
L3 Internship:

Implementing the Core Chase for Horn-ALCH

Maël Abily
Computer Science Department

ENS de Lyon

Supervised in Montpellier from 31/05/2021 to 09/07/2021 by:
Jean-François Baget and David Carral

Permanent researchers at INRIA

1

CONTENTS 2

Contents

1 Introduction 2

2 Preliminaries 3

3 The Chase 5

4 The Merge Chase 8

5 Conclusion 14

1 Introduction

During my studies at ENS de Lyon, I did a research internship in computer science for six weeks. I did
this internship at INRIA, in the GRAPHIK team (GRAPHIK means Graphs for Inferences on Knowledge),
supervised by Jean-François Baget and David Carral. I thank them for the time they took with me for
these six weeks to help me in my research and answer all the questions I had. I also thank the whole
GRAPHIK team which welcomed and integrated me for this internship. GRAPHIK’s research work focuses
on databases thanks to knowledge representation and reasoning (knowledge means set of data). The subject
of my internship, entitled “Implementing the Core Chase for the Description Logic ALC”, looks for an
algorithm that reasons on a specific type of data to answer an important problem in database theory.

Knowledge representation and reasoning is the field of artificial intelligence dedicated to representing
information about the world in a form that a computer system can use to solve complex tasks such as
diagnosing a medical condition or having a dialog in a natural language. The conjunctive query entail-
ment is an important issue in knowledge representation and reasoning. This problem can be described
in a first order logic background. We work on conjunctive formulas that are formulas constructed only
with conjunction and existential quantification; and boolean conjunctive queries (BCQ) that are conjunc-
tive formulas without free variables. The answer of a BCQ is either yes or no. For example, the formula
∃y.Human(y)∧ IsTheBrotherOf(Pierre, y) is a BCQ asking if Pierre has a human brother. We also work on
existential rules that are formulas of the form ∀~x.∀~y.(A(~x, ~y)→ ∃~z.B(~x, ~z)) where ~x, ~y, and ~z represent tuples
of variables. A knowledge base K will then be a set of existential rules and conjunctive formulas. Note that in
practice, a lot of formulas representing data can be expressed via conjunctive formulas and existential rules.
We can now define the problem of conjunctive query entailment: Given a knowledge base K and a BCQ Q de-
termine if K entails the query Q. More precisely, the input is the knowledge base K and the BCQ Q, and the
output is yes if and only if K entails Q under standard first order logic semantics. For example, the knowledge
base K = {Mother(Marie),∀x.Mother(x) → Parent(x),∀x.(Parent(x) → ∃y.IsTheParentOf(x, y))} entails
the query Q = ∃x.IsTheParentOf(Marie, x). We usually use reasoning algorithms to answer the conjunctive
query entailment. Note that the problem of conjunctive query entailment is undecidable ([2], theorem 4).

A knowledge base K entails a BCQ Q if every model of K is a model of Q. However, we cannot compute
all models because K can have an infinite number of them. To deal with this problem, we can compute an
universal model of the knowledge base K. That is a model of K that is entailed by all the models of K. If
a such model U exists, we just need to show that U entails Q to conclude that K entails Q. Hence, to solve
query entailment, we just have to compute a finite universal model U for a given input K and check if U
entails Q. To compute these models, we can use an algorithm called the chase. In this document, we present
several variants of this algorithm: the oblivious chase, the restricted chase and then the core chase. The first
two chase are defined in [3] and the last chase is defined in [4]. The chase can be seen as a two-step process.
First, it repeatedly applies rules to the initial set of conjunctive formulas (and the core chase sometimes
removes redundant conjunctive formulas). Then it looks for an answer to the BCQ in this saturated set of
conjunctive formulas.

The third chase is the best in the sense that it is the only one that terminates if and only if there exists
a finite universal model. To remove redundant conjunctive formulas, the core chase computes the core of a
set of conjunctive formulas (that is the smallest subset logically stronger). Nevertheless, in order to compute

2 PRELIMINARIES 3

the core, we have to look for global endomorphisms in the set of conjunctive formulas produced by the
core chase. The core chase is then more complicated to implement since global endomorphisms are hard to
compute. We will then focus on a restricted type of knowledge base (that is called Horn-ALCH knowledge
base) where the initial set of conjunctive formulas is ground (that is there is no free variable in the formula)
and where the rules are Horn-ALCH axioms. Horn-ALCH is defined in [5]. It is a part of description
logics that is widely used in the context of knowledge reasoning. Description logics are parts of first-order
logic with unary and binary predicates, and are the main tools for reasoning about knowledge bases. Note
that description logics are undecidable whereas Horn-ALCH is decidable.

We present a new variant of the chase for Horn-ALCH knowledge bases which is also guaranteed to
terminate if the input knowledge base admits a finite universal model and is much easier to implement. In
the core chase, one has to look for global endomorphisms in the sets of facts produced by the chase whereas
in the new variant, we only need to look for very local endomorphisms, which are much simpler to compute.

First of all, in Section 2 and 3, we will define the notions that will be useful for this paper and present
some well known properties. Then, we will move on to our contributions in Section 4

2 Preliminaries

We consider a set of variables Vars, a set of constants Csts, and a set of predicates Preds, that are pairwise
disjoint. A term is a variable or a constant. We call Terms the set of terms. If t1, . . . , tn are terms and P is
a predicate of arity n, then P (t1, . . . , tn) is a fact. The fact P (t1, . . . , tn) is ground if t1, . . . , tn are constants.
We can now define a factbase that is a notion omnipresent in all the paper.

Definition 2.1. A factbase F is an existentially closed conjunction of facts that is, a formula that does not
contain occurrences of free variables and is of the form

∃x1, . . . , xn.P1(t11, . . . , t
1
k1) ∧ . . . ∧ Pm(tm1 , . . . , t

m
km)

where tji are terms and Pi are predicates. A factbase is ground if each of its facts is ground.

Note that we do consider factbases that are not ground, unlike other authors. Consequently, the notions
of boolean conjunctive queries and factbases coincide. For convenience, we identify factbases as sets of facts,
which allows us to use operators from set theory. For example, we identify the factbase ∃x, y, z.P (x) ∧
Q(x, a) ∧ R(y, z, b) with the set of facts {P (x), Q(x, a), R(y, z, b)} where P,Q,R are predicates, a, b are
constants, and x, y, z are variables. For a formula A, let Vars(A), Csts(A), and Terms(A) be the sets of
variables, constants, and terms that occur in A, respectively.

A substitution σ : X → Terms is a function where X is a set of variables. For example {x 7→ z, y 7→ a}
is a substitution from {x, y} to Terms. By extension:

• if c ∈ Csts, then σ(c) = c,

• if x ∈ Vars \X, σ(x) = x,

• if f = P (t1, . . . , tn) is a fact, then σ(f) = P (σ(t1), . . . , σ(tn)), and

• if F = {f1, . . . , fn} is a factbase, then σ(F) = {σ(f1), . . . , σ(fn)}.

