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Knowledge Integration - Standpoint Logic 
5

5.𝖳 ⪯ 𝖲 ∧ 𝖯 ⪯ 𝖲
6. ∀x ◊𝖲(𝖳𝗎𝗆𝗈𝗋(x) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(x)) → □𝖳 𝖳𝗎𝗆𝗈𝗋(x)

7. ∀x □𝖯 (∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(x, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)) ↔ ◊𝖳𝖳𝗎𝗆𝗈𝗋(x)

8. ∀x □𝖳 𝖳𝗂𝗌𝗌𝗎𝖾(x) → □𝖯 𝖳𝗂𝗌𝗌𝗎𝖾(x)

1. 


2. 


3. 


4.

□𝖲(¬∃x 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) ∧ 𝖳𝗂𝗌𝗌𝗎𝖾(x))

□𝖯(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖯(∀x 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) → 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖳(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖳𝗂𝗌𝗌𝗎𝖾(x))

9.◊𝖲(𝖯𝖺𝗍𝗂𝖾𝗇𝗍(p1) ∧ 𝖧𝖺𝗌𝖯𝖺𝗋𝗍(p1,a) ∧ 𝖳𝗎𝗆𝗈𝗋(a) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(a))

π

𝖲

𝖯𝖺𝗍𝗂𝖾𝗇𝗍

p1



Modelling Multiple Perspectives with Standpoint Logics | Page

Π
Δ

Knowledge Integration - Standpoint Logic 
5

5.𝖳 ⪯ 𝖲 ∧ 𝖯 ⪯ 𝖲
6. ∀x ◊𝖲(𝖳𝗎𝗆𝗈𝗋(x) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(x)) → □𝖳 𝖳𝗎𝗆𝗈𝗋(x)

7. ∀x □𝖯 (∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(x, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)) ↔ ◊𝖳𝖳𝗎𝗆𝗈𝗋(x)

8. ∀x □𝖳 𝖳𝗂𝗌𝗌𝗎𝖾(x) → □𝖯 𝖳𝗂𝗌𝗌𝗎𝖾(x)

1. 


2. 


3. 


4.

□𝖲(¬∃x 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) ∧ 𝖳𝗂𝗌𝗌𝗎𝖾(x))

□𝖯(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖯(∀x 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) → 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖳(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖳𝗂𝗌𝗌𝗎𝖾(x))

9.◊𝖲(𝖯𝖺𝗍𝗂𝖾𝗇𝗍(p1) ∧ 𝖧𝖺𝗌𝖯𝖺𝗋𝗍(p1,a) ∧ 𝖳𝗎𝗆𝗈𝗋(a) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(a))

π

𝖲

𝖯𝖺𝗍𝗂𝖾𝗇𝗍

p1

𝖧𝖺𝗌𝖯𝖺𝗋𝗍

a

𝖳𝗎𝗆𝗈𝗋, 𝖮𝖻𝗃𝖾𝖼𝗍
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Inferences:

5

5.𝖳 ⪯ 𝖲 ∧ 𝖯 ⪯ 𝖲
6. ∀x ◊𝖲(𝖳𝗎𝗆𝗈𝗋(x) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(x)) → □𝖳 𝖳𝗎𝗆𝗈𝗋(x)

7. ∀x □𝖯 (∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(x, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)) ↔ ◊𝖳𝖳𝗎𝗆𝗈𝗋(x)

8. ∀x □𝖳 𝖳𝗂𝗌𝗌𝗎𝖾(x) → □𝖯 𝖳𝗂𝗌𝗌𝗎𝖾(x)

1. 


2. 


3. 


4.

□𝖲(¬∃x 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) ∧ 𝖳𝗂𝗌𝗌𝗎𝖾(x))

□𝖯(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖯(∀x 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) → 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖳(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖳𝗂𝗌𝗌𝗎𝖾(x))

9.◊𝖲(𝖯𝖺𝗍𝗂𝖾𝗇𝗍(p1) ∧ 𝖧𝖺𝗌𝖯𝖺𝗋𝗍(p1,a) ∧ 𝖳𝗎𝗆𝗈𝗋(a) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(a))

