
17.03.2022 GraphIK, Montpellier

İsmail İlkan Ceylan

1

The Complexity Landscape of Probabilistic Query
Evaluation

Overview

• Probabilistic databases: a gentle introduction

• The complexity of probabilistic query evaluation

• The dichotomy for unions of conjunctive queries over probabilistic databases

• Weighted model counting and approximability

• Ontology-mediated queries over probabilistic data

• Hardness of a simple unbounded query

• Homomorphism-closed queries: Datalog, RPQs, OMQs

• The dichotomy for homomorphism-closed queries over probabilistic graphs

• Open problems, challenges, outlook

2

3

Probabilistic Databases

Probabilistic Databases

4

StarredIn
deNiro taxiDriver
foster taxiDriver

thurman pulpFiction
travolta pulpFiction

DirectedBy
pulpFiction tarantino
taxiDriver scorsese

whiteRibbon haneke
winterSleep ceylan

∃x, y StarredIn(x, y) ∧ DirectedBy(y, tarantino)
true - false

Probabilistic Databases

5

StarredIn P
deNiro taxiDriver 0.7
foster taxiDriver 0.2

thurman pulpFiction 0.1
travolta pulpFiction 0.3

DirectedBy P
pulpFiction tarantino 0.8
taxiDriver scorsese 0.6

whiteRibbon haneke 0.7
winterSleep ceylan 0.8

∃x, y StarredIn(x, y) ∧ DirectedBy(y, tarantino)

0.296

Possible Worlds

6

StarredIn P
deNiro taxiDriver 0.7
foster taxiDriver 0.2

thurman pulpFiction 0.1
travolta pulpFiction 0.3

DirectedBy P
pulpFiction tarantino 0.8
taxiDriver scorsese 0.6

whiteRibbon haneke 0.7
winterSleep ceylan 0.8

A (tuple-independent) PDB defines a probability distribution over the possible worlds :

D

P(D) = ∏
t∈D

P(t)∏
t∉D

(1 − P(t))

D1 = {StarredIn(deNiro, taxiDriver), StarredIn(foster, taxiDriver)}

A PDB compactly encodes a set of possible worlds (i.e., classical databases):

P(D1) = 0.7 ⋅ 0.2 ⋅ (1 − 0.1) ⋅ (1 − 0.3) ⋅ (1 − 0.8)⋯

Query Evaluation in Probabilistic Databases

7

D3

D2

D1

P(D) = ∏
t∈D

P(t)∏
t∉D

(1 − P(t))

P(Q) = ∑
D⊧Q

P(D)

Query Evaluation in Probabilistic Databases

7

D3

D2

D1

P(D) = ∏
t∈D

P(t)∏
t∉D

(1 − P(t))

P(Q) = ∑
D⊧Q

P(D)

Possible world semantics:

• Views every PDB fact as an independent random variable.

• Closed-world: only accounts for the facts in the PDB, everything else has probability 0!

• Computationally demanding nevertheless - exponentially many possible worlds!

8

Probabilistic Query Evaluation
Problem: Probabilistic query evaluation

Input: A PDB and a Boolean query

Output:

Q

P(Q)

How Hard is Probabilistic Query Evaluation?

9

Q1 := ∃ x, y StarredIn(x, y) ∧ Movie(y)

9

Our focus is on data complexity: PQE() for some fixed query .Q Q

StarredIn P
deNiro taxiDriver 0.7
foster taxiDriver 0.2

thurman pulpFiction 0.1
travolta pulpFiction 0.3

Movie P
pulpFiction 0.8
taxiDriver 0.6

whiteRibbon 0.7
winterSleep 0.8

Actors P
deNiro 0.9
foster 0.8

thurman 0.7
travolta 1

Q2 := ∃ x, y Actor(x) ∧ StarredIn(x, y) ∧ Movie(y)

Computing is easy on any PDB, whereas computing is hard!P(Q1) P(Q2)

Complexity Background

10

Complexity Background

10

#P: Class of function problems recognized by a poly-bounded non-deterministic TM that outputs the number
of accepting computation paths.

Complexity Background

10

#P: Class of function problems recognized by a poly-bounded non-deterministic TM that outputs the number
of accepting computation paths.