This definition leads us to the central notion of homomorphism.

Definition 2.2. For two factbases F and G, a homomorphism from F to G is a substitution σ : Vars(F)→
Terms where σ(F) ⊆ G.

For a factbase F , let idF be the substitution mapping each variable in Vars(F) to itself. An isomorphism
from F to G is a homomorphism h such that there exists a homomorphism g from G to F verifying h◦g = idG
and g ◦h = idF . For the remainder of this paper, we identify sets of facts that are unique up to isomorphism.

Definition 2.3. A factbase F entails another factbase G (often noted F � G) if each interpretation satisfying
F satisfies G. F is equivalent to G if F � G and G � F .

2 PRELIMINARIES 4

In this document, it is not necessary to know exactly the definition of interpretation because in our
fragment of first-order logic, we have a convenient characterization. For example, to know if F � G, we use
the following theorem.

Theorem 2.1 (Homomorphism Theorem). A factbase F entails another factbase Q if and only if there
exists a homomorphism from Q to F .

The previous theorem has been proved in ([1], Theorem 6.2.3). Intuitively, if F � G, then F is logically
stronger than G and from F , we can deduce G. For example, the factbase F = {P (b, a), A(x)} entails the
factbase Q = {P (x, a), P (y, z)} due to the homomorphism {x 7→ b, y 7→ b, z 7→ a}. For a subsitution σ
defined on a factbase G containing F , let σF be the maximal subset of σ defined only on Vars(F).

Definition 2.4. A factbase G is a retract of another factbase F if G ⊆ F and G � F . A retractation from
F to G is a homomorphism σ from F to G such that σG = idG. G is a strict retract of F if G is a retract of
F and G 6= F .

If G is a strict rectract of F , then G is logically as strong as F and yet smaller. We impose that σG = idG
in the definition of a retractation because it helps us in the proof of Proposition 4.6 thanks to the well known
property:

Proposition 2.1. The factbase G is a retract of the factbase F if and only if G ⊆ F and there exists a
retractation from F to G.

A core of a factbase F is then one of the smallest retract of F :

Definition 2.5. A core is a factbase F that does not contain a strict retract. A core of a factbase F is a
subset of F that is a core.

The cores of a finite factbase F are unique up to isomorphism. Hence, we speak of “the” core of a factbase.
The core of F is one of the smallest set of facts that is logically as strong as F . For example, the factbase
G = {B(x, y), R(y, z)} is the core of F = {B(x, y), R(y, z), B(x,w), R(w, z)} because:

• G ⊆ F ,

• {x 7→ x, y 7→ y, z 7→ z, w 7→ y} is a homomorphism from F to G, so G is a retract of F , and

• all strict subsets of G are not retracts of G.

Note that {B(x,w), R(w, z)} is also the core of F and is indeed isomorphic to G due to the homomorphism
{x 7→ x, y 7→ w, z 7→ z}. For a tuple of variables ~x and a formula A, we write A(~x) to denote that ~x is the
set of all free variables that occur in A.

Definition 2.6. Let ~x, ~y, and ~z be some tuples of variables that are pairwise disjoint. An (existential) rule
α is a first-order formula of the form

∀~x.∀~y.(A(~x, ~y)→ ∃~z.B(~x, ~z))

where A(~x, ~y) and B(~x, ~z) are conjunctions of facts. We define Body(α) = A and Head(α) = B.

We omit the universal quantifiers when representing existential rules. A knowledge base represents a set
of rules and a set of ground facts:

Definition 2.7. A knowledge base K is a pair (R,F) where R is a set of existential rules and F is a ground
factbase.

A factbase F entails a rule α if each interpretation satisfying F satisfies α. We will note F � R if F
entails each rule of the rule set R. Again, we will not have to use the formal definition of interpretations
because the following theorem is used in pratice to determine if F � α:

Theorem 2.2. A factbase F entails a rule α = A(~x, ~y)→ ∃~z.B(~x, ~z) if and only if for every homomorphism
σ from A to F , there exists an extension of σ that is a homomorphism from B to F .

3 THE CHASE 5

For example, the factbase F = {A(c, d), B(c, e)} entails the rule α = A(x, y) → ∃z.B(x, z) because
σ = {x 7→ c, y 7→ d} is the only homomorphism from A(x, y) to F , and σ̂ = σ ∪ {z 7→ e} is an extension of σ
that is a homomorphism from B(x, z) to F .

Definition 2.8 (Model and universality). A factbase M is a model of a knowledge base K = (R,F) if
M � F and M � R. The factbase U is universal for K if for every model M of K, M � U .

We often talk of universal models of a knowledge base K; that is, factbases that are both a model of K
and universal for K.

Example 2.1. If we set K = ({A(x)→ ∃z.R(x, z) ∧A(z)}, {A(b)}), then a universal model for K is

U = {A(b), R(b, x0)} ∪ {A(xi) | i ∈ N} ∪ {R(xi, xi+1) | i ∈ N}

Note that the knowledge base K does not admit finite universal models.

Definition 2.9 (Entailment). A knowledge base K entails a factbase B (often noted K � B) if for each
model M of K, M � B.

We can use universal models to solve the conjunctive query entailment:

Proposition 2.2. A knowledge base K entails a factbase B if there exists a universal model U of K such
that U � B.

An important problem that we want to solve is: Given a knowledge base K = (R,F) and a factbase Q,
does K � Q? It is well-known that this problem is undecidable ([2], theorem 4).

3 The Chase

The process of applying rules on a factbase in order to infer more knowledge is called forward chaining.
Forward chaining in existential rules is usually achieved via a family of algorithms called the chase. It can
be seen as a two-step process. First, it repeatedly applies rules to the set of facts (and sometimes computes
the core to remove redundant facts). Then it looks for an answer to the BCQ in this saturated set of facts.
This saturated set of facts is a universal model of the knowledge base. The chase is sound and complete; so
it must be non-terminating since the problem of entailment is undecidable [2]. To determine how we apply
a rule to a set of facts, we introduce the notion of trigger:

Definition 3.1 (Trigger). Let α be a rule, σ be a substitution, and F be a factbase. The tuple t = (α, σ)
is an oblivious trigger for F if:

• the domain of σ is the set of all variables occurring in Body(α).

• σ is a homomorphism from Body(α) to F .

In this case, we say that t is applicable on F .

The tuple t = (α, σ) is a restricted trigger for F if t is an oblivious trigger for F and if for all σ̂ that
extend σ over Vars(Head(α)), σ̂(Head(α)) * F .

Notice that a restricted trigger is also an oblivious trigger. We will use the term trigger to talk both
oblivious and restricted triggers. The oblivious trigger t = (α, σ) for a factbase F is a restricted trigger for
F if and only if the rule α is not satisfied by F . The chase considers triggers to infer new knowledge from
an initial factbase. We now explain how it would apply a trigger, giving rise to the notion of application.

