorphism checks by isomorphism ones [10]
and terminates, again, when no new fact is added. The
equivalent chase omits any checks and terminates when
there is a round i which produces an instance that is logi-
cally equivalent to the instance produced in the (i− 1)-th
round [24]. Notice that when a KB includes only Datalog
rules all chase variants behave the same: a fact is added
when it has not been previously derived and the chase
stops when no new fact is added to the KB.

Not all chase variants terminate even when the KB
admits a finite universal model [24]. The core chase [25]
and the equivalent one do offer such guarantees.

For a chase variant, we use Chi(K) or Chi(P,B) to
denote the instance computed during the i-th chase
round and Ch(P,B) to denote the (possibly infinite)
result of the chase. Furthermore, we define the chase
graph chaseGraph(P,B) for a KB (P,B) as the edge-
labeled directed acyclic graph having as nodes the facts
in Ch(P,B) and having an edge from a node f1 to f2

4

labeled with rule r ∈ P if f2 is obtained from f1 and
possibly from other facts by executing r.

4. TRIGGER GRAPHS
In this section, we formally define Trigger Graphs

(TGs) and study the class of programs admitting finite
instance-independent TGs. First, we introduce the no-
tion of Execution Graphs (EGs). Intuitively, an EG for
a program is a digraph stating a “plan” of rule execu-
tion to reason via the program. In its general definition,
an EG is not required to characterize a plan of reason-
ing guaranteeing completeness. Particular EGs, defined
later, will also satisfy this property.

Definition 4. An execution graph (EG) for a pro-
gram P is an acyclic, node- and edge-labelled digraph
G = (V,E, rule, `), where V and E are the graph nodes
and edges sets, respectively, and rule and ` are the node-
and edge-labelling functions. Each node v (i) is labelled
with some rule, denoted by rule(v), from P ; and (ii) if
the j-th predicate in the body of rule(v) equals the head
predicate of rule(u) for some node u, then there is an
edge labelled j from node u to node v, denoted by u→j v.

Figures 1(b) and 1(c) show two EGs for P1 from Ex-
ample 1. Next to each node is the associated rule. Later
we show that both EGs are also TGs for P1.

Since the nodes of an execution graph are associated
with rules of a program, when, in the following, we refer
to the head and the body of a node v, we actually mean
the head and the body of rule(v). Observe that, by
definition, nodes associated with extensional rules do
not have entering edges, and nodes v associated with
an intensional rule have at most one incoming edge
associated with the j-th predicate of the body of v, i.e.,
there is at most one node u such that u→j v. The
latter might seem counterintuitive as, in a program, the
j-th predicate in the body of a rule can appear in the
heads of many different rules. It is precisely to take
into account this possibility that, in an execution graph,
more than one node can be associated with the same rule
r of the program. In this way, different nodes v1, . . . , vq
associated with the same rule r can be linked with an
edge labeled j to different nodes u1, . . . , uq whose head’s
predicate is the j-th predicate of the body of r. This
models that to evaluate a rule r we might need to match
the j-th predicate in the body of r with facts generated
by the heads of different rules.

We now define some notions on EGs that we will use
throughout the paper. For an EG G for a program P ,
we denote by ν(G) and ε(G) the sets of nodes and edges
in G. The depth of a node v ∈ ν(G) is the length of the
longest path that ends in v. The depth d(G) of G is 0
if G is the empty graph; otherwise, it is the maximum
depth of the nodes in ν(V).

As said earlier, EGs can be used to guide the reasoning
process. In the following definition, we formalise how
the reasoning over a program P is carried out by follow-
ing the plan encoded in an EG for P . The definition

assumes the following for each rule r in P : (i) r is of
the form ∀X∀Y

∧n
i=1 Pi(Xi,Yi)→ ∃ZP (Y,Z); and (ii)

if r is intensional and is associated with a node v in an
EG for P , then the EG includes an edge of the form
ui →i v, for each 1 ≤ i ≤ n.

Definition 5. Let (P,B) be a KB, G be an EG for
P and v be a node in G associated with rule r ∈ P . v(B)
includes a fact hs(head(r)), for each h that is either:
• a homomorphism from the body of r to B, if r is

extensional; or otherwise
• a homomorphism from the body of r into

⋃n
i=1 ui(B)

so that the following holds: the restriction of h over
Xi ∪Yi is a homomorphism from Pi(Xi,Yi) into
ui(B), for each 1 ≤ i ≤ n.

We pose G(B) = B ∪
⋃
v∈V v(B).

TGs are EGs guaranteeing the correct computation
of conjunctive query answering.

Definition 6. An EG G is a TG for (P,B), if for
each BCQ Q, (P,B) |= Q iff G(B) |= Q. G is a TG for
P , if for each base instance B, G is a TG for (P,B).

TGs that depend both on P and B are called instance-
dependent, while TGs that depend only on P are called
instance-independent. The EGs shown in Figure 1 are
both instance-independent TGs for P1.

We provide an analysis of the class of programs that
admit a finite instance-independent TG denoted as FTG.
Theorem 7 summarizes the relationship between FTG
and the classes of programs that are bounded (BDD,
[24]), term-depth bounded (TDB, [39]) and first-order-
rewritable (FOR, [18]).

Theorem 7. The following hold: P is FTG iff it is
BDD; and P is TDB ∩ FOR iff it is BDD.

This result is obtained by showing that if P is FTG,
then it is BDD with bound the maximal depth of any
instance-independent TG for P . If it is BDD with bound
k, then the (finite) EG Gk, which is described after
Definition 9, is a TG for P .

If a program is FOR, then all facts that contain terms
of depth at most k are produced in a fixed number of
chase steps. Therefore, if it is also TDB, then all relevant
facts in the chase are also produced in a fixed number
of steps. Finally, the undecidability of FTG follows
from the fact that FOR and FTG coincide for Datalog
programs, which are always TDB. See the appendix for
a detailed explanation.

We conclude our analysis by showing that any KB
that admits a finite model, also admits a finite instance-
dependent TG, as stated in the following statement.

Theorem 8. For each KB (P,B) that admits a finite
model, there exists an instance-dependent TG.

The key insight is that we can build a TG that mimics
the chase. Below, we analyze the conditions under which

5

the same rule execution takes place both in the chase
and when reasoning over a TG. Based on this analysis we
present a technique for computing instance-dependent
TGs that mimic breadth-first chase variants.

Consider a rule of the form (1) and assume that the
chase over a KB (P,B) executes r in some round k by
instantiating its body using the facts R(ci). Consider
now a TG G for (P,B). If k = 1, then this rule execution
(notice that the rule has to be extensional) takes place
in G if there is a node v associated with r. Otherwise,
if k > 1, then this rule execution takes place in G if the
following holds: (i) there is a node v associated with r,
(ii) each R(ci) is stored in some node ui and (iii) there is
an incoming edge ui →i v, for each 1 ≤ i ≤ n. We refer
to each combination of nodes of depth < k whose facts
may instantiate the body of a rule r when reasoning over
an EG, as k-compatible nodes for r:

Definition 9. Let P be a program, r be an inten-
sional rule in P and G be an EG for P . A combination
of n (not-necessarily distinct) nodes (u1, . . . , un) from G
is k-compatible with r, where k ≥ 2 is an integer, if:
• the predicate in the head of ui is Ri;
• the depth of each ui is less than k; and
• at least one node in (u1, . . . , un) is of depth k − 1.

The above ideas are summarized in an iterative proce-
dure, which builds at each step k a graph Gk:
• (Base step) if k = 1, then for each extensional

rule r add to Gk a node v associated with r.
• (Inductive step) otherwise, for each intensional

rule r and each combination of nodes (u1, . . . , un)
from Gk−1 that is k-compatible with r, add to Gk:
(i) a fresh node v associated with r and (ii) an edge
ui →i v, for each 1 ≤ i ≤ n.

The inductive step ensures that Gk encodes each rule
execution that takes place in the k-th chase round.

So far, we did not specify when the TG computa-
tion process stops. When P is Datalog, we can stop
when Gk−1(B) = Gk(B). Otherwise, we can employ
the termination criterion of the equivalent chase, e.g.,
Gk−1(B) |= Gk(B), or of the restricted chase.

5. TGS FOR LINEAR PROGRAMS
In the previous section, we outlined a procedure to

compute instance-dependent TGs that mimics the chase.
Now, we propose an algorithm for computing instance-
independent TGs for linear programs.

Our technique is based on two ideas. The first one
is that, for each base instance B, the result of chasing
B using a linear program P is logically equivalent to
the union of the instances computed when chasing each
single fact in B using P .

The second idea is based on pattern-isomorphic facts:
facts with the same predicate name and for which there
is a bijection between their constants. For example,
R(1, 2, 3) is pattern-isomorphic to R(5, 6, 7) but not
to R(9, 9, 8). We can see that two different pattern-
isomorphic facts will have the same linear rules executed

Algorithm 1 tglinear(P)

1: Let G be an empty EG
2: for each f ∈ H(P) do
3: Γ is an empty EG; µ is the empty mapping
4: for each f1 →r f2 ∈ chaseGraph(P, {f}) do
5: add a fresh node u to ν(Γ) with rule(u) ··= r
6: µ(u) ··= f1 →r f2
7: for each v, u ∈ ν(Γ) do
8: if µ(v) = f1 →r f2 and µ(u) = f2 →r′ f3 then
9: add v →1 u to ε(Γ)

10: G ··= G ∪ Γ

11: return G

in the same order during chasing. We denote by H(P)
a set of facts formed over the extensional predicates
in a program P , where no fact f1 ∈ H(P) is pattern
isomorphic to some other fact f2 ∈ H(P).

Algorithm 1 combines these two ideas: it runs the
chase for each fact in H(P) then tracks the rule execu-
tions and (iii) based on these rule executions it computes
a TG. In particular, for each fact f2 that is derived after
executing a rule r over f1, Algorithm 1 will create a
fresh node u and associate it with rule r, lines 4–6. The
mapping µ associates nodes with rule executions. Then,
the algorithm adds edges between the nodes based on
the sequences of rule executions that took place during
chasing, lines 7–9.

Algorithm 1 is (implicitly) parameterized by the chase
variant. The results below are based on the equivalent
chase, as it ensures termination for FES programs.

Theorem 10. For any linear program P that is FES,
tglinear(P) is a TG for P .

Algorithm 1 has a double-exponential overhead.

Theorem 11. The execution time of Algorithm 1 for
FES programs is double exponential in the input program
P . If the arity of the predicates in P is bounded, the
execution time is (single) exponential.

5.1 Minimizing TGs for linear programs
The TGs computed by Algorithm 1 may comprise

nodes which can be deleted without compromising query
answering. Let us return to Example 1 and to the TG G1

from Figure 1: we can safely ignore the facts associated
with the node u2 from G1 and still preserve the answers
to all queries over (P1, B). In this section, we show a
technique for minimizing TGs for linear programs.

Our minimization algorithm is based on the following.
Consider a TG G for a linear program P , a base instance
B of P and the query Q(X)← R(X,Y) ∧ S(Y,Z, Z).
Assume that there exists a homomorphism from the
body of the query into the facts f1 = R(c1, n1) and
f2 = S(n1, n2, n2) and that f1 ∈ v(B) and f2 ∈ u(B) with
v, u being two nodes of G. Since n1 is shared among two
different facts associated with two different nodes, it is
safe to remove u if there is another node u′ ∈ ν(G) whose
instance u′(B) includes a fact of the form S(n1, n

′
2, n
′
2).

6

Equivalently, it is safe to remove u if there exists a ho-
momorphism from u(B) into u′(B) that maps to itself
each null occurring both in u(B) and u′(B). Since a null
can occur both in u(B) and in u′(B) if u, u′ share a com-
mon ancestor we can rephrase the previous statement as
follows: we can remove u(B) if there exists a homomor-
phism from u(B) into u′(B) preserving each null (from
u(B)) that also occurs in some w(B) with w being an
ancestor of u in G. We refer to such homomorphisms as
preserving homomorphisms:

Definition 12. Let G be a TG for a program P ,
u, v ∈ ν(G) and B be a base instance. A homomor-
phism from u(B) into v(B) is preserving, if it maps to
itself each null occurring in some u′(B) with u′ being an
ancestor of u.

It suffices to consider only the facts in H(P) to verify
the existence of preserving homomorphisms.

Lemma 13. Let P be a linear program, G be an EG
for P and u, v ∈ ν(G). Then, there exists a preserving
homomorphism from u(B) into v(B) for each base in-
stance B, iff there exists a preserving homomorphism
from u({f}) into v({f}), for each fact f ∈ H(P).

From Definition 12 and from Lemma 13 it follows that
a node v of a TG can be “ignored” for query answering
if there exists a node v′ and a preserving homomorphism
from v({f}) into v′({f}), for each f ∈ H(P). If the
above holds, then we say that v is dominated by v′. The
above implies a strategy to reduce the size of TGs.

Definition 14. For a TG G for a linear program P ,
the EG minLinear(G) is obtained by exhaustively applying
the steps: (i) choose a pair of nodes v, v′ from G where
v is dominated by v′, (ii) remove v from ν(G); and (iii)
add an edge v′ →1 u, for each edge v →1 u from ε(G).

The minimization procedure described in Definition 14
is correct: given a TG for a linear program P , the output
of minLinear is still a TG for P .

Theorem 15. For a TG G for a linear program P ,
minLinear(G) is a TG for P .

We present an example demonstrating the TG com-
putation and minimizes techniques described above.

Example 16. Recall Example 1. Since r is the only
extensional predicate in P1, H(P1) will include two facts,
say r(c1, c2) and r(c3, c3), where c1, c2 and c3 are con-
stants. Algorithm 1 computes a TG by tracking the
rule executions that take place when chasing each fact
in H(P1). For example, when considering r(c1, c2), the
graph Γ computed in lines 3–9 will be the TG G1 from
Figure 1(b), where nodes are denoted as u1, u2, and u3.

