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Sentential First Order Standpoint Logic (FOSL):

Definition 1 (Sentential formula):
Let ¢ be a formula of FOSL. We say that ¢ is sentential iff for all subformulas of ¢ of the form [],y, all variables

occurring in y are bound by a quantifier.

s [Vx Tumor (x)— (Process(x) V Tissue(x))] Q

<

2.O07r[TIAQRIT]

3.VxOp[Tissue(x)]—0O+[Tissue(x)]

X

Theorem 1 (Small Model Property):
A sentential FOSL formula ¢ is satisfiable iff it has a model with at most | ¢ | precisifications. That is, for

sentential FOSL, satisfiability and I¢pl-satisfiability coincide.
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Sentential Fragments

(n-)Equisatisfiable Translation to Plain First-Order Logic

Trans, (¢) =

trans, (m, P(t1, ..

transn(w =
trans,, (7, 11 A1) = trans,(, ¢1) A trans, (7, o)
trans, (, ‘v’azw = Vz(trans,(m,¥))

/
trans,, (7',

= N\..c . (transg (7, e) — trans,(m,Y))

transg (m,s) = s,
transg (m,e1 Uey) = transg(m, e1) V transg(m, e3)
transg (m,e; Ney) = transg(m, e1) A transg(m, )
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Trans, (¢) = N,cp. trans,(m, @) A N\ cip *nr, Theorem:
A formula ¢ is n-satisfiable in FOSL if and only if

transy, (m,P(t1,...,tk)) = Px(t1,...,tx) Trans (@) is satisfiable in first-order logic.

= —trans, (7, V)

)

trans,, (w, Y1 A o) = trans, (m, ¥1) A trans, (m, Ys)

trans, (7, Vxy) = Vx(trans,(m, 1)) Lemma:
e ) =

trans, (7,

/
trans,, (7,

Arerr. (transg(m, e) — trans, (m,)) Let F be a fragment of FOL. Then the
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¢ has the same complexity as F' (if at least NP)

transg (7, s
transg (7, e; U eg

transg (m,e; Ney) = transg(m,e1) A transg(m, es)

) =
) =
) =
) =

transg (m,e1 \ e2) = transg(m,e1) A —transg(m, e2)




Modelling Multiple Perspectives with Standpoint Logics | Page 16

Reasoning with Standpoint-Enhanced DLs

Standpoint-SROZ Qb



Modelling Multiple Perspectives with Standpoint Logics | Page 16

Reasoning with Standpoint-Enhanced DLs

Standpoint-SROZ Qb

The SROZQ family serves as the logical foundation of popular ontology languages like OWL 2.



Modelling Multiple Perspectives with Standpoint Logics | Page 16

Reasoning with Standpoint-Enhanced DLs

Standpoint-SROZ Qb

The SROZQ family serves as the logical foundation of popular ontology languages like OWL 2.

SROIQ is a semantic fragment of FOL, so we can leverage the previously established results:



Modelling Multiple Perspectives with Standpoint Logics | Page 16

Reasoning with Standpoint-Enhanced DLs

Standpoint-SROZ Qb

The SROZQ family serves as the logical foundation of popular ontology languages like OWL 2.
SROIQ is a semantic fragment of FOL, so we can leverage the previously established results:

e Favorable and tight complexity results for reasoning in Standpoint-STROZ b,



Modelling Multiple Perspectives with Standpoint Logics | Page 16

Reasoning with Standpoint-Enhanced DLs

Standpoint-SROZ Qb

The SROZQ family serves as the logical foundation of popular ontology languages like OWL 2.
SROIQ is a semantic fragment of FOL, so we can leverage the previously established results:

e Favorable and tight complexity results for reasoning in Standpoint-STROZ b,

* Practical reasoning in “Standpoint-OWL" with the translation & highly optimized OWL 2 DL
reasoners off the shelf.



Modelling Multiple Perspectives with Standpoint Logics | Page 16

Reasoning with Standpoint-Enhanced DLs

Standpoint-SROZ Qb

The SROZQ family serves as the logical foundation of popular ontology languages like OWL 2.
SROIQ is a semantic fragment of FOL, so we can leverage the previously established results:
e Favorable and tight complexity results for reasoning in Standpoint-STROZ b,

* Practical reasoning in “Standpoint-OWL" with the translation & highly optimized OWL 2 DL
reasoners off the shelf.