Definition 3.2 (application). Let F be a factbase and t = (α, σ) be a trigger where α is of the form
A(~x, ~y) → ∃~z.B(~x, ~z). We set σs the substitution that extends σ over Vars(Head(α)) such that for z ∈ ~z,
σs(z) = fzα(σ(~x)) where fzα(σ(~x)) is a fresh variable unique with respect to the trigger t = (α, σ) and the
variable z.

The factbase appl(F, t) = F ∪σs(Head(α)) is called an application on the factbase F through the trigger
t = (α, σ). We say that the trigger t is useless on F if appl(F, t) = F .

3 THE CHASE 6

We use a naming convention that resembles function symbols because this will be convenient when we
will discuss about a new variant of the chase. For example, if we have the rule α = A(x, y) → ∃z.B(x, z),
the factbase F = {A(b, c)}, and the substitution σ = {x 7→ b, y 7→ c}, then (α, σ) is a restricted trigger for
F . We then have

appl(F, (α, σ)) = {A(b, c), B(b, fzα(b, c)}

It is well known that the application preserves the universality:

Proposition 3.1. Let K be a knowledge base, M be a model of K, F be a factbase such that M � F , and t
be an oblivious trigger. We then have M � appl(F, t).

We can now define the oblivious and restricted chase that are also defined in [3]. A sequence of rule
applications is called a derivation. In this paper, we differentiate between oblivious derivations and restricted
derivations:

Definition 3.3 (Derivation). An oblivious derivation (respectively a restricted derivation) for a knowledge
base K = (F,R) is a (possibly infinite) sequence D = F0, F1, F2, . . . where

• F0, F1, . . . are factbases such that Fi (Fi+1.

• F0 = F .

• For all i > 0, Fi = appl(Fi−1, ti) where ti is an oblivious trigger (resp. a restricted trigger).

The oblivious (resp. restricted) derivation D = F0, F1, F2, . . . is fair if for every i and every oblivious
(resp. restricted) trigger t for Fi, there exists k ≥ i such that t is useless on Fk (resp. t is not anymore a
restricted trigger for Fk). An oblivious chase (resp. a restricted chase) for a knowledge base K = (F,R) is
a fair oblivious (resp. restricted) derivation D = F0, F1, F2, . . .

The use of fairness yields a semi-decision procedure since a fair derivation guarantees that we consider
every possible application.

For every oblivious chase derivation D = F0, F1, F2, F3, . . . for K, we have F0 ⊆ F1 ⊆ F2 ⊆ . . . The
set ∪i Fi does not depend on the derivation D since for each Fi and for each trigger t for Fi, there exists
k > i such that t is useless on Fk. We can then set Obl(K) = ∪i∈N Fi and we say that the oblivious chase
terminates if Obl(K) is finite. It is well known that:

Theorem 3.1. For a knowledge base K, Obl(K) is a universal model of K.

Consequently, the oblivious chase can be used to solve query entailment. It is more difficult to define
the result of the restricted chase because the result depends on the order of the application of the rules. We
define

Res(K) = {∪i∈NFi | D = F0, F1, F2, . . . is a retricted chase for K}

We say that the restricted chase terminates if there exists an element in Res(K) that is finite. It is well
known that:

Theorem 3.2. For a knowledge base K and for every U ∈ Res(K), U is a universal model of K.

Note that if the oblivious chase termines for a knowledge base K, then the restricted chase terminates for
K. We present an example to showcase that the restricted chase may terminate even when the oblivivious
chase does not:

Example 3.1. Suppose that we have the knowledge base K = ({α = A(x, y) → ∃z.A(y, z) ∧ A(z, y)}, F)
where F = {A(a, b)}. An oblivious chase derivation is F0, F1, F2, ... where

• F0 = F ,

• t1 = (α, {x 7→ a, y 7→ b}) is an oblivious trigger for F0,

• F1 = appl(F0, t1) = {A(a, b), A(b, z1), A(z1, b)} where z1 = fzα(a, b),

3 THE CHASE 7

• t2 = (α, {x 7→ b, y 7→ z1}) is an oblivious trigger for F1,

• F2 = appl(F1, t2) = F1 ∪ {A(z1, z2), A(z2, z1)} where z2 = fzα(b, z1),

• . . .

It will never terminate because each new fact brings new rule applications. So the oblivious chase does not
terminate on K whereas the restricted chase does. A restricted chase derivation is F0, F1 where F0 = F ,
t1 = (α, {x 7→ a, y 7→ b}), and F1 = appl(F0, t1) = {A(a, b),A(b, fzα(a, b)), A(fzα(a, b), b)}. This derivation
is fair because there is not anymore any restricted trigger for F1, so we have F1 ∈ Res(K).

This theorem follows from results in [3]:

Theorem 3.3. A knowledge base K entails a factbase B if Obl(K) � B or if there exists U ∈ Res(K)
such that U � B. Conversely, if a knowledge base K entails a factbase B, then Obl(K) � B and for every
U ∈ Res(K), U � B

The core chase terminates more often than the oblivious and restricted chase since the core chase termi-
nates when the knowledge base admits a finite universal model. It was first defined in [4].

Definition 3.4 (Core derivation and fairness). A core derivation for a knowledge base K = (R,F) is a
(possibly infinite) sequence D = F0, F1, F2, . . . where F0 = F , and for i > 0, either Fi = appl(Fi−1, ti) is
obtained by an application with ti an oblivious trigger, or Fi is the core of Fi−1.

The core derivation D is fair if:

• For every i, for every oblivious trigger t for Fi, there exists k such that t is useless on Fk; or there
exists k > i such that t is not anymore an oblivious trigger for Fk.

• For every i, there exists k ≥ i such that Fk is a core.

Note that in the first condition, we can have k < i because in a chase derivation a fact can be removed.
The second condition is essential to guarantee the terminaison of a fair core derivation when there exists a
finite universal model.

Definition 3.5. A core chase for a knowledge base K = (R,F) is a fair core derivation D = F0, F1, F2, . . .
The core chase terminates on K if it is a finite core derivation.

It was proven in [4] that the result of the core chase for a knowledge base is unique up to isomorphism.
Therefore, we can define the result of the core chase:

Definition 3.6. If the core chase terminates on K due to the finite core derivation D = F0, F1, F2, . . . , Fi,
then we set Core(K) = Fi. Otherwise, if the core chase does not terminate, Core(K) is undefined.

The following theorem highlights why the core chase has been introduced. It has been proven in ([4],
Theorem 7).

Theorem 3.4. The knowledge base K = (R,F) admits a finite universal model if and only if the core chase
algorithm terminates on K.