Let us now focus on the minimization algorithm. To
minimize G1, we need to identify nodes that are domi-
nated by others. Recall that a node u in G1 is dominated

by a node v, if for each f in H(P1), there exists a pre-
serving homomorphism from u({f}) into v({f}). Based
on the above, we can see that u2 is dominated by u3. For
example, when B∗ = {r(c1, c2)}, there exists a preserv-
ing homomorphism from u2(B∗) = {R(c2, c1, n1)} into
u3(B∗) = {R(c2, c1, c1)} mapping n1 to c1. Since u2 is
dominated by u3, the minimization process eliminates
u2 from G1. The result is the TG G2 from Figure 1(c),
since no other node in G2 is dominated.

6. OPTIMIZING TGS FOR DATALOG
There are cases where we cannot compute instance-

independent TG, e.g., for Datalog programs that are not
also in FTG class. In such cases, we can still create an
instance-dependent TG using the procedure outlined in
Section 4. In this section, we present two optimizations
to this procedure which avoid redundant computations.
These optimizations work with Datalog programs; thus
also with non-linear rules.

6.1 Eliminating redundant nodes
Our first technique is based on a simple observation.

Consider a node v of a TG G. Assume that v is asso-
ciated with the rule a(X,Y, Z)→ A(Y,X) with a being
extensional. We can see that for each base instance B
and each fact a(σ(X), σ(Y), σ(Z)) in B, where σ is a
variable substitution, the fact A(σ(Y), σ(X)) is in v(B).
Equivalently, for each answer σ to Q(Y,X)← a(X,Y, Z),
a fact A(σ(Y), σ(X)) is associated with v(B). The above
can be generalized. Consider a node v of a TG G such
that rule(v) is

∧n
i=iAi(Yi)→ A(X). The facts in v(B)

can be obtained by (i) computing the rewriting of the
query Q(X)←

∧n
i=iAi(Yi) w.r.t. the rules in the ances-

tors of v up to the extensional predicates; (ii) evaluating
the rewritten query over B; and (iii) adding A(t) to
v(B), for each answer t to the rewritten query over B–
recall that we denote answers either as substitutions or as
tuples, cf. Section 3. We refer to Q(X)←

∧n
i=iAi(Yi)

as the characteristic query of v.
This observation suggests we can use query contain-

ment tests to identify nodes that can be safely removed
from TGs (and EGs). Intuitively, the näıve algorithm
above can be modified so that, at each step i, right after
computing Gi, and before computing Gi(B), we elimi-
nate each node u if the EG-guided rewriting over of the
characteristic query of u is contained in the EG-guided
rewriting of the characteristic query of another node v.

Below, we formalize the notion of EG-rewritings, then
we show the correspondence between the answers to EG-
rewritings and the facts associated with the nodes, and
we finish with an algorithm eliminating nodes from TGs.

Definition 17. Let v be a node in an EG G for a
Datalog program. Let rule(v) be

∧n
i=1 Ai → R(Y). The

EG-rewriting of v, denoted as rew(v), is the CQ com-
puted as follows (w.l.o.g. no pair of rules rule(u) and
rule(v) with u, v ∈ ν(G) and u 6= v shares variables):
• form Q(Y)← R(Y); associate R(Y) with v;

7

• repeat the following rewriting step until no inten-
sional atom is left in body(Q): (i) choose an inten-
sional atom α ∈ body(Q); (ii) compute the MGU
θ of {head(u), α}, where u is the node associated
with α; (iii) replace α in body(Q) with body(u) and
apply θ on the resulting Q; (iv) associate θ(Bj) in
body(Q) with the node wj, where Bj is the j-th
atom in body(u) and wj →j u ∈ ε(G).

The rewriting algorithm described in Definition 17 is a
variant of the rewriting algorithm in [29]. Our difference
from [29] is that at each step of the rewriting process,
we consider only the rule rule(u) with u being the node
with which α is associated with.

There is a correspondence between the answers to the
nodes’ EG-rewritings with the facts stored in the nodes.

Lemma 18. Let G be an EG for a Datalog program P
and B be a base instance of P . Then for each v ∈ ν(G)
we have: v(B) includes exactly a fact A(t) with A being
the head predicate of rule(v), for each answer t to the
EG-rewriting of v on B.

Our algorithm for removing nodes from EGs is below.

Definition 19. The EG minDatalog(G) is obtained
from an EG G for a program P by exhaustively applying
these steps: for each pair of nodes u and v such that
(i) the depth of v is equal or larger than that of u, (ii)
the predicates of head(rule(v)) and of head(rule(u)) are
the same and (iii) the EG-rewriting of v is contained
in the EG-rewriting of u: (a) remove the node v from
ν(G), and (b) add an edge u→j w, for each edge v →j w
occurring in G.

The minimization technique of Definition 19 can be
proven sound and to produce a TG with fewest nodes.

Theorem 20. If G is a TG for a Datalog program P ,
then minDatalog(G) is a minimum size TG for P .

Deciding whether a TG of a Datalog program is of
minimum size can be proven co-NP-complete. The prob-
lem’s hardness lies is the necessity of performing query
containment tests, carried out via homomorphism tests,
which require exponential time on deterministic machines
(unless P = NP) [20]. This hardness result supports the
optimality of minDatalog in terms of complexity.

Theorem 21. For a Datalog program P and a TG G
for P , deciding whether G is a TG of minimum size for
P is co-NP-complete.

6.2 A more efficient rule execution strategy
EG-rewritings can be further used to optimize the

execution of the rules, as shown in the example below.

Example 22. Consider the program P2

a(X) ∧ b(X)→ A(X) (r8)

a′(X) ∧ b′(X)→ A(X) (r9)

where a, a′, b and b′ are extensional predicates. We
denote by a, a′, b and b′ the relations storing the tuples

c1
…

c50
b1
…

b50

c1
…

c50
a1
…

a50

c1
…

c50

c1
…

c50
d

⋈ = ⋈ = ⟕ =

= ⋈

c1
…
c50
d
e1
…
e50

=

a b

A a'
b'

a'⋈b'

a' ⊳A

(i) (ii) (iii)

(v) (vi)

c1
…

c50
d

a'⋈b'
c1
…

c50
d

c1
…

c50

A

c1
…

c50
b1
…

b50

c1
…

c50
a1
…

a50

c1
…

c50
⋈ =

a b

A

(iv)

c1
…

c50
d

a'
c1
…

c50

A
a' ⊳ A

d

c1
…
c50
d
e1
…
e50

b'

d

d d⊳

Figure 2: Different strategies for executing the rules from P2.

of the corresponding predicates in the input instance. The
data of each relation are shown in Figure 2.

The upper part of Figure 2 shows the steps involved
when executing r8 and r9 using the chase: (i) shows
the joins involved when executing r8; (ii)–(iii) show the
joins involved when executing r9: (ii) shows the join to
compute body(r9) while (iii) shows the outer join involved
when checking whether the conclusions of r9 have been
previously derived. Assuming that the cost of executing
each join is the cost of scanning the smallest relation,
the total cost of the chase is: 100 (step (i)) + 51 (step
(ii)) + 50 (step (iii))=201.

The lower part of Figure 2 shows a more efficient
strategy. The execution of r8 stays the same (step (iv)),
while for r9 we first compute all tuples that are in a′ but
not in A (step (v)) and use a′ \ A to restrict the tuples
instantiating the body of r9 (step (vi)). The intuition is
that the tuples of a′ that are already in A will be discarded,
so it is not worth considering them when instantiating
the body of r9. The total cost of this strategy is: 100
(step (iv)) + 51 (step (v)) + 1 (step (vi))=152.

Example 22 suggests a way to optimize the execution
of the rules, which reduces the cost of instantiating the
rule bodies. This is achieved by considering only the in-
stantiations leading to the derivation of new conclusions.
Our new rule execution strategy is described below.

Definition 23. Let v be a node of an EG G for a Dat-
alog program P , B be a base instance and I ⊆ G(B). Let
A(X) be the head atom of rule(v) and let Q(Y)←

∧n
i=1 fi

be the EG-rewriting of v. The computation of v(B) under
I, denoted as v(B, I), is:

1. pick m ≥ 1 atoms fi1 , . . . , fim from the body of
Q whose variables include all variables in Y and
form Q′(Y)← fi1 ∧ · · · ∧ fim ;

2. compute v(B) as in Definition 5, however restrict
to homomorphisms h for which (i) h(X) is an an-
swer to Q′ on B and (ii) A(h(X)) 6∈ I.

To help us understand Definition 23, let us apply it
to Example 22. We have Q′(X)← a′(X). The antijoin
between Q′ and A (step (v) of Figure 2) corresponds to
restricting to homomorphisms that are answers to Q′

(step (2.i) of Definition 23), but are not in I (step (2.ii)
of Definition 23). In our implementation, we pick one

8

Algorithm 2 TGmat(P,B)

1: k ··= 0; G0 is the empty graph; I0 ··= ∅
2: do
3: k ··= k + 1; Ik ··= Ik−1

4: Compute Gk starting from Gk−1 as in Section 4
5: Gk ··= minDatalog(Gk)
6: for each node v of depth k do
7: add v(B, Ik−1) (cf. Definition 23) to Ik

8: while Ik 6= Ik−1

9: return I∞

extensional atom (m = 1) in step (1). To pick this atom,
we consider each fi in the body of rew(v), then compute
the join as in step (v) of Example 22 between a subset
of the fi-tuples and the A-tuples in I and finally, choose
the fi leading to the highest join output.

We summarize TG-guided reasoning for Datalog pro-
grams in Algorithm 2. Correctness is stated below.

Theorem 24. For a Datalog program P and a base
instance B, TGmat(P,B) = Ch(P,B).

7. EVALUATION
We implemented Algorithm 1, TG-guided reasoning

over a fixed TG (Def. 5) and Algorithm 2 in a new open-
source reasoner called GLog. GLog is a fork of VLog [60]
that shares the same code for handling the extensional
relations while the code for reasoning is entirely novel.

We consider three performance measures: the absolute
reasoning runtime, the peak RAM consumption observed
at reasoning time, and the total number of triggers. The
last measure is added because it reflects the ability of
TGs to reduce the number of redundant rule executions
and it is robust to most implementation choices.

7.1 Testbed
Systems. We compared against the following systems:
• VLog, as, to our knowledge, is the most efficient

system both time- and memory- wise [58,60];
• the latest public release of RDFox from [1] as

it outperforms all chase engines tested against
ChaseBench [11]: ChaseFun, DEMo [50], LLu-
natic [27], PDQ [12] and Pegasus [43];
• the commercial state of the art chase engine COM

(name is anonymized due to licensing restrictions);
• Inferray, an RDFS reasoner that uses a columnar

layout and that outperforms RDFox [54]; and
• WebPIE, another high-performance RDFS rea-

soner that runs over Hadoop [59].
We ran VLog, RDFox and the commercial chase engine

COM using their most efficient chase implementations.
For VLog, this is the restricted chase, while for RDFox
and COM this is the Skolem one [11]. All engines ran
using a single thread. We could not obtain access to the
Vadalog [10] binaries. However, we perform an indirect
comparison against Vadalog: we both compare against
RDFox using the ChaseBench scenarios from [11].

Benchmarks. To asses the performance of GLog on
linear and Datalog scenarios, we considered benchmarks

#Rules #IDP’s
Scenario #EDP’s LI L LE LI L LE
Linear and Datalog scenarios
LUBM var. 163 170 182 116% 120% 232%
UOBM 2.1 337 561 NA 3.5 3.9 NA
DBpedia 29 4204 9396 NA 31.9 33.1 NA
Claros 13.8 1749 2689 2749 65.8 8.9 548
React. 5.6 259 NA NA 11.3 NA NA
ChaseBench scenarios
S-128 0.15 167 1.9
O-256 1 529 5.6
RDFS (ρDF) scenarios
LUBM 16.7 160 18
YAGO 18.2 498016 27

Table 1: The considered benchmarks. #EDP’s and #IDP’s
absolute numbers are stated in millions of facts.

previously used to evaluate the performance of rea-
soning engines including VLog and RDFox: LUBM
[30] and UOBM [41] are synthetic benchmarks; DB-
pedia [14] (v2014, available online1) is a KG extracted
from Wikipedia; Claros [51] and Reactome [22] are real-
world ontologies2. With both VLog and GLog, the KBs
are stored with the RDF engine Trident [57].

Linear scenarios. Linear scenarios were created using
LUBM, UOBM, DBpedia, Claros and Reactome. For the
first four KBs, we considered the linear rules returned
by translating the OWL ontologies in each KB using the
method described by [61], which was the technique used
for evaluating our competitors [45, 58]. This method
converts an OWL ontology O into a Datalog program
PL such that O |= PL. For instance, the OWL axiom
A v B (concept inclusion) can be translated into the
rule A(X) → B(X). This technique is ideal for our
purposes since this subset is what is mostly supported
by RDF reasoners [45]. Here, the subscript “L” stands
for “lower bound”. In fact, not every ontology can be
fully captured by Datalog (e.g., ontologies that are not
in OWL 2 RL) and in such cases the translation captures
a subset of all possible derivations.

For Reactome, we considered the subset of linear rules
from the program used in [60]. The programs for the
first four KBs do not include any existential rules while
the program for Reactome does. Linear scenarios are
suffixed by “LI”, e.g., LUBM-LI.

Datalog scenarios. Datalog scenarios were created us-
ing LUBM, UOBM, DBpedia and Claros, as Reactome
includes non-Datalog rules only. LUBM comes with a
generator, which allows controlling the size of the base
instance by fixing the number of different universities X
in the instance. One university roughly corresponds to
132k facts. In our experiments, we set X to the following
values: 125, 1k, 2k, 4k, 8k, 32k, 64k, 128k. This means
that our largest KB contains about 17B facts. As pro-
grams, we used the entire Datalog programs (linear and
non-linear) obtained with [61] as described above. These
programs are suffixed by “L”. For Claros and LUBM, we

1https://www.cs.ox.ac.uk/isg/tools/RDFox/2014/
AAAI/input/DBpedia/ttl/
2Both datasets are available in our code repository.