1SROIQbs is an extension of SROIQ allowing safe Boolean role expressions oversimple roles at no complexity cost
(Rudolph, Krotzsch, and Hitzler 2008)
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. is a valid SROZQbs knowledge base,
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Theorem: Given (P - S[SROIQbJI the set TranS(SO)
1. is a valid SROZQbs knowledge base,

2. Is equisatisfiable with o,

3. is of polynomial size wrt. ¢, and SROIQbs

TET(Vu.MFR_1)U (7 (Clairiere 1UWoodland 1)
LUForest 1)n(Vu.MFR 2)U (7 (Clairiere 21
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Theorem: Given (P - S[SROIQbJI the set TranS(SO)
1. is a valid SROZQbs knowledge base,

. IS equisatisfiable with o,

SROIQbs

TET(Vu.MFR_1)U (7 (Clairiere 1UWoodland 1)
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2
3. is of polynomial size wrt. ¢, and
4

. can be computed in polynomial time.

Standpoint SROIQbs

rrR[Clearing LU Woodland E Forest]

O [Moadiand = Foresi Trans, (Vu.MGP 1)U (7Woodland 1UForest 1)n-
rruce [Clearing E Woodland] <$mmmmmm——) (Vu.MGP _2)U (7Woodland 2UForest 2)n..n

Oeroee[Clearing (c) ] (Vu.MGP_n)U (77Woodland nlUForest n)n..
rucp [Woodland ()] nvu.M*1nvu.M*2n..nvu.M*n..

Polynomial Equisatisfiable Translation e O\WL2 Reasoners
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OWL2 Extension and support in Protége (current work)

Standpoint Reasoning Support for OWL?2

(in collaboration with Florian Emmrich, Sebastian Rudolph and Hannes Strass)

Standpoint modalities can be introduced at the axiom level using
OWL2 annotations.

standpoint metégé (plugin)

¢ Annotated Standpoint OWL2 axioms <—> Standpoint-free OWL2 translation

%* Background use of installed reasoners in Protégé.

Future work: production of (Standpoint-SROIQ) KBs for testing and didactic purposes.
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Tractable Reasoning in S,

Most axioms from the example require a monodic fragment. EQ.:
Vx [p (Ty productOf(x, y) A Tumor(y)) < O Tumor(x)

&< is a lightweight description logic —— Large and widely used ontologies

S« is its monodic standpoint extension

e We preserve &< "'s favourable PTime standard reasoning.

 \We must sacrifice empty standpoints, rigid roles, and nominals.
e \We adapt techniques based on “quasi-models” for modal logics.
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Tableau Algorithm for S,

Local labelling (LL) rule: Global non-generating (GN) rules:
R< If {z:s, 2':s=s'} C Shbut(z:s") ¢85, R, If (z:C)e8(e), (¢, 2,e,z, R) € R, and AR.C € Cx, but (z': AR.C) € 8(¢&’),
thenset S := SU {z:s'}. then set 8$(¢’) := 8(¢’) U {z': AR.C}.
Local content (LC) rules: R, If {z:a, z: R(a,b)} C 8(¢) and (' : b) € 8(¢’), but (¢, z,¢’,xz, R) ¢ R, then
RrIf {z:C, x:D}CS, (z:CND)&S and set 8(¢”) := 8(e")U{z: T}U{z:s|s € ste(x)}
CnNDeCk,thensetS := SU{z:CnN D} and R := RU{(e,z,¢',z, R) }
R-If {z:C,2:CCD}YCS but (z:D)¢S, RyIf{z:b, x:R(a,b)} C8(c)and (z':a) € 8(¢'), but (¢',z,¢,z, R) ¢ R, then
~ thensetS := SU{z: D}. set §(e’) = S8(e')U{z: T}U{z:s|s € ste(x)}
RoIf {z:0®, 2’ :s} C Shbut (z':P) & S, and R := RU{(¢',z,¢,z, R)}.
thenset S := SU {z': ®}. R/ If (z:3R.C) € 8(¢), (C,ste(x),z') € L(¢') with € #&’ or z =2z, but
R, If (z:G) € Sbut (z': G) ¢ S, (&, z,¢", 2", R) ¢ R whenever (C,ste(z),z") € £(¢") and e # " or =27,
thenset S := SU{z": G}. thenset R := RU{(e,z,e, 2", R) }.
R, If{z:a, z:C(a)} C Sbut(z:C) ¢ S, Global generating (GG) rule:
thenset S := SU{x:C}. R5 If(z: dR.C) € §(¢), but
Ry If (x: 0,C) € Sand {z:s, 2’ : C} € S forall (e,z,e",2",R) ¢ R Wheneve?r (C,ste(z),z") € L(e") and e # " or z =2z,
2’ in S, then create a fresh variable 2’ and set then create ¢’ and a fresh variable z’, and then set £(&') := {(C,st.(z),z")},