We present an example to showcase that the core chase may terminate even when the restricted chase
does not:

Example 3.2. Suppose that we have the knowledge baseK = ({α = A(x, y)→ ∃z.(A(x, x)∧A(y, z))}, {A(a, b)}).
A restricted chase derivation is F0, F1, F2, ... where

• F0 = F ,

• t1 = (α, {x 7→ a, y 7→ b}) is a restricted trigger for F0,

• F1 = appl(F0, t1) = F0 ∪ {A(a, a), A(b, z1)} where z1 = fzα(a, b),

4 THE MERGE CHASE 8

• t2 = (α, {x 7→ b, y 7→ z1}) is a restricted trigger for F1,

• F2 = appl(F1, t2) = F1 ∪ {A(b, b), A(z1, z2)} where z2 = fzα(b, z1),

• t3 = (α, {x 7→ z1, y 7→ z2}) is a restricted trigger for F2,

• F3 = appl(F2, t3) = F2 ∪ {A(z1, z1), A(z2, z3)} where z3 = fzα(z1, z2),

• . . .

It will never terminate because each new fact brings new restricted triggers. The core chase terminates on
K: a core chase derivation is F0, F1, F2, F3, F4, F5 where

• F0 = F ,

• t1 = (α, {x 7→ a, y 7→ b}) is an oblivious trigger for F0,

• F1 = appl(F0, t1) = F0 ∪ {A(a, a), A(b, z1)} where z1 = fzα(a, b),

• t2 = (α, {x 7→ b, y 7→ z1}) is an oblivious trigger for F1,

• F2 = appl(F1, t2) = F1 ∪ {A(b, b), A(z1, z2)} where z2 = fzα(b, z1),

• t3 = {x 7→ a, y 7→ a} is an oblivious trigger for F2, F3 = appl(F2, t3), t4 = {x 7→ b, y 7→ b} is an
oblivious trigger for F3, and F4 = appl(F3, t4) = F2 ∪ {A(a, fzα(a, a)), A(b, fzα(b, b))}

• F5 = Core(F4) = {A(a, a), A(a, b), A(b, b)}.

All the oblivious triggers for F5 have been applied so the derivation is fair. Consequently the core chase
terminates on K.

The three chases presented in Section 3 are the most famous chases. The goal of my internship is to
introduce a new chase that work in the particular case of Horn-ALCH and prove that this new algorithm is
as powerful as the core chase. The new chase is called the merge chase and is presented in the next section.

4 The Merge Chase

The core chase always terminates when there exists a finite universal model but this chase is very expensive
timewise because computing the core of a factbase is hard. Therefore we present a more efficient way to solve
this problem in the particular case of Horn-ALCH. The new procedure, called the merge chase, considers
a special relation between the variables. In the merge chase, two variables in relation are merged thanks to
a local homomorphism.

For a factbase F and some t, u ∈ Terms(F), let Preds1F (t) = {P | P (t) ∈ F} and Preds2F (t, u) =
{P | P (t, u) ∈ F}. In this section, we only consider factbases with predicates of arity one or two.
Hence, we will represent a factbase F by a labelled graph G = (V,E) where V = {t | t ∈ Terms}
and E = {(t, u) | t, u ∈ Terms ∧ Preds2F (t, u) 6= ∅}. We label each vertex v ∈ V with the predi-
cates in Preds1F (v) and each edge (t, u) with the predicates in Preds2F (t, u). For example, we represent
F = {A(a), B(a), R(a, b), T (a, b), C(b), R(b, z)} by the Figure 1.

Definition 4.1 (Horn-ALCH axioms). A Horn-ALCH axiom is an existential rule of one of the following
forms:

A(x) ∧B(x)→ C(x) (C∧) R(x, y) ∧B(y)→ A(x) (∃−)

A(x) ∧R(x, y)→ B(y) (∀+) R(x, y) ∧ S(x, y)→ V (x, y) (R∧)

A(x)→ ∃y.R(x, y) ∧B(y) (∃+)

As a remainder, we omit the universal quantifiers when representing rules. A Horn-ALCH knowledge
base K = (R,F) is a knowledge base where R is a set of Horn-ALCH axioms and F only contains predicates
of arity one or two.

4 THE MERGE CHASE 9

a : A,B b : C z
R,T R

Figure 1: Factbase Representation

Horn-ALCH was introduced in [5]. Note that the type of Horn-ALCH rule (∃+) is the only one
that features existentially quantified variables. To introduce the merge chase, we first define the notion of
mergeable variable, that allows us to consider a special relation between variables. We then describe the
atomic merging operation, that merges a mergeable variable on a term. This atomic operation is used to
define the merging that does atomic merging until it is not possible anymore. The merge chase is then a
core chase where we replace the core operation by the merging. We want to show that the merge chase for a
Horn-ALCH knowledge base K computes a finite universal model when it terminates and that it terminates
if and only if there exists a finite universal model of K.

For a term t and a variable x, we say that t ≺ x if x is of the form fyα(t). We write ≺+ to denote the
transitive closure of ≺ and we set Desc(t)= {y ∈ Vars | t ≺+ y} ∪ {t}. The type of Horn-ALCH rule
(∃+) is the only one that leads to the introduction of an existentially quantified variable when we apply it.
Therefore:

Proposition 4.1. Consider a variable x that occurs in an oblivious chase derivation D of some Horn-
ALCH knowledge base K. Then, x is of the form fyα(u) where u is a term, α is a rule of the form (∃+) in
K, and y is the only existentially quantified variable occurring in α. Moreover, u is the only term in D such
that u ≺ x.

Proposition 4.2. For a factbase F that occurs in an oblivious chase derivation of some Horn-ALCH
knowledge base, ≺+ is a strict partial order over the set of terms of F .

The proof of the last proposition is given in the section A. We can deduce that the graph induced by ≺
does not contain any cycle. We obtain the following result from Propositions 4.1 and 4.2:

Proposition 4.3. For a factbase F that occurs in an oblivious chase derivation of some Horn-ALCH
knowledge base, the graph induced by ≺ is a forest of trees and the root of each tree is a constant.

We define the notion of tree of a term t, that is all the facts that only contain variables in Desc(t):

Definition 4.2 (Tree). For a term t occurring in an oblivious chase derivation of the Horn-ALCH knowledge
base K, we set:

TreeF (t) = {A(u) | A(u) ∈ F ∧ u ∈ Desc(t)} ∪
{R(u, x) | R(u, x) ∈ F ∧ u, x ∈ Desc(t)}

Definition 4.3 (Mergeable variable). For two terms u and v appearing in a factbase F , u is mergeable on
v in F if:

• u 6= v and u is a variable,

• Preds1F (u) ⊆ Preds1F (v), and

• there exists a term t such that Preds2F (t, u) 6= ∅ and Preds2F (t, u) ⊆ Preds2F (t, v).

In this case, we say that u is a mergeable variable.

