
M2 Internship Proposal: Reasoning over
Bounded First-Order Logic Ontologies

David Carral
LIRMM, Inria, University of Montpellier, CNRS, France

david.carral@inria.fr

1 Introduction

Hi! This is my best attempt to recruit some student to work with me for a
couple of months starting February. Before going ahead with the technical
content in this proposal (cf. Section 2), I am going to present myself and
discuss some details about our potential collaboration.

Brief academic history. I did my PhD at Wright State University under
the supervision of Prof. Pascal Hitzler. After my PhD, I worked as a postdoc
at TU Dresden in the research group led by Prof. Markus Krötzsch. Since
the beginning of 2021, I am a CRCN Inria researcher at the Boreal team at
the University of Montpellier.

My research topics. Broadly speaking, I am interested in the study of
logical languages (e.g., first-order logic, Description Logics, existential rules,
etc), their theoretical properties, and the implementation of reasoning algo-
rithms for these languages. To know a bit more about my work, you can
check out my personal page, my DBLP profile, or my Google Scholar :

• Personal page: https://www-sop.inria.fr/members/David.Carral/

• DBLP: https://dblp.org/pid/00/11425.html

• Google: https://scholar.google.com/citations?user=5bEOMysAAAAJ

1

david.carral@inria.fr
https://www-sop.inria.fr/members/David.Carral/
https://dblp.org/pid/00/11425.html
https://scholar.google.com/citations?user=5bEOMysAAAAJ

What I am looking for. I am looking for a student who is intrinsically
motivated to work on some research topic that I also find interesting. I
propose one such topic in this document but if you are interested in working
on something else, feel free to contact me about it.

What I offer. Long story short, I offer close and active supervision to help
you solve some interesting research question. On top of that, I think that
I can also provide funding for up to 6 months but we are going to have to
double check this later.

Prerequisite knowledge. I assume that you are somewhat familiar with
the syntax and semantics of first-order logic (FOL) as well as with basic no-
tions from computational theory such as (un)decidability, Turing machines,
computational complexity, etc. On top of that, it would be great if you knew
a bit about logical languages such as Description Logics or existential rules
but this is not a necessary requirement.

Contact me! I am writing this document in a bit of a haste and hence,
it is probably not as clear as I would like it to be. To make up for this,
I encourage you to contact me if you have questions; we can schedule an
online meeting to discuss any details (technical or otherwise) regarding the
proposal.

2 The Research Plan

2.1 Preliminaries

• For a first-order formula β and a list x⃗ of variables, we write β[x⃗] to
indicate that x⃗ is the set of all free variables that occur in β. Note that
we often identify a list of variables with the corresponding set.

• An (disjunctive existential) rule is a first-order formula of the form

∀x⃗.
(
β[x⃗] →

∨n

i=1
∃y⃗i.η[x⃗i, y⃗i]

)
(1)

where x⃗, z⃗, y⃗1, . . . , and y⃗n are pairwise disjoint lists of variables; x⃗i ⊆ x⃗
for every 1 ≤ i ≤ n; and β, η1, . . . , and ηn are non-empty conjunc-

2

tions of atoms. Such a rule is deterministic if n = 1; that is, if it is
disjunction-free.

• In the context of this proposal, an ontology is set of rules. A determin-
istic ontology is a set of deterministic rules.

• A fact is an atomic first-order formula P (c1, . . . , cn) where P is an n-ary
predicates and all c1, . . . , cn are constants.

• A (Boolean conjunctive) query is a first-order formula of the form
∃y⃗.β[y⃗] with β a conjunction of atoms. That is, a query is an exis-
tentially closed conjunction of atoms.

• A homomorphism is a partial function h that maps variables to terms.

– For a term t; we define th = h(t) if t is in the domain of h, and
th = t otherwise.

– For an atom P (t1, . . . , tn), let h(P (t1, . . . , tn)) = P (th1 , . . . , t
h
n).

– For some sets A and B of atoms; we write h : A → B to indicate
that the domain of h is the set of all variables in A, and that
h(α) ∈ B for every α ∈ A.

2.2 The Problem of Ontology Based Entailment (OBE)

Here’s an interesting problem, which I often consider in my own research:

Ontology Based Query Entailment (OBQE)

• Input: an ontology R, a fact set F , and a query υ

• Output: yes iff the R ∪ F |= υ; that is, if R ∪ F entails υ under
standard first-order semantics.