9

https://www.cs.ox.ac.uk/isg/tools/RDFox/2014/AAAI/input/DBpedia/ttl/
https://www.cs.ox.ac.uk/isg/tools/RDFox/2014/AAAI/input/DBpedia/ttl/

VLog RDFox COM GLog TG Sizes
Scenario Run. Mem Run. Mem Run. Mem Comp Reason w/o cleaning w/ cleaning Mem #N #E D
LUBM-LI 1.3 1617 22 2353 18.4 5122 0.007 0.2 0.207 1.1 1674 155 101 6
UOBM-LI 0.3 221 3.9 726 3.3 3570 0.01 0.015 0.025 0.2 219 313 206 9
DBpedia-LI 6.9 2579 44.1 3197 36.3 3767 0.448 0.776 1.224 4.5 2647 12 660 8970 17
Claros-LI 5.6 2870 78.4 3918 72.3 5122 0.006 0.407 0.413 4.8 2586 792 621 23
React.-LI 1.8 1312 12.7 1448 9.9 4479 0.002 0.329 0.329 0.9 1312 386 263 8

Table 2: Linear scenarios. Time is in sec and memory in MB.
VLog RDFox COM GLog Runtime GLog Memory TG Sizes

Scenario Run. Mem Run. Mem Run. Mem No opt m m+r No opt m m+r #N #E D
LUBM-L 1.5 324 23 2301 20.4 4479 2.4 2.2 1.0 446 424 264 56 33 4
LUBM-LE 170.5 2725 116.6 3140 115.9 3610 17.3 17.2 16.1 1340 1310 1338 63 43 5
UOBM-L 7.3 1021 10 784 10 4215 2.6 2.4 2.6 335 335 342 527 859 6
DBpedia-L 41.6 827 64.4 3290 198.4 3878 20 19 19 1341 1352 1339 4144 3062 8
Claros-L 431 3170 2512 5491 2373.0 6453 122 118.3 119 6076 6077 6078 438 404 9
Claros-LE 2771.8 11 895 * * * * 1040.8 1012.2 1053.9 48 464 48 474 48 455 1461 3288 9

Table 3: Datalog scenarios. Time is in sec and memory in MB. ∗ denotes timeout after 1h.

used two additional programs, suffixed by “LE”, created
by [45] as harder benchmarks. These programs extend
the “L” ones with extra rules, such as the transitive
and symmetric rules for owl:sameAs. The relationship
between the various rulesets is LI ⊂ L ⊂ LE.

ChaseBench scenarios. ChaseBench was introduced
for evaluating the performance of chase engines [11].
The benchmark comes with four different families of
scenarios. Out of these four families, we focused on
the iBench scenarios, namely STB-128 and ONT-256 [4]
because they come with non-linear rules with existentials
that involve many joins and that are highly recursive.
Moreover, as we do compare against RDFox which was
the top-performing chase engine in [11], we can use
these two scenarios to indirectly compare against all the
engines considered in [11].

RDFS scenarios. In the Semantic Web, it has been
shown that a large part of the inference that is possible
under the RDF Schema (RDFS) [16] can be captured
into a set of Datalog rules. A number of works have
focused on the execution of such rules. In particular,
WebPIE and more recently Inferray returned state-of-
the-art performance for ρDF – a subset of RDFS that
captures its essential semantics. It is interesting to
compare the performance of GLog, which is a generic
engine not optimized for RDFS rules, against such ad-
hoc systems. To this end, we considered YAGO [31] and
a LUBM KB with 16.7M triples. As rules for GLog, we
translated the ontologies under the ρDF semantics.

Table 1 shows, for each scenario, the corresponding
number of rules and EDP-facts as well as the number of
IDP-facts in the model of the KB. With LUBM and the
linear and Datalog scenarios, the number of IDP-facts
is proportional to the input size, thus it is stated as %.
For instance, with the “LI” rules, the output is 116%,
which means that if the input contains 1M facts, then
reasoning returns 1.16M new facts.

Hardware. All experiments except the ones on scala-
bility (Section 7.5) ran on an Ubuntu 16.04 Linux PC
with Intel i7 64-bit CPU and 94.1 GiB RAM. For our ex-
periments on scalability, we used a second machine with
an Intel Xeon E5 and 256 GiB of RAM due to the large
sizes of the KBs. The cost of both machines is <$5k,
thus we arguably label them as commodity hardware.

7.2 Results for linear scenarios
Table 2 summarizes the results of our empirical evalua-

tion for the linear scenarios. Recall that when a program
is linear and FES it admits a finite TG which can be com-
puted prior to reasoning using tglinear (Algorithm 1) and
minimized using minLinear from Definition 14. Columns
two to seven show the runtime and the peak memory con-
sumption for VLog, RDFox and the commercial engine
COM. The remaining columns show results related to
TG-guided reasoning. Column Comp shows the time to
compute and minimize a TG using tglinear and minLinear.
Column Reason shows the time to reason over the com-
puted TG given a base instance (i.e., apply Definition 5).
Column w/o cleaning shows the total runtime if we do
not filter out redundant facts at reasoning time, while
column w/ cleaning shows the total runtime if we addi-
tionally filter out redundancies at the end and collectively
for all the rules. Notice that in both cases the total run-
time includes the time to compute and reason over the
TG (columns Comp and Reason). Column Mem shows
the peak memory consumption. As we will explain later,
in the case of linear rules, the memory consumption in
GLog is the same both with and without filtering out
redundant facts. Finally, the last three columns #N,
#E, and D show the number of nodes, edges, and the
depth (i.e., length of the longest shortest path) in the
resulting TGs.

We summarize two main conclusions of our analysis.
C1: TGs outperform the chase in terms of run-
time and memory. The runtime improvements over
the chase vary from multiple orders of magnitude (w/o
filtering of redundancies) to almost two times (w/o fil-
tering). When redundancies are discarded, the vast
improvements are attributed to structure sharing, a tech-
nique which is also implemented in VLog.

Structure sharing is about reusing the same columns
to store the data of different facts. For example, con-
sider the rule R(X,Y)→ S(Y,X). Instead of creating
different S- and R-facts, we can simply add a pointer
from the first column of R to the second column of S
and a pointer from the second column of R to the first
column of S. When a rule is linear, both VLog and
GLog perform structure sharing and, hence, do not al-
locate extra memory to store the derived facts. Apart

10

VLog RDFox COM GLog TG Sizes
S Run. Mem Run. Mem Run. Mem Run. Mem #N #E D
S 0.5 1350 13.4 1747 10 5217 0.2 1266 192 0 0
O 2.3 4930 49 3997 35 6340 1 4930 577 65 3

Table 4: ChaseBench scenarios (S=STB-128,O=ONT-256). Runtime in sec,
memory in MB.

Scenario VLog GLog
no opt m m+r

LUBM-L 38 32 29 25
LUBM-LE 239 100 98 93
UOBM-L 47 9 8 8
DBpedia-L 79 63 61 47
Claros-L 286 218 195 185
Claros-LE 1099 1072 1049 1039

Table 5: #Triggers (millions), Datalog scenarios.WebPIE Inferray GLog TG Sizes
S Run. Mem Run. Mem Run. Mem #N #E D
L 338 1124 39 7000 0.3 186 53 25 4
Y 745 1075 116.6 14 000 25 1603 1.07M 888k 20

Table 6: RDFS scenarios (L=LUBM,Y=YAGO). Runtime in sec,
memory in MB.

133M 267M 534M 1B 2B 4B 8B 17B
Run. 13 27 56 203 226 520 993 2272
Mem 1 3 6 23 34 49 98 174
#IDP’s 160M 320M 641M 1B 2B 5B 10B 20B
Table 7: Scalability results. Runtime in sec, memory in GB.

from the obvious benefits memory-wise, structure shar-
ing also provides benefits in runtime as it allows deriving
new facts without actually executing rules. The above,
along with the fact that the facts (redundant or not) are
not explicitly materialized in memory makes GLog very
efficient time-wise.

When redundancies are filtered out, GLog still out-
performs the other engines: it is multiple orders of mag-
nitude faster than RDFox and COM and almost two
times faster than VLog (Reactome-LI). The performance
improvements are attributed to a more efficient strategy
for filtering out redundancies: TGs allow filtering out re-
dundancies after reasoning has terminated, in contrast to
the chase, which is forced to filter out redundancies right
after the derivation of new facts. This strategy is more
efficient because we can use a single n-way join rather
than multiple binary joins to remove redundancies.

With regards to memory, GLog has similar memory
requirements with VLog, while it is much more memory
efficient than RDFox and the commercial engine COM.
C2: The TG computation overhead is small. The
time to compute and minimize a TG in advance of rea-
soning is only a small fraction of the total runtime, see
Table 2. We argue that even if this time was not neg-
ligible, TG-guided reasoning would still be beneficial:
first, once a TG is computed reasoning over it is multiple
times faster than the chase and, second, the same TG
can be used to reason over the same rules independently
of any changes in the database.

7.3 Results for Datalog and ChaseBench
Table 3 summarizes our results on generic (linear and

non-linear) Datalog rules. The last nine columns show
results for TGmat (Algorithm 2). To assess the impact
of minDatalog and ruleExec, the rule execution strategy
from Definition 23, we ran TGmat as follows: without
minDatalog or ruleExec, column No opt ; with minDatalog,
but without ruleExec, column m; with both minDatalog
and ruleExec, column m+r. The total runtime in the last
two cases includes the runtime overhead of minDatalog
and ruleExec. The last three columns report the number
of nodes, edges, and depth of the computed TGs when
both minDatalog or ruleExec are employed. Table 4 shows
results for ChaseBench while Table 5 shows the number
of triggers for the Datalog scenarios for VLog and GLog
(we could not extract this information for RDFox and

COM).
We summarize the main conclusions of our analysis.

C3: TGs outperform the chase in terms of run-
time and memory. Even without any optimizations,
GLog is faster than VLog, RDFox and COM in all but
one case. With regards to VLog, GLog is up to nine
times faster in the Datalog scenarios (LUBM-LE) and
up to two times faster in ChaseBench (ONT-256). With
regards to RDFox, GLog is up to 20 times faster in the
Datalog scenarios (Claros-L) and up to 67 times faster
in ChaseBench (ONT-256). When all optimizations are
enabled GLog outperforms the competitors in all cases.

We have observed that the bulk of the computation
lies in the execution of the joins involved when executing
few expensive rules. In GLog, joins are executed more
efficiently than in the other engines (GLog uses only
merge joins), since the considered instances are smaller
–recall that in TGs, the execution of a rule associated with
a node v considers only the instances of the parents of v.
Due to the above, the optimizations do not decrease the
runtime considerably. The only exception is LUBM-L,
where the optimizations half the runtime.

Continuing with the optimizations, their runtime over-
head is very low: it is 9% of the total runtime (LUBM-L),
while the overhead of minDatalog is less than 1% of the
total runtime (detailed results are in the appendix). We
consider this overhead to be acceptable, since, as we
shall see later, the optimizations considerably decrease
the number of triggers, a performance measure which is
robust to hardware and most implementation choices.

It is important to mention that GLog implements the
technique in [33] for executing transitive and symmetric
rules. The improvements brought by this technique are
most visible with LUBM-LE where the runtime increases
from 18s with this technique to 71s without it. Other
improvements occur with UOBM-L and DBpedia-L (69%
and 57% resp.). In any case, even without this technique,
GLog remains faster than its competitors in all cases.

Last, the ChaseBench experiments allow us to compare
against Vadalog. According to [10], Vadalog is three
times faster than RDFox on STB-128 and ONT-256. Our
empirical results show that GLog brings more substantial
runtime improvements: GLog is from 49 times to more
than 67 times faster than RDFox in those scenarios.

With regards to memory, the memory footprint of
GLog again is comparable to that of VLog and it is

11

lower than that of RDFox and of COM.
C4: TGs outperform the chase in terms of the
number of triggers. Table 5 shows that the total
number of triggers and, hence, the amount of redundant
computations, is considerably lower than the total num-
ber of triggers in VLog even when the optimizations are
disabled. This is due to the different approaches em-
ployed to filter out redundancies: VLog filters out redun-
dancies right after the execution of each rule [58], while
GLog performs this filtering after each round. When
the optimizations are enabled, the number of triggers
further decreases: in the best case (DBpedia-L), GLog
computes 1.69 times fewer triggers (79M/47M).

7.4 Results for RDFS scenarios
Table 6 summarizes the results of the RDFS scenarios

where GLog is configured with both optimizations en-
abled. We can see that GLog is faster than both RDFS
engines. With regards to Inferray, GLog is two orders of
magnitude faster on LUBM and more than four times
faster on YAGO. With regards to WebPIE, GLog is three
orders of magnitude faster on LUBM and more than 32
times faster on YAGO. With regards to memory, GLog
is more memory efficient in all but one cases.

7.5 Results on scalability
We used the LUBM benchmark to create several KBs

with 133M, 267M, 534M, 1B, 2B, 4B, 8B, and 17B facts
respectively. Table 7 summarizes the performance with
the Datalog program LUBM-L. Columns are labeled
with the size of the input database. Each column shows
the runtime, the peak RAM memory consumption, and
the number of derived facts for each input database.
We can see that GLog can reason with up to 17B facts
in less than 40 minutes without resorting to expensive
hardware. We are not aware of any other centralized
reasoning engine that can scale up to such an extent.