When x is mergeable on t in F , all the facts in TreeF (x) “are in” TreeFut(F,t,x)(t) where Fut(F, t, x) is a
factbase obtained by applying some oblivious triggers on F . To be more precise, the words “are in” mean
that there exists an injective homomorphism from the first set to the second. Note that this result is one
of the most importants to prove that the merge chase computes a universal factbase when it terminates,
which is Proposition 4.4. From this result, we can conclude that all the facts in TreeF (x) are redundant
or can become redundant by applying some triggers. Therefore, we would like to remove the facts already
redundant and “recycle” the other facts. This intuition leads us to define atomic merging:

4 THE MERGE CHASE 10

a : A

b : A,B fyα(a) : A

a : A

b : A,B

fyα.f
y
α(a) : A fyα(b) : Afyα(b) : A

fyα.f
y
α.f

y
α(a) : A fyα.f

y
α(b) : A

R,S

R
R,S

R RR

R R

Figure 2: Atomic Merging Example

a : A

b : C,D fzα(a) : C

fzβ .f
z
α(a) : Ec : E

a : A

b : C,D

c : E fzβ(b) : E

a : A

b : C,D

c : E

S

R

S

R

S

R
R

S

R

Figure 3: Merging Example

Definition 4.4 (atomic merging). If a variable x is mergeable on a term t in a factbase F , then we define
hx/t to be the substitution defined on Vars(F) such that

• for every variable y in Desc(x), hx/t(y) is the variable y where the occurence of x is replaced by t, and

• for every variable y not in Desc(x), h(y) = y.

The atomic merging of x on t in F produces hx/t(F)

For example, in the Figure 2, fyα(a) is mergeable on b on the left factbase. The atomic merging of fyα(a)
on b in this factbase produces the factbase on the right where all the occurences of fyα(a) are replaced by
b. The following definition describes the new operation that will replace the computation of the core in the
core chase.

Definition 4.5. For a factbase F , a merge sequence of F is a sequence F0, . . . , Fn of factbases such that:

• F0 = F .

• For i ∈ {1, . . . , n}, the factbase Fi is the atomic merging of a variable x on a term t in Fi−1.

• The factbase Fn does not contain a mergeable variable.

Then, Merge(F) = Fn.

4 THE MERGE CHASE 11

The result of the Merge operation is unique up to isomorphism. For an oblivious chase derivation
D = F0, ..., Fk of K, if we apply our new operation on Fk, then it computes the core of a factbase that could
have been produced by continuing the derivation D.

Example 4.1. In the Figure 3, we merge the factbase on the left. The variable fzα(a) is mergeable on b, an
atomic merging of fzα(a) on b yields the factbase on the middle. Now, fzβ(b) is mergeable on c, an atomic
merging of fzβ(b) on c produces the factbase on the right. The last factbase is the result of the merge since
it does not contain any mergeable variable.

We can now consider a new chase:

Definition 4.6 (derivation). A merge derivation for a Horn-ALCH knowledge base K = (R,F) is a
(possibly infinite) sequence D = F0, F1, F2, . . . where F0 = F , and for i > 0, either Fi = appl(Fi−1, ti) is
obtained by an application with ti an oblivious trigger, or Fi is obtained by the merging of Fi−1.

D is fair if:

• For every i, for every oblivious trigger t applicable on Fi, there exists k ∈ N such that t is useless on
Fk; or there exists k > i such that t is not anymore an oblivious trigger for Fk.

• For every i, there exists k ≥ i such that Fk is a core.

A merge chase for a knowledge base K = (R,F) is a fair merge derivation D = F0, F1, F2, . . .

We also introduce the atomic merge chase in order to simplify a future proof, and to show that we can
be more flexible on the use of the merge chase. The atomic merge chase is a merge chase where we use the
atomic merge operation instead of the merge operation.

Definition 4.7. The merge chase terminates on K if it is a finite derivation D = F0, F1, F2, . . . , Fk. We
set, in this case, MC(K) = Fk the result of the merge chase.

The result of the merge chase is unique up to isomorphism. The next two propositions will help us show
that the atomic merge chase only computes universal models.

Proposition 4.4. Let D = F0, F1, . . . , Fm be an atomic merge chase derivation of a knowledge base K and
let x be a variable mergeable on a term t in Fm. Then, there exists an atomic merge chase derivation D′ of
the form D,E (where E is a sequence of factbases) such that:

1. If we consider some factbase F ∈ E and its predecessor G in D′, then there is an oblivious trigger
t = (α, σ) for G such that F = appl(G, t).

2. The last element of E is the factbase Fm ∪ hx/t(TreeFm
(x)).

We set Fut(Fm, t, x) = Fm ∪ hx/t(TreeFm
(x)).

Graphically, in the Figure 4, if we set A = TreeFm
(t) and B = TreeFm

(x), then we want to do an atomic
merge derivation from the left factbase to the factbase on the right. In the figure, the sets A and hx/t(B)
can have facts in common.

To prove Proposition 4.4, we will look at all the triggers dealing with the variables in Desc(x) and apply
them on the variables in Desc(t) if they have not already been applied. You can find the proof in the section
B.

Proposition 4.5. Let D = F0, F1, . . . , Fm be an atomic merge chase derivation for the knowledge base K.
If x is mergeable on t in Fm, then the atomic merging of x on t in Fm is a retract of Fut(Fm, t, x) .

The proof is in section C. The following theorem is a corollary of Propositions 4.4 and 4.5:

Theorem 4.1. Let D = F0, F1, . . . be an atomic merge chase derivation for the knowledge base K. Then,
the factbases F0, F1, . . . are universal for K.

4 THE MERGE CHASE 12

t x

A B

t x

A hx/t(B) B

Figure 4: Illustration of the proof

Proof. Let M be a model for K. We prove by induction on n ≥ 0 that M � Fn. By definition of a model,
M � F so the initial step is true since F0 = F . Suppose that M � Fn−1, where n > 0, and that Fn−1 is not
the last factbase of the derivation D.

• If Fn = appl(Fn−1, t), where t = (α, σ) is an oblivious trigger, by Proposition 3.1, M � Fn.

• If Fn is the atomic merging of a variable x on a term t in Fn−1, then according to Proposition 4.4,
there exist factbases G0, . . . , Gk such that

– G0 = Fn−1,

– Gk = Fut(Fn−1, t, x), and

– for 0 ≤ i ≤ k − 1, Gi+1 = appl(Gi, t) where t is an oblivious trigger for Gi.

We then have by induction on 0 ≤ i ≤ k and by Proposition 3.1, M � Gi. Therefore M �
Fut(Fn−1, t, x), so M is a model of the atomic merging of x on t in Fn−1 (that is Fn) since, by
Proposition 4.5, Fn is a subset of Fut(Fn−1, t, x).

The heredity is proved.

The main reason to prefer the merge chase to the atomic merge chase is that unless the atomic merging
operations are applied exhaustively, the merge chase may not terminate on inputs that admit finite universal
models:

Theorem 4.2. There exists a Horn-ALCH knowledge base K such that K admits a finite universal model
and the atomic merge chase derivation for K does not terminate.