S:=8u{z':C,z':s, o' % 2': T} $(e):=8y u{a":C, - TYu{z":s|s€st.(x)}, R:=RU{(e,z,e. x| R)}.
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a,s
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Tableau Algorithm for S,

R, If{z:a, z:C(a)} C Shbut (z:C) ¢ S,
Example: then set S := SU {z:C}.
C C3R.D |
s[a' : OSC]
(@)
a
Vs ——- - mmmmmmm e
a,s
Vs =---@------mmmmmmmmmoo—oo—oo-.
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Tableau Algorithm for S,

Ry If (x: O,0) € S and {z' :'s, z': C} ¢ S forall
Examp|ei x’ in S, then create a fresh variable z’ and set
C C 3R.D S:=8SuU{z':C, z':s, 2" :%, 2" : T}
S[CL : OSC]
(a)
a
Uy —--- - ool
a? S7 OSC
Vg —mm M mmmmmm e
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Tableau Algorithm for S,

Ry If (x: O,0) € S and {z' :'s, z': C} ¢ S forall
Examp|ei x’ in S, then create a fresh variable z’ and set
C C 3R.D S:=8SuU{z':C, z':s, 2" :%, 2" : T}
S[CL : OSC]
(a)
a
Uy —--- - ool
a? S7 OSC
Vg —mm M mmmmmm e
Sa Ca
Y T e R ———
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Tableau Algorithm for S,

Example:
C CdR.D
sla : OsC]
(@)
a
R . e
a’7s7<>SC
R i
S,C,
T R e E T
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Tableau Algorithm for S,

R, If (x:G) € Sbut(:‘z:':G)'gé S,
Example: thenset S := SU {z': G}.
C CdR.D
S[CL : OSC]
(@)
a
Uy ==--fpommmmmmm e o
a’? S7 OSC
e R e P
S, Ca
U] —-- - mmmmmmmmmmmmmmme oo
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R-If {:C,2:CCD}CS but (z:D) ¢S,

Example: then set S := S U {z: D}.
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S[CL : OSC]
(@)
a
R . e
a’? S7 <>SC
R R i
s,C,a ,AR.D
Ul —-- - -mmmmmmmmmmm et




Modelling Multiple Perspectives with Standpoint Logics | Page 23

Tableau Algorithm for S,

Example:
C C3JR.D
s[a' : OSC]
(@)
a
Uy =—---@-mmmmmmm e mmm e Do
a’? S7 OSC
R S R
s,C,a ,AR.D
U] === mmmmmmm e mmm e




Modelling Multiple Perspectives with Standpoint Logics | Page 23

Tableau Algorithm for S,

Example:
C C3JR.D
s[a' : OSC]
(@)
a
Uy =—---@-mmmmmmm e mmm e Do
a’? S7 OSC
R S R
s,C,a ,AR.D
U] === mmmmmmm e mmm e




Modelling Multiple Perspectives with Standpoint Logics | Page 23

Tableau Algorithm for S,

R5 If(z: dR.C) € §(¢), but

Example: (e,z,e", ", R) ¢ R whenever (C,stc(x),z") € L(¢") ande #€" orx =2,
C C 3R.D then create €’ and a fresh variable z’, and then set £(¢") := {(C,st.(z),z')},
Ja Z—OSC] S(e):=8Fu{z':C, 2":TYU{z":s|s€st.(x)}, R:=RU{(e,z,e,x, R)}.

a

Uy =—=- - -mmmmmm e m e e
a'7s7 <>SC

Vg —-—--@--mmmmmm e m e mmmm oo -
s,C,a ,AR.D
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Tableau Algorithm for S,

R5 If(z: dR.C) € §(¢), but

Example: (e,z,e", 2" R) ¢ R whenever (C,st.(z),z") € L(¢") and e #€&" or x = 2",
C C 3R.D then create €’ and a fresh variable z’, and then set £(¢") := {(C,st.(z),z')},
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Tableau Algorithm for S,
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C C 3R.D then create €’ and a fresh variable z’, and then set £(¢") := {(C,st.(z),z')},
a __<> C] S(e):=8Fu{a:C, 2. Tu{a':s|s€est(x)}, R:=RU{(e, z,e z, R)}.
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a T
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s,C,a ,AR.D

T e e
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Models and Quasi-Models for S,

Example:
CC3R.D
s[a' : OSC]

(a) (D7 S, UQ)

____... ___________________________ , _______________________




Modelling Multiple Perspectives with Standpoint Logics | Page 24

Models and Quasi-Models for S,

Example: Quasi-model:
C CdR.D
s[a' : OSC]
(@) (D,s,v2)
a T
Uy == - mm e @- - ool
a,s, <>SC 1,s
Us ~--- - mmmm e @- 1o
s,C,a
I Tt e
s, D
V) =====|eercececcccccccccccce - @--------mcccccc e~




