MATERIALIZING KNOWLEDGE BASES VIA TRIGGER GRAPHS

EFTHIMIA TSAMOURA¹, DAVID CARRAL², ENRICO MALIZIA³, AND JACOPO URBANI⁴

- 1. SAMSUNG AI RESEARCH
- 2. LIRMM, INRIA, UNIVERSITY OF MONTPELLIER, CNRS
- 3. UNIVERSITY OF BOLOGNA
- 4. VRIJE UNIVERSITEIT AMSTERDAM

PRELIMINARIES

Definition: Rules

A rule is a first-order formula of the form

$$\forall \vec{X} \forall \vec{Y} \bigwedge_{i=1}^{n} P_i(\vec{X}_i, \vec{Y}_i) \rightarrow \exists \vec{Z}. P(\vec{Y}, \vec{Z})$$

where P is an IDB predicate, $\vec{Y} \subseteq \vec{X}$, and $\vec{X}_i \subseteq \vec{X}$ for all $1 \le i \le n$

W.l.o.g. Assumptions

- Rules feature exactly one atom in the head.
- All rules are EDB or IDB:
 - ► IDB rule: all predicates in the body are IDB.
 - EDB rule: all predicates in the body are EDB.
- We assume that existentially quantified variables do not reoccur across different rules.

Definition: Rule Application

Consider a rule

$$\rho = \bigwedge_{i=1}^{n} P_i(\vec{X}_i, \vec{Y}_i) \to \exists \vec{Z}. P(\vec{Y}, \vec{Z}),$$

a fact set \mathcal{F} , and a homomorphism $h : \bigwedge_{i=1}^{n} P_i(\vec{X}_i, \vec{Y}_i) \to \mathcal{F}$.

- We define $Appl(\mathcal{F}, \rho, h) = \mathcal{F} \cup \{h_s(P(\vec{Y}, \vec{Z}))\}$ where h_s is the safe extension of h.
- We define $Appl(\mathcal{F}, \rho)$ as the set of facts that includes $Appl(\mathcal{F}, \rho, h)$ for all $h : \bigwedge_{i=1}^{n} P_i(\vec{X}_i, \vec{Y}_i) \to \mathcal{F}$.

Definition: Execution Graphs

An execution graph for a rule set \mathcal{R} is an acyclic digraph G = (V, E, r) such that V is a finite set of vertices, E is a finite set of edges of the form $v \rightarrow_i u$ with $v, u \in V$ and $i \ge 1$, and the following hold:

- The function r maps every vertex in V to some rule in \mathcal{R} .
- If r(v) is an EDB rule for some $v \in V$, then v is a root in G.
- Consider some $v \in V$ with r(v) an IDB rule of the form $\alpha_1 \land \ldots \land \alpha_n \to \exists \vec{y}.\beta$. Then, for every $1 \le i \le n$, there is exactly one vertex $u \in V$ with $u \to_i v \in E$.

Remark

Consider an execution graph G for a rule set \mathcal{R} .

- For a database \mathcal{D} , we define the fact set $G(\mathcal{D})$.
- The execution graph G is a trigger graph for R if, for all BCQs γ,

$$\mathcal{R} \cup \mathcal{D} \models \gamma \iff \mathcal{G}(\mathcal{D}) \models \gamma.$$

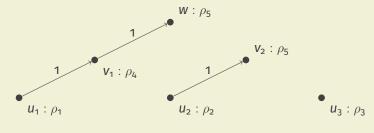
EXECUTION GRAPHS: AN EXAMPLE

Example

Consider the database $\mathcal{D} = \{a(t), b(t), c(t)\}$ and the rule set \mathcal{R} :

$$\begin{array}{ll} \rho_1 = a(x) \to A(x) & \rho_2 = b(x) \to B(x) & \rho_3 = c(x) \to C(x) \\ \rho_4 = A(x) \to B(x) & \rho_5 = B(x) \to C(x) & \rho_6 = A(x) \to C(x) \end{array}$$

Then, the following structure is an execution graph for \mathcal{R} :



Definition

Consider an execution graph G = (V, E, r) for a rule set \mathcal{R} , and a database \mathcal{D} . Then, for a vertex $v \in V$, we inductively define the fact set $v(\mathcal{D})$ as follows:

- Case 1: if v is a root in G, then $v(\mathcal{D}) = Appl(\mathcal{D}, \mathbf{r}(v))$.
- Case 2: $\mathbf{r}(\mathbf{v})$ is an IDB rule of the form $\alpha_1 \land \ldots \land \alpha_n \rightarrow \exists \mathbf{y}.\beta$ and, for every $1 \le i \le n$, there is exactly one vertex $u_i \in V$ with $u_i \rightarrow_i \mathbf{v} \in E$. Then, $\mathbf{v}(\mathcal{D})$ is the set that contains $h_s(\beta)$ for every homomorphism h such that $h(\alpha_i) \subseteq u_i(\mathcal{D})$ for all $1 \le i \le n$.