Proof. Let F = {R(a, b), R(b, a), A(a), B(b)} and R = {α = A(x) → ∃y.R(x, y) ∧ A(y), β = B(x) → A(x)}.
We consider for the knowledge base K = (R,F), the atomic merge chase derivation F0 = F, F1, F2, ...
constructed as follow:

• We apply the oblivious trigger t1 = (α, {x 7→ a}) to F0;

• we then apply the oblivious trigger t2 = (α, {x 7→ fyα(a)}) to F1 to obtain the factbase F2 and we apply
the oblivious trigger t3 = (β, {x 7→ b}) to F2 giving rise to the factbase F3 that is the first factbase of
Figure 5;

• At this moment, fyα(a) is mergeable on b so we do an atomic merging of fyα(a) on b to get F4 that is
the second factbase of the figure;

• F5 is obtained by the application of the oblivious trigger t4 = (α, {x 7→ fyα(b)}) and F6 by the oblivious
trigger t5 = (α, {x 7→ fyα(fyα(b))}), F6 is the third factbase of the figure;

4 THE MERGE CHASE 13

b : A,Ba : A

fyα(a) : A

fyα.f
y
α(a) : A

a : A b : A,B a : A b : A,B a : A b : A,B

fyα(b) : A fyα(b) : A

fyα.f
y
α(b) : A

fyα.f
y
α.f

y
α(b) : A

fyα(a) : A

fyα.f
y
α(a) : A

R

R

R R R

R

R

R R

R

R

R

R

R R R

Figure 5: Example where the atomic merge chase is not efficient

• At this moment, fyα(b) is mergeable on a so we do an atomic merging of fyα(b) on a to get F7 that is
the last factbase of the figure;

• We can repeat this infinitely.

But K admits a finite universal model: U = F ∪ {A(b)}.

We now want to prove that a merging computes a core:

Proposition 4.6. For a factbase G that occurs in any merge chase derivation of some Horn-ALCH knowl-
edge base, Merge(G) is a core.

We prove it in section D. Note that Merge(G) is a core but not necessarily the core of G. We need the
following lemma to show that the merge chase for a Horn-ALCH knowledge base K computes a model of
K. It is proved in section E.

Proposition 4.7. Let D = F0, . . . , Fk, . . . be an atomic merge chase derivation of a knowledge base K, α
be a rule, and σ be a substitution such that σ(Body(α)) ⊆ Fk. Then, either there exists n > k such that
t = (α, σ) is not an oblivious trigger for Fn, Fn+1, . . . or there exists n ≥ 0 such that for all j ≥ n, there
exists a substitution σj prolonging σ and verifying σj(Head(α)) ⊆ Fj.

Proposition 4.8. The merge chase computes a finite universal model of K when it terminates.

Proof. Let D = F0, . . . , Fn be a merge chase for K = (R,G).

• The merge chase never removes ground facts and G = F0 so G ⊆ Fn. We then have Fn � G. Suppose
that there exists a rule α in R and a substitution σ such that Fn � σ(Body(α)). Then by Proposition
4.7, there exists a substitution σ̂ prolonging σ such that σ̂(Head(α)) ⊆ Fn. We can conclude that
Fn � R, so Fn is a model of K.

• According to Theorem 4.1, Fn is universal for K.

• Fn is finite.

5 CONCLUSION 14

Proposition 4.9. If there exists a finite universal model for a Horn-ALCH knowledge base K = (R,F),
then the merge chase terminates.

The last proposition is proven in section F. The following theorem is then a direct consequence of
Propositions 4.8 and 4.9.

Theorem 4.3. The merge chase computes a universal model if and only if there exists a universal model.

We will now describe a deterministic algorithm to merge a factbase:

Definition 4.8 (Merging). Let F be a factbase that occurs in a merge chase derivation of the knowledge
base K.

Algorithm 1: M(F):

1 Let Vars(F) = {x1, . . . , xn} be such that (xi ≺+ xj)⇒ i < j ;
2 for i = 1 to n do
3 if xi is still a variable in F then
4 for all term t such that xi is mergeable on t do
5 F ← the atomic merging of xi on t in F .
6 end

7 end

8 end
9 return F

On line 1, we can sort terms that way because, by proposition 4.2, ≺+ is a strict partial order over the
set of variables of F .

Note that the application of an atomic merge may result in new mergeable variables. Therefore, we have
to be careful about the order of the variables in the Algorithm 1. In the Example 4.1, if we treat fzβ(fzα(a))
before fzα(a), then at the moment when we treat fzβ(fzα(a)), it is not mergeable on any term yet. In the end,
we would get the factbase on the middle and we would not have merged every possibly mergeable variable.
Example 4.2 shows the importance of doing a total merging. We have to prove that our merging algorithm
does a total merging:

Proposition 4.10. Let G be a factbase that occurs in a chase derivation of a knowledge base K. Then,
there does not exist a term t and a variable x such that x is mergeable on t in M(G).

The proof is in section G

5 Conclusion

During this internship, our research work will have given progress around the problem of conjunctive query
entailment in the case of Horn-ALCH by introducing the merge chase. The most important result is the
Theorem 4.3 stating that there exists a finite universal model of K if and only if the merge chase terminates
for a knowledge base K and its result is a universal model of K. We think that we can extend our work
to Horn-ALCHI rules. A Horn-ALCHI rule is either a Horn-ALCH axiom or an existential rule of the
form R1(x, y) ∧R2(x, y)→ S(y, x).

This internship was a good introduction to the research’s world and confirm my career orientation choices
towards research. I particularly enjoyed the interaction with the entire GRAPHIK team during informal
discussions around research.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical Level. Addison-
Wesley Longman Publishing Co., Inc., USA, 1st edition, 1995.

CONTENTS 15

[2] Catriel Beeri and Moshe Y. Vardi. The implication problem for data dependencies. In Proceedings of
the 8th Colloquium on Automata, Languages and Programming, page 73–85, Berlin, Heidelberg, 1981.
Springer-Verlag.

[3] A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under expressive relational
constraints. Journal of Artificial Intelligence Research, 48:115–174, Oct 2013.

[4] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In Maurizio Lenzerini and
Domenico Lembo, editors, Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS 2008, June 9-11, 2008, Vancouver, BC, Canada, pages
149–158. ACM, 2008.

[5] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Complexities of horn description logics. ACM
Trans. Comput. Log., 14(1):2:1–2:36, 2013.

