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Motivation



The semantic variability of natural language

A long known problem:

• Most natural language terms do not have precise universally
agreed definitions that fix their meanings.

• Words are used in a variety of ways that adapt to different
contexts and points of view.

Example
It is globally accepted (thus also by CT and HP) that Yellow, Green, and
Lime are Colour. According to CT, Colour is either a warm colour (WC) or a
cold colour (CC) but not both, Yellow is a WC, and Green and Lime are CC.
According to HP, Lime is Green and Yellow.
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The semantic variability of natural language

Main strategies:

• Representation of a unified view. E.g. Ontology merging.

• Representation of the diversity −→ Standpoint Logic.
• Represent standpoints on the interpretation of a domain.
• Express relations and hierarchies between different systems of
interpretation.

• Represent both precise and borderline facts at global or local
levels.

• Perform global and local inferences and consistency checks.
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Overview of the Standpoint
Framework



Introduction to Modal Logic

Modal logics are a family of non-classical logics that extend the
classical (propositional or first-order) logic with dual modal
operators, typically □ and ♢.

Language of propositional ML: logical connectives ¬,∧, a unary
modal operator □, and a set of atomic propositions p0,p1, ....
Formulae:

φ ::= p | ¬φ | φ1 ∧ φ2 | □φ.

The dual operator : ♢φ ::= ¬□¬φ

E.g. Alethic logics, epistemic logics, temporal logics, spatial logics, ...
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Kripke semantics

A Kripke model is a tupleM = 〈W,R, V〉 where:

1. W is a set of possible worlds.
2. R is a binary relation on W.
3. V is a valuation function which assigns a truth value to each pair
of a world and an atomic formula (i.e. V : W× F→ {0, 1} where F
is the set of atomic formulae)

• M,w1 |= □¬φ,M,w2 |= □φ,M,w1 |= □□φ
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Kripke semantics

The satisfaction function defined as:

1. M,w |= p iff V(w,p) = t
2. M,w |= ¬φ iffM,w 6|= φ

3. M,w |= φ ∧ ψ iffM,w |= φ andM,w |= ψ

4. M,w |= □φ iff for every w′ of W, if wRw′ thenM,w′ |= φ

• M,w1 |= □¬φ,M,w2 |= □φ,M,w1 |= □□φ

6



Kripke semantics

The satisfaction function defined as:

1. M,w |= p iff V(w,p) = t
2. M,w |= ¬φ iffM,w 6|= φ

3. M,w |= φ ∧ ψ iffM,w |= φ andM,w |= ψ

4. M,w |= □φ iff for every w′ of W, if wRw′ thenM,w′ |= φ

• M,w1 |= □¬φ

,M,w2 |= □φ,M,w1 |= □□φ

6



Kripke semantics

The satisfaction function defined as:

1. M,w |= p iff V(w,p) = t
2. M,w |= ¬φ iffM,w 6|= φ

3. M,w |= φ ∧ ψ iffM,w |= φ andM,w |= ψ

4. M,w |= □φ iff for every w′ of W, if wRw′ thenM,w′ |= φ

• M,w1 |= □¬φ,M,w2 |= □φ

,M,w1 |= □□φ

6



Kripke semantics

The satisfaction function defined as:

1. M,w |= p iff V(w,p) = t
2. M,w |= ¬φ iffM,w 6|= φ

3. M,w |= φ ∧ ψ iffM,w |= φ andM,w |= ψ

4. M,w |= □φ iff for every w′ of W, if wRw′ thenM,w′ |= φ

• M,w1 |= □¬φ,M,w2 |= □φ,M,w1 |= □□φ
6



Kripke semantics

We may have multiple modal operators.

Different restrictions (e.g. symmetry, transitivity, ...) on the relations.
Eg. In doxastic logic relations are serial, transitive and euclidean.
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Supervaluationism and Modal Logic

Supervaluationism + Modal logic
Q: What do we take from supervaluationism?

A: The core intuition: hyper-ambiguity.
“Natural language can be interpreted in many different yet equally

acceptable ways, commonly referred to as precisifications.”

With modal logic, we replace
structure of possible worlds −→ structure of precisifications.

Q: What do we not take from supervaluationism?

