TECHNISCHE
@ UNIVERSITAT
DRESDEN

THE POWER OF THE TERMINATING CHASE

Markus Krotzsch
Maximilian Marx

Sebastian Rudolph
TU Dresden

— Download Paper

Lisbon, ICDT 2019 — Invited Tutorial

HTTPS://ICCL.INF.TU-DRESDEN.DE/WEB/INPROCEEDINGS3203/EN
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

el
e b o

Fig. 1: The Chase

Part 1:

Tuple-Generating Dependencies

Part 1:

Existential Rules

Part 1:

Datalog™

Part 1:

Vx,y. olx,y]l = 2. ylx,z]

Tuple-generating dependencies a.k.a.
Existential rules a.k.a.
Datalog™®

Definition: A rule is a formula of the form:

Vx,y.olx,y] = Jz. ¢[x,z]
)

—

Rule body: conjunction of atoms Rule head: conjunction of atoms
® using variables from x Uy ® using variables from x U z
® possibly using constants ® possibly using constants

Frontier: variables x used on both sides

Facts can be encoded as variable-free rules with empty body

Universal quantifiers are usually omitted

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 4 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Example 1: Inclusion dependencies

The following inclusion dependency from the Alice Book:

Showings[Title] € Movies[Title]

relates tables Showings[Theatre, Screen, Title, Snack] and Movies|[Title, Director, Actor]

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 5 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Example 1: Inclusion dependencies

The following inclusion dependency from the Alice Book:

Showings[Title] € Movies[Title]

relates tables Showings[Theatre, Screen, Title, Snack] and Movies|[Title, Director, Actor]

This can be expressed by the rule:

Showings(yTheatre, YScreens XTitles YSnack) — JzDirector » ZActor- MOVIES(XTitle , Zirectors ZActor)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 5 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Example 2: Data exchange and data integration

Different databases often require different structures.

Example: The W3C RDB2RDF standard specifies how to translate relational databases
into graph databases in RDF format

The tuple Movies(Arrival, Villeneuve, Adams), e.g., is translated to a graph of the form

AC}Y

Title ()
Dm :
Villeneuve

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 6 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Example 2: Data exchange and data integration

Different databases often require different structures.

Example: The W3C RDB2RDF standard specifies how to translate relational databases
into graph databases in RDF format

The tuple Movies(Arrival, Villeneuve, Adams), e.g., is translated to a graph of the form

AC}Y
Title < >
Dm :
Villeneuve

This can be expressed by the rule:

Movies(xTitle , XDirectors XActor) — Jz.Title(z, xtite) A Director(z, Xpirector) A ACtOr(z, Xactor)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 6 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Example 3: Ontology-based Query Answering

Ontologies have been proposed as means to represent and exchange descriptive
schema-level knowledge

Example: The W3C OWL Web Ontology Language is based on description logics

(DLs). Many popular OWL/DL fragments can be translated into rules. The following
ontology specifies some facts about parts of compound objects (corresponding DL
syntax axiom in parenthesis):

Bicycle(x) — dv.hasPart(x, v) A Wheel(v) (Bicycle € dhasPart.Wheel)
Wheel(x) — Jw.properPartOf(x, w) A Bicycle(w) (Wheel C FAproperPartOf.Bicycle)
properPartOf(x, y) — partOf(x, y) (properPartOf C partOf)
hasPart(x, y) — partOf(y, x) (hasPart C partOf™)
partOf(x, y) — hasPart(y, x) (partOf C hasPart™)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 7 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Problems for Existential Rules

One of the main computational problems in these applications is the following:

QUERY ANSWERING UNDER CONSTRAINTS

Input: A concrete database D, a set of rules X, and a conjunctive query g

Problem: What are the certain answers of ¢ over D and £? More formally:

® which substitutions o from free variables in g to constants of D
® satisfy the first-order entailment £, D E go?

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase

slide 8 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Problems for Existential Rules

One of the main computational problems in these applications is the following:

QUERY ANSWERING UNDER CONSTRAINTS

Input: A concrete database D, a set of rules X, and a conjunctive query g

Problem: What are the certain answers of ¢ over D and £? More formally:

® which substitutions o from free variables in g to constants of D
® satisfy the first-order entailment £, D E go?

The corresponding decision problem is as follows:

QUERY ENTAILMENT UNDER CONSTRAINTS

Input: A concrete database D, a set of rules £, and a Boolean CQ ¢
Problem: Does X, D [¢ hold?

