
Model Checking Disjoint-Paths Logic
on Topological-Minor-Free Graph Classes

Giannos Stamoulis

LIRMM, Univ Montpellier, CNRS, Montpellier, France

Joint work with

Petr A. Golovach Dimitrios M. Thilikos

Department of Informatics, LIRMM, Univ Montpellier, CNRS,

University of Bergen, Norway Montpellier, France

Nicole Schirrmacher Sebastian Siebertz Alexandre Vigny

University of Bremen, Germany University of Bremen, Germany University of Bremen, Germany

Seminaire Groupe Boreal, 16/05/2023

Algorithmic Meta-Theorems

1 / 1

Algorithmic Meta-Theorems (AMTs):

General conditions that imply the automatic derivation of efficient algorithms.

“Algorithms that output algorithms”

• Provide uniform explanation why problems are tractable.
• Establish general algorithmic techniques for solving them.

Form of an AMT:

“All problems definable in a certain logic on a certain class of structures can be solved efficiently.”

2 / 1

Algorithmic Meta-Theorems (AMTs):

General conditions that imply the automatic derivation of efficient algorithms.

“Algorithms that output algorithms”

• Provide uniform explanation why problems are tractable.
• Establish general algorithmic techniques for solving them.

Form of an AMT:

“All problems definable in a certain logic on a certain class of structures can be solved efficiently.”

2 / 1

Algorithmic Meta-Theorems (AMTs):

General conditions that imply the automatic derivation of efficient algorithms.

“Algorithms that output algorithms”

• Provide uniform explanation why problems are tractable.
• Establish general algorithmic techniques for solving them.

Form of an AMT:

“All problems definable in a certain logic on a certain class of structures can be solved efficiently.”

2 / 1

Algorithmic Meta-Theorems (AMTs):

General conditions that imply the automatic derivation of efficient algorithms.

“Algorithms that output algorithms”

• Provide uniform explanation why problems are tractable.
• Establish general algorithmic techniques for solving them.

Form of an AMT:

“All problems definable in a certain logic on a certain class of structures can be solved efficiently.”

2 / 1

Algorithmic Meta-Theorems (AMTs):

General conditions that imply the automatic derivation of efficient algorithms.

“Algorithms that output algorithms”

• Provide uniform explanation why problems are tractable.
• Establish general algorithmic techniques for solving them.

Form of an AMT:

“All problems definable in a certain logic on a certain class of structures can be solved efficiently.”

2 / 1

First-Order Logic (FO):

First-order variables vertices x , y , . . .

equality predicate x = y

adjacency predicate adj(x , y)

}
Combined with ∧, ∨, ¬
and quantification ∃x , ∀x

▶ (Induced) Subgraph Containment.

Does G contain H as a subgraph?

∃x∃y∃z
(
adj(x , y) ∧ adj(y , z) ∧ ¬adj(x , z)

)

▶ Vertex Cover.

Does G contain a set S of k vertices that intersects all edges of G?

∃v1 . . . ∃vk ∀x ∀y
(
adj(x , y) →

∨
i∈{1,...,k}(vi = x ∨ vi = y)

)
▶ Feedback Vertex Set.

3 / 1

First-Order Logic (FO):

First-order variables vertices x , y , . . .

equality predicate x = y

adjacency predicate adj(x , y)

}
Combined with ∧, ∨, ¬
and quantification ∃x , ∀x

▶ (Induced) Subgraph Containment.

Does G contain H as a subgraph?

∃x∃y∃z
(
adj(x , y) ∧ adj(y , z) ∧ ¬adj(x , z)

)

▶ Vertex Cover.

Does G contain a set S of k vertices that intersects all edges of G?

∃v1 . . . ∃vk ∀x ∀y
(
adj(x , y) →

∨
i∈{1,...,k}(vi = x ∨ vi = y)

)
▶ Feedback Vertex Set.

3 / 1

First-Order Logic (FO):

First-order variables vertices x , y , . . .

equality predicate x = y

adjacency predicate adj(x , y)

}
Combined with ∧, ∨, ¬
and quantification ∃x , ∀x

▶ (Induced) Subgraph Containment.

Does G contain H as a subgraph?

∃x∃y∃z
(
adj(x , y) ∧ adj(y , z) ∧ ¬adj(x , z)

)

▶ Vertex Cover.

Does G contain a set S of k vertices that intersects all edges of G?

∃v1 . . . ∃vk ∀x ∀y
(
adj(x , y) →

∨
i∈{1,...,k}(vi = x ∨ vi = y)

)
▶ Feedback Vertex Set.

3 / 1

First-Order Logic (FO):

First-order variables vertices x , y , . . .

equality predicate x = y

adjacency predicate adj(x , y)

}
Combined with ∧, ∨, ¬
and quantification ∃x , ∀x

▶ (Induced) Subgraph Containment.

Does G contain H as a subgraph?

∃x∃y∃z
(
adj(x , y) ∧ adj(y , z) ∧ ¬adj(x , z)

)

▶ Vertex Cover.

Does G contain a set S of k vertices that intersects all edges of G?

∃v1 . . . ∃vk ∀x ∀y
(
adj(x , y) →

∨
i∈{1,...,k}(vi = x ∨ vi = y)

)

▶ Feedback Vertex Set.

3 / 1

First-Order Logic (FO):

First-order variables vertices x , y , . . .

equality predicate x = y

adjacency predicate adj(x , y)

}
Combined with ∧, ∨, ¬
and quantification ∃x , ∀x

▶ (Induced) Subgraph Containment.

Does G contain H as a subgraph?