A: The study of vagueness and the sorites paradox.
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Overview of standpoint logic

Semantics of Standpoint Logic
M = 〈Π, σ, δ〉

A precisification is a complete and precise
interpretation of the language.
The set of admissible precisifications Π
replaces the set of worlds in the Kripke model.
δ : P → 2Π assigns sets of precisifications to
propositional variables

A standpoint is a partial interpretation or
sharpening of the semantics of terms.
It is modelled by a set of precisifications that
are consistent with the standpoint, given by
σ : S → 2Π.
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Overview of standpoint logic

A (multi-modal) logic of standpoints
Standpoints are modelled by means of modal operators:

For a standpoint s , then □s φ means that:

“according to standpoint s, it is the case that φ”;

i.e. φ is the case for all precisifications which are accessible for the
standpoint s.

E.g.

1. □CT[CC ∧ WC → ⊥]

2. □CT[((Green ∨ Lime) → CC)) ∧ (Yellow → WC)]
3. □HP[Lime → (Yellow ∧ Green)]
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Overview of standpoint logic

A (multi-modal) logic of standpoints

The special operator □∗ is the universal standpoint, and it is used to
refer to the set of all admissible precisifications. E.g.

□∗[(Yellow ∨ Green ∨ Lime) → Colour]

We have the usual definable operator ♢s, and Is and Ds (also
definable). E.g.

□∗ Lime → I∗ Yellow

Standpoint expressions can be used. E.g.
□CT∪HP(Lime → Yellow) ∨ (Yellow → WC)

The definable operator � encodes the sharper relation. E.g.
CT � ∗
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Overview of standpoint logic

Managing standpoints
Example
It is globally accepted (thus also by CT and HP) that Yellow, Green, and
Lime are Colour. According to CT, Colour is either a warm colour (WC) or a
cold colour (CC) but not both, Yellow is a WC, and Green and Lime are CC.
According to HP, Lime is Green and Yellow.

• □CT[CC ↔ ¬WC]
• □CT[((Green ∨ Lime) → CC)) ∧ (Yellow → WC)]
• □HP[Lime → (Yellow ∧ Green)]
• ...

12



Overview of standpoint logic

Managing standpoints
Representation of correspondences as complex as allowed by the
base logic language. Example:

□HP[Green] ↔ (□CT[Green] ∨□HP[Lime])

Representation of Standpoint Hierarchies and Combinations.
Example:
An Ink brand with the standpoint IB merges and reuses the
categorisation of HP and a certain ”ColourBase” (CB), and in addition
specifies that Ochre and Gold are (types of) Yellow.

□IB[(Gold ∨ Ochre) → Yellow]
IB � HP ∧ IB � CB

13



Overview of standpoint logic

Managing standpoints
Representation of correspondences as complex as allowed by the
base logic language. Example:

□HP[Green] ↔ (□CT[Green] ∨□HP[Lime])

Representation of Standpoint Hierarchies and Combinations.
Example:
An Ink brand with the standpoint IB merges and reuses the
categorisation of HP and a certain ”ColourBase” (CB), and in addition
specifies that Ochre and Gold are (types of) Yellow.

□IB[(Gold ∨ Ochre) → Yellow]
IB � HP ∧ IB � CB

13



Complexity of standpoint logic

The simpler semantics are linked to a small-model property.

The satisfiability problem for a propositional base language S is
NP-complete.

We can prove this with a Translation into One-Variable FOL.
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The simpler semantics are linked to a small-model property.

The satisfiability problem for a propositional base language S is
NP-complete.

We can prove this with a Translation into One-Variable FOL.

Definition
The function trans : LS → LFO1 is recursively defined as follows (with
symbols from P and S repurposed as unary predicates, s′, s ∈ S and p ∈ P):

trans(p) = p(x)
trans(¬φ) = ¬trans(φ)

trans(φ1 ∧ φ2) = trans(φ1) ∧ trans(φ2)
trans(□s φ) = ∀x.(s(x) → trans(φ))
trans(s′ ⪯ s) = ∀x.(s′(x) → s(x))

For an S formula φ with standpoint constants s1, . . . , sk, let

Trans(φ) := ∀x.(trans(φ)) ∧ ∀x.(∗(x))
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Towards First-Order Standpoint
Logic (FOSL)



First-Order Standpoint Logic (FOSL)

Natural extension into modal FOL:

The set ES of standpoint expressions is defined as follows:

e1, e2 ::= ∗ | s | e1 ∪ e2 | e1 ∩ e2 | e1 \ e2

The set SFO of FOSL formulas is then given by

φ,ψ ::= P(t1, . . . , tn) | ¬φ | φ ∧ ψ | ∀xφ | □e φ,

where P ∈ P is an n-ary predicate symbol, t1, . . . , tn ∈ T are terms,
x ∈ V , and e ∈ ES .