π

𝖲

𝖯𝖺𝗍𝗂𝖾𝗇𝗍

p1

𝖧𝖺𝗌𝖯𝖺𝗋𝗍

a

𝖳𝗎𝗆𝗈𝗋, 𝖮𝖻𝗃𝖾𝖼𝗍
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Π
Δ
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Inferences:
10.  (6,9)□𝖳𝖳𝗎𝗆𝗈𝗋(a)

5

5.𝖳 ⪯ 𝖲 ∧ 𝖯 ⪯ 𝖲
6. ∀x ◊𝖲(𝖳𝗎𝗆𝗈𝗋(x) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(x)) → □𝖳 𝖳𝗎𝗆𝗈𝗋(x)

7. ∀x □𝖯 (∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(x, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)) ↔ ◊𝖳𝖳𝗎𝗆𝗈𝗋(x)

8. ∀x □𝖳 𝖳𝗂𝗌𝗌𝗎𝖾(x) → □𝖯 𝖳𝗂𝗌𝗌𝗎𝖾(x)

1. 


2. 


3. 


4.

□𝖲(¬∃x 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) ∧ 𝖳𝗂𝗌𝗌𝗎𝖾(x))

□𝖯(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖯(∀x 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) → 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖳(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖳𝗂𝗌𝗌𝗎𝖾(x))

9.◊𝖲(𝖯𝖺𝗍𝗂𝖾𝗇𝗍(p1) ∧ 𝖧𝖺𝗌𝖯𝖺𝗋𝗍(p1,a) ∧ 𝖳𝗎𝗆𝗈𝗋(a) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(a))

π

𝖲

𝖯𝖺𝗍𝗂𝖾𝗇𝗍

p1

𝖧𝖺𝗌𝖯𝖺𝗋𝗍

a

𝖳𝗎𝗆𝗈𝗋, 𝖮𝖻𝗃𝖾𝖼𝗍
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Π
Δ
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Inferences:
10.  (6,9)□𝖳𝖳𝗎𝗆𝗈𝗋(a)

5

5.𝖳 ⪯ 𝖲 ∧ 𝖯 ⪯ 𝖲
6. ∀x ◊𝖲(𝖳𝗎𝗆𝗈𝗋(x) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(x)) → □𝖳 𝖳𝗎𝗆𝗈𝗋(x)

7. ∀x □𝖯 (∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(x, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)) ↔ ◊𝖳𝖳𝗎𝗆𝗈𝗋(x)

8. ∀x □𝖳 𝖳𝗂𝗌𝗌𝗎𝖾(x) → □𝖯 𝖳𝗂𝗌𝗌𝗎𝖾(x)

1. 


2. 


3. 


4.

□𝖲(¬∃x 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) ∧ 𝖳𝗂𝗌𝗌𝗎𝖾(x))

□𝖯(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖯(∀x 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) → 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖳(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖳𝗂𝗌𝗌𝗎𝖾(x))

9.◊𝖲(𝖯𝖺𝗍𝗂𝖾𝗇𝗍(p1) ∧ 𝖧𝖺𝗌𝖯𝖺𝗋𝗍(p1,a) ∧ 𝖳𝗎𝗆𝗈𝗋(a) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(a))

π

𝖲𝖳π′￼

𝖯𝖺𝗍𝗂𝖾𝗇𝗍

p1

𝖧𝖺𝗌𝖯𝖺𝗋𝗍

a

𝖳𝗎𝗆𝗈𝗋, 𝖮𝖻𝗃𝖾𝖼𝗍
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Π
Δ

Knowledge Integration - Standpoint Logic 

Inferences:
10.  (6,9)□𝖳𝖳𝗎𝗆𝗈𝗋(a)

5

5.𝖳 ⪯ 𝖲 ∧ 𝖯 ⪯ 𝖲
6. ∀x ◊𝖲(𝖳𝗎𝗆𝗈𝗋(x) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(x)) → □𝖳 𝖳𝗎𝗆𝗈𝗋(x)

7. ∀x □𝖯 (∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(x, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)) ↔ ◊𝖳𝖳𝗎𝗆𝗈𝗋(x)

8. ∀x □𝖳 𝖳𝗂𝗌𝗌𝗎𝖾(x) → □𝖯 𝖳𝗂𝗌𝗌𝗎𝖾(x)

1. 


2. 


3. 


4.