∃x∃y∃z
(
adj(x , y) ∧ adj(y , z) ∧ ¬adj(x , z)

)

▶ Vertex Cover.

Does G contain a set S of k vertices that intersects all edges of G?

∃v1 . . . ∃vk ∀x ∀y
(
adj(x , y) →

∨
i∈{1,...,k}(vi = x ∨ vi = y)

)

▶ Feedback Vertex Set.

3 / 1

First-Order Logic (FO):

First-order variables vertices x , y , . . .

equality predicate x = y

adjacency predicate adj(x , y)

}
Combined with ∧, ∨, ¬
and quantification ∃x , ∀x

▶ (Induced) Subgraph Containment.

Does G contain H as a subgraph?

∃x∃y∃z
(
adj(x , y) ∧ adj(y , z) ∧ ¬adj(x , z)

)

▶ Vertex Cover.

Does G contain a set S of k vertices that intersects all edges of G?

∃v1 . . . ∃vk ∀x ∀y
(
adj(x , y) →

∨
i∈{1,...,k}(vi = x ∨ vi = y)

)
▶ Feedback Vertex Set.

3 / 1

First-Order Logic (FO):

First-order variables vertices x , y , . . .

equality predicate x = y

adjacency predicate adj(x , y)

}
Combined with ∧, ∨, ¬
and quantification ∃x , ∀x

▶ (Induced) Subgraph Containment.

Does G contain H as a subgraph?

∃x∃y∃z
(
adj(x , y) ∧ adj(y , z) ∧ ¬adj(x , z)

)

▶ Vertex Cover.

Does G contain a set S of k vertices that intersects all edges of G?

∃v1 . . . ∃vk ∀x ∀y
(
adj(x , y) →

∨
i∈{1,...,k}(vi = x ∨ vi = y)

)
▶ Feedback Vertex Set.

3 / 1

First-Order Logic (FO):

First-order variables vertices x , y , . . .

equality predicate x = y

adjacency predicate adj(x , y)

}
Combined with ∧, ∨, ¬
and quantification ∃x , ∀x

▶ (Induced) Subgraph Containment.

Does G contain H as a subgraph?

∃x∃y∃z
(
adj(x , y) ∧ adj(y , z) ∧ ¬adj(x , z)

)

▶ Vertex Cover.

Does G contain a set S of k vertices that intersects all edges of G?

∃v1 . . . ∃vk ∀x ∀y
(
adj(x , y) →

∨
i∈{1,...,k}(vi = x ∨ vi = y)

)
▶ Feedback Vertex Set.

3 / 1

Monadic Second-Order Logic (MSO):

Extend FO by allowing quantification over sets of vertices ∀X ,∃X .

▶ 3-colorability.

∃V1∃V2∃V3

((
∀x (x ∈ V1∨x ∈ V2∨x ∈ V3)

)
∧
(
∀x∀y (x , y ∈ V1)∨(x , y ∈ V2)∨(x , y ∈ V3) =⇒ ¬adj(x , y)

))

▶ Connectivity.

∀x ∀y ¬
(
∃V

(
x ∈ V ∧ y /∈ V ∧

(
∀u ∀v adj(u, v) =⇒ (u ∈ V ⇔ v ∈ V)

)))

4 / 1

Monadic Second-Order Logic (MSO):

Extend FO by allowing quantification over sets of vertices ∀X ,∃X .

▶ 3-colorability.

∃V1∃V2∃V3

((
∀x (x ∈ V1∨x ∈ V2∨x ∈ V3)

)
∧
(
∀x∀y (x , y ∈ V1)∨(x , y ∈ V2)∨(x , y ∈ V3) =⇒ ¬adj(x , y)

))

▶ Connectivity.

∀x ∀y ¬
(
∃V

(
x ∈ V ∧ y /∈ V ∧

(
∀u ∀v adj(u, v) =⇒ (u ∈ V ⇔ v ∈ V)

)))

4 / 1

Monadic Second-Order Logic (MSO):

Extend FO by allowing quantification over sets of vertices ∀X ,∃X .

▶ 3-colorability.

∃V1∃V2∃V3

((
∀x (x ∈ V1∨x ∈ V2∨x ∈ V3)

)
∧
(
∀x∀y (x , y ∈ V1)∨(x , y ∈ V2)∨(x , y ∈ V3) =⇒ ¬adj(x , y)

))

▶ Connectivity.

∀x ∀y ¬
(
∃V

(
x ∈ V ∧ y /∈ V ∧

(
∀u ∀v adj(u, v) =⇒ (u ∈ V ⇔ v ∈ V)

)))

4 / 1

Model-checking

5 / 1

Complexity of model-checking.

FO:
We can test whether an FO-formula φ is satisfied on a graph G (G |= φ), in time |G |O(|φ|).

• Assuming ETH, we cannot test G |= φ in time |G |o(|φ|) for general graphs.

MSO:
3-Colorability is NP-complete.

• Assuming P ̸= NP, we cannot test G |= φ in time |G |f (|φ|) for any function f .

▶ Our notion of efficiency:

Fixed-Parameter Tractability, i.e., algorithms running in time f (|φ|) · |G |O(1).

6 / 1

Complexity of model-checking.

FO:
We can test whether an FO-formula φ is satisfied on a graph G (G |= φ), in time |G |O(|φ|).

• Assuming ETH, we cannot test G |= φ in time |G |o(|φ|) for general graphs.

MSO:
3-Colorability is NP-complete.

• Assuming P ̸= NP, we cannot test G |= φ in time |G |f (|φ|) for any function f .