• We adopt the rigid domain assumption and
• enforce rigid constants.
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Semantics of FOSL

Given a signature 〈P , C,S〉, a first-order standpoint structureM is a
tuple 〈∆,Π, σ, γ〉 where:

• ∆ is a non-empty set, the domain ofM;
• Π is the set of precisifications;
• σ is a function mapping each standpoint symbol from S to a set
of precisifications (i.e., a subset of Π);

• γ is a function mapping each precisification from Π to an
ordinary first-order structure I over the domain ∆, whose
interpretation function ·I maps:

• each predicate symbol P∈P of arity n to an n-ary relation PI ⊆∆n,
• each constant symbol a∈C to a domain element aI ∈∆.

Moreover, for any two π1, π2 ∈ Π and every a ∈ C we require
aγ(π1) = aγ(π2).
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Small Model Property and
Translation of Sentential
Formulas



Small Model Property of Sentential Formulas

One interesting aspect of standpoint logic is that its simplified Kripke
semantics brings about convenient model-theoretic properties that
do not hold for arbitrary (multi)modal logics.

This carries over to some fragments of FOSL.

Definition
Let φ be a formula of FOSL. We say that φ is sentential iff for all
subformulas of φ that are of the form □e ψ, all variables occurring in
ψ are bound by a quantifier.

Theorem

A sentential FOSL formula φ is satisfiable iff it has a model with at
most |φ| precisifications. That is, for sentential FOSL, satisfiability
and |φ|-satisfiability coincide.

17



Translation to plain FOL

The translation maps SSNF(φ) into a formula of (standpoint-free)
FOL.

We “emulate” standpoint structures 〈∆,Πn, σ, γ〉 by means of a
“superposition” of γ(π), introducing n “copies” of the original set of
predicates.

The top-level translation is then defined to set:

Transn(φ) =
∧

π∈Πn
transn(π, φ) ∧

∧
π∈Πn

∗π,

where transn is inductively defined by

transn(π,P(t1, ... , tn)) = Pπ(t1, ... , tn)
transn(π,¬ψ) = ¬transn(π, ψ)

transn(π, ψ1 ∧ψ2) = transn(π, ψ1)∧ transn(π, ψ2)
transn(π, ∀xψ) = ∀x(transn(π, ψ))

transn(π′,□e ψ) =
∧

π∈Πn

(transE(π, e)→transn(π, ψ))
18



Translation to plain FOL

The top-level translation is then defined to set:

Transn(φ) =
∧

π∈Πn
transn(π, φ) ∧

∧
π∈Πn

∗π,

where transn and transE are inductively defined by

transn(π,P(t1, ... , tn)) = Pπ(t1, ... , tn)
transn(π,¬ψ) = ¬transn(π, ψ)

transn(π, ψ1 ∧ψ2) = transn(π, ψ1)∧ transn(π, ψ2)
transn(π, ∀xψ) = ∀x(transn(π, ψ))

transn(π′,□e ψ) =
∧

π∈Πn

(transE(π, e)→transn(π, ψ))

transE(π, s) = sπ
transE(π, e1 ∪ e2) = transE(π, e1) ∨ transE(π, e2)
transE(π, e1 ∩ e2) = transE(π, e1) ∧ transE(π, e2)
transE(π, e1 \ e2) = transE(π, e1) ∧ ¬transE(π, e2) 19



Expressive Decidable FOSL
Fragments



Expressive Decidable FOSL Fragments

We will next look into some popular decidable FO fragments and
establish decidability and complexity results for reasoning in their
sentential standpoint versions.
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Expressive Decidable FOSL Fragments

We will next look into some popular decidable FO fragments and
establish decidability and complexity results for reasoning in their
sentential standpoint versions.

Definition
Let F denote some FO fragment. Then the logic sentential
Standpoint-F , denoted S[F ] contains the formulas φ, where

• φ is a sentential FOSL formula,
• all variables inside φ are bound by some quantifier,
• for every subformula ψ ∈ Sub(SSNF(φ)) holds ψ ∈ F .

F is called standpoint-friendly if every φ ∈ S[F ] satisfies
Trans|φ|(SSNF(φ)) ∈ F .
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Expressive Decidable FOSL Fragments

Lemma
Let F be a standpoint-friendly fragment of FOL. Then the following
hold:

1. Satisfiability for S[F ] is decidable if and only if it is for F .
2. If the satisfiability problem in F is at least NP-hard, then its
complexity coincides with that of S[F ].