#SAT is a canonical #P-complete problem:

Complexity Background

10

#P: Class of function problems recognized by a poly-bounded non-deterministic TM that outputs the number
of accepting computation paths.

#SAT is a canonical #P-complete problem:

Problem: #SAT

Input: A propositional formula

Output: The number of satisfying assignments, i.e., # .

ϕ

ϕ

Complexity Background

10

#P: Class of function problems recognized by a poly-bounded non-deterministic TM that outputs the number
of accepting computation paths.

#SAT is a canonical #P-complete problem:

Problem: #SAT

Input: A propositional formula

Output: The number of satisfying assignments, i.e., # .

ϕ

ϕ

#SAT remains #P-hard problem even for restricted fragments of propositional formulas.

Complexity Background

11

Complexity Background

11

PP: Class of languages recognized by a poly-bounded non-deterministic TM that that accepts an input iff more
than half of the computation paths do so.

Complexity Background

11

PP: Class of languages recognized by a poly-bounded non-deterministic TM that that accepts an input iff more
than half of the computation paths do so.

MAJSAT a canonical PP-complete problem:

Complexity Background

11

PP: Class of languages recognized by a poly-bounded non-deterministic TM that that accepts an input iff more
than half of the computation paths do so.

MAJSAT a canonical PP-complete problem:

Problem: MAJSAT

Input: A propositional formula

Output: Is the number of satisfying assignments to more than half?

ϕ

ϕ

Complexity Background

11

PP: Class of languages recognized by a poly-bounded non-deterministic TM that that accepts an input iff more
than half of the computation paths do so.

MAJSAT a canonical PP-complete problem:

Problem: MAJSAT

Input: A propositional formula

Output: Is the number of satisfying assignments to more than half?

ϕ

ϕ

The relation of these classes to well-known classes:

 P ⊆ NP ⊆ PP, PH ⊆ PPP = P#P ⊆ NPPP ⊆ PSpace

How Hard is Probabilistic Query Evaluation?

12

Qh := ∃ x, y C(x) ∧ R(x, y) ∧ D(x)

12

StarredIn P
deNiro taxiDriver 0.7
foster taxiDriver 0.2

thurman pulpFiction 0.1
travolta pulpFiction 0.3

Movie P
pulpFiction 0.8
taxiDriver 0.6

whiteRibbon 0.7
winterSleep 0.8

Actors P
deNiro 0.9
foster 0.8

thurman 0.7
travolta 1

 can be computed in polynomial time, whereas computing is #P-hard!P(Qh) P(Qnh)

Qnh := ∃ x, y C(x) ∧ R(x, y) ∧ D(y)

How Hard is Probabilistic Query Evaluation?

C(x) ∧ R(x, y) ∧ D(x)

C(a) ∧ R(a, y) ∧ D(a) C(b) ∧ R(b, y) ∧ D(b)

R(a, a) R(a, b) R(b, a) R(b, b)

13

How Hard is Probabilistic Query Evaluation?

C(x) ∧ R(x, y) ∧ D(x)

C(a) ∧ R(a, y) ∧ D(a) C(b) ∧ R(b, y) ∧ D(b)

R(a, a) R(a, b) R(b, a) R(b, b)

13

P(Qh) = 1 − ∏
u∈U

(1 − P(∃y C(u) ∧ R(u, y) ∧ D(u)))

P(C(u)) ⋅ P(∃y R(u, y)) ⋅ P(D(u))

1 − ∏
v∈U

(1 − P(R(u, v)))

How Hard is Probabilistic Query Evaluation?

C(x) ∧ R(x, y) ∧ D(x)

C(a) ∧ R(a, y) ∧ D(a) C(b) ∧ R(b, y) ∧ D(b)

R(a, a) R(a, b) R(b, a) R(b, b)

13

P(Qh) = 1 − ∏
u∈U

(1 − P(∃y C(u) ∧ R(u, y) ∧ D(u)))

P(C(u)) ⋅ P(∃y R(u, y)) ⋅ P(D(u))

1 − ∏
v∈U

(1 − P(R(u, v)))

 can be computed in polynomial time, but what makes computing hard?P(Qh) P(Qnh)

How Hard is Probabilistic Query Evaluation?