▶ Our notion of efficiency:

Fixed-Parameter Tractability, i.e., algorithms running in time f (|φ|) · |G |O(1).

6 / 1

Complexity of model-checking.

FO:
We can test whether an FO-formula φ is satisfied on a graph G (G |= φ), in time |G |O(|φ|).

• Assuming ETH, we cannot test G |= φ in time |G |o(|φ|) for general graphs.

MSO:
3-Colorability is NP-complete.

• Assuming P ̸= NP, we cannot test G |= φ in time |G |f (|φ|) for any function f .

▶ Our notion of efficiency:

Fixed-Parameter Tractability, i.e., algorithms running in time f (|φ|) · |G |O(1).

6 / 1

Complexity of model-checking.

FO:
We can test whether an FO-formula φ is satisfied on a graph G (G |= φ), in time |G |O(|φ|).

• Assuming ETH, we cannot test G |= φ in time |G |o(|φ|) for general graphs.

MSO:
3-Colorability is NP-complete.

• Assuming P ̸= NP, we cannot test G |= φ in time |G |f (|φ|) for any function f .

▶ Our notion of efficiency:

Fixed-Parameter Tractability, i.e., algorithms running in time f (|φ|) · |G |O(1).

6 / 1

Form of an AMT:

“All problems definable in a certain logic on a certain class of structures can be solved efficiently.”

Every MSO2 property can be tested in linear time on graphs of bounded treewidth.
[Courcelle, 1990]

Every FO property can be tested in (almost) linear time on nowhere dense graph classes.
[Grohe, Kreutzer, & Siebertz, 2017]

7 / 1

Form of an AMT:

“All problems definable in a certain logic on a certain class of structures can be solved efficiently.”

Every MSO2 property can be tested in linear time on graphs of bounded treewidth.
[Courcelle, 1990]

Every FO property can be tested in (almost) linear time on nowhere dense graph classes.
[Grohe, Kreutzer, & Siebertz, 2017]

7 / 1

Form of an AMT:

“All problems definable in a certain logic on a certain class of structures can be solved efficiently.”

Every MSO2 property can be tested in linear time on graphs of bounded treewidth.
[Courcelle, 1990]

Every FO property can be tested in (almost) linear time on nowhere dense graph classes.
[Grohe, Kreutzer, & Siebertz, 2017]

7 / 1

Form of an AMT:

“All problems definable in a certain logic on a certain class of structures can be solved efficiently.”

Every MSO2 property can be tested in linear time on graphs of bounded treewidth.
[Courcelle, 1990]

Every FO property can be tested in (almost) linear time on nowhere dense graph classes.
[Grohe, Kreutzer, & Siebertz, 2017]

7 / 1

(C)MSO1: bounded cliquewidth. [Courcelle, Makowski, & Rotics, 2000] + [Oum & Seymour, 2006]

FO:

Sparse classes:

bounded degree [Seese, 1996]

locally bounded treewidth [Frick & Grohe, 2001]

excluding a minor [Flum & Grohe, 2001]

locally excluding a minor [Dawar, Grohe, & Kreutzer, 2007]

bounded expansion [Dvǒrák, Krá̌l, & Thomas, 2011]

nowhere dense [Grohe, Kreutzer, & Siebertz, 2017]

bounded twinwidth∗ [Bonnet, Kim, Thomassé, & Watrigant, 2022]
∗ given an identification sequence with the input.

Dense classes:

structurally bounded degree [Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016]

structurally bounded expansion [Gajarský, Kreutzer, Nešeťril, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018]

structurally nowhere dense [Dreier, Mählmann, Siebertz, 2023]

structurally bounded local cliquewidth [Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022]

8 / 1

nowhere dense

bounded treewidth

FO MSO

[Grohe, Kreutzer, & Siebertz]

[Courcelle]

Assuming ETH:

• No FPT algorithm for MSO on unbounded treewidth classes.

• No FPT algorithm for FO on subgraph-closed somewhere dense classes.

9 / 1

nowhere dense

bounded treewidth

FO MSO

[Grohe, Kreutzer, & Siebertz]

[Courcelle]

Assuming ETH:
• No FPT algorithm for MSO on unbounded treewidth classes.

• No FPT algorithm for FO on subgraph-closed somewhere dense classes.

9 / 1

nowhere dense

bounded treewidth

FO MSO

[Grohe, Kreutzer, & Siebertz]

[Courcelle]

Assuming ETH:
• No FPT algorithm for MSO on unbounded treewidth classes.

• No FPT algorithm for FO on subgraph-closed somewhere dense classes.

9 / 1

nowhere dense

bounded treewidth

FO MSO

[Grohe, Kreutzer, & Siebertz]

[Courcelle]

What to do next?

▶ Meta-algorithmics of FO:
counting predicates, transitive-closure operators, fixed-point operators,

successor-invariant formulas, FO-interpretability,...

▶ Consider logics between FO and MSO.

9 / 1

nowhere dense

bounded treewidth

FO MSO

[Grohe, Kreutzer, & Siebertz]

[Courcelle]

What to do next?

▶ Meta-algorithmics of FO:
counting predicates, transitive-closure operators, fixed-point operators,

successor-invariant formulas, FO-interpretability,...

▶ Consider logics between FO and MSO.

9 / 1

nowhere dense

bounded treewidth

FO MSO

[Grohe, Kreutzer, & Siebertz]

[Courcelle]

What to do next?

▶ Meta-algorithmics of FO:
counting predicates, transitive-closure operators, fixed-point operators,

successor-invariant formulas, FO-interpretability,...