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase

slide 8 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Two perspectives on the use of rules

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 9 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Two perspectives on the use of rules

Rules as “Ontologies”
® | ogical theories encode knowledge
® Rules are exchanged and re-combined

® Modelling power related to combined
complexity of reasoning

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase

slide 9 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Two perspectives on the use of rules

Rules as “Ontologies” Rules as “Programs”
® | ogical theories encode knowledge ® |ogical theories define computations
® Rules are exchanged and re-combined @ Rules as declarative specifications

® Modelling power related to combined * Computational power related to data
complexity of reasoning complexity

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 9 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Two perspectives on the use of rules

Rules as “Ontologies” Rules as “Programs”
® | ogical theories encode knowledge ® |ogical theories define computations
® Rules are exchanged and re-combined @ Rules as declarative specifications

® Modelling power related to combined * Computational power related to data
complexity of reasoning complexity

Requirements
® Standard exchange syntax

® Expressive power as modelling
language (w.r.t. schema)

® Fast reasoners, robust to theory
changes

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 9 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Two perspectives on the use of rules

Rules as “Ontologies” Rules as “Programs”
® | ogical theories encode knowledge ® |ogical theories define computations
® Rules are exchanged and re-combined @ Rules as declarative specifications
® Modelling power related to combined * Computational power related to data

complexity of reasoning complexity
Requirements Requirements
e Standard exchange syntax ® Appeal to human engineers
® Expressive power as modelling ® Expressive power as query language
language (w.r.t. schema) (w.r.t. data)
® Fast reasoners, robust to theory ® Fast reasoners, robust to database
changes changes

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 9 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Existential rules vs. logic programming

Note that query entailment under existential rules is inter-reducible to query (or fact)
entailment for definite logic programs (Horn rules without 3 but with function symbols).

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 10 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Existential rules vs. logic programming

Note that query entailment under existential rules is inter-reducible to query (or fact)
entailment for definite logic programs (Horn rules without 3 but with function symbols).

“Existential rules — definite LP rules” Skolemisation: replace existentially quantified
variables by function terms that apply fresh skolem functions to the frontier variables

Example: Skolemising the rule Wheel(x) — dw.partOf(x, w) A Bicycle(w) yields
Wheel(x) — partOf(x, f(x)) A Bicycle(f(x)), with f a skolem function.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 10 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Existential rules vs. logic programming

Note that query entailment under existential rules is inter-reducible to query (or fact)
entailment for definite logic programs (Horn rules without 3 but with function symbols).

“Existential rules — definite LP rules” Skolemisation: replace existentially quantified
variables by function terms that apply fresh skolem functions to the frontier variables

Example: Skolemising the rule Wheel(x) — dw.partOf(x, w) A Bicycle(w) yields
Wheel(x) — partOf(x, f(x)) A Bicycle(f(x)), with f a skolem function.

“Definite LP rules — existential rules” Flatten function terms: for each n-ary function
f, we introduce an (n + 1)-ary predicate py, used to encode “x = f(¢)” as ps(x, t)

Example: The rule R(x,y.f(x,y)) — S(g(f(y,x))) is translated to R(x,y,z) A
pf(zaxa y) - 3\), W.pf(W,y,)C) A pg(va W) A S(W)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 10 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Reasoning for existential rules is difficult

Theorem: Query entailment under constraints is undecidable (but recursively
enumerable). There is a fixed rule set £ and BCQ ¢, such that {D | £, D E ¢}
is undecidable.

Proof (sketch): Use a standard encoding of a Turing machine in logical rules, and apply
it to a universal Turing machine. Existential quantifiers are used to create new memory

cells and time points. O

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 11 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Reasoning for existential rules is difficult

Theorem: Query entailment under constraints is undecidable (but recursively
enumerable). There is a fixed rule set £ and BCQ ¢, such that {D | £, D E ¢}
is undecidable.

Proof (sketch): Use a standard encoding of a Turing machine in logical rules, and apply
it to a universal Turing machine. Existential quantifiers are used to create new memory

cells and time points. O

This also implies that we cannot restrict to finite models.

rExample: Consider a database r(a, b) with constraints

r(x,y) = Jz.r(y,2)
r(x,y) — t(x,y)
1x,y) A r(y,z) = 1(x,2)

The BCQ Ax.1(x, x) is not entailed by this theory, but it holds in all finite models.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 11 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Universal models

Certain answer semantics: What is true in all models?

But it is often enough to consider “most general models”:

Definition: A model 7 of a set of rules X is universal if it admits a homomor-
phism i : I — g to every model J of X.

Fact: The BCQs entailed by rule set X are exactly the BCQs that hold true on
any of its universal models.

(The same works for all query languages whose models are closed under
homomorphisms)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 12 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Decidable fragments

In the search for decidable fragments, several main principles have been explored:

® Finite models: there is a finite universal model
— full dependencies (no 3)
— many acyclicity notions (more on this later)
® Tree-like models: there is universal model of bounded treewidth
— Guarded rules
— Frontier-guarded rules
* Rewritability: entailment can be reduced to first-order model checking

— Linear tgds
— Sticky rules

None of the general criteria are decidable, but the concrete conditions are.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 13 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Part 2:
The Chase

Applying a rule

Database D
Rule p = ¢lx,y] = Fz. ¥[x,z]

Definition: Rule p is applicable to D if:
1. there is a function 4 : x Uy — adom(D) such that i(¢) C D (a match)
2. there is no function /' : x Uz — adom(D) with #’(x) = h(x) for all x € x and
@) €D
The 2 is the result of applying p to D under % if D’ = D U h(y) and:
® /i(x) = h(x) for all x e x

* i(z) is a fresh null for all z € z

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 15 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

The Chase(s)

A chase constructs a sequence of databases D, = D, D,, D, ... by applying rules.