14

C(x) ∧ R(x, y) ∧ D(y)

C(a) ∧ R(a, y) ∧ D(y) C(b) ∧ R(b, y) ∧ D(y)

R(a, a) R(a, b) R(b, a) R(b, b)

! !

How Hard is Probabilistic Query Evaluation?

14

Different groundings share same D-atoms!

C(x) ∧ R(x, y) ∧ D(y)

C(a) ∧ R(a, y) ∧ D(y) C(b) ∧ R(b, y) ∧ D(y)

R(a, a) R(a, b) R(b, a) R(b, b)

! !

How Hard is Probabilistic Query Evaluation?

14

Different groundings share same D-atoms!

Sub-queries are NOT independent!

C(x) ∧ R(x, y) ∧ D(y)

C(a) ∧ R(a, y) ∧ D(y) C(b) ∧ R(b, y) ∧ D(y)

R(a, a) R(a, b) R(b, a) R(b, b)

! !

How Hard is Probabilistic Query Evaluation?

14

Different groundings share same D-atoms!

Sub-queries are NOT independent!

Clash!

C(x) ∧ R(x, y) ∧ D(y)

C(a) ∧ R(a, y) ∧ D(y) C(b) ∧ R(b, y) ∧ D(y)

R(a, a) R(a, b) R(b, a) R(b, b)

! !

How Hard is Probabilistic Query Evaluation?

15

Qh := ∃ x, y C(x) ∧ R(x, y) ∧ D(x) Qnh := ∃ x, y C(x) ∧ R(x, y) ∧ D(y)

C, D R

y
x

xy

R

C D

How Hard is Probabilistic Query Evaluation?

15

Hierarchical: either the covers of do not intersect, or if they do, one is contained in the other.x, y

Qh := ∃ x, y C(x) ∧ R(x, y) ∧ D(x) Qnh := ∃ x, y C(x) ∧ R(x, y) ∧ D(y)

C, D R

y
x

xy

R

C D

How Hard is Probabilistic Query Evaluation?

15

Hierarchical: either the covers of do not intersect, or if they do, one is contained in the other.x, y

Separator variable: for hierarchical queries, there is a seperator variable, decomposing the query
into independent subqueries.

Qh := ∃ x, y C(x) ∧ R(x, y) ∧ D(x) Qnh := ∃ x, y C(x) ∧ R(x, y) ∧ D(y)

C, D R

y
x

xy

R

C D

A Canonical Hardness Result

16

PQE () is #P-hard (unsafe). Qnh

A Canonical Hardness Result

16

Proof idea. We have the fixed query

…and need to show #P-hardness.

Just like #SAT, #DNF is also #P-hard, since

Counting the satisfying assignments of a bipartite monotone 2DNF is hard:

Qnh := ∃ x, y C(x) ∧ R(x, y) ∧ D(x)

#ϕ = 2n − #(¬ϕ)

ϕ = ⋁
1≤ j≤m,1≤k≤n

xj ∧ yk

PQE () is #P-hard (unsafe). Qnh

A Canonical Hardness Result

17

Proof sketch: Reduce from # , where . Define a PDB:

• For variables, add

• For variables, add

• For the clauses, add

Each world encodes an assignment of and has probability .

It is easy to verify that # .

ϕ ϕ = ⋁
1≤ j≤m,1≤k≤n

xj ∧ yk

x ⟨C(x1) : 0.5⟩, . . . , ⟨C(xm) : 0.5⟩

y ⟨D(y1) : 0.5⟩, . . . , ⟨D(yn) : 0.5⟩

⟨R(xj, yk) : 1⟩ for every clause (xj ∧ yk)

ϕ 0.5m+n

ϕ = P(Qnh) ⋅ 2m+n

PQE () is #P-hard (unsafe). Qnh

The Dichotomy of Probabilistic Query Evaluation

18

The Dichotomy of Probabilistic Query Evaluation

18

Theorem (Small dichotomy): Let be any conjunctive query without self-joins: Either is

hierarchical and hence is safe and PQE() is in PTIME; otherwise it is non-hierarchical, and

hence it is unsafe and PQE() is #P-hard.