▶ Consider logics between FO and MSO.
9 / 1

Separator Logic & (Scattered) Disjoint-Paths Logic

10 / 1

Separator logic (FO+conn):
[Schirrmacher, Siebertz, & Vigny, 2021]

[Bojańczyk, 2021]

Additional predicate connk(x , y , z1, . . . , zk):

There is an (x , y)-path that avoids z1, . . . , zk .

Can express:
k-connectivity. “∀x∀y∀z1 . . . ∀zk−1connk−1(x, y , z1, . . . , zk−1)”

Feedback Vertex Set.

Cannot express:
Planarity, (Topological) Minor Containment.

x

y

z1

z2

z3

FO ⊆ FO+conn ⊆ MSO

11 / 1

Separator logic (FO+conn):
[Schirrmacher, Siebertz, & Vigny, 2021]

[Bojańczyk, 2021]

Additional predicate connk(x , y , z1, . . . , zk):

There is an (x , y)-path that avoids z1, . . . , zk .

Can express:
k-connectivity. “∀x∀y∀z1 . . . ∀zk−1connk−1(x, y , z1, . . . , zk−1)”

Feedback Vertex Set.

Cannot express:
Planarity, (Topological) Minor Containment.

x

y

z1

z2

z3

FO ⊆ FO+conn ⊆ MSO

11 / 1

Separator logic (FO+conn):
[Schirrmacher, Siebertz, & Vigny, 2021]

[Bojańczyk, 2021]

Additional predicate connk(x , y , z1, . . . , zk):

There is an (x , y)-path that avoids z1, . . . , zk .

Can express:
k-connectivity. “∀x∀y∀z1 . . . ∀zk−1connk−1(x, y , z1, . . . , zk−1)”

Feedback Vertex Set.

Cannot express:
Planarity, (Topological) Minor Containment.

x

y

z1

z2

z3

FO ⊆ FO+conn ⊆ MSO

11 / 1

Separator logic (FO+conn):
[Schirrmacher, Siebertz, & Vigny, 2021]

[Bojańczyk, 2021]

Additional predicate connk(x , y , z1, . . . , zk):

There is an (x , y)-path that avoids z1, . . . , zk .

Can express:
k-connectivity. “∀x∀y∀z1 . . . ∀zk−1connk−1(x, y , z1, . . . , zk−1)”

Feedback Vertex Set.

Cannot express:
Planarity, (Topological) Minor Containment.

x

y

z1

z2

z3

FO ⊆ FO+conn ⊆ MSO

11 / 1

nowhere dense

excluding a top. minor

bounded treewidth

FO FO+conn MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Courcelle]

Every FO+conn property can be tested in cubic time on graphs excluding a topological minor∗.
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny, 2022]

• Model checking FO+conn on graphs not excluding a top. minor: as hard as FO on general graphs.

12 / 1

FO+DP
[Schirrmacher, Siebertz, & Vigny, 2021]

Additional predicate dpk(x1, y1, . . . , xk , yk):

There are pairwise vertex-disjoint paths
between xi and yi , for every i ∈ {1, . . . , k}.

Can express:
(Topological) Minor Containment.

Cannot express:
Bipartiteness.

x1

x2

x3

y1

y2

y3

FO ⊆ FO+conn ⊆ FO+DP ⊆ MSO

13 / 1

FO+DP
[Schirrmacher, Siebertz, & Vigny, 2021]

Additional predicate dpk(x1, y1, . . . , xk , yk):

There are pairwise vertex-disjoint paths
between xi and yi , for every i ∈ {1, . . . , k}.

Can express:
(Topological) Minor Containment.

Cannot express:
Bipartiteness.

x1

x2

x3

y1

y2

y3

FO ⊆ FO+conn ⊆ FO+DP ⊆ MSO

13 / 1

FO+DP
[Schirrmacher, Siebertz, & Vigny, 2021]

Additional predicate dpk(x1, y1, . . . , xk , yk):

There are pairwise vertex-disjoint paths
between xi and yi , for every i ∈ {1, . . . , k}.

Can express:
(Topological) Minor Containment.

Cannot express:
Bipartiteness.

x1

x2

x3

y1

y2

y3

FO ⊆ FO+conn ⊆ FO+DP ⊆ MSO

13 / 1

nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+DP MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Courcelle]

Every FO+DP property can be tested in quadratic time on graphs excluding a minor∗.

[Golovach, S., & Thilikos, 2023]

14 / 1

nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+DP MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Courcelle]

Every FO+DP property can be tested in cubic time on graphs excluding a topological minor.

[Schirrmacher, Siebertz, S., Thilikos, & Vigny, 2023+]

14 / 1

FO+SDP

Scattered disjoint paths predicates:

s-dpk(x1, y1, . . . , xk , yk)

There are pairwise vertex-disjoint paths
between xi and yi , for every i ∈ {1, . . . , k}
s.t. no two vertices of two distinct paths are within distance ≤ s.

x1

x2

x3

y1

y2

y3

> s

> s

dpk(x1, y1, . . . , xk , yk) = 0-dpk(x1, y1, . . . , xk , yk)

15 / 1

FO+SDP

Scattered disjoint paths predicates:

s-dpk(x1, y1, . . . , xk , yk)

There are pairwise vertex-disjoint paths
between xi and yi , for every i ∈ {1, . . . , k}
s.t. no two vertices of two distinct paths are within distance ≤ s.

x1

x2

x3

y1

y2

y3> s

> s

dpk(x1, y1, . . . , xk , yk) = 0-dpk(x1, y1, . . . , xk , yk)

15 / 1

FO+SDP

Scattered disjoint paths predicates:

s-dpk(x1, y1, . . . , xk , yk)

There are pairwise vertex-disjoint paths
between xi and yi , for every i ∈ {1, . . . , k}
s.t. no two vertices of two distinct paths are within distance ≤ s.

x1

x2

x3

y1

y2

y3> s

> s

dpk(x1, y1, . . . , xk , yk) = 0-dpk(x1, y1, . . . , xk , yk)

15 / 1

nowhere dense

excluding a top. minor

excluding a minor

bounded Euler genus

FO FO+conn FO+DP FO+SDP MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Golovach, S., & Thilikos]

Every FO+SDP property can be tested in quadratic time on graphs of bounded Euler genus.