The Standard Chase (a.k.a. restricted chase)
® Apply rules to matches in some order (strategy)

The Skolem Chase (a.k.a. semi-oblivious chase)
® Apply skolemised rules (in any order)

The Datalog-first Chase
® Apply rules to matches in some order that prioritises the application of rules

without existential quantifiers

Other prominent chases: oblivious chase and core chase

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 16 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 17 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the standard chase may yield:

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 17 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the standard chase may yield:
D = DU {hasPart(c, n;), Wheel(n)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 17 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the standard chase may yield:
D = DU {hasPart(c, n;), Wheel(n)}
D, = D,y U {partOf(ny, c)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 17 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the standard chase may yield:
D = DU {hasPart(c, n;), Wheel(n)}

D, = D,y U {partOf(ny, c)}

D3 = D, U {properPartOf(n,, n,), Bicycle(n,)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 17 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the standard chase may yield:
D = DU {hasPart(c, n;), Wheel(n)}

D, = D,y U {partOf(ny, c)}

D3 = D, U {properPartOf(n,, n,), Bicycle(n,)}
Dy = Ds U {hasPart(n,, n3), Wheel(nz)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 17 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the standard chase may yield:

D = DU {hasPart(c, n;), Wheel(n)} D5 = Dy U {partOf(ny, ny)}
D, = D,y U {partOf(ny, c)}

D3 = D, U {properPartOf(n,, n,), Bicycle(n,)}

Dy = Ds U {hasPart(n,, n3), Wheel(nz)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 17 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the standard chase may yield:

D = DU {hasPart(c, n;), Wheel(n)} D5 = Dy U {partOf(ny, ny)}
D, = D,y U {partOf(ny, c)} Ds = Ds U {hasPart(n,, n;)}
D3 = D, U {properPartOf(n,, n,), Bicycle(n,)}

Dy = Ds U {hasPart(n,, n3), Wheel(nz)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 17 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Jw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the standard chase may yield:

D = DU {hasPart(c, n;), Wheel(n)} Ds = Dy U {partOf(n;, ny)}
D, = D,y U {partOf(ny, c)} Ds = Ds U {hasPart(n,, n;)}
D3 = D, U {properPartOf(n;, n,), Bicycle(ny)} D7 = Dg U {partOf(nz, ny)}
Dy = Ds U {hasPart(n,, n3), Wheel(nz)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 17 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Jw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the standard chase may yield:

D = DU {hasPart(c, n;), Wheel(n)} Ds = Dy U {partOf(n;, ny)}

D, = D,y U {partOf(ny, c)} Ds = Ds U {hasPart(n,, n;)}

D3 = D, U {properPartOf(n;, n,), Bicycle(ny)} D7 = Dg U {partOf(nz, ny)}

Dy = Ds U {hasPart(n,, n3), Wheel(nz)} Dg = D; U {partOf(nz, ny), Bicycle(ng)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 17 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the standard chase may yield:

D = DU {hasPart(c, n;), Wheel(n)} D5 = Dy U {partOf(ny, ny)}

D, = D,y U {partOf(ny, c)} Ds = Ds U {hasPart(n,, n;)}

D3 = D, U {properPartOf(n;, n,), Bicycle(ny)} D7 = Dg U {partOf(nz, ny)}

Dy = Ds U {hasPart(n,, n3), Wheel(nz)} Dg =D U {partOf(n3, ng), Bicycle(n4)}

The chase can continue forever ...

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 17 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 18 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the Datalog-first chase yields:

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 18 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the Datalog-first chase yields:
D, = DU {hasPart(c, n;), Wheel(n)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 18 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the Datalog-first chase yields:
D, = DU {hasPart(c, n;), Wheel(n)}
D, = Dy U {partOf(ny, c)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 18 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the Datalog-first chase yields:
D, = DU {hasPart(c, n;), Wheel(n)}

D, = Dy U {partOf(ny, c)}

D5 = D, U {properPartOf(n, n,), Bicycle(n,)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 18 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the Datalog-first chase yields:
D, = DU {hasPart(c, n;), Wheel(n)}

D, = Dy U {partOf(ny, c)}

D5 = D, U {properPartOf(n, n,), Bicycle(n,)}
Dy=D3U {partOf(nl, ny)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 18 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the Datalog-first chase yields:

D, = DU {hasPart(c, n;), Wheel(n)} Ds = Dy U {hasPart(n,, ny)}
D, = Dy U {partOf(ny, c)}