□𝖲(¬∃x 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) ∧ 𝖳𝗂𝗌𝗌𝗎𝖾(x))

□𝖯(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖯(∀x 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) → 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖳(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖳𝗂𝗌𝗌𝗎𝖾(x))

9.◊𝖲(𝖯𝖺𝗍𝗂𝖾𝗇𝗍(p1) ∧ 𝖧𝖺𝗌𝖯𝖺𝗋𝗍(p1,a) ∧ 𝖳𝗎𝗆𝗈𝗋(a) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(a))

π

𝖲𝖳π′￼

𝖯𝖺𝗍𝗂𝖾𝗇𝗍

p1

𝖧𝖺𝗌𝖯𝖺𝗋𝗍

a

𝖳𝗎𝗆𝗈𝗋, 𝖮𝖻𝗃𝖾𝖼𝗍

𝖳𝗎𝗆𝗈𝗋
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Δ
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Inferences:
10.  (6,9)□𝖳𝖳𝗎𝗆𝗈𝗋(a)

11.  (10,4)□𝖳𝖳𝗂𝗌𝗌𝗎𝖾(a)

5

5.𝖳 ⪯ 𝖲 ∧ 𝖯 ⪯ 𝖲
6. ∀x ◊𝖲(𝖳𝗎𝗆𝗈𝗋(x) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(x)) → □𝖳 𝖳𝗎𝗆𝗈𝗋(x)

7. ∀x □𝖯 (∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(x, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)) ↔ ◊𝖳𝖳𝗎𝗆𝗈𝗋(x)

8. ∀x □𝖳 𝖳𝗂𝗌𝗌𝗎𝖾(x) → □𝖯 𝖳𝗂𝗌𝗌𝗎𝖾(x)

1. 


2. 


3. 


4.

□𝖲(¬∃x 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) ∧ 𝖳𝗂𝗌𝗌𝗎𝖾(x))

□𝖯(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖯(∀x 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) → 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖳(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖳𝗂𝗌𝗌𝗎𝖾(x))

9.◊𝖲(𝖯𝖺𝗍𝗂𝖾𝗇𝗍(p1) ∧ 𝖧𝖺𝗌𝖯𝖺𝗋𝗍(p1,a) ∧ 𝖳𝗎𝗆𝗈𝗋(a) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(a))

π

𝖲𝖳π′￼

𝖯𝖺𝗍𝗂𝖾𝗇𝗍

p1

𝖧𝖺𝗌𝖯𝖺𝗋𝗍

a

𝖳𝗎𝗆𝗈𝗋, 𝖮𝖻𝗃𝖾𝖼𝗍

𝖳𝗎𝗆𝗈𝗋
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Π
Δ
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Inferences:
10.  (6,9)□𝖳𝖳𝗎𝗆𝗈𝗋(a)

11.  (10,4)□𝖳𝖳𝗂𝗌𝗌𝗎𝖾(a)

5

5.𝖳 ⪯ 𝖲 ∧ 𝖯 ⪯ 𝖲
6. ∀x ◊𝖲(𝖳𝗎𝗆𝗈𝗋(x) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(x)) → □𝖳 𝖳𝗎𝗆𝗈𝗋(x)

7. ∀x □𝖯 (∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(x, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)) ↔ ◊𝖳𝖳𝗎𝗆𝗈𝗋(x)

8. ∀x □𝖳 𝖳𝗂𝗌𝗌𝗎𝖾(x) → □𝖯 𝖳𝗂𝗌𝗌𝗎𝖾(x)

1. 


2. 


3. 


4.

□𝖲(¬∃x 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) ∧ 𝖳𝗂𝗌𝗌𝗎𝖾(x))

□𝖯(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖯(∀x 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) → 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖳(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖳𝗂𝗌𝗌𝗎𝖾(x))

9.◊𝖲(𝖯𝖺𝗍𝗂𝖾𝗇𝗍(p1) ∧ 𝖧𝖺𝗌𝖯𝖺𝗋𝗍(p1,a) ∧ 𝖳𝗎𝗆𝗈𝗋(a) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(a))
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𝖲𝖳π′￼

𝖯𝖺𝗍𝗂𝖾𝗇𝗍
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6. ∀x ◊𝖲(𝖳𝗎𝗆𝗈𝗋(x) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(x)) → □𝖳 𝖳𝗎𝗆𝗈𝗋(x)

7. ∀x □𝖯 (∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(x, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)) ↔ ◊𝖳𝖳𝗎𝗆𝗈𝗋(x)

8. ∀x □𝖳 𝖳𝗂𝗌𝗌𝗎𝖾(x) → □𝖯 𝖳𝗂𝗌𝗌𝗎𝖾(x)
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3. 