Q Q

Q
Q

The Dichotomy of Probabilistic Query Evaluation

18

Theorem (Small dichotomy): Let be any conjunctive query without self-joins: Either is

hierarchical and hence is safe and PQE() is in PTIME; otherwise it is non-hierarchical, and

hence it is unsafe and PQE() is #P-hard.

Q Q

Q
Q

Theorem [Dichotomy, (Dalvi and Suciu, 2013)] For every UCQ query , it is either safe

and PQE() is in PTIME, or it is unsafe and PQE() is #P-hard.

This result is recently strengthened to PDBs where all facts have probabilities in : Unsafe
queries remain unsafe even under this restriction (Kenig and Suciu, 2021)!

Q
Q Q

{0,0.5,1}

The Dichotomy of Probabilistic Query Evaluation

18

Theorem (Small dichotomy): Let be any conjunctive query without self-joins: Either is

hierarchical and hence is safe and PQE() is in PTIME; otherwise it is non-hierarchical, and

hence it is unsafe and PQE() is #P-hard.

Q Q

Q
Q

Theorem [Dichotomy, (Dalvi and Suciu, 2013)] For every UCQ query , it is either safe

and PQE() is in PTIME, or it is unsafe and PQE() is #P-hard.

This result is recently strengthened to PDBs where all facts have probabilities in : Unsafe
queries remain unsafe even under this restriction (Kenig and Suciu, 2021)!

Q
Q Q

{0,0.5,1}

Effectiveness: This dichotomy is effective, i.e., there exists a (super-exponential) algorithm which

can determine whether a query is safe or unsafe. Exact complexity remains open.

19

Weighted Model Counting

Problem: WMC

Input: A propositional formula and a weight function

Output: The total weight of satisfying assignments to , given by .

ϕ w : 𝒜 → ℝ

ϕ ∑
ν⊧ϕ

w(ν)

Weighted Model Counting

20

Weighted Model Counting

20

Problem: WMC

Input: A propositional formula and a weight function

Output: The total weight of satisfying assignments to , given by .

ϕ w : 𝒜 → ℝ

ϕ ∑
ν⊧ϕ

w(ν)

Weighted Model Counting

20

Problem: WMC

Input: A propositional formula and a weight function

Output: The total weight of satisfying assignments to , given by .

ϕ w : 𝒜 → ℝ

ϕ ∑
ν⊧ϕ

w(ν)

We can establish a direct correspondence between WMC and PDBs.

Define the weight function as and assume that the weight function factorises as:

A propositional literal corresponds to a probabilistic fact in the PDB; a propositional assignment
corresponds to a possible world of the PDB.

w : 𝒜 → [0,1]

w(ν) = ∏
l∈ν

w(l) ∏
¬l∈ν

(1 − w(l))

Weighted Model Counting

21

Each query has a lineage (or provenance) representation:

 can be written as

This is a (positive) formula in DNF and the transformation is efficient in data complexity.

Probabilistic UCQ evaluation is essentially weighted DNF counting!

Q = ∃ x, y C(x) ∧ R(x, y) ϕQ = ⋁
u,v∈U

(C(u) ∧ R(u, v))

Problem: WMC

Input: A propositional formula and a weight function

Output: The total weight of satisfying assignments to , given by .

ϕ w : 𝒜 → ℝ

ϕ ∑
ν⊧ϕ

w(ν)

Approximability of Probabilistic Query Evaluation

22

Approximability of Probabilistic Query Evaluation

22

Randomized algorithm: Let be a function from a class of formulas to weights. Given

, a randomized algorithm is called an -approximation of if for all :

f : ℒ → ℝ
ϵ, δ > 0 ̂f (ϵ, δ) f ϕ ∈ ℒ

P(∣ ̂f(ϕ) − f(ϕ) ∣ ≤ ϵ) ≥ 1 − δ .