D5 = D, U {properPartOf(n, n,), Bicycle(n,)}

Dy=D3U {partOf(nl, ny)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 18 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — dv.hasPart(x,v) A Wheel(v)
Wheel(x) — Iw.properPartOf(x, w) A Bicycle(w)
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the Datalog-first chase yields:

D, = DU {hasPart(c, n;), Wheel(n)} Ds = Dy U {hasPart(n,, ny)}
D, = Dy U {partOf(ny, c)}

D5 = D, U {properPartOf(n, n,), Bicycle(n,)}

Dy=D3U {partOf(m, ny)}

No further rules are applicable. The chase terminates.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 18 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — hasPart(x, w(x)) A Wheel(w(x))
Wheel(x) — properPartOf(x, b(w)) A Bicycle(b(w))
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 19 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — hasPart(x, w(x)) A Wheel(w(x))
Wheel(x) — properPartOf(x, b(w)) A Bicycle(b(w))
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the skolem chase yields:

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 19 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — hasPart(x, w(x)) A Wheel(w(x))
Wheel(x) — properPartOf(x, b(w)) A Bicycle(b(w))
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the skolem chase yields:
Dy = D U {hasPart(c, w(c)), Wheel(w(c))}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 19 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — hasPart(x, w(x)) A Wheel(w(x))
Wheel(x) — properPartOf(x, b(w)) A Bicycle(b(w))
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the skolem chase yields:
Dy = D U {hasPart(c, w(c)), Wheel(w(c))}
Dy = Dy U {partOf(w(c), ¢)}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 19 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — hasPart(x, w(x)) A Wheel(w(x))
Wheel(x) — properPartOf(x, b(w)) A Bicycle(b(w))
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the skolem chase yields:

Dy = D U {hasPart(c, w(c)), Wheel(w(c))}

Dy = Dy U {partOf(w(c), ¢)}

D3 = D, U {properPartOf(w(c), b(w(c))),
Bicycle(b(w(c)))}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 19 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — hasPart(x, w(x)) A Wheel(w(x))
Wheel(x) — properPartOf(x, b(w)) A Bicycle(b(w))
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the skolem chase yields:
Dy = DU {hasPart(c, w(c)), Wheel(w(c))} D, = D5 U {partOf(w(c), b(w(c)))}
D, = D, U {partOf(w(c), c)}
D3 = D, U {properPartOf(w(c), b(w(c))),
Bicycle(b(w(c)))}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 19 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — hasPart(x, w(x)) A Wheel(w(x))
Wheel(x) — properPartOf(x, b(w)) A Bicycle(b(w))
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the skolem chase yields:
Dy = DU {hasPart(c, w(c)), Wheel(w(c))} D, = D5 U {partOf(w(c), b(w(c)))}

D, = D, U {partOf(w(c), c)} Ds = Dy U {hasPart(b(w(c)), w(c))}
D3 = D, U {properPartOf(w(c), b(w(c))),
Bicycle(b(w(c)))}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 19 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — hasPart(x, w(x)) A Wheel(w(x))
Wheel(x) — properPartOf(x, b(w)) A Bicycle(b(w))
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the skolem chase yields:
Dy = DU {hasPart(c, w(c)), Wheel(w(c))} D, = D5 U {partOf(w(c), b(w(c)))}

D, = D, U {partOf(w(c), c)} Ds = Dy U {hasPart(b(w(c)), w(c))}
D3 = D, U {properPartOf(w(c), b(w(c))), De = Ds U {hasPart(b(w(c)), w(b(w(c)))),
Bicycle(b(w(c)))} Wheel(w(b(w(c))))}

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 19 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Will it terminate?

D = {Bicycle(c)} Bicycle(x) — hasPart(x, w(x)) A Wheel(w(x))
Wheel(x) — properPartOf(x, b(w)) A Bicycle(b(w))
properPartOf(x, y) — partOf(x, y)
hasPart(x, y) — partOf(y, x)
partOf(x, y) — hasPart(y, x)

Applying the skolem chase yields:
Dy = DU {hasPart(c, w(c)), Wheel(w(c))} D, = D5 U {partOf(w(c), b(w(c)))}

D, = D, U {partOf(w(c), c)} Ds = Dy U {hasPart(b(w(c)), w(c))}
D3 = D, U {properPartOf(w(c), b(w(c))), De = Ds U {hasPart(b(w(c)), w(b(w(c)))),
Bicycle(b(w(c)))} Wheel(w(b(w(c))))}

The chase will certainly continue forever ...