We define $G(\mathcal{D}) = \bigcup_{v \in V} v(\mathcal{D}) \cup \mathcal{D}$.

Remark

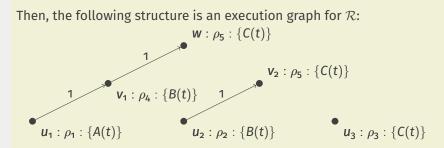
Consider a rule set \mathcal{R} , a database \mathcal{D} , and an execution graph G for \mathcal{R} . Then, we can compute $G(\mathcal{D})$ if G is finite.

EVALUATING EXECUTION GRAPHS: EXAMPLE

Example

Consider the database $\mathcal{D} = \{a(t), b(t), c(t)\}$ and the rule set \mathcal{R} :

$$\begin{array}{ll} \rho_1 = a(x) \to A(x) & \rho_2 = b(x) \to B(x) & \rho_3 = c(x) \to C(x) \\ \rho_4 = A(x) \to B(x) & \rho_5 = B(x) \to C(x) & \rho_6 = A(x) \to C(x) \end{array}$$



To obtain $G(\mathcal{D})$, we inductively compute $v(\mathcal{D})$ for each vertex v.

TRIGGER GRAPHS: DEFINITION

Definition: Trigger Graphs

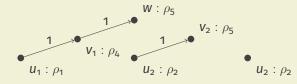
An execution graph G for a rule set \mathcal{R} is a *trigger graph* for \mathcal{R} if, for all databases \mathcal{D} and all queries γ , we have that $\mathcal{R} \cup \mathcal{D} \models \gamma$ iff $G(\mathcal{D}) \models \gamma$.

Example

Consider the rule set \mathcal{R} :

$$\begin{array}{ll} \rho_1 = a(x) \to A(x) & \rho_2 = b(x) \to B(x) & \rho_3 = c(x) \to C(x) \\ \rho_4 = A(x) \to B(x) & \rho_5 = B(x) \to C(x) & \rho_6 = A(x) \to B(x) \end{array}$$

Then, the following structure is a trigger graph for \mathcal{R} :



Definition: Trigger Graphs

An execution graph G for a rule set \mathcal{R} is a *trigger graph* for \mathcal{R} if, for all databases \mathcal{D} and all queries γ , we have that $\mathcal{R} \cup \mathcal{D} \models \gamma$ iff $G(\mathcal{D}) \models \gamma$.

Example

Consider the rule set \mathcal{R} :

$$\begin{array}{ll} \rho_1 = a(x) \to A(x) & \rho_2 = b(x) \to B(x) & \rho_3 = c(x) \to C(x) \\ \rho_4 = A(x) \to B(x) & \rho_5 = B(x) \to C(x) & \rho_6 = A(x) \to B(x) \end{array}$$

The following structure G is NOT a trigger graph for \mathcal{R} :

For instance, $\mathcal{R} \cup \{a(t)\} \models C(t)$ whilst $G(\{a(t)\}) \not\models C(t)$.

TRIGGER GRAPHS: OUTPUT

Remark

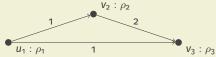
The output of a trigger graph G for a rule set \mathcal{R} on an input database \mathcal{D} may not be a model for $\mathcal{R} \cup \mathcal{D}$.

Example

Consider following rule set \mathcal{R} :

 $\rho_1 = r(x) \rightarrow \exists y.R(x,y) \quad \rho_2 = R(x,y) \rightarrow \exists z.R(y,z) \quad \rho_3 = R(x,y) \land R(y,z) \rightarrow R(y,x)$

Then, the following structure G is a trigger graph for \mathcal{R} :



The set $G(r(a)) = \{r(a), R(a, n), R(n, m), R(n, a)\}$ is not a model for $\mathcal{R} \cup \{r(a)\}$.

Proposition

Given a trigger graph G for a rule set \mathcal{R} and a database \mathcal{D} , the core of $G(\mathcal{D})$ is a finite universal model for $\mathcal{R} \cup \mathcal{D}$.

Rule Sets that Admit Trigger Graphs

Remark

Not all rule sets admit (finite) trigger graphs. For instance, neither $\{R(x,y) \rightarrow \exists z.R(y,z)\}$ nor $\{R(x,y) \land R(y,z) \rightarrow R(x,z)\}$ admit such graphs!

Theorem (+ Definition)

A rule set \mathcal{R} admits a trigger graph iff it is universally bounded; that is, if there is some k such that, for every database \mathcal{D} and every BCQ γ , we have that $\mathcal{R} \cup \mathcal{D} \models \gamma$ iff $Chase_k(\mathcal{R}, \mathcal{D}) \models \gamma$,

Proof Sketch:

- \implies If a rule set \mathcal{R} admits a trigger graph G of depth k, then \mathcal{R} is universally bounded by k.
- If a rule set R is bound by k, then we can construct a "maximal" trigger graph of depth k that derives all of the facts produced by the chase up to the k-th step.