[Golovach, S., & Thilikos, 2023]

16 / 1

More logics?

nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+DP

Θ̃dp

MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Fomin, Golovach, Sau, S., & Thilikos]

[Courcelle]

Compound logic(s) Θ̃(s)dp =

{
sentences expressing the recursive removal of MSO-expressible

and bounded treewidth modulators to a FO+(S)DP property.

17 / 1

More logics?

nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+DP

Θ̃dp

MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Fomin, Golovach, Sau, S., & Thilikos]

[Courcelle]

Compound logic(s) Θ̃(s)dp =

{
sentences expressing the recursive removal of MSO-expressible

and bounded treewidth modulators to a FO+(S)DP property.

17 / 1

More logics?

nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+DP

Θ̃dp

MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Fomin, Golovach, Sau, S., & Thilikos]

[Courcelle]

Compound logic(s) Θ̃(s)dp =

{
sentences expressing the recursive removal of MSO-expressible

and bounded treewidth modulators to a FO+(S)DP property.

17 / 1

More logics?

nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+DP Θ̃dp MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Fomin, Golovach, Sau, S., & Thilikos]

[Courcelle]

Compound logic(s) Θ̃(s)dp =

{
sentences expressing the recursive removal of MSO-expressible

and bounded treewidth modulators to a FO+(S)DP property.

17 / 1

More logics?

nowhere dense

excluding a top. minor

excluding a minor

bounded Euler genus

FO FO+conn FO+DP FO+SDP

Θ̃sdp

MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Fomin, Golovach, Sau, S., & Thilikos]

[Golovach, S., & Thilikos]

Compound logic(s) Θ̃(s)dp =

{
sentences expressing the recursive removal of MSO-expressible

and bounded treewidth modulators to a FO+(S)DP property.

17 / 1

More logics?

nowhere dense

excluding a top. minor

excluding a minor

bounded Euler genus

FO FO+conn FO+DP FO+SDP Θ̃sdp MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Fomin, Golovach, Sau, S., & Thilikos]

[Golovach, S., & Thilikos]

Compound logic(s) Θ̃(s)dp =

{
sentences expressing the recursive removal of MSO-expressible

and bounded treewidth modulators to a FO+(S)DP property.

17 / 1

Discussion of the proof

18 / 1

Model checking game [Hinttikka, 1982].
a.k.a. game trees, evaluation trees, morphism trees,...

Example:

G =
(T , t0)

Tφ

φ = ∃x1 ∀x2 ∃x3 (x1 = x2 ∨ E(x2, x3)).

• For a graph of size n and a formula with q quantifiers, the tree is of size nq.

19 / 1

Model checking game [Hinttikka, 1982].
a.k.a. game trees, evaluation trees, morphism trees,...

Example:

G =
(T , t0)

Tφ

φ = ∃x1 ∀x2 ∃x3 (x1 = x2 ∨ E(x2, x3)).

• For a graph of size n and a formula with q quantifiers, the tree is of size nq.

19 / 1

One can reduce T :

T

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}
• patternr (G) =

{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

One can reduce T :

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}
• patternr (G) =

{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

One can reduce T :

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}
• patternr (G) =

{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

One can reduce T :

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}
• patternr (G) =

{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

One can reduce T :

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}
• patternr (G) =

{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

One can reduce T :

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}
• patternr (G) =

{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

One can reduce T :

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}
• patternr (G) =

{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

One can reduce T :

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}
• patternr (G) =

{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

One can reduce T :

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}
• patternr (G) =

{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

One can reduce T :

T ′

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}
• patternr (G) =

{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

One can reduce T :

T ′

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}
• patternr (G) =

{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

One can reduce T :

T ′

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}
• patternr (G) =

{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

One can reduce T :

T ′

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}

• patternr (G) =
{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

One can reduce T :

T ′

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G)r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G)r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G)

}
• patternr (G) =

{
patternr−1(G , v) | v ∈ V (G)

}
.

20 / 1

Compute patternr (G) =⇒ can decide whether G |= φ, for every φ with r quantifiers.

How to compute the patternr (G)?

⋆⋆⋆ Atomic formulas are L-definable =⇒ patternr is L-definable ⋆⋆⋆

• In FO: apply [Grohe, Kreutzer, & Siebertz] if G is sparse.

• In MSO: apply [Courcelle] if G has bounded treewidth.

• In FO+DP ? If G has large treewidth ?

21 / 1

Compute patternr (G) =⇒ can decide whether G |= φ, for every φ with r quantifiers.

How to compute the patternr (G)?

⋆⋆⋆ Atomic formulas are L-definable =⇒ patternr is L-definable ⋆⋆⋆

• In FO: apply [Grohe, Kreutzer, & Siebertz] if G is sparse.

• In MSO: apply [Courcelle] if G has bounded treewidth.