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 19 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Chase termination

Some observations:

® Termination is strategy-dependent for standard and Datalog-first chase,
but not for skolem chase

® Whenever skolem chase terminates, standard chase terminates for all strategies

® Whenever standard chase terminates (for some/all strategies),
Datalog-first chase terminates (for all/some strategies)

® Termination always depends on the concrete database instance

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 20 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Chase termination

Some observations:

® Termination is strategy-dependent for standard and Datalog-first chase,
but not for skolem chase

® Whenever skolem chase terminates, standard chase terminates for all strategies

® Whenever standard chase terminates (for some/all strategies),
Datalog-first chase terminates (for all/some strategies)

® Termination always depends on the concrete database instance

We can define rule classes based on their termination behaviour:

Termination on . .. instance © all instances
Skolem chase CTS CT¥
Standard chase (all strategies) CcTSY CT:Y
Datalog-first chase (all strategies) CTS, cTd

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 20 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

The chase termination problem

Theorem (Gogacz & Marcinkowski, ICALP’14; Grahne & Onet, Fund.Inf.18):
The classes CT,,, and CTy,,, are undecidable for all x € {sk, std, dlf}.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 21 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

The chase termination problem

Theorem (Gogacz & Marcinkowski, ICALP’14; Grahne & Onet, Fund.Inf.18):
The classes CT,,, and CTy,,, are undecidable for all x € {sk, std, dlf}.

The cases CTy,, are simple:
e Simulate a Turing machine in a standard encoding
e Halting reduces to chase termination

These cases are recursively enumerable (r.e.).

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 21 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

The chase termination problem

Theorem (Gogacz & Marcinkowski, ICALP’14; Grahne & Onet, Fund.Inf.18):
The classes CT,,, and CTy,,, are undecidable for all x € {sk, std, dlf}.

The cases CTy,, are simple:
e Simulate a Turing machine in a standard encoding
e Halting reduces to chase termination

These cases are recursively enumerable (r.e.).

Membership of CT§k in r.e. is also simple, due to the following result [Marnette, PODS’09]:

Proposition: T € CT if and only if £ € CT5s., where D* is the critical instance
consisting of all atoms that can be stated over the signature using constants from
¥ and an additional constant .

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 21 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Universal chase termination

Hardness of CT§k is more tricky: how to simulate a Turing machine starting from D*?
e Every conjunctive query already matches
* |tis difficult to apply rules in any orderly fashion

Solved by [Gogacz & Marcinkowski, ICALP’14] (showing r.e.-completeness)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 22 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Universal chase termination

Hardness of CT§k is more tricky: how to simulate a Turing machine starting from D*?
e Every conjunctive query already matches
* |tis difficult to apply rules in any orderly fashion

Solved by [Gogacz & Marcinkowski, ICALP’14] (showing r.e.-completeness)

The case of CTSY (and with it CTJ!)) is more difficult.

The critical instance is no longer relevant for all-instances termination:

Ebservation: Every rule set is in CTSy. \

Indeed, CTS¢ and CTS!, are no longer r.e., although the exact degree of their
undecidability remains open.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 22 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Decidable cases

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 23 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Decidable cases

The (supposed) undecidability of chase termination has motivated significant research
activities for finding sufficient termination criteria:

® omega-restrictedness [Syrjanen, LPNMR 2001]

® weak-acyclicity [Fagin et al., Theo. Comp. Sci. 2005]

® lambda restrictedness [Gebser, Schaub, Thiele, LPNMR 2007]

¢ finite domain [Calimeri et al. ICLP 2008]

® super-weak acyclicity [Marnette, PODS 2009]

o safety [Meier, Schmidt, & Lausen, Proc. VLDB 2009]

® argument restrictedness [Lierler & Lifschitz, ICLP 2009]

® joint acyclicity [MK & Rudolph, IJCAI 2011]

® acyclic graph of rule dependencies [Baget et al., Artif. Intell. 2011]

® O-acyclicity [Greco, Spezzano, & Trubitsyna, ICLP 2012]

® model faithful & model summarising ayclicity [Cuenca Grau et al., J. Artif. Intell. Res. 2013]
Al of these criteria apply to CTS¥.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 23 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Chase variants in practice

Standard chase rule applications are harder than skolem chase rule applications:
® Skolem chase: guess match and verify absence of conclusions — NP
* Standard chase: guess match and verify non-entailment of conclusion — NP'¥ (= £7)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 24 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Chase variants in practice

Standard chase rule applications are harder than skolem chase rule applications:
® Skolem chase: guess match and verify absence of conclusions — NP
* Standard chase: guess match and verify non-entailment of conclusion — NP'¥ (= £7)

Nevertheless, the standard chase is implemented by many existential rule engines:
® DEMo [Pichler & Savenkov, VLDB’09]
® RDFox [Motik et al., AAAI'14]
® | Junatic [Geerts et al., VLDB’14]
® Pegasus [Meier, VLDB’14]
* PDQ [Benedikt, Leblay, & Tsamoura, VLDB’14; VLDB'15]
® Graal [Baget et al., RuleML15]
® VLog [Urbani, Jacobs, & MK, AAAI'16; Urbani et al., IJCAR’18]

