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Preliminaries

Definition: Rules
A rule is a first-order formula of the form

∀~X∀~Y
∧n

i=1
Pi(~Xi, ~Yi)→ ∃~Z.P(~Y,~Z)

where P is an IDB predicate, ~Y ⊆ ~X, and ~Xi ⊆ ~X for all 1 ≤ i ≤ n

W.l.o.g. Assumptions
Rules feature exactly one atom in the head.
All rules are EDB or IDB:
I IDB rule: all predicates in the body are IDB.
I EDB rule: all predicates in the body are EDB.

We assume that existentially quantified variables do not reoccur
across di�erent rules.
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Preliminaries

Definition: Rule Application
Consider a rule

ρ =
∧n

i=1
Pi(~Xi, ~Yi)→ ∃~Z.P(~Y,~Z),

a fact set F , and a homomorphism h :
∧n
i=1 Pi(~Xi, ~Yi)→ F .

We define Appl(F , ρ,h) = F ∪ {hs(P(~Y,~Z))} where hs is the safe
extension of h.
We define Appl(F , ρ) as the set of facts that includes Appl(F , ρ,h)
for all h :

∧n
i=1 Pi(~Xi, ~Yi)→ F .
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Execution Graphs: Definition

Definition: Execution Graphs
An execution graph for a rule set R is an acyclic digraph G = (V, E,r)
such that V is a finite set of vertices, E is a finite set of edges of the
form v →i u with v,u ∈ V and i ≥ 1, and the following hold:

The function r maps every vertex in V to some rule in R.
If r(v) is an EDB rule for some v ∈ V, then v is a root in G.
Consider some v ∈ V with r(v) an IDB rule of the form
α1 ∧ . . . ∧ αn → ∃~y.β. Then, for every 1 ≤ i ≤ n, there is exactly one
vertex u ∈ V with u→i v ∈ E.

Remark
Consider an execution graph G for a rule set R.

For a database D, we define the fact set G(D).
The execution graph G is a trigger graph for R if, for all BCQs γ,

R∪D |= γ ⇐⇒ G(D) |= γ.
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Execution Graphs: An Example

Example
Consider the database D = {a(t),b(t), c(t)} and the rule set R:

ρ1 = a(x)→ A(x) ρ2 = b(x)→ B(x) ρ3 = c(x)→ C(x)
ρ4 = A(x)→ B(x) ρ5 = B(x)→ C(x) ρ6 = A(x)→ C(x)

Then, the following structure is an execution graph for R:

u1 : ρ1 u2 : ρ2 u3 : ρ3

v1 : ρ4

v2 : ρ5

w : ρ5

1

1

1
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Evaluating Execution Graphs: Definition

Definition
Consider an execution graph G = (V, E,r) for a rule set R, and a
database D. Then, for a vertex v ∈ V, we inductively define the fact set
v(D) as follows:

Case 1: if v is a root in G, then v(D) = Appl(D,r(v)).
Case 2: r(v) is an IDB rule of the form α1 ∧ . . . ∧ αn → ∃~y.β and, for
every 1 ≤ i ≤ n, there is exactly one vertex ui ∈ V with ui →i v ∈ E.
Then, v(D) is the set that contains hs(β) for every homomorphism
h such that h(αi) ⊆ ui(D) for all 1 ≤ i ≤ n.

We define G(D) =
⋃
v∈V v(D) ∪ D.

Remark
Consider a rule set R, a database D, and an execution graph G for R.
Then, we can compute G(D) if G is finite.
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Evaluating Execution Graphs: Example

Example
Consider the database D = {a(t),b(t), c(t)} and the rule set R:

ρ1 = a(x)→ A(x) ρ2 = b(x)→ B(x) ρ3 = c(x)→ C(x)
ρ4 = A(x)→ B(x) ρ5 = B(x)→ C(x) ρ6 = A(x)→ C(x)

Then, the following structure is an execution graph for R:

u1 : ρ1 u2 : ρ2 u3 : ρ3

v1 : ρ4

v2 : ρ5

w : ρ5

1

1

1

u1 : ρ1 : {A(t)} u2 : ρ2 : {B(t)} u3 : ρ3 : {C(t)}

v1 : ρ4 : {B(t)}
v2 : ρ5 : {C(t)}

w : ρ5 : {C(t)}

To obtain G(D), we inductively compute v(D) for each vertex v.
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Trigger Graphs: Definition

Definition: Trigger Graphs
An execution graph G for a rule set R is a trigger graph for R if, for all
databases D and all queries γ, we have that R∪D |= γ i� G(D) |= γ.

Example
Consider the rule set R:

ρ1 = a(x)→ A(x) ρ2 = b(x)→ B(x) ρ3 = c(x)→ C(x)
ρ4 = A(x)→ B(x) ρ5 = B(x)→ C(x) ρ6 = A(x)→ B(x)

Then, the following structure is a trigger graph for R:

u1 : ρ1 u2 : ρ2 u2 : ρ2

v1 : ρ4

v2 : ρ5

w : ρ5

1
1

1
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Trigger Graphs: Definition

Definition: Trigger Graphs
An execution graph G for a rule set R is a trigger graph for R if, for all
databases D and all queries γ, we have that R∪D |= γ i� G(D) |= γ.