Standpoint-friendly fragments of FOL:

• The propositional fragment PF
• The counting 2-variable fragment C2

• The guarded fragment GF
• The triguarded fragment TGF

Therefore these four decidable fragments of FOL allow for
accommodating standpoints without any increase in complexity.
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Sentential Standpoint-SROIQbs

We next present the highly expressive yet decidable logic
Standpoint-SROIQbs1.

The SROIQ family serves as the logical foundation of popular
ontology languages like OWL 2 DL.

SROIQ is a semantic fragment of FOL, so we can leverage the
previously established results. We get

• favorable and tight complexity results for reasoning in
Standpoint-SROIQbs.

• practical reasoning in “Standpoint-OWL” with the translation &
highly optimized OWL 2 DL reasoners off the shelf.

1SROIQbs is an extension of SROIQ allowing safe Boolean role expressions
oversimple roles at no complexity cost (Rudolph, Krotzsch, and Hitzler 2008).
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Sentential Standpoint-SROIQbs

We next present the highly expressive yet decidable logic
Standpoint-SROIQbs

The translation is inspired by the one presented for FOSL. SROIQbs
comes with diverse syntactic restrictions that we need to cope with
by good deal of “paraphrasing”.

These restrictions are:

• the absence of a native way to form Boolean combinations of
axioms,

• the absence of nullary predicates (i.e., propositional symbols),
• complex role inclusion axioms and the regularity restrictions
imposed on them.

23



SROIQbs role and concept expressions

Name Syntax Semantics

inverse role s− {(x, y) ∈ ∆×∆ | (y, x) ∈ sI}
role union r1 ∪ r2 rI1 ∪ rI2
role intersection r1 ∩ r2 rI1 ∪ rI2
role difference r1 \ r2 rI1 \ rI2
universal role u ∆I ×∆I

nominal {a} {aI}
top ⊤ ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

univ. restriction ∀r.C {x | ∀y.(x, y) ∈ rI → y ∈ CI}
exist. restriction ∃r.C {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI}
Self concept ∃r.Self {x | (x, x) ∈ rI}
qualified number ⩽n r.C {x | #{y ∈ CI | (x, y) ∈ rI} ≤ n}

restrictions ⩾n r.C {x | #{y ∈ CI | (x, y) ∈ rI} ≥ n}
24



Syntax and semantics of SROIQbs axioms.

For RIAs, r ∈ Pns
2 , while ri ∈ R and ri ≺ r for all i ∈ {1, ... ,n}.

Name Syntax Semantics
role inclusion r1◦...◦rnvr rI1 ◦...◦rIn ⊆rI

axioms (RIAs) r◦r1◦...◦rnvr rI◦rI1 ◦...◦rIn ⊆rI

r1◦...◦rn◦rvr rI1 ◦...◦rIn◦rI ⊆rI

r◦rvr rI◦rI ⊆rI

general concept inclusion (GCI) CvD CI ⊆ DI

concept essertion C(a) aI ∈ CI
role assertion r(a,b) (aI ,bI) ∈ rI

equality a .
= b aI = bI

inequality a 6 .= b aI 6= bI

25



Sentential Standpoint-SROIQbs

The set S[SROIQbs] of sentential Standpoint-SROIQ sentences is
defined inductively as follows:

• if Ax is a SROIQbs axiom then Ax ∈ S[SROIQbs],
• if φ ∈ S[SROIQbs] then ¬φ ∈ S[SROIQbs],
• if φ,ψ ∈ S[SROIQbs] then φ∧ψ, φ∨ψ ∈ S[SROIQbs],
• if φ ∈ S[SROIQbs] and e ∈ ES then □e φ, ♢e φ ∈ S[SROIQbs].

We say a S[SROIQbs] sentence φ is in negation normal form (NNF), if
negation occurs only inside or directly in front of SROIQ axioms.
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Translation of Sentential Standpoint-SROIQbs

As before, we fix Π|φ| and let our translation’s vocabulary V[SROIQbs](φ)

consist of all individual names inside φ, plus, for each π ∈ Π|φ|, the
following symbols:

• a concept name Aπ for each A ∈ P1;
• a simple role name sπ for each s∈Ps

2 ;
• non-simple role names rπ and rπ for each r∈Pns

2 \{u},
• a simple role name sπ

ρ for each unnegated RIA ρ inside φ;
• a fresh constant name aπρ for each negated RIA ρ inside φ;
• a concept name M s

π for each s ∈ S .