Appendix

Contents

A Proof of Proposition 4.2 15

B Proof of Proposition 4.4 15

C Proof of Proposition 4.5 16

D Proof of Proposition 4.6 16

E Proof of Proposition 4.7 17

F Proof of Proposition 4.9 17

G Proof of Proposition 4.10 18

H Institutional and social context of the internship 19

A Proof of Proposition 4.2

Suppose for a contradiction that there exists a term t such that t ≺+ t. Then, there exists n ∈ N∗ and
terms t0, . . . , tn such that t = t0 ≺ t1 ≺ · · · ≺ tn = t. By Proposition 4.1, there exists rules α1, . . . , αn and
variables v1, . . . , vn such that tn = fvnαn

(f
vn−1
αn−1(· · · fv1α1

(t0) · · ·)). It is a contradiction since t0 = t and tn = t.
Therefore ≺+ is irreflexive. By construction, ≺+ is transitive; So ≺+ is a strict partial order

B Proof of Proposition 4.4

In order to define an atomic merge chase sequence such as D′, we first introduce some sequences of oblivious
triggers:

• Let t1 = (α1, σ1), . . . , tn = (αn, σn) be the maximal sequence of oblivious triggers such that:

• (1) for each 1 ≤ i ≤ n, there is some 1 ≤ j ≤ m such that appl(Fj , ti) = Fj+1;

C PROOF OF PROPOSITION ?? 16

(2) if Fk = appl(Fk−1, ti) and Fl = appl(Fl−1, tj) for some i, j ∈ {1, . . . , n} and some 1 ≤ k < l ≤ m,
then i < j; and

(3) the range of σi is a subset of Desc(x) for each 1 ≤ i ≤ n.

• Let t′1, . . . , t
′
o be the maximal subsequence of (α1, hx/t ◦ σ1), . . . , (αn, hx/t ◦ σn) that are not useless

triggers for Fm

Intuitively, t1, . . . , tn are the triggers that have generated TreeFm(x) and are ordered by application time.
And t′1, . . . t

′
o are the triggers that we have to apply to produce the factbase Fm ∪ hx/t(TreeFm(x)).

Let Fm+i = appl(Fm+i−1, t
′
i) for each 1 ≤ i ≤ o. We show via induction that the sequence D′ =

D,Fm+1, . . . , Fm+o satisfies conditions 1. and 2. stated in the proposition.

Suppose for 1 ≤ i ≤ n that D,Fm+1, . . . , Fm+i−1 is an atomic merge derivation such that the triggers
t′1, . . . , t

′
i−1 are useless for Fm+i−1. There exists 1 ≤ j ≤ n such that the trigger t′i is equal to hx/t(tj). The

oblivious trigger hx/t(tj) is not useless for Fm+i−1. We want to show that t′i = hx/t(tj) is an oblivious trigger
for Fm+i−1. By definition of an Horn-ALCH rule, the only facts that can appear in Body(αj) are of the
form A(u) or R(u, v) where u, v are variables and A,R are predicates.

• Suppose that A(u) ∈ Body(αj) where u is a variable and A is an unary predicate. As tj is an oblivious
trigger for Fm, A(σj(u)) ∈ Fm. We have σj(u) ∈ Desc(x) so either σj(u) = x or x ≺+ σj(u).

– If σj(u) = x, then A(x) ∈ Fm. As x is mergeable on t in Fm, A(t) ∈ Fm. So A(hx/t(σj(u))) ∈
Fm+i−1 since hx/t(σj(u)) = t and Fm ⊆ Fm+i−1.

– If x ≺+ σj(u), then the fact A(σj(u)) is in σsk(Head(αk)) where k < j. By induction hypothesis,
hx/t(tj) is useless for Fm+i−1 so A(hx/t(σj(u))) ∈ Fm+i−1.

• Suppose that R(u, v) ∈ Body(αj) where u and v are variables and R is a binary predicate. As tj is an
oblivious trigger for Fm, R(σj(u), σj(v)) ∈ Fm. We have σj(u), σj(v) ∈ Desc(x) and σj(u) ≺ σj(v) so
the fact R(σj(u), σj(v)) is in σsk(Head(αk)) where k < j. By induction hypothesis, hx/t(tj) is useless
for Fm+i−1 so R(hx/t(σj(u)), hx/t(σj(v))) ∈ Fm+i−1.

Therefore hx/t(tj) is an oblivious trigger for Fm+i−1. Consequently, Di is an atomic merge derivation.
By definition of an application, we have hx/t ◦ σsj (Head(αj)) ⊆ Fm+i so H(i) is true.

We have proved the heredity. So, Dn is the oblivious derivation that we were looking for. We have
Fm+k = Fm ∪ hx/t(TreeFm

(x)).

C Proof of Proposition 4.5

• The atomic merging of x on t in Fm is hx/t(Fm).

• By Proposition 4.4, we have that Fut(Fm, t, x) = Fm ∪ hx/t(TreeFm(x)).
So Fut(Fm, t, x) = TreeFm

(x) ∪ hx/t(Fm) and we then have hx/t(Fm) ⊆ Fut(Fm, t, x).

• Finally, as hx/t(Fut(Fm, t, x)) = hx/t(Fm), we have that hx/t(Fm) � Fut(Fm, t, x).

D Proof of Proposition 4.6

Suppose for a contradiction that Merge(G) is not a core. Then, there exists a factbase G′ (Merge(G) such
that G′ is a retract of Merge(G). Then, by Proposition 2.1, there exists a retractation h from Merge(G)
to G′. We have var(Merge(G)) \ var(G′) 6= ∅. Let x be a ≺-minimal variable of this set. The term x is a
variable, so has been introduced by the chase due to a rule of the form (∃+), so there exists a term t such
that t ≺ x.

• We have Preds2Merge(G)(t, x) 6= ∅. By ≺-minimality of x, t ∈ Vars(G′). So, as h is a retracta-

tion: h(t) = t, so for R ∈ Preds2Merge(G)(t, x), h(R(t, x)) = R(t, h(x)) ∈ Merge(G) and so R ∈
Preds2Merge(G)(t, h(x)). Thus Preds2Merge(G)(t, x) ⊆ Preds2Merge(G)(t, h(x)).

E PROOF OF PROPOSITION ?? 17

• As Preds2Merge(G)(t, x) ⊆ Preds2Merge(G)(t, h(x)) and Preds2Merge(G)(t, x) 6= ∅, we have t ≺ h(x).

• x /∈ G′ and h(x) ∈ G′ so h(x) 6= x.

• Let A ∈ Preds1Merge(G)(x). h(A(x)) ∈ Merge(G) so A(h(x)) ∈ Merge(G) so Preds1Merge(G)(x) ⊆
Preds1Merge(G)(h(x)).

Consequently, x is mergeable on h(x) in Merge(G) which results on a contradiction. Hence, Merge(G) is a
core.

E Proof of Proposition 4.7

As the derivation D is fair, there exists n ≥ 0 such that t is useless on Fn; or there exists n > i such that t
is not an oblivious trigger for Fn.

• If the trigger t is not an oblivious trigger for Fn, then a variable in Vars(σ(Body(α)) is not in Vars(Fn)
and cannot reappear. So, t is not a trigger for Fn, Fn+1, . . .

• Otherwise, there exists n ≥ 0 such that appl(Fn, t) = Fn and for every i ≥ n, σ(Body(α)) ⊆ Fi. We
show by induction that for j ≥ n, there exists a substitution σ̂ prolonging σ such that σ̂(Head(α)) ⊆ Fj .
The initialisation is true with σ̂ = σs since σs(Head(α)) ⊆ Fn. Assume that there exists a substitution
σ̂ prolonging σ such that σ̂(Head(α)) ⊆ Fj−1 where j > n. If Fj = appl(Fj−1, t) where t is an oblivious
trigger, then σ̂(Head(α)) ⊆ Fj since Fj−1 ⊆ Fj . If Fj is the atomic merging of the variable x on the
term t in Fj−1, then Fj = hx/t(Fj−1).