Example
Consider the rule set R:

ρ1 = a(x)→ A(x) ρ2 = b(x)→ B(x) ρ3 = c(x)→ C(x)
ρ4 = A(x)→ B(x) ρ5 = B(x)→ C(x) ρ6 = A(x)→ B(x)

The following structure G is NOT a trigger graph for R:

u1 : ρ1 u2 : ρ2 u2 : ρ2

v1 : ρ4

v2 : ρ5
1 1

For instance, R∪ {a(t)} |= C(t) whilst G({a(t)}) 6|= C(t).
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Trigger Graphs: Output

Remark
The output of a trigger graph G for a rule set R on an input database D may not be a
model for R∪D.

Example
Consider following rule set R:

ρ1 = r(x) → ∃y.R(x, y) ρ2 = R(x, y) → ∃z.R(y, z) ρ3 = R(x, y) ∧ R(y, z) → R(y, x)

Then, the following structure G is a trigger graph for R:

u1 : ρ1

v2 : ρ2

v3 : ρ3

1

1

2

The set G(r(a)) = {r(a),R(a, n),R(n,m),R(n, a)} is not a model for R∪ {r(a)}.

Proposition
Given a trigger graph G for a rule set R and a database D, the core of G(D) is a finite
universal model for R∪D.
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Rule Sets that Admit Trigger Graphs

Remark
Not all rule sets admit (finite) trigger graphs. For instance, neither
{R(x, y)→ ∃z.R(y, z)} nor {R(x, y)∧R(y, z)→ R(x, z)} admit such graphs!

Theorem
A rule set admits a trigger graph i� it is bounded.

Proof Sketch:
=⇒ If a rule set R admits a trigger graph G of depth k, then R is

bounded by k.
⇐= If a rule set R is bound by k, then we can construct a “maximal”

trigger graph of depth k that derives all of the facts produced by
the chase up to the k-th step.

Corollary
A rule set admits a trigger graph i� it is FUS and it terminates with
respect to the restricted chase.
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Trigger Graphs for Linear Rule Sets

H(R) is a maximal set of facts formed over the predicates in R,
where no ϕ1 ∈ H(R) is pattern isomorphic to another ϕ2 ∈ H(R).
Let chaseGraph(R,D) as the acyclic graph having as nodes the
facts in the chase of (R,D) and having an edge from ϕ1 to ϕ2
labeled with rule ρ ∈ R if ϕ2 is obtained from ϕ1 by executing ρ.
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Minimizing Trigger Graphs for Linear Rule Sets

Consider a linear rule set R, a trigger graph G = (V, E,r) for R, and some u, v ∈ V.

Definition

For a database D, a homomorphism from u(D) into v(D) is preserving if it is the
identity over the set of nulls in any fact set associated with an ancestor of u.
The vertex v ∈ V is dominated by another vertex u ∈ V if there is a preserving
homomorphism from v({ϕ}) to u({ϕ}) for all ϕ ∈ H(P).

Lemma
There is a preserving homomorphism from u(D) into v(D) for all databases D i� there is
a preserving homomorphism from u({ϕ}) into v({ϕ}) for all ϕ ∈ H(P).

Lemma
Assume that v is dominated by u and u is not a successor of v. Then, the following
transformation produces a trigger graph for R:

Add an edge u →1 w for every edge of the form v →1 w ∈ E.
Remove the vertix v and all edges where this vertex occurs from G.

The above process can be exhaustively repeated to obtain a minimal trigger graph for R.
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Trigger Graphs: Practical Contribution

Empirical Claim
Trigger graphs can be used to develop a very e�cient implementation
of the chase algorithm.

Some (cherry-picked) results that support our claim:

VLog RDFOx GLog
LUBM 170s 115s 16s
DBpedia 41s 198s 19s
Claros 431s 2373s 122s

Remarks
The above theories only contain Datalog rules.
When using trigger graphs, we only remove duplicates at the end.
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Trigger Graphs: Future Work

Remark
We can only compute finite trigger graphs for bounded rule sets. For
instance, rule sets as simple as {R(x, y)→ ∃z.R(y, z)} nor
{R(x, y) ∧ R(y, z)→ R(x, z)} do not admit trigger graphs!

One possible solution is to redefine the notion of trigger graphs:

Redefinition
An (possibly cyclic) execution graph G for a rule set R is a trigger graph
if R∪D |= γ i� G(D) |= ϕ for all databases D and facts ϕ.

Hypotheses
All FUS rule sets admit acyclic trigger graphs.
Every DL/BTS rule set admits a trigger graph G in which all vertices
occurring in a cycle are labelled with Datalog rules.

“DL = Description Logics” and “BTS = Bounded Treewidth Set”
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Trigger Graphs: Future Work

The use of cyclic trigger graphs can allow us to implement well-known
optimisations:

Example: Computing Transitivity
Consider the rule set

R = {ρ1 = r(x, y)→ R(x, y),
ρ2 = R(x, y) ∧ R(y, z)→ R(x, y)}.

Then, G = (V, E,r) is a trigger graph for R.

V = {v1, v2}
E = {(v1, v1, v2), (v1, v2, v2)}
r = {v1 7→ ρ1, v2 7→ ρ2}
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Thank you for your attention!
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