• In FO+DP ? If G has large treewidth ?

21 / 1

Compute patternr (G) =⇒ can decide whether G |= φ, for every φ with r quantifiers.

How to compute the patternr (G)?

⋆⋆⋆ Atomic formulas are L-definable =⇒ patternr is L-definable ⋆⋆⋆

• In FO: apply [Grohe, Kreutzer, & Siebertz] if G is sparse.

• In MSO: apply [Courcelle] if G has bounded treewidth.

• In FO+DP ? If G has large treewidth ?

21 / 1

Compute patternr (G) =⇒ can decide whether G |= φ, for every φ with r quantifiers.

How to compute the patternr (G)?

⋆⋆⋆ Atomic formulas are L-definable =⇒ patternr is L-definable ⋆⋆⋆

• In FO: apply [Grohe, Kreutzer, & Siebertz] if G is sparse.

• In MSO: apply [Courcelle] if G has bounded treewidth.

• In FO+DP ? If G has large treewidth ?

21 / 1

Compute patternr (G) =⇒ can decide whether G |= φ, for every φ with r quantifiers.

How to compute the patternr (G)?

⋆⋆⋆ Atomic formulas are L-definable =⇒ patternr is L-definable ⋆⋆⋆

• In FO: apply [Grohe, Kreutzer, & Siebertz] if G is sparse.

• In MSO: apply [Courcelle] if G has bounded treewidth.

• In FO+DP ? If G has large treewidth ?

21 / 1

Compute patternr (G) =⇒ can decide whether G |= φ, for every φ with r quantifiers.

How to compute the patternr (G)?

⋆⋆⋆ Atomic formulas are L-definable =⇒ patternr is L-definable ⋆⋆⋆

• In FO: apply [Grohe, Kreutzer, & Siebertz] if G is sparse.

• In MSO: apply [Courcelle] if G has bounded treewidth.

• In FO+DP ? If G has large treewidth ?

21 / 1

Compute patternr (G) =⇒ can decide whether G |= φ, for every φ with r quantifiers.

How to compute the patternr (G)?

⋆⋆⋆ Atomic formulas are L-definable =⇒ patternr is L-definable ⋆⋆⋆

• In FO: apply [Grohe, Kreutzer, & Siebertz] if G is sparse.

• In MSO: apply [Courcelle] if G has bounded treewidth.

• In FO+DP ?

If G has large treewidth ?

21 / 1

Compute patternr (G) =⇒ can decide whether G |= φ, for every φ with r quantifiers.

How to compute the patternr (G)?

⋆⋆⋆ Atomic formulas are L-definable =⇒ patternr is L-definable ⋆⋆⋆

• In FO: apply [Grohe, Kreutzer, & Siebertz] if G is sparse.

• In MSO: apply [Courcelle] if G has bounded treewidth.

• In FO+DP ? If G has large treewidth ?

21 / 1

Large treewidth

Large clique minor Large “flat” grid-like induced subgraph

Flat Wall Theorem
[Robertson & Seymour, Graph Minors XIII, 1995]

[Kawarabayashi, Thomas, & Wollan, 2018]

[Sau, S., & Thilikos, 2022]

Aw̄0 Aw̄1

22 / 1

Large treewidth

Large clique minor Large “flat” grid-like induced subgraph

Flat Wall Theorem
[Robertson & Seymour, Graph Minors XIII, 1995]

[Kawarabayashi, Thomas, & Wollan, 2018]

[Sau, S., & Thilikos, 2022]

Aw̄0 Aw̄1

22 / 1

Large treewidth

Large clique minor Large “flat” grid-like induced subgraph

Flat Wall Theorem
[Robertson & Seymour, Graph Minors XIII, 1995]

[Kawarabayashi, Thomas, & Wollan, 2018]

[Sau, S., & Thilikos, 2022]

Aw̄0 Aw̄1

22 / 1

How this helps to compute the pattern?

Compute partial patterns!

Linkage Combing Lemma
[Golovach, S., & Thilikos, Combing a linkage in an annulus, 2022]

There is a function f : N → N such that if

- G is a partially disk-embedded graph,

- (C,P) is a disk-embedded railed annulus of size f (k), and

- L is an annulus-avoiding linkage of size ≤ k,

then there is an equivalent linkage L′ that traverses the
middle cycle of C through P.

• Completely control how paths enter the inner part of the annulus.
• We work in a part of small treewidth: can compute partial patterns.
• Same partial patterns =⇒

Combing
same (global) patterns.

23 / 1

How this helps to compute the pattern?

Compute partial patterns!

Linkage Combing Lemma
[Golovach, S., & Thilikos, Combing a linkage in an annulus, 2022]

There is a function f : N → N such that if

- G is a partially disk-embedded graph,

- (C,P) is a disk-embedded railed annulus of size f (k), and

- L is an annulus-avoiding linkage of size ≤ k,

then there is an equivalent linkage L′ that traverses the
middle cycle of C through P.

• Completely control how paths enter the inner part of the annulus.
• We work in a part of small treewidth: can compute partial patterns.
• Same partial patterns =⇒

Combing
same (global) patterns.

23 / 1

How this helps to compute the pattern?

Compute partial patterns!

Linkage Combing Lemma
[Golovach, S., & Thilikos, Combing a linkage in an annulus, 2022]

There is a function f : N → N such that if

- G is a partially disk-embedded graph,

- (C,P) is a disk-embedded railed annulus of size f (k), and

- L is an annulus-avoiding linkage of size ≤ k ,

then there is an equivalent linkage L′ that traverses the
middle cycle of C through P.