8. RELATED WORK
One approach to improve the reasoning performance is

to parallelize the execution of the rules. RDFox proposes
a parallelization technique for Datalog materialization
with mostly lock-free data insertion. Parallelization has
been also been studied for reasoning over RDFS and
OWL ontologies. For example, WebPIE encodes the ma-
terialization process into a set of MapReduce programs
while Inferray executes each rule on a dedicated thread.
Our experiments show that GLog outperforms all these
engines in a single-core scenario. This motivates further
research on parallelizing TG-based materialization.

A second approach is to reduce the number of logi-
cally redundant facts by appropriately ordering the rules.
In [59], the authors describe a rule ordering that is op-
timal only for a fixed set of RDFS rules. In contrast,
we focus on generic programs. ChaseFun [15] proposes
a new rule ordering technique that focuses on equality
generating dependencies. Hence, it is orthogonal to our
approach. In a similar spirit, the rewriting technique

from [33] targets transitive and symmetric rules. GLog
applies this technique by default to improve the perfor-
mance, but our experiments show it outperforms the
state of the art even without this optimization.

To optimize the execution of the rules themselves,
most chase engines rely on external DBMSs or employ
state of the art query execution algorithms: LLunatic
[27], PDQ and ChaseFun run on top of PostgreSQL;
RDFox and VLog implement their own in-memory rule
execution engine. However, none of these engines can
effectively reduce the instances over which rules are
executed as TGs do. Other approaches involve exploring
columnar memory layouts as in VLog and Inferray to
reduce memory consumption and to guarantee sequential
access and efficient sort-merge join inference.

Orthogonal to the above is the work in [10], which
introduces a new chase variant for materializing KBs of
warded Datalog programs. Warded Datalog is a class
of programs not admiring a finite model for any base
instance. The variant works as the restricted chase does
but replaces homomorphism with isomorphism checks.
As a result, the computed models become bigger. An
implementation of the warded chase is also introduced
in [10] which focuses on decreasing the cost of isomor-
phism checks. The warded chase implementation does
not apply any techniques to detect redundancies in the
offline fashion as we do for linear rules, or to reduce the
execution cost of Datalog rules as we do in Section 6.

We now turn our attention to the applications of
materialization in goal-driven query answering. Two
well-known database techniques that use materializa-
tion as a tool for goal-driven query answering are magic
sets and subsumptive tabling [8, 9, 53, 55]. The advan-
tage of these techniques over the query rewriting ones,
which are not based on materialization, e.g., [6, 19,29],
is the full support of Datalog. The query rewriting tech-
niques can support Datalog of bounded recursion only.
Beyond Datalog, materialization-based techniques have
been recently proposed for goal-driven query answering
over KBs with equality [13], as well as for probabilistic
KBs [56], leading in both cases to significant improve-
ments in terms of runtime and memory consumption.
The above automatically turns TGs to a very powerful
tool to also support query-driven knowledge exploration.

TGs are different from acyclic graphs of rule depen-
dencies [7]: the former contain a single node per rule
while TGs do not.

9. CONCLUSION
We introduced a novel approach for materializing KBs

that is based on traversing acyclic graphs of rules called
TGs. Our theoretical analysis and our empirical evalua-
tion over well-known benchmarks show that TG-guided
reasoning is a more efficient alternative to the chase,
since it effectively overcomes all of its limitations.

Future research involves studying the problem of up-
dating TGs in response to KB updates, as well as ex-
tending TGs to materialize distributed KBs.

12

10. REFERENCES
[1] RDFox public release. https://github.com/

dbunibas/chasebench/tree/master/tools/rdfox.
Accessed: 2020-11-10.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations
of Databases. Addison Wesley, 1995.

[3] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld,
D. Olteanu, E. Pasalic, T. L. Veldhuizen, and
G. Washburn. Design and Implementation of the
LogicBlox System. In SIGMOD, pages 1371–1382,
2015.

[4] P. C. Arocena, B. Glavic, R. Ciucanu, and R. J.
Miller. The iBench Integration Metadata
Generator. In VLDB, page 108–119, 2015.

[5] F. Baader and T. Nipkow. Term Rewriting and All
That. Cambridge University Press, USA, 1999.

[6] J. Baget, M. Leclère, M. Mugnier, S. Rocher, and
C. Sipieter. Graal: A Toolkit for Query Answering
with Existential Rules. In RuleML, 2015.

[7] J. Baget, M. Leclère, M. Mugnier, and E. Salvat.
On rules with existential variables: Walking the
decidability line. Artificial Intelligence,
175(9-10):1620–1654, 2011.

[8] F. Bancilhon, D. Maier, Y. Sagiv, and J. D.
Ullman. Magic Sets and Other Strange Ways to
Implement Logic Programs. In PODS, pages 1–15,
1986.

[9] C. Beeri and R. Ramakrishnan. On the Power of
Magic. Journal of Logic Programming,
10(3,4):255–299, 1991.

[10] L. Bellomarini, E. Sallinger, and G. Gottlob. The
Vadalog System: Datalog-based Reasoning for
Knowledge Graphs. PVLDB, 11(9):975–987, 2018.

[11] M. Benedikt, G. Konstantinidis, G. Mecca,
B. Motik, P. Papotti, D. Santoro, and
E. Tsamoura. Benchmarking the chase. In PODS,
pages 37–52, 2017.

[12] M. Benedikt, J. Leblay, and E. Tsamoura. PDQ:
Proof-driven query answering over web-based data.
In VLDB, page 1553–1556, 2014.

[13] M. Benedikt, B. Motik, and E. Tsamoura.
Goal-driven query answering for existential rules
with equality. In AAAI, pages 1761 – 1770, 2018.

[14] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer,
C. Becker, R. Cyganiak, and S. Hellman. DBpedia
- A crystallization point for the Web of Data.
Journal of Web Semantics, 7(3):154–165, 2009.

[15] A. Bonifati, I. Ileana, and M. Linardi. Functional
Dependencies Unleashed for Scalable Data
Exchange. In SSDBM, 2016.

[16] D. Brickley, R. V. Guha, and B. McBride. Rdf
schema 1.1. W3C recommendation, 25:2004–2014,
2014.

[17] A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the
infinite chase: Query answering under expressive
relational constraints. J. Artif. Int. Res.,
48(1):115–174, 2013.

[18] A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general
Datalog-based framework for tractable query
answering over ontologies. Journal of Web
Semantics, 14:57–83, 2012.

[19] D. Calvanese, B. Cogrel, S. Komla-Ebri,
R. Kontchakov, D. Lanti, M. Rezk,
M. Rodriguez-Muro, and G. Xiao. Ontop:
Answering SPARQL queries over relational
databases. Semantic Web, 8(3):471–487, 2017.

[20] A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. In STOC, pages 77–90, 1977.

[21] B. Chin, D. von Dincklage, V. Ercegovac,
P. Hawkins, M. S. Miller, F. Och, C. Olston, and
F. Pereira. Yedalog: Exploring knowledge at scale.
In SNAPL, pages 63–78, 2015.

[22] D. Croft, A. F. Mundo, R. Haw, M. Milacic,
J. Weiser, G. Wu, M. Caudy, P. Garapati,
M. Gillespie, M. R. Kamdar, et al. The reactome
pathway knowledgebase. Nucleic acids research,
42(D1):D472–D477, 2013.

[23] A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay.
Neural-symbolic learning systems: foundations and
applications. Perspectives in neural computing.
Springer, 2002.

[24] S. Delivorias, M. Leclère, M. Mugnier, and
F. Ulliana. On the k-Boundedness for Existential
Rules. In RuleML+RR, pages 48–64, 2018.

[25] A. Deutsch, A. Nash, and J. B. Remmel. The chase
revisited. In PODS, pages 149–158, 2008.

[26] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theoretical Computer Science, 336(1):89–124, 2005.

[27] F. Geerts, G. Mecca, P. Papotti, and D. Santoro.
That’s All Folks! LLUNATIC Goes Open Source.
In VLDB, page 1565–1568, 2014.

[28] G. Gottlob, G. Orsi, and A. Pieris. Ontological
query answering via rewriting. In ADBIS, pages
1–18, 2011.

[29] G. Gottlob, G. Orsi, and A. Pieris. Query
Rewriting and Optimization for Ontological
Databases. ACM TODS, 39(3):25:1–25:46, 2014.

[30] Y. Guo, Z. Pan, and J. Heflin. LUBM: A
benchmark for OWL knowledge base systems.
Journal of Web Semantics, 3(2-3), 2011.

[31] J. Hoffart, F. Suchanek, K. Berberich, and
G. Weikum. Yago2: A spatially and temporally
enhanced knowledge base from wikipedia. Artificial
Intelligence, 194:28–61, 2013.

[32] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato,
G. de Melo, C. Gutierrez, J. E. L. Gayo,
S. Kirrane, S. Neumaier, A. Polleres, R. Navigli,
A.-C. N. Ngomo, S. M. Rashid, A. Rula,
L. Schmelzeisen, J. Sequeda, S. Staab, and
A. Zimmermann. Knowledge Graphs.
arXiv:2003.02320 [cs], 2020. arXiv: 2003.02320.

[33] P. Hu, B. Motik, and I. Horrocks. Modular

13

https://github.com/dbunibas/chasebench/tree/master/tools/rdfox
https://github.com/dbunibas/chasebench/tree/master/tools/rdfox

materialisation of datalog programs. In AAAI,
pages 2859–2866, 2019.

[34] P. Hu, J. Urbani, B. Motik, and I. Horrocks.
Datalog Reasoning over Compressed RDF
Knowledge Bases. In CIKM, pages 2065–2068,
2019.

[35] N. Konstantinou, M. Koehler, E. Abel, C. Civili,
B. Neumayr, E. Sallinger, A. A. Fernandes,
G. Gottlob, J. A. Keane, L. Libkin, and N. W.
Paton. The VADA Architecture for Cost-Effective
Data Wrangling. In SIGMOD, pages 1599–1602,
2017.

[36] B. Kruit, P. A. Boncz, and J. Urbani. Extracting
novel facts from tables for knowledge graph
completion. In ISWC, pages 364–381, 2019.

[37] B. Kruit, H. He, and J. Urbani. Tab2know:
Building a knowledge base from tables in scientific
papers. In ISWC, pages 349–365. Springer, 2020.

[38] M. Leclère, M. Mugnier, M. Thomazo, and
F. Ulliana. A Single Approach to Decide Chase
Termination on Linear Existential Rules. In ICDT,
pages 18:1–18:19, 2019.

[39] M. Leclère, M. Mugnier, and F. Ulliana. On
bounded positive existential rules. In DL, 2016.

[40] J. Lee, T. Hwang, J. Park, Y. Lee, B. Motik, and
I. Horrocks. A Context-Aware Recommendation
System for Mobile Devices. In ISWC, pages
380–382, 2020.

[41] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and
S. Liu. Towards a complete OWL Ontology
Benchmark. In ESWC, pages 125–139, 2006.

[42] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing
implications of data dependencies. ACM
Transactions on Database Systems, 4(4):45–5469,
1979.

[43] M. Meier. The backchase revisited. VLDB J.,
23(3):495–516, 2014.

[44] B. Motik, B. C. Grau, I. Horrocks, Z. Wu,
A. Fokoue, C. Lutz, et al. OWL 2 web ontology
language profiles. W3C recommendation, 27:61,
2009.

[45] B. Motik, Y. Nenov, R. Piro, I. Horrocks, and
D. Olteanu. Parallel Materialisation of Datalog
Programs in Centralised, Main-Memory RDF
Systems. In AAAI, pages 129–137, 2014.

[46] W. E. Moustafa, V. Papavasileiou, K. Yocum, and
A. Deutsch. Datalography: Scaling datalog graph
analytics on graph processing systems. In IEEE
International Conference on Big Data, pages 56–65,
2016.

[47] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu,
and J. Banerjee. RDFox: A Highly-Scalable RDF
Store. In ISWC, pages 3–20, 2015.

[48] N. Noy, Y. Gao, A. Jain, A. Narayanan,
A. Patterson, and J. Taylor. Industry-scale
Knowledge Graphs: Lessons and Challenges.
Commun. ACM, 62(8):36–43, July 2019.

[49] A. Onet. The chase procedure and its applications
in data exchange. In DEIS, pages 1–37, 2013.

[50] R. Pichler and V. Savenkov. DEMo: Data
Exchange Modeling Tool. In VLDB, pages
1606–1609, 2009.

[51] S. Rahtz, A. Dutton, D. Kurtz, G. Klyne,
A. Zisserman, and R. Arandjelovic.
CLAROS—Collaborating on Delivering the Future
of the Past. In DH, pages 355–357, 2011.

[52] Y. Sagiv and M. Yannakakis. Equivalences among
relational expressions with the union and difference
operators. Journal of the ACM, 27(4):633–655,
1980.

[53] D. Sereni, P. Avgustinov, and O. de Moor. Adding
Magic to an Optimising Datalog Compiler. In
SIGMOD, pages 553–566, 2008.

[54] J. Subercaze, C. Gravier, J. Chevalier, and
F. Laforest. Inferray: Fast in-Memory RDF
Inference. Proceedings of the VLDB Endowment,
9(6):468–479, 2016.

[55] K. T. Tekle and Y. A. Liu. More Efficient Datalog
Queries: Subsumptive Tabling Beats Magic Sets.
In SIGMOD, pages 661–672, 2011.

[56] E. Tsamoura, V. Gutiérrez-Basulto, and
A. Kimmig. Beyond the Grounding Bottleneck:
Datalog Techniques for Inference in Probabilistic
Logic Programs. In AAAI, pages 10284–10291,
2020.

[57] J. Urbani and C. Jacobs. Adaptive Low-level
Storage of Very Large Knowledge Graphs. In
WWW, pages 1761–1772, 2020.

[58] J. Urbani, C. Jacobs, and M. Krötzsch.
Column-Oriented Datalog Materialization for
Large Knowledge Graphs. In AAAI, pages 258–264,
2016.