See [Benedikt et al., PODS’17] and [Urbani et al., IJCAR’18] for recent benchmarks.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 24 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Alowau 101N0 | noe-_daap

00z-daap
m 00T-daap

Alowaw wo no
AT-WaN1

sec

10°

00T-WaN1
010-WaNn1
INT-S10100p

MOT-510100p

821-81S

0r0-Waon
0z0-waon
0T0-W8OoN
080-10e3Y
090-10e3y
0v0-10e8y

010-j01dIUN

B VLog time
RDFox time

S00-10:diun

20
15
10
5
0

5 5 % % v & B o
= S |2 |2 3 3 2 «

Aowaw 101n0 | 55e_daop

00z-deap

001-dsap
Aiowaw j0 10

Alowaw 10 1no

Alowaw Jo Ino

9g2-ABojouo

sec

10°

0

10°

8 VLog time
RDFox time
15
10

107
10°
10°
10

)
E

S o
| 2 o«

Alowaw Jo 1no

—

Alowaw jo 1no

@ number of derived facts (right axis)

VLog memory

miB

AT-Wan1
00T-WaN1

* FemE oTo-wan

INT-SI0100p

. i

MOT-S10100p

821-91S

0r0-Waon
0zo-waon
0T0-wgon

080-"10e3y
090-10e3y
0v0-10e3y

oto-0idiun

B RDFox memory
*

500-101diun

5120
4096
2048
1024

I
N
S
®

aseyD pajLisay

MiB

@ number of derived facts (right axis)

8 VLog memory

B RDFox memory

5120

*

*

4096
3072
2048

aseyD woa|oyS

1024

Part 3:

Expressivity

Expressive power

What is the expressive power of fragments of existential rules
for which the chase terminates?

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 27 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Expressive power

What is the expressive power of fragments of existential rules
for which the chase terminates?

Follow-up question: what is “expressive power”?

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 27 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Expressive power

What is the expressive power of fragments of existential rules
for which the chase terminates?

Follow-up question: what is “expressive power”?

~» descriptive, not computational complexity

Definition: Consider a finite signature REPB of (extensional) database relations.
An abstract query over REPB is a set D of concrete databases over REPE.

A set of rules T and BCQ ¢ realise D if, for every database D over REPB,

D, X | g exactly if D e D.

where X and ¢ may use additional relations beyond REPB,

~ Expressivity = abstract queries that can be realised (by a rule fragment)

Note: This is closer to the program view than to the ontology view.

The Power of the Terminating Chase slide 27 of 54

Markus Krétzsch, ICDT 2019 — Invited Tutorial

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

A note on Datalog

Distinguishing extensional (EDB) and intensional (IDB) predicates is common for Datalog.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 28 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

A note on Datalog

Distinguishing extensional (EDB) and intensional (IDB) predicates is common for Datalog.

Datalog as Second-Order Language
e EDB predicates = FO predicates; IDB prediates = SO variables
® Query answering: Second-order model checking
® Query containment et al.: undecidable

Datalog as First-Order Language
® EDB predicates = input predicates; IDB prediates = auxiliary/output predicates
® Query answering: first-order entailment

® Query containment et al.: decidable

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 28 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

A note on Datalog

Distinguishing extensional (EDB) and intensional (IDB) predicates is common for Datalog.

Datalog as Second-Order Language
e EDB predicates = FO predicates; IDB prediates = SO variables
® Query answering: Second-order model checking
® Query containment et al.: undecidable

Datalog as First-Order Language
® EDB predicates = input predicates; IDB prediates = auxiliary/output predicates
® Query answering: first-order entailment

® Query containment et al.: decidable

We only use EDB predicates to define expressivity. Everything here is first order.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 28 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Data complexity for CTS*

Marnette [PODS 2009] showed the following general result:

Theorem: For every X € CTS and concrete database 9, the skolem chase over T

and D is polynomial in the size of D.
The data complexity of BCQ entailment over CT§k is PTime-complete.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 29 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Data complexity for CTS*

Marnette [PODS 2009] showed the following general result:

Theorem: For every X € CTS and concrete database D, the skolem chase over X
and D is polynomial in the size of D.
The data complexity of BCQ entailment over CT§k is PTime-complete.

Proof: There is a tuple-preserving mapping . from any database D to the critical
instance D*:

® /i(c) = ¢ for all constants in X

® ji(c) = = for all other constants
h extends to function terms by setting i(f(c) = f(h(c))-

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 29 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Data complexity for CTS*

Marnette [PODS 2009] showed the following general result:

Theorem: For every X € CTS and concrete database D, the skolem chase over X
and D is polynomial in the size of D.
The data complexity of BCQ entailment over CT§k is PTime-complete.

Proof: There is a tuple-preserving mapping . from any database D to the critical
instance D*:

® /i(c) = ¢ for all constants in X

® ji(c) = = for all other constants
h extends to function terms by setting i(f(c) = f(h(c))-

This extended mapping satisfies: r(f) € chaseg(Z, D) implies r(h(t)) € chaseg (X, D).