• Completely control how paths enter the inner part of the annulus.
• We work in a part of small treewidth: can compute partial patterns.
• Same partial patterns =⇒

Combing
same (global) patterns.

23 / 1

How this helps to compute the pattern?

Compute partial patterns!

Linkage Combing Lemma
[Golovach, S., & Thilikos, Combing a linkage in an annulus, 2022]

There is a function f : N → N such that if

- G is a partially disk-embedded graph,

- (C,P) is a disk-embedded railed annulus of size f (k), and

- L is an annulus-avoiding linkage of size ≤ k ,

then there is an equivalent linkage L′ that traverses the
middle cycle of C through P.

• Completely control how paths enter the inner part of the annulus.
• We work in a part of small treewidth: can compute partial patterns.
• Same partial patterns =⇒

Combing
same (global) patterns.

23 / 1

How this helps to compute the pattern?

Compute partial patterns!

Linkage Combing Lemma
[Golovach, S., & Thilikos, Combing a linkage in an annulus, 2022]

There is a function f : N → N such that if

- G is a partially disk-embedded graph,

- (C,P) is a disk-embedded railed annulus of size f (k), and

- L is an annulus-avoiding linkage of size ≤ k ,

then there is an equivalent linkage L′ that traverses the
middle cycle of C through P.

• Completely control how paths enter the inner part of the annulus.

• We work in a part of small treewidth: can compute partial patterns.
• Same partial patterns =⇒

Combing
same (global) patterns.

23 / 1

How this helps to compute the pattern?

Compute partial patterns!

Linkage Combing Lemma
[Golovach, S., & Thilikos, Combing a linkage in an annulus, 2022]

There is a function f : N → N such that if

- G is a partially disk-embedded graph,

- (C,P) is a disk-embedded railed annulus of size f (k), and

- L is an annulus-avoiding linkage of size ≤ k ,

then there is an equivalent linkage L′ that traverses the
middle cycle of C through P.

• Completely control how paths enter the inner part of the annulus.
• We work in a part of small treewidth: can compute partial patterns.

• Same partial patterns =⇒
Combing

same (global) patterns.

23 / 1

How this helps to compute the pattern?

Compute partial patterns!

Linkage Combing Lemma
[Golovach, S., & Thilikos, Combing a linkage in an annulus, 2022]

There is a function f : N → N such that if

- G is a partially disk-embedded graph,

- (C,P) is a disk-embedded railed annulus of size f (k), and

- L is an annulus-avoiding linkage of size ≤ k ,

then there is an equivalent linkage L′ that traverses the
middle cycle of C through P.

• Completely control how paths enter the inner part of the annulus.
• We work in a part of small treewidth: can compute partial patterns.
• Same partial patterns =⇒

Combing
same (global) patterns.

23 / 1

Large treewidth

Large clique minor Large grid-like “flat” structure

• Compute partial patterns in bounded treewidth part.

• Same partial patterns =⇒
Combing

same (global) patterns

• Remove pattern-duplicates and reduce the instance.

• =⇒ get same-pattern graph of bd. treewidth.

[Golovach, S., Thilikos, 2023]

24 / 1

Large treewidth

Large clique minor Large grid-like “flat” structure

• Compute partial patterns in bounded treewidth part.

• Same partial patterns =⇒
Combing

same (global) patterns

• Remove pattern-duplicates and reduce the instance.

• =⇒ get same-pattern graph of bd. treewidth.

[Golovach, S., Thilikos, 2023]

24 / 1

Large treewidth

Large clique minor Large grid-like “flat” structure

• Compute partial patterns in bounded treewidth part.

• Same partial patterns =⇒
Combing

same (global) patterns

• Remove pattern-duplicates and reduce the instance.

• =⇒ get same-pattern graph of bd. treewidth.

[Golovach, S., Thilikos, 2023]

24 / 1

Large treewidth

Large clique minor Large grid-like “flat” structure

• Compute partial patterns in bounded treewidth part.

• Same partial patterns =⇒
Combing

same (global) patterns

• Remove pattern-duplicates and reduce the instance.

• =⇒ get same-pattern graph of bd. treewidth.

[Golovach, S., Thilikos, 2023]

24 / 1

Large treewidth

Large clique minor Large grid-like “flat” structure

• Compute partial patterns in bounded treewidth part.

• Same partial patterns =⇒
Combing

same (global) patterns

• Remove pattern-duplicates and reduce the instance.

• =⇒ get same-pattern graph of bd. treewidth.

[Golovach, S., Thilikos, 2023]
24 / 1

Large clique minor case:

• (q, k)-unbreakable graph G (mesure of inseparabilty):

For every separation (A,B) of G of order at most k, either |A| ≤ q or |B| ≤ q.

• On graphs with large clique minors that are unbreakable :

Long disjoint paths always existw�
Suffices to check only for short pathsw�

FO+DP collapses to FO

x1x7 y3

x2

x9y1 y5

S1

S2

Sr

...

25 / 1

Large clique minor case:

• (q, k)-unbreakable graph G (mesure of inseparabilty):

For every separation (A,B) of G of order at most k , either |A| ≤ q or |B| ≤ q.

• On graphs with large clique minors that are unbreakable :

Long disjoint paths always existw�
Suffices to check only for short pathsw�

FO+DP collapses to FO

x1x7 y3

x2

x9y1 y5

S1

S2

Sr

...

25 / 1

Large clique minor case:

• (q, k)-unbreakable graph G (mesure of inseparabilty):

For every separation (A,B) of G of order at most k , either |A| ≤ q or |B| ≤ q.