4.

□𝖲(¬∃x 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) ∧ 𝖳𝗂𝗌𝗌𝗎𝖾(x))

□𝖯(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖯(∀x 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) → 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖳(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖳𝗂𝗌𝗌𝗎𝖾(x))

9.◊𝖲(𝖯𝖺𝗍𝗂𝖾𝗇𝗍(p1) ∧ 𝖧𝖺𝗌𝖯𝖺𝗋𝗍(p1,a) ∧ 𝖳𝗎𝗆𝗈𝗋(a) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(a))

π

𝖲𝖳π′￼

𝖯𝖺𝗍𝗂𝖾𝗇𝗍

p1

𝖧𝖺𝗌𝖯𝖺𝗋𝗍

a

𝖳𝗎𝗆𝗈𝗋, 𝖮𝖻𝗃𝖾𝖼𝗍

𝖳𝗎𝗆𝗈𝗋, 𝖳𝗂𝗌𝗌𝗎𝖾
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6. ∀x ◊𝖲(𝖳𝗎𝗆𝗈𝗋(x) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(x)) → □𝖳 𝖳𝗎𝗆𝗈𝗋(x)

7. ∀x □𝖯 (∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(x, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)) ↔ ◊𝖳𝖳𝗎𝗆𝗈𝗋(x)

8. ∀x □𝖳 𝖳𝗂𝗌𝗌𝗎𝖾(x) → □𝖯 𝖳𝗂𝗌𝗌𝗎𝖾(x)
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□𝖲(¬∃x 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) ∧ 𝖳𝗂𝗌𝗌𝗎𝖾(x))

□𝖯(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖯(∀x 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) → 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖳(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖳𝗂𝗌𝗌𝗎𝖾(x))

9.◊𝖲(𝖯𝖺𝗍𝗂𝖾𝗇𝗍(p1) ∧ 𝖧𝖺𝗌𝖯𝖺𝗋𝗍(p1,a) ∧ 𝖳𝗎𝗆𝗈𝗋(a) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(a))

π

𝖲𝖳

π′￼′￼ 𝖯
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a

𝖳𝗎𝗆𝗈𝗋, 𝖮𝖻𝗃𝖾𝖼𝗍
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12.  (11,8)□𝖯𝖳𝗂𝗌𝗌𝗎𝖾(a)

5

5.𝖳 ⪯ 𝖲 ∧ 𝖯 ⪯ 𝖲
6. ∀x ◊𝖲(𝖳𝗎𝗆𝗈𝗋(x) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(x)) → □𝖳 𝖳𝗎𝗆𝗈𝗋(x)

7. ∀x □𝖯 (∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(x, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)) ↔ ◊𝖳𝖳𝗎𝗆𝗈𝗋(x)

8. ∀x □𝖳 𝖳𝗂𝗌𝗌𝗎𝖾(x) → □𝖯 𝖳𝗂𝗌𝗌𝗎𝖾(x)
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□𝖲(¬∃x 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) ∧ 𝖳𝗂𝗌𝗌𝗎𝖾(x))

□𝖯(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖯(∀x 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) → 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖳(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖳𝗂𝗌𝗌𝗎𝖾(x))

9.◊𝖲(𝖯𝖺𝗍𝗂𝖾𝗇𝗍(p1) ∧ 𝖧𝖺𝗌𝖯𝖺𝗋𝗍(p1,a) ∧ 𝖳𝗎𝗆𝗈𝗋(a) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(a))
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π′￼′￼ 𝖯

π′￼

𝖯𝖺𝗍𝗂𝖾𝗇𝗍

p1
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a

𝖳𝗎𝗆𝗈𝗋, 𝖮𝖻𝗃𝖾𝖼𝗍
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12.  (11,8)□𝖯𝖳𝗂𝗌𝗌𝗎𝖾(a)

13.  (12,7)□𝖯 ∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(a, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)

5

5.𝖳 ⪯ 𝖲 ∧ 𝖯 ⪯ 𝖲
6. ∀x ◊𝖲(𝖳𝗎𝗆𝗈𝗋(x) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(x)) → □𝖳 𝖳𝗎𝗆𝗈𝗋(x)