Modelling Multiple Perspectives with Standpoint Logics | Page 24

Models and Quasi-Models for S,

Example: Quasi-model:
C CdR.D
s[a' : OSC]
(@) (D,s,v2)
a T
Vs - mmm el @- -t
a,s, <>SC 1,s
Us ~--- - mmmm e @- 1o
s,C,a
I Tt e
s, D
V) =====|eercececcccccccccccce - @--------mcccccc e~

Model:



Modelling Multiple Perspectives with Standpoint Logics | Page 24

Models and Quasi-Models for S,

Example: Quasi-model:
C CdR.D
s[a' : OSC]
(@) (D,s,v2)
a T
Vs - mmm el @- -t
a,s, <>SC 1,s
Us ~--- - mmmm e @- 1o
s,C,a
I Tt e
s, D
V) =====|eercececcccccccccccce - @--------mcccccc e~

Model:

M= (A11,0,y)



Modelling Multiple Perspectives with Standpoint Logics | Page 24

Models and Quasi-Models for S,

Example: Quasi-model:
C CdR.D
s[a' : OSC]
€1 = (a’) (D757 UQ)
a T
(O . el @--------"-"-----mmmm -
a,s, <>SC 1,s
(e e
s,C,a
R s L T B T TR
s, D
V) =====|eercececcccccccccccce - @--------mcccccc e~

Model:

M= (A11,0,y)



Modelling Multiple Perspectives with Standpoint Logics | Page 24

Models and Quasi-Models for S,

Example: Quasi-model:
C CdR.D
sla : OsC]
e = (a) 6, = (D,s,v2)
a T
Uy =-- - m oo e @- - e
aasaosc 1,s
. @1
s,C,a
I N e e
s, D
V) =====|eercececcccccccccccce - @--------mcccccc e~

Model:

M= (A11,0,y)



Modelling Multiple Perspectives with Standpoint Logics | Page 24

Models and Quasi-Models for S,

Example: Quasi-model:
C CdR.D
s[a' : OSC]
e; = (a) e, = (D,s,v5)
a T
V« L 4 @
a,s, <>SC 1,s
TRy YAty S A TSRy @- - -
s,C,a
I Tt e
s, D
V) =====|eercececcccccccccccce - @--------mcccccc e~

Model:

M= (A11,0,y)



Modelling Multiple Perspectives with Standpoint Logics | Page 24

Models and Quasi-Models for S,

Example: Quasi-model:
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Models and Quasi-Models for S,

E)éa[n%el; Quasi-model. Model.
a: 0,C] M = (A TLo,7)
€ = (a) €, = (D,s,v2)
a T




Modelling Multiple Perspectives with Standpoint Logics | Page 24

Models and Quasi-Models for S,

Example: Quasi-model:
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Vs Ga QT T
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Models and Quasi-Models for S,
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Models and Quasi-Models for S,

E)éa[n%el; Quasi-model: Model:
s[a': OSC] M = <A,H,G,}/>
61 — (a) 62 — (D,S, ’UQ) 61 62 A/
I1
(U ‘a ’T T Qe ® T
a,s, <>SC T,s
Us | T e Qe ® P "
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Implementations for S, (current work)

A Datalog-Based Subsumption Calculus for S« o

(in collaboration with Sebastian Rudolph and Hannes Strass)

e Main reasoning tasks in S, can be reduced to concept subsumption
e We currently develop a complexity-optimal Datalog-Based Calculus

e The calculus can be straightforwardly implemented —

suitable for highly optimised Datalog engines

Future Work: OWL2 EL integration, generation of Standpoint Knowledge Bases
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Implementations for S, +, (current work)

Supporting LTL+Standpoints in the BLACK Satisfiability Checker

(in collaboration with Nicola Gigante and Tim Lyon)

e BLACK uses an incremental SAT encoding of a (one-pass) tableau for LTL
o Following similar principles as for S, we extend their tableau:

e \We produce a constraint system per time-point

e We adjust the SAT encoding to the CS using our established translations

Notice: Empty standpoints can be introduced at no cost
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e Standpoint Logics are well-behaved
- Techniques for sentential and monodic fragments

e The complexity of the standpoint structures can be adjusted: from standpoint names
to standpoint expressions.

-  What about more complex languages?

e [For now we have looked into the complexity of syntactic fragments of FOL, what
about semantic fragments?

Future Work
e |Implementations, tutorials and pedagogical resources

e Generalising results to “set-based” modal logics