[59] J. Urbani, S. Kotoulas, J. Maassen, F. van
Harmelen, and H. Bal. OWL Reasoning with
WebPIE: Calculating the Closure of 100 Billion
Triples. In ESWC, pages 213–227, 2010.

[60] J. Urbani, M. Krötzsch, C. Jacobs, I. Dragoste, and
D. Carral. Efficient Model Construction for Horn
Logic with VLog. In IJCAR, pages 680–688, 2018.

[61] Y. Zhou, B. Cuenca Grau, I. Horrocks, Z. Wu, and
J. Banerjee. Making the Most of your Triple Store:
Query Answering in OWL 2 using an RL Reasoner.
In WWW, pages 1569–1580, 2013.

14

Scenario VLog GLog
LUBM-LI 34 346 35 093
UOBM-LI 7625 6718
DBpedia-LI 61 134 115 150
Claros-LI 129 098 134 800
Reactome-LI 17 120 23 218

(a) #Triggers for VLog and GLog on the
linear scenarios.

Scenario m r
LUBM-L 0.0005 0.16
LUBM-LE 0.0007 0.16
UOBM-L 0.08 0.02
DBpedia-L 0.05 0.5
Claros-L 0.03 2.8
Claros-LE 0.3 15.2

(b) Cost of optimizations.

Table 8: Additional Experimental Results

VLog RDFox COM GLog Runtime GLog Memory
Scenario Runtime Memory Runtime Memory Runtime Memory No opt m m+r No opt m m+r
LUBM-L 1.5 324 23 2301 20.4 4479 2.5 2.2 1 446 424 265
LUBM-LE 170.5 2725 116.6 3140 115.9 3610 71.1 68.8 67.7 2880 2688 2695
UOBM-L 7.3 1021 10 784 10 4215 4.4 6.3 6.3 506 590 590
DBpedia-L 41.6 827 64.4 3290 198.4 3878 31.4 32 31.1 2335 2319 2313
Claros-L 431 3170 2512 5491 2373.0 6453 128.6 125.6 126.7 5954 5957 5958
Claros-LE 2771.8 11 895 * * * * 1104.3 1094 1106.3 48 246 48 251 48 223

Table 9: Datalog scenarios. GLog is ran without the optimization from [33]. Time is in sec and memory in MB.
VLog RDFox COM GLog

Scenario Runtime Memory Runtime Memory Runtime Memory Runtime Memory
STB-128 0.5 1350 13.4 1747 10 5217 0.2 1266
ONT-256 2.3 4930 49 3997 35 6340 1 4929

Table 10: ChaseBench scenarios. GLog is ran without the optimization from [33]. Time is in sec and memory in MB.
VLog WebPIE Inferray GLog Runtime GLog Memory

Scenario Runtime Memory Runtime Memory Runtime Memory No opt m m+r No opt m m+r
LUBM 0.1 189 353 200 23 2000 0.4 0.4 0.3 186 187 181
YAGO 163 3192 808 200 116.6 14 000 20 23 25 1438 1602 1600

Table 11: RDFS scenarios. GLog is ran without the optimization from [33]. Time is in sec and memory in MB.

APPENDIX
A. ADDTIONAL EXPERIMENTAL RESULTS
Number of triggers in the linear scenarios. Table 8a summarizes the number of triggers for the linear scenarios.
We can see that the number of triggers in GLog is often higher than in VLog. This is due to the fact that GLog does
not eliminate redundancies right at their creation. However, these redundancies are harmless: due to structure sharing
these redundant facts are not explicitly materialized in memory and hence, they do not slow down the runtime.

Cost of optimizations. Table 8b summarizes the cost of optimizations for the Datalog scenarios. Recall that the
optimizations in Section 6 are not applicable to ChaseBench as the rules have existential variables. Column m shows
the total runtime cost of minDatalog, while column r shows the total runtime cost of ruleExec.

Impact on rewriting on GLog. Tables 9, 10 and 11 summarize the performance of GLog when disabling the
optimization from [33]. To ease the presentation, we also copy the results of the competitor engines on the same
benchmarks from Tables 3, 4 and 6. We can see that the only scenario whose performance degrades considerably is
LUBM-LE shown in Table 9. Even in this case though, the performance of GLog is still better than the performance of
its competitors: it is twice as fast as VLog, RDFox and COM in most scenarios and more than an order of magnitude
faster than RDFox and COM in Claros-L.

Running RDFox in multiple threads. Tables 12, 13 and 14 show the runtime performance of RDFox when
increasing the number of threads from 1 to 8 and 16. For completeness, we also copy the runtime of GLog using a
single thread on the same scenarios from Tables 2, 3 and 4. We can see that the runtime of RDFox drops considerably
when using 16 threads. However, it is still higher than the runtime of GLog in all cases except UOBM-L, where
RDFox’s runtime is 1.6s, while GLog’s runtime is 2.6s. In the other scenarios, GLog is up to 7.8 times faster than
RDFox (ONT-256).

15

RDFox GLog Runtime
Scenario Runtime (1 thread) Runtime (8 threads) Runtime (16 threads) Runtime (32 threads) w/o cleaning w/ cleaning
LUBM-LI 22 4.7 3.7 4.3 0.010 1.1
UOBM-LI 3.9 0.9 0.8 1.6 0.012 0.2
DBpedia-LI 44.1 12.8 10.8 14.7 0.980 4.5
Claros-LI 78.4 16.1 12 14 0.051 4.8
React.-LI 12.7 2.8 2.3 2.9 0.131 0.9

Table 12: Linear scenarios. RDFox is ran in one, eight, 16 threads and 32 threads. GLog is ran in a single thread. Time in sec.
RDFox GLog Runtime

Scenario Runtime (1 thread) Runtime (8 threads) Runtime (16 threads) Runtime (32 threads) No opt m m+r
LUBM-L 23 4.8 3.8 4.3 2.4 2.2 1.0
LUBM-LE 116.6 20.9 16.2 17.2 17.3 17.2 16.1
UOBM-L 10 2 1.6 2.4 2.6 2.4 2.6
DBpedia-L 64.4 29 23.9 34 20 19 19
Claros-L 2512 296 171.1 244.9 122 118.3 119
Claros-LE * * * * 1040.8 1012.2 1053.9

Table 13: Datalog scenarios. RDFox is ran in one, eight, 16 threads and 32 threads. GLog is ran in a single thread. Time in sec.
* denotes runtime exception.

RDFox GLog no opt
Scenario Runtime (1 thread) Runtime (8 threads) Runtime (16 threads) Runtime (32 threads) Runtime
STB-128 13.4 2.9 2.3 3.1 0.2
ONT-256 49 10 7.8 10 1

Table 14: ChaseBench scenarios. RDFox is ran in 1, 8, 16 threads and 32 threads. GLog is ran in a single thread. Time in sec.

B. ADDITIONAL DEFINITIONS
We provide some definitions that will be useful for the proofs in the next section.
For a KB K where Ch(K) is defined, the depth d(t) of a term t in Ch(K) is defined as follows: if t ∈ Consts, then

d(t) = 1; otherwise, if t is a null of the form nr,h,z, then d(t) = max(d(t1), . . . , d(tn)) + 1, where {t1, . . . , tn} are all
terms in the range of h.

Next, we recapitulate the definitions of some known classes of programs.

Definition 25. Consider a program P and some k ≥ 0.
• P is Finite Expansion Set (FES), if for each base instance B, the KB (P,B) has a terminating chase.
• P is k-Term Depth Bounded (k-TDB), if for each base instance B, each i ≥ 0 and each term t in Chi(P,B),

d(t) ≤ k. P is TDB, if it is k-TDB.
• P is Finite Order Rewritable (FOR), if, for each BCQ Q, there is a union of BCQs (UBCQs) Q′ such that, for

each base instance B, we have that (P,B) |= Q iff B |= Q′.

C. PROOFS FOR RESULTS IN SECTION 4
For a program P , we refer to the graph computed by applying the base and the inductive steps from Section 4 as

the level-k full EG for P , and denote it as ΦkP . Below, we show that reasoning via a level-k full EG produces logically
equivalent facts with the k-th round of the chase when the chase is applied in a breadth-first fashion:

Theorem 26. For a program P , a base instance B and a k ≥ 0, Chk(P,B) ≡ ΦkP (B).

Proof. Let P = {r1, . . . , rn}. Let ΦkP = Gk = (V k, Ek) and let Φk+1
P = Gk+1 = (V k+1, Ek+1). Let Ik = Chk((P,B))

and let Jk = Gk(B).
(⇐) To prove the claim, we show the following property, for each k ≥ 0:
• ψ. there exists a homomorphism gk : Jk → Ik.
For k = 0, ψ holds, since I0 = G0(B) = B. For k + 1 and assuming that ψ holds for k, the proof proceeds as

follows. Let vk+1
1 , . . . , vk+1

m be all nodes in V k+1 of depth k + 1. For each 1 ≤ ι ≤ m, let rule(vk+1
ι) = rι and let

vk+1
ι (B) = {Fι,1, . . . , Fι,nι}. Since each rule has a single atom in its head, it follows from Definition 5 that for each

1 ≤ ι ≤ m and each 1 ≤ κ ≤ nι, there exists a homomorphism hι,κ, such that hι,κs(head(rι)) = Fι,κ. We distinguish
the cases, for each rule rι, for 1 ≤ ι ≤ m:
• rι is an extensional rule. Hence, for each each 1 ≤ κ ≤ nι, hι,κ is a homomorphism from body(rι) into B.
• rι is not an extensional rule. WLOG, assume that rι comprises only IDP-atoms in its body. Since Gk+1 is a full

EG, it follows that for each 1 ≤ λ ≤ eι, there exists an edge uι,λ →ι,λ v
k+1
ι in Ek+1. Due to the above, and due

to Definition 5, it follows that for each 1 ≤ κ ≤ nι, hι,κ is a homomorphism from body(rι) into
eι⋃
λ

uι,λ(B).

Let Nk =
m⋃
ι

nι⋃
κ

hι,κs(head(rι)). We further distinguish the cases:

• for each 1 ≤ ι ≤ m and each 1 ≤ κ ≤ nι, Fι,κ ∈ Gk(B). Then ψ trivially holds.

16

• there exists 1 ≤ ι ≤ m and 1 ≤ κ ≤ nι, such that Fι,κ 6∈ Gk(B). Since ψ holds for k and due to gk, it follows
that for each 1 ≤ ι ≤ m and each 1 ≤ κ ≤ nι, there exists a homomorphism χι,κ = hι,κ ◦ gk from body(rι) into
Ik. Due to the above, for each 1 ≤ ι ≤ m and each 1 ≤ κ ≤ nι, there also exists a homomorphism ωι,κ from
hι,κs(head(rι)) into χι,κs(head(rι)), mapping each hι,κs(nz) to χι,κs(n′z), where hι,κs(z) = nz and χι,κs(z) = n′z,
for each existentially quantified variable z occurring in r. Due to the above and since for each 1 ≤ ι ≤ m and

each 1 ≤ κ ≤ nι, hι,κs(c) = gk(c), there also exists a homomorphism from Nk into Mk =
m⋃
ι

nι⋃
κ

χι,κs(head(rι))

and hence from Ik ∪Nk into Jk ∪Mk. The above shows that ψ holds for k + 1.
(⇒) To prove the claim, we show the following property, for each k ≥ 0:
• φ. there exists a homomorphism gk : Ik → Jk mapping each F ∈ Ik to some fact F ′ ∈ Jk of the same depth.

For k = 0, φ holds, since I0 = G0(B) = B. For k + 1 and assuming that φ holds for k the proof proceeds as follows.
For each 1 ≤ i ≤ n and each 1 ≤ j ≤ ni, let hi,j be the j-th homomorphism from the body of rule ri into Ik, where
hi,j(body(ri)) comprises at least one fact of depth k. Due to the inductive hypothesis, we know that for each 1 ≤ i ≤ n
and 1 ≤ j ≤ ni, there exists a homomorphism χi,j = hi,j ◦ gk from body(ri) into Jk. We distinguish the cases, for
each rule ri, for 1 ≤ i ≤ n:
• rι is an extensional rule. Hence, Ik = B.

• rι is not an extensional rule. WLOG, assume that rι comprises only IDP-atoms in its body. Let u1
i,j , . . . , u

|body(ri)|
i,j

be the nodes in V k, such that for each 1 ≤ j ≤ ni and each 1 ≤ l ≤ |body(ri)|, the l-th fact in χi,j(body(ri))
belongs to uli,j(B). Since φ holds for k, it follows that for each 1 ≤ j ≤ ni, some fact in χi,j(body(ri)) is of depth

k. Hence some node in u1
i,j , . . . , u

|body(ri)|
i,j is of depth k. Since Gk+1 is a full EG for P , it follows that for each

1 ≤ j ≤ ni and each 1 ≤ l ≤ |body(ri)|, uli,j →j v ∈ Ek+1, where rule(v) = ri.
Due to the above and due to Definition 5, it follows that for each 1 ≤ i ≤ n and each 1 ≤ j ≤ ni, we have

χi,js(head(ri)) ∈ Gk+1(B). Since for each 1 ≤ i ≤ n and each 1 ≤ j ≤ ni, there exists a homomorphism from gk

from hi,j(body(ri)) into χi,j(body(ri)), it follows that for each 1 ≤ i ≤ n and each 1 ≤ j ≤ ni, there also exists a
homomorphism ωi,j from hi,js(head(ri)) into χi,js(head(ri)), mapping each hi,js(nz) to χi,js(n′z), where hi,js(z) = nz
and χi,js(z) = n′z, for each existentially quantified variable z occurring in r. Due to the above and since for each

1 ≤ i ≤ n and each 1 ≤ j ≤ ni, hi,js(c) = gk(c), there also exists a homomorphism from Nk =
n⋃
i

ni⋃
j

hi,js(head(ri))

into Mk =
n⋃
i

ni⋃
j

χi,js(head(ri)) and hence from Ik ∪Nk into Jk ∪Mk. The above shows that the induction holds for

k + 1.