Corollary

A rule set admits a trigger graph iff it is FUS/FO-rewritable and terminates with respect to the skolem chase.

TRIGGER GRAPHS FOR LINEAR RULE SETS

Algorithm 1 tglinear(\mathcal{R})

- 1: Let G be an empty EG
- 2: for each $\varphi \in \mathcal{H}(\mathcal{R})$ do
- 3: $\Gamma = (V, E, r)$ is an empty *EG*; μ is the empty mapping
- 4: **for each** $\varphi_1 \rightarrow_{\rho} \varphi_2 \in chaseGraph(\mathcal{R}, \{\varphi\})$ **do**
- 5: **add** a fresh node *u* to *V* with $r(u) := \rho$

6:
$$\mu(u) := \varphi_1 \rightarrow_{\rho} \varphi_2$$

7: for each $v, u \in V$ do

8: **if**
$$\mu(v) = \varphi_1 \rightarrow_{\rho} \varphi_2$$
 and $\mu(u) = \varphi_2 \rightarrow_{\rho'} \varphi_3$ **then**

9: **add**
$$v \rightarrow_1 u$$
 to E

10:
$$G := G \cup \Gamma$$

11: **return** *G*

- $\mathcal{H}(\mathcal{R})$ is a maximal set of facts formed over the predicates in \mathcal{R} , where no $\varphi_1 \in \mathcal{H}(\mathcal{R})$ is pattern isomorphic to another $\varphi_2 \in \mathcal{H}(\mathcal{R})$.
- Let $chaseGraph(\mathcal{R}, \mathcal{D})$ as the acyclic graph having as nodes the facts in the chase of $(\mathcal{R}, \mathcal{D})$ and having an edge from φ_1 to φ_2 labeled with rule $\rho \in \mathcal{R}$ if φ_2 is obtained from φ_1 by executing ρ .

MINIMIZING TRIGGER GRAPHS FOR LINEAR RULE SETS

Consider a linear rule set \mathcal{R} , a trigger graph G = (V, E, r) for \mathcal{R} , and some $u, v \in V$.

Definition

- For a database \mathcal{D} , a homomorphism from $u(\mathcal{D})$ into $v(\mathcal{D})$ is preserving if it is the identity over the set of nulls in any fact set associated with an ancestor of u.
- The vertex $v \in V$ is dominated by another vertex $u \in V$ if there is a preserving homomorphism from $v(\{\varphi\})$ to $u(\{\varphi\})$ for all $\varphi \in \mathcal{H}(P)$.

Lemma

There is a *preserving homomorphism* from $u(\mathcal{D})$ into $v(\mathcal{D})$ for all databases \mathcal{D} iff there is a preserving homomorphism from $u(\{\varphi\})$ into $v(\{\varphi\})$ for all $\varphi \in \mathcal{H}(P)$.

Lemma

Assume that v is dominated by u and u is not a successor of v. Then, the following transformation produces a trigger graph for \mathcal{R} :

- Add an edge $u \rightarrow_1 w$ for every edge of the form $v \rightarrow_1 w \in E$.
- Remove the vertix v and all edges where this vertex occurs from G.

The above process can be exhaustively repeated to obtain a minimal trigger graph for $\ensuremath{\mathcal{R}}.$

TRIGGER GRAPHS: PRACTICAL CONTRIBUTION

Empirical Claim

Trigger graphs can be used to develop a very efficient implementation of the chase algorithm.

Some (cherry-picked) results that support our claim:

	VLog	RDFOx	GLog
LUBM	170S	115S	16s
DBpedia	41S	198s	19S
Claros	431S	2373s	1225

Remarks

- The above theories only contain Datalog rules.
- When using trigger graphs, we only remove duplicates at the end.

Remark

We can only compute finite trigger graphs for universally bounded rule sets. For instance, rule sets as simple as $\{R(x, y) \rightarrow \exists z.R(y, z)\}$ nor $\{R(x, y) \land R(y, z) \rightarrow R(x, z)\}$ do not admit trigger graphs!

One possible solution is to reconsider the definition of *trigger graphs*:

Hypotheses

- Every DL/BTS rule set admits a cyclic trigger graph in which all vertices occurring in a cycle are labelled with Datalog rules.
- All FUS rule sets admit acyclic trigger graphs that are complete for fact entailment.

"DL = Description Logics" and "BTS = Bounded Treewidth Set"

The use of cyclic trigger graphs can allow us to implement well-known optimisations:

Example: Computing Transitivity

Consider the rule set

$$\mathcal{R} = \{ \rho_1 = r(x, y) \to R(x, y), \\ \rho_2 = R(x, y) \land R(y, z) \to R(x, y) \}.$$

Then, G = (V, E, r) is a trigger graph for \mathcal{R} .

$$V = \{v_1, v_2\}$$

$$E = \{(v_1, v_1, v_2), (v_1, v_2, v_2)\}$$

$$r = \{v_1 \mapsto \rho_1, v_2 \mapsto \rho_2\}$$

THANK YOU FOR YOUR ATTENTION!