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 29 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Data complexity for CTS*

Marnette [PODS 2009] showed the following general result:

Theorem: For every X € CTS and concrete database 9, the skolem chase over T
and D is polynomial in the size of D.
The data complexity of BCQ entailment over CT§k is PTime-complete.

Proof: There is a tuple-preserving mapping . from any database D to the critical
instance D*:

® /i(c) = ¢ for all constants in X

® ji(c) = = for all other constants
h extends to function terms by setting i(f(c) = f(h(c))-

This extended mapping satisfies: r(f) € chaseg(Z, D) implies r(h(t)) € chaseg (X, D).

In particular: the depth and structure of function terms in chases(Z, D) is restricted to
the depth and structure of terms in chaseg(Z, D).

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 29 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Data complexity for CTS*

Marnette [PODS 2009] showed the following general result:

Theorem: For every X € CTS and concrete database D, the skolem chase over X
and D is polynomial in the size of D.
The data complexity of BCQ entailment over CT§k is PTime-complete.

Proof: There is a tuple-preserving mapping . from any database D to the critical
instance D*:

® /i(c) = ¢ for all constants in X

® ji(c) = = for all other constants
h extends to function terms by setting i(f(c) = f(h(c))-

This extended mapping satisfies: r(f) € chaseg(Z, D) implies r(h(t)) € chaseg (X, D).

In particular: the depth and structure of function terms in chases(Z, D) is restricted to
the depth and structure of terms in chaseg(Z, D).

The only data-dependent part are the additional constants in D: the number of distinct

terms and tuples is polynomial in this respect. O
Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 29 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

From CT$* to Datalog

The previous insight can be taken further
[MK & Rudolph IJCAI'11; Zhang, Zhang & You AAAI'15]

Theorem: For every ¥ € CT@k and BCQ ¢, there is a set of Datalog rules X’ and
BCQ ¢’ suchthat {D | D, 2 E ¢} ={D| DY Eq'}.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 30 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

From CT$* to Datalog

The previous insight can be taken further
[MK & Rudolph IJCAI'11; Zhang, Zhang & You AAAI'15]

Theorem: For every ¥ € CT@k and BCQ ¢, there is a set of Datalog rules X’ and
BCQ ¢’ suchthat {D | D, 2 E ¢} ={D| DY Eq'}.

Proof (idea): The terms in any skolem chase over X are bounded in size.
One can “flatten” such terms by increasing the arity of predicates, e.g.,
p(fa,b)) — p(f,a,b)
Arities must be large enough to accommodate all possible terms, but unused positions
can be filled by a special constant o, e.g.,
q(f(s(a,b),t(c,d))) — q(f,s,a,b,t,c,d)
q(f(a7 g(b))) g q(f7 a’ D’ D7 g’ b7 D)

It is easy to apply these replacements to rules and queries. O
Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 30 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Discussion

Summary: Essentially all known chase termination criteria recognise fragments
of existential rules that are basically syntactic simplifications of Datalog.

e Existential rules are usually more concise (flattening may incur exponential
predicate arity)

® Combined complexity is accordingly higher (typically 2ExpTime-complete)

® But the expressive power is not more than Datalog

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 31 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Discussion

Summary: Essentially all known chase termination criteria recognise fragments
of existential rules that are basically syntactic simplifications of Datalog.

e Existential rules are usually more concise (flattening may incur exponential
predicate arity)

® Combined complexity is accordingly higher (typically 2ExpTime-complete)

® But the expressive power is not more than Datalog

Thesis

Previous research on chase termination is best motivated from an ontological view,
while not leading to significant advances for using rules as declarative programs/queries.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 31 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Beyond P

Surprisingly, this severe restriction in expressivity is specific to the skolem chase:

Theorem: There is a rule set = € CT% and a BCQ ¢ that express a

non-elementary Boolean query.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 32 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Beyond P

Surprisingly, this severe restriction in expressivity is specific to the skolem chase:

Theorem: There is a rule set = € CTS! and a BCQ ¢ that express a
non-elementary Boolean query.

Proof: We reduce from the following non-elementary decision problem:

Input: A Turing machine M and a number k P
Question: When started on the empty tape, does M halt in at most 2> steps?
k times

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 32 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Beyond P

Surprisingly, this severe restriction in expressivity is specific to the skolem chase:

Theorem: There is a rule set = € CTS! and a BCQ ¢ that express a
non-elementary Boolean query.