Approximability of Probabilistic Query Evaluation

22

Randomized algorithm: Let be a function from a class of formulas to weights. Given

, a randomized algorithm is called an -approximation of if for all :

f : ℒ → ℝ
ϵ, δ > 0 ̂f (ϵ, δ) f ϕ ∈ ℒ

P(∣ ̂f(ϕ) − f(ϕ) ∣ ≤ ϵ) ≥ 1 − δ .

FRPAS: An -approximation algorithm is called a fully polynomial approximation
scheme if the running time of algorithm is polynomial in , , .

(ϵ, δ) ̂f
̂f |ϕ | ϵ−1 log(δ−1)

Approximability of Probabilistic Query Evaluation

22

Randomized algorithm: Let be a function from a class of formulas to weights. Given

, a randomized algorithm is called an -approximation of if for all :

f : ℒ → ℝ
ϵ, δ > 0 ̂f (ϵ, δ) f ϕ ∈ ℒ

P(∣ ̂f(ϕ) − f(ϕ) ∣ ≤ ϵ) ≥ 1 − δ .

FRPAS: An -approximation algorithm is called a fully polynomial approximation
scheme if the running time of algorithm is polynomial in , , .

(ϵ, δ) ̂f
̂f |ϕ | ϵ−1 log(δ−1)

Approximability: Weighted DNF counting has an FPRAS (Karp, Luby, and Madras 1989) - so
does PQE on UCQs!

Inapproximability: Weighted CNF counting is NP-hard to approximate (Roth, 1996).

23

Probabilistic OMQ Evaluation
Problem: Probabilistic query evaluation

Input: A PDB and a Boolean OMQ

Output:

(Σ, Q)

P(Σ, Q)

Ontology-Mediated Queries

24

Query evaluation is model checking whereas OMQA evaluation is reasoning.

Semantics: iff for all where and , it holds that .

Convention: is called an ontology-mediated query (OMQ).

Notation: is written instead of .

(Σ, D) ⊨ Q I I ⊨ Σ I ⊨ D I ⊨ Q

(Σ, Q)

D ⊨ (Σ, Q) (Σ, D) ⊨ Q

Problem: Query evaluation

Input: A database , a Boolean query

Question: ?

D Q

D ⊨ Q

Problem: OMQA

Input: A database , a query , and an ontology

Question: ?

D Q Σ

(Σ, D) ⊨ Q

OMQ Evaluation in Probabilistic Databases

25

D3

D2

D1

P(Σ, Q) = ∑
D⊧(Σ,Q)

P(D)

P(D) = ∏
t∈D

P(t)∏
t∉D

(1 − P(t))

OMQ Evaluation in Probabilistic Databases

25

D3

D2

D1

P(Σ, Q) = ∑
D⊧(Σ,Q)

P(D)

The use of an ontology makes a difference:

• Facts alone are independent, but the rules in the ontology introduce dependencies.

• Open-world: Positive probability also for some facts not in the PDB.

• Computationally more demanding!

P(D) = ∏
t∈D

P(t)∏
t∉D

(1 − P(t))

Probabilistic Ontology-Mediated Query Answering

26

Q ∃x, y Student(x) ∧ Teaches(x, y) ∧ Course(y)

Σ GradStudent(x) → Student(x)

Student(x) → ∃z HasMentor(x, z)

D Lecturer(stefan) : 0.5, GradStudent(philippo) : 0.7,

Course(logic) : 0.8, Teaches(philippo, logic) : 0.4

Probabilistic Ontology-Mediated Query Answering

26

Q ∃x, y Student(x) ∧ Teaches(x, y) ∧ Course(y)

Σ GradStudent(x) → Student(x)

Student(x) → ∃z HasMentor(x, z)

D Lecturer(stefan) : 0.5, GradStudent(philippo) : 0.7,

Course(logic) : 0.8, Teaches(philippo, logic) : 0.4

The use of an ontology makes a difference:

• Dependence: Being a grad student implies being a student…

• Open-world: Philippo is a student with a positive probability.

• Computationally: Need to account for the entailments of the ontology!

How Hard is Probabilistic OMQ Evaluation?

27

How Hard is Probabilistic OMQ Evaluation?

27

Consider the OMQ , where…(Q, Σ)

Observation: Typical graph reachability query, i.e., a very simple recursive query.