Theorem 7. The following hold: P is FTG iff it is BDD; and P is TDB ∩ FOR iff it is BDD.

Proof. The proof is based on the proofs of Theorem 27 and Theorem 28.

Theorem 27. P is FTG iff it is BDD.

Proof. =⇒ If P is FTG, then there is some finite TG G = (V,E) for this program. We proceed to show that P
is k-BDD with k the depth of G. More precisely, we show by contradiction that Chk(P,B) |= Chk+1(P,B) for any
given base instance B.

1. Suppose for a contradiction that Chk(K) 6|= Chk+1(K) with K = (P,B).

2. By the definition of the standard chase, Chk(K) ⊆ Chk+1(K).

3. By (1) and (2), there is some BCQ q such that Chk(K) 6|= q and Chk+1(K) |= q.

4. We can show via induction that Gi(B) ⊆ Chi(K) for all i ≥ 0.

5. By (4), Gk(B) ⊆ Chk(K).

6. By (3) and (5), G(B) 6|= q.

7. By (3), K |= q.

8. By (6) and (7), the graph G is not a TG for P .

⇐= Since P is BDD, we have that P is k-BDD for some k ≥ 0. Therefore, the graph Φk
P is a TG for P by

Theorem 26 and the program P is FTG.

Theorem 28. P is TDB and FOR iff it is BDD.

Proof. =⇒

17

1. Assume that P is (a) FOR and (b) TDB.

2. Let h be a homomorphism that maps every t ∈ Nulls ∪ Vars to a fresh ct ∈ Consts unique for t.

3. For all facts ϕ that can be defined over some s ∈ Preds in P , we introduce the following notions.

(a) Let ωϕ be some (arbitrarily chosen) rewriting for the BCQ ϕ with respect to P . Note that, such a rewriting
must exist by (1.a).

(b) Let kϕ be the smallest number such that Chkϕ(P, h(β)) |= Chkϕ+1(P, h(β)) for every disjunct β in the
rewriting ωϕ. Note that, such a number must exist by (1.b).

4. For all s ∈ Preds, let ks be the smallest number such that ks > kϕ for all facts ϕ that can be defined over the
predicate s. Note that, the number ks is well-defined despite the fact that we can define infinitely many different
facts over any given predicate. This is because ks(t1,...,tn) = ks(u1,...,un) if we have that there is a bijective
function mapping ti to ui for all 1 ≤ i ≤ n.

5. Let kP be the smallest number such that kP > ks + 1 for all s ∈ Preds in P .

6. Consider some fact ϕ = s(t1, . . . , tn), some base instance B, and some i ≥ 0. We show that, if the terms t1, . . . , tn
are in Chi(P,B) and ϕ ∈ Ch(P,B), then ϕ ∈ Chi+kP−1(P,B).

a. h(ϕ) ∈ Ch((P,B′)) with B′ = h(Chi(P,B)).

b. By (a): B′ |= ωh(ϕ) where ωh(ϕ) is a UBCQ of the form ∃x1.β1 ∨ . . . ∨ ∃xn.βn.

c. By (b): B′ |= ∃xk.βk for some 1 ≤ k ≤ n.

d. By (c): there is a homomorphism such that h′(βk) ⊆ B′.
e. By (d): h′(ϕ) ∈ Ch((P, h(βk))).

f. By (5) and (e): ChkP−1(P, h′(βk)) ⊇ Ch(P, h′(βk)).

g. By (e) and (f): h′(ϕ) ∈ ChkP−1(P, h′(βk)).

h. By (d) and (g): h′(ϕ) ∈ ChkP−1(P,B′).

i. By (h): ϕ ∈ Chi+kP−1(P,B).

7. For a fact ϕ = s(t1, . . . , tn), let d(ϕ) = max1≤i≤n(d(ti)).

8. By (6) and (7): We show via induction that, for all d ≥ 1, the set Chd·kP (P, F) contains all of the facts
ϕ ∈ Ch(P, F) with d(ϕ) ≤ d.

• Base case: The set Ch0(P, F) contains all terms of depth 1 (i.e., all constants) that occur in Ch(P, F). Hence,
by (6), the set ChkP (P, F) contains every ϕ ∈ Ch(P, F) with d(ϕ) = 1.

• Inductive step: Let i ≥ 1. Then, Ch(i−1)·kP (P, F) contains all ϕ ∈ Ch(P, F) with d(ϕ) = i−1. Hence, the set

Ch(i−1)·kP+1(P, F) contains all t ∈ Terms in Ch(P, F) with d(ϕ) = i. By (6), the set Chi·kP (P, F) contains
all ϕ ∈ Ch(P, F) with d(ϕ) = i.

9. By (1.b): There is some kd ≥ 0 that depends only on P such that, for every term in t occurring in Ch((P, F)),
the depth t is equal or smaller than kd.

10. By (8) and (9): P is (kd · kP)-BDD. Note that, neither kd nor kP depend on the set of facts F .

⇐= Since P ∈ BDD, P ∈ k-BDD for some k ≥ 0. Via induction on i ∈ {0, . . . , k}, we can show that all terms
in Chi(P,B) are of depth i or smaller for any instance B, and hence, P ∈ k-TDB. Note that BDD ⊆ FOR has been
shown in [39].

Theorem 29. The language of all programs that admit a finite TG is undecidable.

Proof. This follows from the fact that FTG decidability implies decidability of FOR for Datalog programs, which
is undecidable [28].

Theorem 8. For each KB (P,B) that admits a finite model, there exists an instance-dependent TG.

Proof. Recall that we denote by Φk
P the level-k full EG for a program P . We can stop the expansion of the

level-k full EG for a program P when Φk−1
P (B) |= ΦkP (B) holds. The above, along with Theorem 26 and the fact

that whenever Chk−1(P,B) |= Chk(P,B) holds for some k ≥ 1, then the KB (P,B) admits a finite model (see [24])
conclude the proof of Theorem 8.

18

D. PROOFS FOR RESULTS IN SECTION 5

Theorem 10. For any linear program P that is FES, tglinear(P) is a TG for P .

Proof. In order to show that the EG G = (V,E) computed by Algorithm 1 is a TG for P , it suffices to show that
Ch∞(P,B) is logically equivalent to G(B). The proof makes use of Propositions 30 and 31, as well as of Lemma 32.
Note that Propositions 30 is a known result and, hence, we skip its proof, while Proposition 31 directly follows from
Definition 5.

Proposition 30. For each linear program P and each base instance B, the following holds:

Ch∞(P,B) ≡
⋃
F∈B

Ch∞(P, {F}) (2)

Proposition 31. For each linear TG G, each node v ∈ G and each base instance B, the following holds:

v(B) =
⋃
F∈B

u({F}) (3)

Lemma 32. For each fact f ∈ H(P), Γ({f}) ≡ Ch∞(P, {f}), where Γ is the EG computed in lines 2–10 for fact f .

Proof. (⇒) We want to show that for each fact f ∈ H(P), there exists a homomorphism from Γ({f}) into
Ch∞(P, {f}). Due to Algorithm 1, we know that Γ is a graph of the form(

n⋃
j=1

uj ,

n−1⋃
j=1

{uj →1 uj+1}

)
(4)

where uj ∈ V , for each 0 ≤ i ≤ n; uj →1 uj+1 ∈ E, for each 0 ≤ i < n; and un = v. To prove this direction, we will
show that the following property holds, for each 0 ≤ i ≤ n:
• φ1. there exists a homomorphism hi from Γ�ui({f}) into Ch∞(P, {f}).

For i = 0, since Γ�vi is the empty graph and hence Γ�ui(B) = B by Definition 5, it follows that φ1 holds. For i+ 1
and assuming that φ1 holds for i the proof proceeds as follows. Since φ1 holds for i, we know that there exists a
homomorphism hi from Γ�ui({f}) into Ch∞(P, {f}). If ui+1({f}) = ∅, then φ1 trivially holds for i+ 1. Hence, we
will consider the case where vi+1({f}) 6= ∅. Since vi+1 is a child of vi and since vi+1 is associated with some rule
ri+1 ∈ P , it follows that there exists a homomorphism g from body(ri+1) into vi({f}) and vi+1({f}) = gs(head(ri+1)).
Due to g and due to hi, we know that there exists a homomorphism ψ = g ◦ hi from body(ri+1) into Ch∞(P, {f})
and, hence, a homomorphism ω from gs(head(ri+1)) into ψs(head(ri+1)) mapping each value c occurring in dom(g)
into (g ◦ hi)(c) and nz into n′z, for each existentially quantified variable z of ri+1, where g(z) = nz and ψ(z) = n′z.
We distinguish the cases:
• ψs(head(ri+1)) ∈ Ch∞(P, {f}). Due to hi and due to ω, it follows that hi+1 = hi ∪ ω is a homomorphism from

Γ�vi+1({f}) into Ch∞(P, {f}).
• ψs(head(ri+1)) 6∈ Ch∞(P, {f}). Then Ch∞(P, {f}) |= ψs(head(ri+1)) holds and hence, there exists a homo-

morphism θ from ψs(head(ri+1)) into Ch∞(P, {f}). Due to hi, due to ω and due to θ, we can see that
hi+1 = (hi ∪ ω) ◦ θ is a homomorphism from Γ�vi+1({f}) into Ch∞(P, {f}).

The above shows that φ1 holds for i+ 1 concluding the proof of this direction.
(⇐) We want to show that for each fact f ∈ H(P), there exists a homomorphism from Ch∞(P, {f}) into Γ({f}).

We use Ii to denote Chi(P, {f}) and chaseGraphi(P, {f}) to denote the chase graph corresponding to Chi(P, {f}).
The proof of this direction proceeds by showing that the following properties hold, for each i ≥ 0:
• φ2. there exists a homomorphism hi from Chi(P, {f}) into Γ({f}).
• φ3. for each f1 →r1 f2 →r2 · · · →rj fj+1 in chaseGraphi(P, {f}), a path of the form u1 →1 · · · →1 uj is in Γ,

where for each 1 ≤ k ≤ j: uk is associated with rk and there exists a homomorphism from fk+1 into uk({f}).
For i = 0, since Ch0(P, {f}) = {f} and since f ∈ Γ({f}) by definition, it follows that the inductive hypotheses φ2

and φ3 holds. For i+ 1 and assuming that φ2 and φ3 hold for i the proof proceeds as follows. Let Σr be the set of all
active triggers for each r ∈ P in Ii. Let also

∆I =
⋃

r∈P

⋃
h∈Σr

hs(head(r)) (5)

We distinguish the following cases:
• Ii |= Ii ∪∆I holds. Then the equivalent chase terminates and hence Chi(P, {f}) = Ch∞(P, {f}). Since the

inductive hypotheses φ2 and φ3 hold for i and due to the above, it follows that the inductive hypotheses will hold
for i+ 1.

19

• Ii |= Ii ∪∆I does not hold. Then, for each rule r ∈ P for which Σr 6= ∅ and for each h ∈ Σr, the chase graph
chaseGraphi+1(P, {f}) will include an edge h(body(r))→r hs(head(r)). Due to the steps in lines 4–6, we know
that Γ includes a node v associated with r (∗). We have the following two subcases:
– There is no edge of the form f ′ →r′ h(body(r)) in chaseGraphi+1(P, {f}), for some r′ ∈ P . Then, it follows

that h(body(r)) = f . Due to the above, due to (∗) and due to Definition 5, it follows that the inductive
hypotheses φ2 and φ3 hold for i+ 1.

– Otherwise. Since the inductive hypothesis φ3 holds for i and due to the steps in lines 7–9, it follows that an
edge of the form v′ →1 v will be in Γ, where node v′ is associated with rule r′. Furthermore, due to φ3, there
exists a homomorphism gi from h(body(r)) into v′({f}). Due to gi, due to the fact that the edge v′ →1 v is
in Γ and due to Definition 5, there exists a homomorphism gi+1 from hs(head(r)) into v({f}). Finally, due
to the above, and since φ2 holds for i, it follows that hi+1 = hi ◦ gi+1 is a homomorphism from Chi(P, {f})
into Γ({f}). Hence, φ2 and φ3 hold for i+ 1 concluding the proof of this direction and, consequently of
Lemma 32.

We are now ready to return to the proof of Theorem 10. Let Γf be the EG computed in lines 2–10 for each
f ∈ H(P). Since Algorithm 1 only adds new nodes and new edges to set of nodes and the set of edges of an input EG,
it follows that

V =
⋃

∀f∈H(P)

ν(Γf) (6)

E =
⋃

∀f∈H(P)

ε(Γf) (7)

Since for each base instance B of P and each fact f ′ ∈ B, there exists a fact f ∈ H(P) and a bijective function g
over the constants in C, such that g(f ′) = f and from Lemma 32, it follows that Γf ({f ′}) ≡ Ch∞(P, f ′). Due to the
above, due to (6) and (7) and since each node in V has up to one incoming edge, it follows that for each base instance
B of P ⋃

F∈B

Ch∞(P, {F}) ≡
⋃
F∈B

G({F}) (8)

Due to Definition 5 and since each node in V has up to one incoming edge, it follows that for each base instance B of
P we have ⋃

F∈B

G({F}) = G(B) (9)

Finally, due to Proposition 30, and due to (8) and (9), we have Ch∞(P,B) ≡ G(B), for each base instance B of P .
The above concludes the proof of the first part of Theorem 10.

Theorem 11. The execution time of Algorithm 1 for FES programs is double exponential in the input program P .
If the arity of the predicates in P is bounded, the execution time is (single) exponential.

Proof. We first show the first part of the theorem with a step-by-step argument.

1. Consider some program P .

2. The set H(P) is exponential in P .

(a) Let Ary be the maximal arity of an extensional predicate occurring in P .