Since the above is undecidable [1], intense research efforts have been aimed
at finding expressive properties of ontologies that guarantee that the problem
can be solved in many real-world cases.

3

Rewritability. A powerful approach to retrieve decidability of OBQE is
based on query rewriting techniques. The idea is to rewrite the query with
respect to the ontology, and then check if the resulting rewriting is evaluated
directly over the input fact set.

Definition 2.1 Consider an ontology R and a query υ.

• A rewriting for ⟨R, υ⟩ is a finite set Q of queries such that, for every
fact set F , we have that R∪ F |= υ iff F |= γ for some υ ∈ Q.

• The tuple ⟨R, υ⟩ is rewritable if it admits a rewriting.

• The ontology R is rewritable if ⟨R, γ⟩ is rewritable for every query γ.

We present some examples to clarify the above definitions.

Example 2.1 Consider the ontology R and the query υ:

R = {∀x.Person(x) → Mortal(x)} υ = ∃y.Mortal(y)

Then, the query set Q = {∃x.Mortal(x),∃x.Person(x)} is a rewriting for
⟨R, υ⟩; hence, this tuple is rewritable.

Exercise 2.1 Argue that the ontology in the previous example is rewritable.

Example 2.2 Consider the ontology R and the query υ1:

R = {∀x, y, z.Path(x, y) ∧ Path(y, z) → Path(x, z)} υ = Path(s, t)

In this case, the tuple ⟨R, υ⟩ is not rewritable.

Exercise 2.2 Show the claim at the end of the previous example.

Consider an input ontology R, a fact set F , and a query υ. Then, as pre-
viously mentioned, we can solve the OBQE problem if R is rewritable; that
is, we can effectively verify that R∪F |= υ. If this is the case, decidability is
achieved by first using an (terminating) algorithm to compute a rewriting Q
for ⟨R, υ⟩ [2, 3], and then simply checking if F |= ∃y⃗.β for some ∃y⃗.β ∈ Q.2

This algorithm is sound and complete by Definition 2.3.

1Note that a fact is a query by definition.
2We have that F |= ∃y⃗.β if and only if there is a homomorphism h : β → F ; note that

we identify β, which is a conjunction, with the corresponding set of facts.

4

Rewritability also guarantees decidability in the presence of disjunctions.
However, this property is not very expressive in the non-deterministic setting;
that is, there are barely any ontologies with disjunctions that are actually
rewritable. For instance, see the following example were we present a single-
ton ontology with a stratified rule, which is not rewritable:

Example 2.3 Consider the (extremely simple) ontology R and the query υ:

R = {∀x.Edge(x, y) → Source(x) ∨ Target(y)}
υ = ∃x, y.Source(x) ∧ Edge(x, y) ∧ Target(y)

In this case, the tuple ⟨R, υ⟩ is not rewritable. Note that rewritings are
finite by Definition 2.3, and that any valid rewriting for ⟨R, υ⟩ would have
to include the following infinite set of queries:

{∃x0, . . . , xn.Source(x0) ∧
∧n

i=1
Edge(xi−1, xi) ∧ Target(xn) | n ≥ 0}

Summing things up, even though rewritability does guarantee decidability
in the presence of disjunctions, this property is not very useful in practice
because it is not very general. Hence, let’s consider an alternative definition
of this property.

Boundedness. If we are only interested in deterministic ontologies, we can
achieve an equivalent definition for rewritability by checking if an ontology is
recursive. Intuitively, you can realise that the ontology from Example 2.2 is
recursive, since the rule in the ontology may produce facts over the predicate
Path that need to be considered when deriving further consequences. In
contrast, the ontology from Example 2.2 is clearly not recursive; that is,
this ontology is bounded. Let’s give a formal definition of boundedness via
the chase algorithm, which is a bottom-up materialisation procedure that
produces all of the consequences for a deterministic input ontology.

Definition 2.2 Consider the following:

• For an atom set A, a deterministic rule ρ = β → ∃y⃗.η, and a ho-
momorphism h : β → A;3 let Output(A, ρ, h) = h′(η) where h′ is the
extension of h that maps every variable y ∈ y⃗ to a fresh term thy unique
for y and h.

3Here again we identify the conjunction β of atoms with the corresponding set.