Observation: Very little is known for queries beyond UCQs, particularly, for query languages that
feature recursion.

Fact: This query is already #P-hard!

Intuition: We can encode (a probabilistic version) of source-target connectivity.

Q C(t)

Σ C(x) ∧ R(x, y) → C(y)

Probabilistic Ontology-Mediated Query Answering

28

Problem: Directed source-target reliability

Input: A directed probabilistic graph where each edge holds
independently with probability , a source node , and a target node .

Output: Probability of having a directed -path

G = (V, E)
0.5 s t

st

Probabilistic Ontology-Mediated Query Answering

28

Proof idea: We construct the PDB as follows:

• For the source node , add the fact with probability 1.

• For each edge in , add the fact with probability 0.5.

The probability of the graph being -connected is equal to !

s C(s)

(u, v) ∈ E R(u, v)

G st P(Σ, Q)

Problem: Directed source-target reliability

Input: A directed probabilistic graph where each edge holds
independently with probability , a source node , and a target node .

Output: Probability of having a directed -path

G = (V, E)
0.5 s t

st

Can we generalize this observation to a large class of queries featuring recursion?

29

Homomorphism-closed Queries
Problem: Probabilistic query evaluation

Input: A PDB and an infinite unions of
conjunctive queries.

Output: P(Q)

Homomorphism-closed Queries over Probabilistic Graphs

30

Homomorphism-closed query: If satisfies and has a homomorphism to then also

satisfies .

• Generalize CQs and UCQs, but also regular path queries, Datalog, OMQs, etc.

• Do not allow for inequalities or negation

• A homomorphism-closed query is an infinite union of CQs, denoted UCQ .

• A UCQ query is bounded if the union is finite (it is a UCQ), unbounded otherwise
(i.e., reachability query is unbounded).

• Allows pretty wild things, e.g., “There is a path whose length is prime”

Probabilistic graphs: (Tuple-independent) probabilistic database over binary signatures, i.e.,
graphs with independent edge probabilities.

G Q G G′￼ G′￼

Q

∞

∞

The Dichotomy for Homomorphism-closed Queries

31

Could it be the case that all unbounded queries are hard?

Theorem [Hardness, (Amarilli and Ceylan, 2022)] Let be an unbounded UCQ query

 over binary signatures. Then, PQE() is #P-hard.

Q ∞

Q Q

The Dichotomy for Homomorphism-closed Queries

31

Could it be the case that all unbounded queries are hard?

Theorem [Hardness, (Amarilli and Ceylan, 2022)] Let be an unbounded UCQ query

 over binary signatures. Then, PQE() is #P-hard.

Q ∞

Q Q

The reduction is proceeds on two cases:

(1) unbounded queries with non-iterable edges: reduce from #PP2DNF,

(2) unbounded queries with no non-iterable edges: reduce from #U-ST-CON.

The reductions rely on model-theoretic properties, where (2) is the hard case:

• Based on the existence of certain minimal models with tight patterns.

• Minimal tight models can be used to code edges in the input graph.

The Dichotomy for Homomorphism-closed Queries

32

The Dichotomy for Homomorphism-closed Queries

32

(1) For any unbounded UCQ , we know that PQE() is #P-hard.

(2) All bounded queries are UCQs, they are already classified by Dalvi and Suciu

∞ Q

The Dichotomy for Homomorphism-closed Queries

32

(1) For any unbounded UCQ , we know that PQE() is #P-hard.

(2) All bounded queries are UCQs, they are already classified by Dalvi and Suciu

∞ Q

Theorem [Dichotomy, (Amarilli and Ceylan, 2022)] For every UCQ query over binary

signatures, it is either equivalent to a safe UCQ (hence bounded) and PQE() is in
PTIME, or it is not and PQE() is #P-hard.

This result is applies to the case where all facts have probabilities in : Unbounded
queries remain unsafe even under this restriction!

∞ Q
Q

Q

{0,0.5,1}

The Dichotomy for Homomorphism-closed Queries

32

(1) For any unbounded UCQ , we know that PQE() is #P-hard.