(b) For an extensional predicate p occurring in P , there are at most AryAry facts in H(P) defined over p.

(c) Since P is a linear rule set and extensional predicates may only appear in the body of a rule, we have that
number of extensional predicates in P is at most |P |.

(d) By (b) and (c): there are at most |P | ×AryAry facts in H(P).

3. For every fact f ∈ H(P), we may have to add at most |Ch(P, {f})|2 nodes to the graph tglinear(P). (Note that
Ch(P, {f}) is defined since P is FES.) Therefore, this graph contains at most |Ch(P, {f})|4 edges.

4. From results in [38], the size of Ch(P, {f}) is double exponential in P .

(a) By Proposition 30 in [38]: if Ch(P, {f}) is finite, then there exists a finite entailment tree T such that the
set of atoms associated with T is a complete core.

(b) In Algorithm 1 in [38], the authors describe how to construct the finite entailment tree for P and {f}.

20

(c) The complexity of this algorithm, as well as the size of the output tree, is double exponential in the input P
and {f}. Note the discussion right after Algorithm 1 in [38].

5. By (2–4): the algorithm tglinear(P) runs in double exponential in P .

To show that the procedure tglinear(P) runs in single exponential time when (∗) the arity of the predicates in
P is bounded, we can show that the size of Ch(P, {f}) is (single) exponential in P if (∗). In fact, this claim also
follows from then results in [38]. Namely, if (∗), then entailment trees for P and f (as they are defined in [38]) are of
polynomial depth because the number of “sharing types” for P is polynomial. Therefore, the size of these trees is
exponential and so is the size of Ch(P, {f}).

Lemma 13. Let P be a linear program, G be an EG for P and u, v ∈ ν(G). Then, there exists a preserving
homomorphism from u(B) into v(B) for each base instance B, iff there exists a preserving homomorphism from u({f})
into v({f}), for each fact f ∈ H(P).

Proof. (⇒) This direction trivially holds.
(⇐) We want to show that if there exists a preserving homomorphism from u({f}) into v({f}), for each fact

f ∈ H(P), then there exists a preserving homomorphism from u(B) into v(B), for each base instance B. The proof
works by contradiction. Suppose that there exists a base instance B′, such that there does not exist a preserving
homomorphism from u(B′) into v(B′). Since there does not exist a preserving homomorphism from u(B′) into v(B′)
and due to Proposition 31, it follows that there does not exist a preserving homomorphism from

⋃
F ′∈B′ u({F ′}) into⋃

F ′∈B′ v({F ′}).
Next we show that there exists some F ′ ∈ B′, so that there does not exist a preserving homomorphism hF ′

from u({F ′}) into v({F ′}). The proof proceeds as follows. Suppose by contradiction that there exists a preserving
homomorphism hF ′ from u({F ′}) into v({F ′}), for each F ′ ∈ B′, but there does not exist a preserving homomorphism
hB′ from u({B′}) into v({B′}). The above assumption, will be referred to as Assumption (A1). By definition,
we know that a preserving homomorphism from u({B′}) into v({B′}) maps each value c either (i) to itself if c
was a schema constant or a null occurring in (G(B′) \G�u(B′)) ∩G�u(B′) or (ii) to a fresh null occurring in
a single fact from v({F ′}). Since for each F ′ ∈ B′, hF ′ maps each schema constant and each null occurring in
(G(B′) \G�u(B′)) ∩G�u(B′) to itself according to Assumption (A1) and due to the above, it follows that there exist
two facts F ′1, F

′
2 ∈ B′ and a null n occurring in G�u(B′) \G(B′), such that hF ′1(n) = m1 and hF ′2(n) = m2, where

hF ′j is a preserving homomorphism from u({F ′j}) into v({F ′j}), for each 1 ≤ j ≤ 2. However, the above leads to a

contradiction, since in linear TGs each null from u({B′}) or v({B′}) occurs in only one fact. The above shows that if
there does not exist a preserving homomorphism from

⋃
F ′∈B′ u({F ′}) into

⋃
F ′∈B′ v({F ′}), then there exists some

F ′ ∈ B′, such that there does not exist a preserving homomorphism from u({F ′}) into v({F ′}). The proof proceeds
as follows.

Since for each F ′ ∈ B′, there exists a bijective function g over the constants in C and an instance f ∈ H(P), such
that g(F ′) = f , it follows that there does not exist a preserving homomorphism from u({f}) into v({f}), for some
f ∈ H(P). This leads to a contradiction. Hence, there exists a preserving homomorphism from u(B) into v(B), for
each base instance B and thus, Lemma 13 holds.

Theorem 15. For a TG G for a linear program P , minLinear(G) is a TG for P .

Proof. Recall from Definition 14 that minLinear(G) results from G after applying the following step until reaching
a fixpoint: (i) find a pair of nodes u and v with u being dominated by v; (ii) remove v from ν(G); and (iii) add an
edge v →j u

′, for each edge u→j u
′ from ε(G). Let Gi be the EG computed at the beginning of the i-th step of this

iterative process with G0 = G. In order to show that minLinear(G) is a TG for P , we need to show that the following
property holds for each BCQ Q entailed by (P,B):

Gi(B) |= Q (∗)

We can see that (∗) holds i = 0, since G0 = G. For i+ 1 and assuming that (∗) holds for i ≥ 0 we proceed as follows.
Suppose that there exists a homomorphism q from Q into Gi(B). Furthermore, let C1 and C2 be two conjuncts, such
that Q = C1 ∧ C2 and q maps C1 into G�u(B) and C2 into G(B) \G�u(B). Due to the above, it follows that q maps
each variable occurring both in C1 and C2 either to a constant or to a null occurring in (G(B) \G�u(B)) ∩G�u(B).

From Definition 14 we know that (i) there exists a pair of nodes u, v ∈ ν(Gi) with u being dominated by v and that
(ii) the graph Γi+1 that results from Gi�v after adding an edge v → u′, for each edge u→ u′ in ε(Gi), is a subgraph

of Gi+1. Since q maps each variable occurring both in C1 and C2 either to a constant or to a null occurring in
(G(B) \G�u(B)) ∩G�u(B) it follows that ∗ holds for i+ 1 if the following holds:

Lemma 33. There exists a homomorphism g from Gi�u(B) into Γi+1(B) so that g(c) = h(c), for each c ∈ dom(h).

21

The proof of Lemma 33 directly follows from the facts that (i) there exists a preserving homomorphism from u(B)
into v(B), for each base instance B and (ii) all subgraphs rooted at each child of u are copied below v.

From Lemma 33 and since Γi+1 is a subgraph of Gi+1, we have that there exists a homomorphism (q ◦ g) from Q
into Gi+1(B) concluding the proof of (∗) for i+ 1 and hence the proof of Theorem 10.

E. PROOFS FOR RESULTS IN SECTION 5.1
Below, we recapitulate the notion of the answers of non-Boolean CQs on a KB. The answers to a CQ Q

on a KB (P,B), denoted as ans(Q,P,B), is the set of tuples that are answers to each model of (P,B), i.e.,
{t|t ∈ Q(I), for each model I of (P,B)}.

Lemma 18. Let G be an EG for a Datalog program P and B be a base instance of P . Then for each v ∈ ν(G) we
have: v(B) includes exactly a fact A(t) with A being the head predicate of rule(v), for each answer t to the EG-rewriting
of v on B.

Proof. Let R be the predicate in the body of the characteristic query of v. In order to prove Lemma 18, we have
to show that t is an answer to rew(v) on B iff R(t) ∈ v(B). The proof is based on (i) the correspondence between the
rewriting process of Definition 17 and the query rewriting algorithm from [29], called XRewrite and (ii) the correctness
of XRewrite. In particular, the steps of the proof are as follows. First, we compute a new set of rules P ∗ by rewriting
the rules associated with the nodes in G�v. This rewriting process is described in Definition 34. Then, we establish
the relationship between the rewv and the rewritings computed by XRewrite. In particular, Lemma 36 shows that
Definition 17 and XRewrite result in the same rewritings modulo bijective variable renaming, when the latter is
provided with P ∗ and a rewriting of the characteristic query of v denoted as Q∗. A direct consequence of Lemma 36
is that XRewrite terminates when provided with P ∗ and Q∗. In order to show our goal, we make use of the above
results as well as of Lemma 37 .

Below, we describe XRewrite. Given a CQ Q and a set of rules P , XRewrite computes a rewriting Qr of Q so
that for any null-free instance I, the answers to Qr on (P, I) coincide with the answers to Q on (P, I). We describe
how XRewrite(P,Q) works when P is Datalog. At each step i, XRewrite computes a tree T i, where each node κ is
associated with a CQ denoted as query(κ). When i = 0, T 0 includes a single root node associated with Q. When
i > 0, then T i is computed as follows: for each leaf node κ in ν(T i−1), each atom β occurring in the body of query(κ)
and each rule r ∈ P whose head unifies with β, XRewrite:

1. computes a new query Q′ by (i) computing the MGU θ of {head(r), α}, (ii) replacing α in the body of query(κ)
with body(r) and (iii) applying θ on the resulting query;

2. adds a new node κ′ in T i and associates it with Q′; and

3. adds the edge κ
(α,r)−−−→ κ′ to T i.

Notice that XRewrite also includes a factorization step, however, this step is only applicable in the presence of
existential rules.

We now introduce some notation related to Definition 17. We denote by rewi(v) the CQ at the beginning of the
i-th iteration of the rewriting step of Definition 17 with rew0(v) being equal to the characteristic query of v. We

use rewi(v)
αi−→ rewi+1(v) to denote that rewi+1(v) results from rewi(v) after choosing the atom αi from the body of

rewi(v) at the beginning of the i-th rewriting step.
Below, we describe a process that computes a new ruleset by rewriting the rules associated with the nodes of an EG.

Definition 34. Let G be an EG of a program P with a single leaf node. Let π be a mapping associating each edge
ε ∈ ε(G) ∪ {�} with � denoting the empty edge, with a fresh predicate π(ε). We denote by ρ(G, π) the rules obtained
from the rules associated with the nodes in G after rewriting them as follows: replace each A(X) that is either
• i. the i-th intensional atom in the body of rule(v) or the head atom of rule(u) and ε ··= u→i v in ε(G); or
• ii. the head atom of rule(κ) with κ being the leaf node of G,

by A∗(X), where A∗ = π(ε) when (i) holds, or A∗ = π(�) when (ii) holds.
For a node u ∈ ν(G), we denote by rπu the rule from ρ(G, π) that results after rewriting rule(u).

From Definition 34 we can see that the following holds:

Corollary 35. For an EG G of a program P with a single leaf node, a mapping π associating each edge
ε ∈ ε(G) ∪ {�} with a fresh predicate and two rules %1 and %2 from ρ(G, π), we have: the i-th body atom of %1

has the same predicate with the head atom of %2 only if %j is of the form rπuj , for 1 ≤ j ≤ 2 and u2 →i u1 is in ε(G).

Let Γ = G�v and n be the depth of Γ. Let π be a mapping from edges to predicate as defined above. Let P ∗

be the rules in ρ(Γ, π). Let R be the predicate occurring in the head of rule(v) and let head(rule(v)) = R(Y). Let

22

R∗ = π(�). Let Q(Y)← R(Y) and Q∗(Y)← R∗(Y). Let T i be the tree computed at the end of the i-th iteration of
XRewrite(P ∗, Q∗).

Below, we establish the relationship between the rewv and the rewritings computed by XRewrite.

Lemma 36. For each branch κ0 ε0−→ . . .
εn−→ κn+1 with εi = (βi, %i) and κi is a node of depth i in T n+1, there exists

a sequence

rew0(v)
α0−−→ . . .

αn−−→ rewn+1(v) (10)

such that rewn+1(v) equals query(κn+1) modulo bijective variable renaming.

The proof of Lemma 36 follows from: (i)Q(Y)← R(Y) andQ∗(Y)← R∗(Y), where R∗ = π(�), (ii) the correspondence
between the rewriting steps (1)–(3) of XRewrite and the rewriting process of Definition 17 and (iii) Corollary 35.

From Lemma 36 and since rewn+1(v) includes only EDP-atoms, we have that: XRewrite(P ∗, Q∗) terminates after
n+ 1 iterations. Furthermore, since XRewrite terminates and due to its correctness we have: R∗(t) ∈ Chn(P ∗, B) iff t
is an answer to XRewrite(P ∗, Q∗) on B.

Due to Corollary 35, we also have:

Lemma 37. For each base instance B, the following inductive property holds for each 1 ≤ i ≤ n+ 1:
• φ. S(t) ∈ u(B), with u being a node of depth i in Γ iff S∗(t) ∈ Chi(P ∗, B), where S∗ is the predicate of the head

atom of rπu .

We now establish the correspondence between v(B) and the answers to rew(v) on B. From Lemma 37, we have:
R∗(t) ∈ Chn(P ∗, B) iff R(t) ∈ v(B). Since R∗(t) ∈ Chn(P ∗, B) iff t is an answer to XRewrite(P ∗, Q∗) on B, it follows
that R(t) ∈ v(B) iff t is an answer to XRewrite(P ∗, Q∗) on B. Since t is an answer to XRewrite(P ∗, Q∗) on B iff t is
an answer to rew(v) on B and due to the above, it follows that: t is an answer to rew(v) on B iff R(t) ∈ v(B). The
above completes the proof of Lemma 18.

Lemma 38. For each EG G for a Datalog program P and each base instance B of P , G(B) = minDatalog(G)(B).