27



Translation of Sentential Standpoint-SROIQbs

The translation Trans(φ) of φ is then a set of SROIQ axioms
defined as follows:

1 - Trans(φ) contains the RIA rπ vrπ for every r∈Pns
2 \{u} and each

π ∈ Π|φ|.

2 - For every unnegated RIA ρ inside φ and each π ∈ Π|φ|, Trans(φ)
contains the RIA BGπ(ρ), with BGπ defined by

r1◦...◦rnvr 7→ rπ1 ◦...◦rπn◦sπ
ρ vrπ

r◦r1◦...◦rnvr 7→ rπ◦rπ1 ◦...◦rπn◦sπ
ρ vrπ

r1◦...◦rn◦rvr 7→ sπ
ρ◦rπ1 ◦...◦rπn◦rπ vrπ

r◦rvr 7→ sπ
ρ◦rπ◦rπ vrπ,

whereby the role expression rπ is obtained from r by substituting
every role name s with sπ (except u which remains unaltered).

28



Translation of Sentential Standpoint-SROIQbs

3 - Trans(φ) contains the GCI

> v
d

π∈Π|φ|
trans(π, φ) u

d
π∈Π|φ|

∀u.M∗π

where, by inductive definition,

trans(π,Ax) = trans+(π,Ax)
trans(π,¬Ax) = trans−(π,Ax)

trans(π, ψ1 ∧ ψ2) = trans(π, ψ1) u trans(π, ψ2)
trans(π, ψ1 ∨ ψ2) = trans(π, ψ1) t trans(π, ψ2)

trans(π′,□e ψ) =
d

π∈Π|φ|
(¬transE(π, e) t trans(π, ψ))

trans(π′,♢e ψ) =
⊔

π∈Π|φ|
(transE(π, e) u trans(π, ψ))

29



Translation of Sentential Standpoint-SROIQbs

As before, transE implements the semantics of standpoint
expressions, but now adjusted to the new framework: Each
expression e ∈ ES is transformed into a concept expression
transE(π, e) over vocabulary

{
M s
π | s ∈ S, π ∈Π|φ|

}
thus:

transE(π, s) = ∀u.M s
π

transE(π, e1 ∪ e2) = transE(π, e1) t transE(π, e2)
transE(π, e1 ∩ e2) = transE(π, e1) u transE(π, e2)
transE(π, e1 \ e2) = transE(π, e1) u ¬transE(π, e2)
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Translation of Sentential Standpoint-SROIQbs

We finish the description, by providing the translation of unnegated
and negated SROIQ axioms (ρ stands for an arbitrary RIA
r1◦...◦rmvr):

trans+(π, ρ) = ∀u.∃sπ
ρ .Self

trans+(π, CvD) = ∀u.(¬C t D)π

trans+(π, C(a)) = ∃u.
(
{a} u Cπ

)
trans+(π, r(a,b)) = ∃u.

(
{a} u ∃rπ.{b}

)
trans+(π,a .

= b) = ∃u.
(
{a} u {b}

)
trans−(π, ρ) = ∃u.

(
(∀rπ.¬{aπρ}) u (∃rπ1 ...∃rπm.{aπρ})

)
trans−(π, CvD) = ∃u.(C u ¬D)π

trans−(π, C(a)) = ∃u.
(
{a} u (¬C)π

)
trans−(π, r(a,b)) = ∃u.

(
{a} u ∀rπ.¬{b}

)
trans−(π,a .

= b) = ∀u.
(
¬{a} t ¬{b}

)
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Translation of Sentential Standpoint-SROIQbs

With all definitions in place, we obtain the desired result:

Theorem
Given φ ∈ S[SROIQbs], the set Trans(φ)

1. is a valid SROIQbs knowledge base,
2. is equisatisfiable with φ,
3. is of polynomial size wrt. φ, and
4. can be computed in polynomial time.
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Conclusions & Future Work

Representing multiple, possibly conflicting perspectives or
standpoints may be interesting in a variety of cases.

The standpoint framework

• Is versatile enough to represent partial truths and and complex
relations between standpoints.

• Is aligned with an established theory of language.
• Has simple and relatable syntax and semantics.
• We can show a (very) small-model property for some fragments,
with

• possibility to use base language reasoners with translations.
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Conclusions & Future Work

Future work:

• Explore the complexity of fragments allowing
• rigidity and
• a more liberal use of modal operators.

• Implementations and experiments to test actual runtimes.
• Conceptual modelling with standpoints for common Knowledge
Integration challenges.
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