(2) All bounded queries are UCQs, they are already classified by Dalvi and Suciu

∞ Q

Effectiveness: Open - To be studied for syntactically well-defined fragments. If boundedness is
decidable (e.g., monadic Datalog), that gives a classification of safe/unsafe queries.

Theorem [Dichotomy, (Amarilli and Ceylan, 2022)] For every UCQ query over binary

signatures, it is either equivalent to a safe UCQ (hence bounded) and PQE() is in
PTIME, or it is not and PQE() is #P-hard.

This result is applies to the case where all facts have probabilities in : Unbounded
queries remain unsafe even under this restriction!

∞ Q
Q

Q

{0,0.5,1}

On The (In)approximability of Homomorphism-closed Queries

33

All bounded queries are UCQs…

 These queries admit an FPRAS, as does weighted DNF counting!

What is the status of unbounded UCQ queries?

 Largely inapproximable

 Complete characterization is lacking

 Contains some well-known open problems

 E.g., approximability status of #U-ST-CON is open

∞

34

Outlook

Open Problems, Challenges, Outlook

35

Probabilistic Query Evaluation

• Dichotomy for FO queries with negation?

• Dichotomy for homomorphism-closed queries on PDBs (with higher-arity
signatures)?

• Fine-grained approximability results (e.g., are all unbounded queries
inapproximable)?

• Extensions to include real variables: WMI generalizes WMC with real variables.

WMI on DNF structures admits an FPRAS (Abboud et al., 2020)!

• Most of the presented results hold even if we restrict probabilities to : Do the

results still hold when all probabilities are (counting models of a query)?

{0,0.5,1}
0.5

Open Problems, Challenges, Outlook

36

Alternative Data Models and Query Languages

• Open-world probabilistic databases (Ceylan et al., 2022): allow non-zero
probabilities for open facts, while assuming closed domain.

• Probabilistic databases with an infinite open-world assumption (Grohe and Lindner,
2019): allow open domains, i.e., infinite universe (domains, such as integers, reals).

• Ontology-mediated querying of data: relaxing the independence assumption,
integrating common-sense knowledge, open-domain reasoning.

Open Problems, Challenges, Outlook

37

Problems Beyond Probabilistic Query Evaluation

• Explaining answers to queries: The most probable database problem (Ceylan et
al., 2017): identify the most probable database instance, which entails the query.

• Other explainability problems (SHAP scores) relate to probabilistic query evaluation.

Systems and Implementations

• Exact approaches, largely based on knowledge compilation.

• Approached based on approximate model counting

• Systems dedicated to PDBs.

Thanks!

38

39

References
• N. Dalvi and D. Suciu. The dichotomy of probabilistic inference for unions of conjunctive queries. J. ACM,

2013.

• D. Suciu, D. Olteanu, C. Ré, and C. Koch, Probabilistic Databases, Synthesis Lectures on Data
Management, 2011.

• A. Amarilli, İ. İ. Ceylan. The dichotomy of evaluating homomorphism-closed queries on probabilistic graphs,
LMCS, 2022.

• B. Kenig, D. Suciu. A Dichotomy for the Generalized Model Counting Problem for Unions of Conjunctive
Queries, PODS, 2021.

• İ. İ. Ceylan, A. Darwiche, G. Van den Broeck, Open-world probabilistic databases: Semantics, algorithms,
complexity, AIJ, 2021.

• S. Borgwardt, İ. İ. Ceylan, and T. Lukasiewicz. Ontology-mediated queries for probabilistic databases. AAAI,
2017.

40

References
• R. Karp, M. Luby, and N. Madras. Monte-Carlo approximation algorithms for enumeration problems. J.

Algorithms, 1989.

• R. Abboud‚ İ. İ. Ceylan and R. Dimitrov. On the Approximability of Weighted Model Integration on DNF
Structures, KR 2020.

• İ. İ. Ceylan, S. Borgwardt, T. Lukasiewicz, Most Probable Explanations for Probabilistic Database Queries,
IJCAI 2017.

• D. Roth. On the Hardness of Approximate Reasoning. AIJ, 1996.

• M. Grohe, P. Lindner, Probabilistic databases with an infinite open-world assumption, PODS 2019.