7. ∀x □𝖯 (∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(x, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)) ↔ ◊𝖳𝖳𝗎𝗆𝗈𝗋(x)

8. ∀x □𝖳 𝖳𝗂𝗌𝗌𝗎𝖾(x) → □𝖯 𝖳𝗂𝗌𝗌𝗎𝖾(x)
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□𝖲(¬∃x 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) ∧ 𝖳𝗂𝗌𝗌𝗎𝖾(x))

□𝖯(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖯(∀x 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) → 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖳(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖳𝗂𝗌𝗌𝗎𝖾(x))

9.◊𝖲(𝖯𝖺𝗍𝗂𝖾𝗇𝗍(p1) ∧ 𝖧𝖺𝗌𝖯𝖺𝗋𝗍(p1,a) ∧ 𝖳𝗎𝗆𝗈𝗋(a) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(a))
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13.  (12,7)□𝖯 ∃y 𝗉𝗋𝗈𝖽𝗎𝖼𝗍𝖮𝖿(a, y) ∧ 𝖳𝗎𝗆𝗈𝗋(y)
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□𝖯(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖯(∀x 𝖠𝖻𝗇𝗈𝗋𝗆𝖺𝗅𝖦𝗋𝗈𝗐𝗍𝗁𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x) → 𝖯𝗋𝗈𝖼𝖾𝗌𝗌(x))

□𝖳(∀x 𝖳𝗎𝗆𝗈𝗋(x) → 𝖳𝗂𝗌𝗌𝗎𝖾(x))

9.◊𝖲(𝖯𝖺𝗍𝗂𝖾𝗇𝗍(p1) ∧ 𝖧𝖺𝗌𝖯𝖺𝗋𝗍(p1,a) ∧ 𝖳𝗎𝗆𝗈𝗋(a) ∧ 𝖮𝖻𝗃𝖾𝖼𝗍(a))
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𝖳𝗎𝗆𝗈𝗋

𝖳𝗂𝗌𝗌𝗎𝖾

, 𝖳𝗂𝗌𝗌𝗎𝖾
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in standard Kripke (relational) semantics.
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Theorem 1 (Small Model Property): 

A sentential FOSL formula  is satisfiable iff it has a model with at most  precisifications. That is, for 
sentential FOSL, satisfiability and |φ|-satisfiability coincide. 
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(n-)Equisatisfiable Translation to Plain FOL

Lemma: 

Let  be a fragment of FOL. Then the 
satisfiability of , the sentential standpoint-  
fragment of FOSL, 

• is decidable iff it is for , and

• has the same complexity as  (if at least NP)

F
𝕊F F

F
F
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The SROIQ  family serves as the logical foundation of popular ontology languages like OWL 2.

SROIQ  is a semantic fragment of FOL, so we can leverage the previously established results:

• Favorable and tight complexity results for reasoning in Standpoint-SROIQbs. 

• Practical reasoning in “Standpoint-OWL” with the translation & highly optimized OWL 2 DL 
reasoners off the shelf. 

1SROIQbs is an extension of SROIQ allowing safe Boolean role expressions oversimple roles at no complexity cost 
(Rudolph, Krotzsch, and Hitzler 2008) 
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• We adapt techniques based on “quasi-models” for modal logics.
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(in collaboration with Sebastian Rudolph and Hannes Strass)

• Main reasoning tasks in  can be reduced to concept subsumption𝕊ℰℒ

• We currently develop a complexity-optimal Datalog-Based Calculus

• The calculus can be straightforwardly implemented  ⟶
suitable for highly optimised Datalog engines

Future Work: OWL2 EL integration, generation of Standpoint Knowledge Bases
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Supporting LTL+Standpoints in the BLACK Satisfiability Checker
(in collaboration with Nicola Gigante and Tim Lyon)

• BLACK uses an incremental SAT encoding of a (one-pass) tableau for LTL

• Following similar principles as for , we extend their tableau:𝕊ℰℒ

• We produce a constraint system per time-point

• We adjust the SAT encoding to the CS using our established translations

Notice: Empty standpoints can be introduced at no cost
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● For now we have looked into the complexity of syntactic fragments of FOL, what 
about semantic fragments?

Future Work
● Implementations, tutorials and pedagogical resources
● Generalising results to “set-based” modal logics
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The end.