• On graphs with large clique minors that are unbreakable :

Long disjoint paths always existw�
Suffices to check only for short pathsw�

FO+DP collapses to FO

x1x7 y3

x2

x9y1 y5

S1

S2

Sr

...

25 / 1

Large clique minor case:

• (q, k)-unbreakable graph G (mesure of inseparabilty):

For every separation (A,B) of G of order at most k , either |A| ≤ q or |B| ≤ q.

• On graphs with large clique minors that are unbreakable :

Long disjoint paths always exist

w�
Suffices to check only for short pathsw�

FO+DP collapses to FO

x1x7 y3

x2

x9y1 y5

S1

S2

Sr

...

25 / 1

Large clique minor case:

• (q, k)-unbreakable graph G (mesure of inseparabilty):

For every separation (A,B) of G of order at most k , either |A| ≤ q or |B| ≤ q.

• On graphs with large clique minors that are unbreakable :

Long disjoint paths always existw�
Suffices to check only for short paths

w�
FO+DP collapses to FO

x1x7 y3

x2

x9y1 y5

S1

S2

Sr

...

25 / 1

Large clique minor case:

• (q, k)-unbreakable graph G (mesure of inseparabilty):

For every separation (A,B) of G of order at most k , either |A| ≤ q or |B| ≤ q.

• On graphs with large clique minors that are unbreakable :

Long disjoint paths always existw�
Suffices to check only for short pathsw�

FO+DP collapses to FO

x1x7 y3

x2

x9y1 y5

S1

S2

Sr

...

25 / 1

Large treewidth

Large clique minor Large grid-like “flat” structure

• Extra assumption: unbreakability.
• FO+DP collapses to FO.
• Using FO-machinery, compute pattern.

[Schirrmacher, Siebertz, S., Thilikos, & Vigny, 2023+]

• Compute partial patterns in bounded treewidth part.

• Same partial patterns =⇒
Combing

same (global) patterns

• Remove pattern-duplicates and reduce the instance.

• =⇒ get same-pattern graph of bd. treewidth.

[Golovach, S., Thilikos, 2023]
26 / 1

Wrapping up the proof. [Schirrmacher, Siebertz, S., Thilikos, & Vigny, 2023+]

Dynamic programming on a tree-decomposition in unbreakable bags.
[Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh, 2014]

Goal: For every node, compute pattern of the graph corresponding to the subtree.

• For bags without large minors: [Golovach, S., Thilikos, 2023]

• For bags with large minors: unbreakability =⇒ FO+DP collapses to FO =⇒ FO-machinery

• Combine solutions bottom-up: Possible only if the input graph excludes some topological minor.

27 / 1

Wrapping up the proof. [Schirrmacher, Siebertz, S., Thilikos, & Vigny, 2023+]

Dynamic programming on a tree-decomposition in unbreakable bags.
[Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh, 2014]

Goal: For every node, compute pattern of the graph corresponding to the subtree.

• For bags without large minors: [Golovach, S., Thilikos, 2023]

• For bags with large minors: unbreakability =⇒ FO+DP collapses to FO =⇒ FO-machinery

• Combine solutions bottom-up: Possible only if the input graph excludes some topological minor.

27 / 1

Wrapping up the proof. [Schirrmacher, Siebertz, S., Thilikos, & Vigny, 2023+]

Dynamic programming on a tree-decomposition in unbreakable bags.
[Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh, 2014]

Goal: For every node, compute pattern of the graph corresponding to the subtree.

• For bags without large minors: [Golovach, S., Thilikos, 2023]

• For bags with large minors: unbreakability =⇒ FO+DP collapses to FO =⇒ FO-machinery

• Combine solutions bottom-up: Possible only if the input graph excludes some topological minor.

27 / 1

Wrapping up the proof. [Schirrmacher, Siebertz, S., Thilikos, & Vigny, 2023+]

Dynamic programming on a tree-decomposition in unbreakable bags.
[Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh, 2014]

Goal: For every node, compute pattern of the graph corresponding to the subtree.

• For bags without large minors: [Golovach, S., Thilikos, 2023]

• For bags with large minors: unbreakability =⇒ FO+DP collapses to FO =⇒ FO-machinery

• Combine solutions bottom-up: Possible only if the input graph excludes some topological minor.

27 / 1

Wrapping up the proof. [Schirrmacher, Siebertz, S., Thilikos, & Vigny, 2023+]

Dynamic programming on a tree-decomposition in unbreakable bags.
[Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh, 2014]

Goal: For every node, compute pattern of the graph corresponding to the subtree.

• For bags without large minors: [Golovach, S., Thilikos, 2023]

• For bags with large minors: unbreakability =⇒ FO+DP collapses to FO =⇒ FO-machinery

• Combine solutions bottom-up: Possible only if the input graph excludes some topological minor.

27 / 1

Wrapping up the proof. [Schirrmacher, Siebertz, S., Thilikos, & Vigny, 2023+]

Dynamic programming on a tree-decomposition in unbreakable bags.
[Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh, 2014]

Goal: For every node, compute pattern of the graph corresponding to the subtree.

• For bags without large minors: [Golovach, S., Thilikos, 2023]

• For bags with large minors: unbreakability =⇒ FO+DP collapses to FO =⇒ FO-machinery

• Combine solutions bottom-up: Possible only if the input graph excludes some topological minor.

27 / 1

nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+DP Θ̃dp MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Fomin, Golovach, Sau, S., & Thilikos]

[Courcelle]

Thank you!

28 / 1