5

• For an atom set A and a deterministic rule ρ = β → ∃y⃗.η, let Output(A, ρ)
be the set atom that includes the set Output(A, ρ, h) for every homo-
morphism h : β → A.

• For a deterministic ontology R and an atom set A, let R(A) be the
atom set A ∪

⋃
ρ∈R Output(A, ρ).

• For a deterministic ontology R and an atom set A; we define Chase0(R,A) =
A, and Chasei(R,A) = R(Chasei−1(R,A)) for every i ≥ 1. Moreover,
let Chase∞(R,A) =

⋃n
i=0 Chasei(R,A).

Consider an input ontology R and a fact set F . Then, at each step of
the chase (i.e., at each Chasei(R,F)) we may derive more and more conse-
quences. If we could go all the way, then we could guarantee soundness and
completeness of query entailment:

Theorem 2.1 For an ontology R, a fact set F , and a query υ; we have that
R∪ F |= υ if and only if Chase∞(R,F) |= υ.

Now, using the chase as our recursive algorithm for query entailment, we
are finally ready to define boundedness.

Definition 2.3 Consider a deterministic ontology R and a query υ.

• The tuple ⟨R, υ⟩ is bounded if, for every fact set F , there is some k ≥ 1
such that R∪ F |= υ iff Chasek(R,F) |= υ.

• The ontology R is bounded if ⟨R, γ⟩ is bounded for every query γ.

Intuitively, the tuple ⟨R, υ⟩ above is bounded if we can check entailment
against the k-th step of the chase for some fixed k ≥ 0, which must be
independent on the fact set F . If this is the case, the chase is not a really
recursive algorithm anymore since we only need to compute the chase step
operation a fixed number of times.

Exercise 2.3 Argue that the ontologies in Example 2.1 and 2.2 are and are
not bounded, respectively.

As previously mentioned, boundedness and rewritability do coincide for
deterministic ontologies.

6

Theorem 2.2 For a deterministic ontology R and a query υ, the tuple
⟨R, υ⟩ is rewritable iff ⟨R, υ⟩ is bounded. Moreover, the ontologyR is rewritable
iff R is bounded.

Exercise 2.4 (A bit hard!) Argue the “only if” direction of the first sen-
tence in Theorem 2.2.

Our research goal. In the presence of disjunctions, the definitions of
rewritability and boundedness do not coincide anymore;4 in fact the lat-
ter property implies the former. The converse implication does not hold; for
example, the ontology in Example 2.3 is bounded but not rewritable. So, in
the non-deterministic setting, boundedness is more general than rewritability
and hence this property could be way more useful in practice. But (here’s
the catch), does boundedness guarantee decidability of the OBQE problem
in the presence of disjunctions? Indeed, this is the question that we would
like to solve during your internship!

3 Contact Me!

Looking back, I can see that this proposal is perhaps a bit too technical.
Unfortunately, I do not have the time to write something clearer and more
intuitive. Moreover, there are probably typos here and there... To make up
for this, I would like to encourage you to contact me if you have any questions
about this document (my email is under my name in the first page of this
document) and let’s just set up a online meeting.

Also, please do not feel intimidated by the task that I have proposed. If
you find it interesting, please contact me even if you have no idea how to
solve it. We can discuss some strategies and see if something works out :)

References

[1] C. Beeri and M. Y. Vardi. The implication problem for data depen-
dencies. In S. Even and O. Kariv, editors, Automata, Languages and
Programming, 8th Colloquium, Israel, 1981, Proceedings, volume 115 of
Lecture Notes in Computer Science, pages 73–85. Springer, 1981.

4I would be happy to provide you with a formal definition of boundedness for disjunctive
ontologies in an online meeting; I have written enough technical stuff for the day.

7

[2] M. König, M. Leclère, M. Mugnier, and M. Thomazo. Sound, complete
and minimal ucq-rewriting for existential rules. Semantic Web, 6(5):451–
475, 2015.

[3] M. Leclère, M. Mugnier, and G. Pérution-Kihli. Query rewriting with
disjunctive existential rules and mappings. In P. Marquis, T. C. Son,
and G. Kern-Isberner, editors, Proceedings of the 20th International Con-
ference on Principles of Knowledge Representation and Reasoning, KR
2023, Rhodes, Greece, September 2-8, 2023, pages 429–439, 2023.

8

	Introduction
	The Research Plan
	Preliminaries
	The Problem of Ontology Based Entailment (OBE)

	Contact Me!