Proof. Let Gi be the EG at the beginning of the i-th iteration of minDatalog(G) with G0 = G. We show that the
following property holds for each i ≤ 0:
• φ. G(B) = minDatalog(Gi)(B).
For i = 0, φ trivially holds, since G0 = G. For i+ 1 and assuming that φ holds for i ≤ 0, we have. Let u, v be a

pair of nodes in ν(Gi), such that (i) v’s depth is not less than u’s depth, (ii) the predicates of head(rule(v)) and of
head(rule(u)) are the same and (iii) the EG-rewriting of v is contained in the EG-rewriting of u. In order to show
that the inductive property for φ, it suffices to show that for each node w ∈ ν(Gi) for which v →j w ∈ ε(Gi) holds for
some j, and each base instance B of P , w(B) is the same both in Gi(B) and in Gi+1(B). However, this holds since
(i) for each v →j w ∈ ε(Gi), we have u→j w ∈ ε(Gi+1), (ii) R(t) ∈ v(B) implies R(t) ∈ u(B) and Gi�u = Gi+1

�u . The
above shows that φ holds for i+ 1 and concludes the proof of Lemma 38.

Theorem 20. If G is a TG for a Datalog program P , then minDatalog(G) is a minimum size TG for P .

Proof. Part I. The proof follows from Lemma 38.
Part II. First, we can see that the following holds due to Definition 19:

Corollary 39. For a TG G of a Datalog program P , there exists no two nodes u, v in minDatalog(G) satisfying
the following: (i) u and v define the same predicate3 A and (ii) rew(u) ⊆ rew(v).

The proof works by contradiction. Let P be a Datalog program, G be a TG for P and Γ = minDatalog(G). Suppose
by contradiction that there exists a TG Γ′ for P with ν(Γ) > ν(Γ′). From Lemma 18 we know that for each set of
nodes u1, . . . , um from ν(Γ) defining a predicate A, there exists a set of nodes u′1, . . . , u

′
n from ν(Γ′) defining also A,

such that the following holds:

rew(u1) ∪ · · · ∪ rew(um) ≡ rew(u′1) ∪ · · · ∪ rew(u′n) (11)

Since ν(Γ) > ν(Γ′), we know that there exist a set u1, . . . , um and a set u′1, . . . , u
′
n so that m > n. Since (11) holds,

we know from [52] that the following hold:
• for each rew(ui) with 1 ≤ i ≤ m, there exists a rew(u′j) with 1 ≤ j ≤ n, such that rew(ui) ⊆ rew(u′j);
• for each rew(u′j) with 1 ≤ j ≤ n, there exists a rew(u`) with 1 ≤ ` ≤ n, such that rew(u′j) ⊆ rew(u`).
Sincem > n, it follows that there exist i1, i2 with 1 ≤ i1, i2 ≤ m and an ` with 1 ≤ ` ≤ n, such that rew(ui1) ⊆ rew(u′`)

and rew(ui2) ⊆ rew(u′`) hold. Below, we show how we reach a contradiction. We consider the following cases:

3We say that a node u in a TG defines a predicate A if the predicate of head(u) is A.

23

• there exists an i3 with 1 ≤ i3 ≤ m and i3 6= i1, i2, such that rew(u′`) ⊆ rew(ui3). From the above, it follows that
rew(ui1) ⊆ rew(ui3) and rew(ui2) ⊆ rew(ui3) leading to a contradiction due to Corollary 39.
• rew(ui1) ⊆ rew(u′`). From the above, it follows that rew(ui2) ⊆ rew(ui1) leading again to a contradiction due to

Corollary 39.
The above completes the proof of Theorem 20.

Theorem 21. For a Datalog program P and a TG G for P , deciding whether G is a TG of minimum size for P is
co-NP-complete.

Proof. Membership. We show that deciding wether G is a TG of P not of minimum size is in NP. By Definition 19
and Theorem 20, G is a TG of P not of minimum size iff there exists a pair of vertices u and v in G satisfying
the conditions in Definition 19 for which rew(v) ⊆ rew(u) (remember that the last condition holds iff there exists a
homomorphism from rew(u) to rew(v)). Hence, to disprove that G is a TG of P of minimum size, it is sufficient to
guess such nodes u and v, guess the homomorphism from rew(u) to rew(v) (observe that the size of rew(u) and rew(v)
is polynomial), then compute rew(u) and rew(v) (feasible in deterministic polynomial time), and then check that the
guessed homomorphism is correct (feasible in deterministic polynomial time). This procedure is feasible in NP.

Hardness. We show the co-NP-hardness of the problem by showing the NP-hardness of its complement. The
reduction is from the NP-complete problem of query containment in relational DBs: given two CQs Q1(X) and
Q2(X) for a relational DB, decide whether Q1(X) ⊆ Q2(X). Let the queries be Q1(X)← ai1(Xi1), . . . , ain(Xin) and
Q2(X)← aj1(Xj1), . . . , ajm(Xjm).

We now describe the reduction. Consider the following program P and TG G.
The rules of P are obtained as follows. Let D = {ak1 , . . . , ak`} be the set of all the distinct predicates from
{ai1 , . . . , ain}. For each of the predicates akt in D, there is a rule akt(Xkt)→ Akt(Xkt) in P . In P there are also the
rules Ai1(Xi1), . . . , Ain(Xin)→ Q(X) and aj1(Xj1), . . . , ajm(Xjm)→ Q(X).

The TG G is as follows. There is a node vkt associated with each of the rules akt(Xkt) → Akt(Xkt); there is a
node v associated with the rule Ai1(Xi1), . . . , Ain(Xin) → Q(X); and there is a node u associated with the rule
aj1(Xj1), . . . , ajm(Xjm)→ Q(X). The edges of G are: for each 1 ≤ s ≤ n, there is an edge labelled s to node v from
the node vkt such that the predicate of head(rule(vkt)) is Ais .

We show the G is a TG of minimum size for P iff Q1(X) ⊆ Q2(X).
First, observe that the predicates of the rules associated with nodes vkt are all distinct, and they differ from the

predicate of the heads of the rules associated with u and v. Hence none of the nodes vkt can be removed from G in
the minimization process. Nodes u and v are the only nodes in G associated with rules with the same head predicate.
The depth of u is 0, while the depth of v is 1. Hence, v is the only node that can be removed in the minimization
process. Therefore, G is not of minimum size iff v can be removed. The node v can be removed iff rew(v) ⊆ rew(u),
and hence, by the definition of P , iff Q1(X) ⊆ Q2(X).

Theorem 24. For a Datalog program P and a base instance B, TGmat(P,B) = Ch(P,B).

Proof. We first show that

Claim 40. For each node v ∈ ν(G) and each instance I, we have

v(B, I) = v(B) \ I (12)

Proof. Let A(X) be the head atom of rule(v) and let Q(Y)←
∧n
i=1 fi be the EG-rewriting of v.

Recall from Lemma 18 that for each base instance of B of P we have: v(B) includes exactly a fact A(t) for each
answer t to the EG-rewriting of v on B.

Now consider any m ≥ 1 atoms fi1 , . . . , fim from the body of Q whose variables include all variables in Y. Consider
also the query Q′(Y)← fi1 ∧ · · · ∧ fim . From [17], it follows that Q is contained in Q′, i.e., for each base instance B,
each answer t to Q on B is an answer to Q′ on B. From the above, we have: each t, for which A(t) ∈ v(B) holds, is
also an answer to Q′(Y)← fi1 ∧ · · · ∧ fim on B. We refer to this conclusion as (∗).

Since step (2) of Definition 23 considers each homomorphism h for which (i) h(X) is an answer to Q′ on B and (ii)
A(h(X)) 6∈ I and due to (∗), it follows that Claim 40 holds.

Let Ik be the instance computed the beginning of the k-th iteration of the steps in lines 2–8 of Algorithm 2. Then,
using Claim 40, Theorem 26 and Lemma 38, we can easily show that for each k ≥ 0, the following property holds:
• φ. Ik = Chk(P,B)
The above concludes the proof of Theorem 24.

F. ADDITIONAL EXAMPLES

24

Example 41. We show how reasoning over the TG G1 from Figure 1 proceeds for the base instance B = {r(c1, c2)}.
Reasoning starts from the root nodes u1 and u2, which are associated with the rules r1 and r4, respectively. Since

there exists a homomorphism h = {X 7→ c1, Y 7→ c2} from body(r1) into B and from body(r4) into B, we have

u1({f1}) = {R(c1, c2)} (13)

u2({f1}) = {T (c2, c1, n1)} (14)

where n1 is a null. Then, since there exists an edge from u1 to u3 and since u3 is associated with r2, we compute all
homomorphisms from body(r2) into u1(B). Since there exists a homomorphism h = {X 7→ c1, Y 7→ c2} from body(r2)
into u1(B), we have

u3({f1}) = {T (c2, c1, c2)} (15)

Since there is no other node, reasoning stops.

Example 42. We demonstrate the notion of preserving homomorphisms introduced in Definition 12.
Consider the facts f1 = r(c1, c2) and f2 = r(c3, c3) from the set H(P1). By applying Definition 5 for the base

instance {f1}, we have u1({f1}), u2({f1}) and u3({f1}) as in (13), (14) and (15). Similarly, by applying Definition 5
for the base instance {f2}, we have

u1({f2}) = {R(c3, c3)} (16)

u2({f2}) = {T (c3, c3, n2)} (17)

u3({f2}) = {T (c3, c3, c3)} (18)

Above, n2 is a null. We can see that there exists a preserving homomorphism from u2({f1}) into u3({f1}) mapping n1

to c2, since the null n1 is not shared among the facts occurring in the instances associated with u2 and u2. For the
same reason, there exists a preserving homomorphism from u2({f2}) into u3({f2}) mapping n2 to c3. Hence according
to Lemma 13, there exists a preserving homomorphism from u2(B) into u3(B) for each base instance B.

Example 43. We demonstrate the computation of EG-rewritings introduced in Definition 17.
Consider the rules

r(X1, Y1, Z1)→ T (X1, X1, Y1) (r10)

T (X2, Y2, Z2)→ R(Y2, Z2) (r11)

where r is the only extensional predicate. Consider now an EG having nodes u1 and u2, where ui is associated with ri
for each 1 ≤ i ≤ 2, and the edge u1 →1 u2.

To compute the EG-rewriting rew(u2) of u2 we first form the query

Q(Y2, Z2)← R(Y2, Z2) (19)

and associate the atom R(Y2, Z2) with u2. The following steps take place in the first iteration of the rewriting algorithm.
First, since R(Y2, Z2) is the only intensional atom in the query we have α = R(Y2, Z2). Then, according to step (ii)
and since the node u2 is associated with R(Y2, Z2), we compute the MGU θ1 of the set {head(u2), R(Y2, Z2)}. We
have θ1 = {Y2 → Y2, Z2 → Z2}, since head(u2) = R(Y2, Z2). By applying the step (iii), the query in (19) becomes

Q(Y2, Z2)← T (X2, Y2, Z2) (20)

In step (iv) we associate the fact T (X2, Y2, Z2) with node u1 due to the edge u1 →1 u2.
In the second iteration of the rewriting algorithm, we have α = T (X2, Y2, Z2). Since the fact T (X2, Y2, Z2) is

associated with node u1, in step (ii) we compute the MGU θ2 of the set {head(u1), T (X2, Y2, Z2)}. We have θ2 =
{X1 → Y2, X2 → Y2, Y1 → Z2}. In step (iii) we replace α = T (X2, Y2, Z2) in (20) with body(u1) = r(X1, Y1, Z1) and
apply θ2 to the resulting query. The query in (20) becomes

Q(Y2, Z2)← r(Y2, Z2, Z1) (21)

Since there is no incoming edge to u1, we associate no node to the fact r(Y2, Z2, Z1). The algorithm then stops, since
there is no extensional fact in (21). The EG-rewriting of u2 is the query shown in (21).

Example 44. We demonstrate the notion of compatible nodes introduced in Definition 9, as well as the procedure
for computing instance-dependent TGs from Section 4.

25

u1\r13

u2\r12

u3\r14

u4\r15

u5\r14

u6\r14

1

2 1

1

1

2

2

2

Figure 3: Part of the graph from Example 44.

Consider the program P3

a(X)→ A(X) (r12)

r(X,Y)→ R(X,Y) (r13)

R(X,Y) ∧A(Y)→ A(X) (r14)

R(X,Y) ∧R(Y,Z)→ A(X) (r15)

where a and r are extensional predicates. Figure 3 shows part of the graph computed up to level 3. Next to each node,
we show the rule associated with it. For example, node u1 is associated with rule r13 and node u2 is associated with
rule r12.

When k = 1, G1 includes two nodes, one associated with rule r12 (u2) and one associated with rule r13 (u1). When
k = 2, r14 has only one 2-compatible combination of nodes. That is (u1, u2). Hence, the technique will add one fresh
node u3, associated with r14 and will add the edges u1 →1 u3 and u2 →2 u3. The 2-compatible combination of nodes for
r15 is (u2, u2). Hence, the technique will add one fresh node u4, associated with r15 and will add the edges u2 →1 u4

and u2 →2 u4.
When k = 3, r14 has the following 3-compatible combinations of nodes: (u1, u3) and (u1, u4). For each such 3-

compatible combinations of nodes, the algorithm adds a fresh node and associates it with r14. For k = 3, the 3-compatible
combinations of nodes for r15 are: (u2, u3), (u2, u4), (u3, u2), (u4, u2), (u3, u4), (u4, u3), (u3, u3), (u4, u4). Again, for
each such combination of nodes, the algorithm adds a fresh node and associates it with r15.

26

	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Trigger Graphs
	5 TGs for Linear Programs
	5.1 Minimizing TGs for linear programs

	6 Optimizing TGs for Datalog
	6.1 Eliminating redundant nodes
	6.2 A more efficient rule execution strategy

	7 Evaluation
	7.1 Testbed
	7.2 Results for linear scenarios
	7.3 Results for Datalog and ChaseBench
	7.4 Results for RDFS scenarios
	7.5 Results on scalability

	8 Related work
	9 Conclusion
	10 References
	A Addtional experimental results
	B Additional definitions
	C Proofs for results in Section 4
	D Proofs for results in Section 5
	E Proofs for results in Section 5.1
	F Additional Examples