If α is not of the form (∃+), then σ̂ = σ and hx/t ◦ σ = σ since the variables in the range of σ are in
Fj . Therefore, σ̂(Head(α)) ⊆ Fj
Otherwise, α is of the form A(y) → ∃z.R(y, z) ∧ B(z). we do not have x ≺ σ̂(z) in Fj because the
variables in the range of σ are in Fj . So, if x 6= σ̂(z), then hx/t(σ̂(z)) = σ̂(z) and so hx/t ◦ σ̂ = σ̂. So
σ̂(Head(α)) ⊆ Fj . Otherwise, we have x = σ̂(z), so hx/t(σ̂(z)) = t. We then have hx/t(σ̂(Head(α))) =
{B(t), R(σ(y), t)}. The variable x is mergeable on t and B(x), R(σ(y), x) ∈ Fj−1. So by definition of
a mergeable variable B(t), R(σ(y), t) are in Fj−1 and so hx/t(σ̂(Head(α))) ⊆ Fj .

We can conclude that hx/t ◦ σ̂ is the substitution that we are looking for. The heredity is proved.

F Proof of Proposition 4.9

• Suppose for a contradiction that K admits a finite universal model U of K and does not admit a finite
merge chase sequence. So, there exists an infinite merge chase sequence D = F0, F1, . . .

• A term t is redundant with respect to this sequence if t ∈ Terms(Fi) and t /∈ Terms(Fj) for some
i < j.

• For each i, let Gi be the maximal subset of Fi that does not contain redundant terms.

• We set M = ∪i Gi. For a model N of K and for i ∈ N, there exists a homomorphism hi from Fi to
N since Fi is universal for K by Proposition 4.1. As Gi ⊆ Fi, hi is a homomorphism from Gi to N .
Finally, ∪i hi is a homomorphism from M to N so M is universal for K.

• Constants cannot be redundant, so F ⊆ M since G0 = F , we then have M � F . Suppose that there
exists a rule α in R and a substitution σ such that M � σ(Body(α)). Then, there exists n ≥ 0 such
that σ(Body(α)) ⊆ Gn, so σ(Body(α)) ⊆ Fn since Gn ⊆ Fn. The trigger (α, σ) is an oblivious trigger
for Fn, Fn+1, . . . because (α, σ) is an oblivious trigger for Gn and no variable in Gn is redundant. Then
by Proposition 4.7, for k ≥ n, there exists a substitution σk prolonging σ such that σk(Head(α)) ⊆ Fk.
There is a problem here because if the sequence σ1, . . . is not constant starting from a certain rank,
then it means that for every k ≥ 0, there exist variables in the range of σk that are redundant. We
show that it cannot be the case.

G PROOF OF PROPOSITION ?? 18

t0

t′ y

xt

t0

t′

t x

Figure 6: Illustration of the proof

If α is not of the form (∃+), then σk = σ. As all the variables in the range of σ are in Vars(M), they are
not redundant and so σ(Head(α)) ⊆ Gn ⊆ M . Otherwise α is of the form A(x) → ∃y.R(x, y) ∧ B(y).
We then have σk = σ ∪ {y 7→ fzβ(σ(x))} with β a rule in R and z the existential variable of the rule
β. There is a finite number of rules in R and once a variable is merged, it does not reappear, therefore
there exists k ≥ n such that for all i ≥ k, σi = σk.Then σk(y) is not redundant and as all the variables
in the range of σ are in Vars(M), they are not redundant, so σk(Head(α)) ⊆ Gk ⊆ M . We can
conclude that M � R, so M is a universal model of K.

• As M is a universal model of K, M � U . Then, there exists a homomorphism h from U to M .
As U is finite, the factbase h(U) ⊆ M is also finite. The sequence G0, G1, . . . is monotonic (that is
G0 ⊆ G1 ⊆ · · ·) so there exist i such that h(U) ⊆ Gi. We then have Fi � h(U) since Gi ⊆ Fi. We
have h(U) � U , so Fi � U .

• As D is fair, there exists j ≥ i such that Fj is a core.

• By proposition 4.1, Fj is universal for K so U � Fj . We have Fj � U since Fj � Fi and Fi � U . So Fj
is isomorphic to the core of U . Therefore Fj is a universal model of K.

• There exists a finite number of triggers for Fj and D is fair. So, there exists k ≥ j such that all the
triggers for Fj have been applied in the derivation F0, F1, . . . , Fk. Note that this step is necessary to
guarantee the first condition in the Definition 4.6 of fairness.

• As D is fair, there exists l ≥ k such that Fl is a core. As Fj is a model of K, Fl = Fj .

• The derivation F0, . . . , Fl is then fair so it is a finite merge chase sequence that leads us to a contra-
diction.

G Proof of Proposition 4.10

Suppose for a contradiction that there exists a term t and a variable x such that x is mergeable on t in M(G),
that is, there exists a term t′ such that Preds2M(G)(t

′, x) 6= ∅ and Preds2M(G)(t
′, x) ⊆ Preds2M(G)(t

′, t). This
case can only happen if x became mergeable after having been traited by the merging algorithm. Thus, during
the merging, there has been an atomic merging on t′. Let y be the variable merged on t′ such that y ≺ x.
We call G1 the factbase just before the atomic merging of y on t′ and we call G2 the factbase just after the
atomic merging. There exists a term t0 such that Preds2G1(t0, y) 6= ∅ and Preds2G1(t0, y) ⊆ Preds2G1(t0, t

′).
The factbase G1 is on the left of the Figure 6 and the factbase G2 is on the right (we do not represent the
entire graph):

We have t0 ≺ t′ ≺ t and t0 ≺ y ≺ x so x should have been treated by the algorithm after the merging of
t′ and y so the algorithm will merge x on t. It is a contradiction.

H INSTITUTIONAL AND SOCIAL CONTEXT OF THE INTERNSHIP 19

H Institutional and social context of the internship

I did my internship in the GRAPHIK team at the INRIA of Montpellier. GRAPHIK means Graphs for
Inferences on Knowledge. GRAPHIK’s research work focuses on databases thanks to knowledge representa-
tion and reasoning. I was supervised by Jean-François Baget and David Carral, both researchers at INRIA.
We did a meeting every week face-to-face at Montpellier and I was in an office with another intern.

	Introduction
	Preliminaries
	The Chase
	The Merge Chase
	Conclusion
	Proof of Proposition 4.2
	Proof of Proposition 4.4
	Proof of Proposition 4.5
	Proof of Proposition 4.6
	Proof of Proposition 4.7
	Proof of Proposition 4.9
	Proof of Proposition 4.10
	Institutional and social context of the internship