Proof: We reduce from the following non-elementary decision problem:

Input: A Turing machine M and a number k P
Question: When started on the empty tape, does M halt in at most 2> steps?
k times

Three ingredients are needed:

1. Rules that receive an input chain first(ey), next(eg, e1), . .. , next(es_1, ex), last(e;) and
construct a k-exponentially long chain (interesting)

2. Rules that simulate a Turing machine in time and space bounded by this chain
(boring)
3. Rules that ensure termination even on malformed inputs (interesting)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 32 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Building a long chain

We construct a series of k full binary trees of depth 2, 2, 222, ... (we omit the roots)

Tree #1 Tree #2

====> next
—> left, right
-==+==> level counter

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 33 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Building a long chain

We construct a series of k full binary trees of depth 2, 2, 222, ... (we omit the roots)

Tree #1 Tree #2 Tree #3
@c----- > 0@ A— ----- > === > 0@
e > e -0 ->0
====> next

—> left, right
-==+==> level counter

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 33 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Building a long chain

We construct a series of k full binary trees of depth 2, 2, 222, ... (we omit the roots)

Tree #1 Tree #2 Tree #3

====> next
—> left, right
-==+==> level counter

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 33 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Building a long chain

We construct a series of k full binary trees of depth 2, 2, 222, ... (we omit the roots)

Tree #1 Tree #2 Tree #3

====> next
—> left, right
-==+==> level counter

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 33 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Building a long chain

We construct a series of k full binary trees of depth 2, 2, 222, ... (we omit the roots)

Tree #1 Tree #2 Tree #3
b Sl ¥ Py il > ¥ . Ul 7
>0 ->0->0 T 8 ->e->e
..'-.,__“..'_“_ ,...--“ ‘_.---
= ===> pnext
—> left, right
--====> |evel counter

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 33 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Building a long chain

We construct a series of k full binary trees of depth 2, 2, 222, ... (we omit the roots)

Tree #1 Tree #2 Tree #3
b Sl ¥ Py il > ¥ . Ul >
0> 0> >0 >0 ->0
..'-.,__“..'_“_ ,...--“ ‘_.---
====> next
—> left, right
-=====> level counter

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 33 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Building a long chain

We construct a series of k full binary trees of depth 2, 2, 222, ... (we omit the roots)

Tree #1 Tree #2 Tree #3

====> next
—> left, right
-==+==> level counter

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 33 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Building a long chain

We construct a series of k full binary trees of depth 2, 2, 222, ... (we omit the roots)

Tree #1 Tree #2 Tree #3

R -.).
—> left, right
--====> |evel counter

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 33 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Building a long chain

We construct a series of k full binary trees of depth 2, 2, 222, ... (we omit the roots)

Tree #1 Tree #2 Tree #3

— ..).).
—> left, right
--====> |evel counter

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 33 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Building a long chain

We construct a series of k full binary trees of depth 2, 2, 222, ... (we omit the roots)

Tree #1 Tree #2 Tree #3

R 0> 0> 0> 0
—> left, right
--====> |evel counter

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 33 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Building a long chain

We construct a series of k full binary trees of depth 2, 2, 222, ... (we omit the roots)

Tree #1 Tree #2 Tree #3

R 0> 0> 0> 0
—> left, right
--====> |evel counter

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 33 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Building a long chain

And here are the rules:
first(v) — Ax.start(x, x, v) A end(x)
start(x, u, v) A end(u) A next(v,v') — Ay, ya.start(yr, x,v") A succ(yr, y2) A end(y,)

start(x, u, v) A succ(u, u’) — Ay.left(x, y) A start(y, v, v)

left(x, y) — 3y’.right(x, y") A succ(y,y")

right(x, y) A succ(x,x”) — Ay’ .left(x’,y") A succ(y,y’)
end(x) A right(x,y) — end(y)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 34 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Ensuring termination

The chain construction works even in the skolem chase for inputs
first(eg), next(eq, e1), . .., next(er_1, ex), last(ey).

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 35 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Ensuring termination

The chain construction works even in the skolem chase for inputs
first(eg), next(eq, e1), . .., next(er_1, ex), last(ey).

But every chase fails to terminate if the next-graph is cyclic.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase

slide 35 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Ensuring termination

The chain construction works even in the skolem chase for inputs
first(ep), next(ep, e1), ..., next(ey_1,), last(ey).

But every chase fails to terminate if the next-graph is cyclic.
We can ensure termination for Datalog-first chase using rules as follows:

next(x, y) — tnext(x,y)
tnext(x, y) A next(y, z) — tnext(x, z)

tnext(x, x) A adom(u) A adom(v) A adom(w) — start(u, v, w) flooding rule(s)

cycle detection

® The rules are applied before applying existential rules (Datalog first)
® The flooding rules stop the introduction of new nulls
® Further rules are needed:

also flood other atoms; extract adom from other atoms

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 35 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Beyond P in standard chase

Problem: We rely on the Datalog-first chase. With standard chase, cycles will eventually
be found (fairness), but flooding rules might be applied too late to prevent new nulls

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 36 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Beyond P in standard chase

Problem: We rely on the Datalog-first chase. With standard chase, cycles will eventually
be found (fairness), but flooding rules might be applied too late to prevent new nulls

Solution: Create an emergency break that can be activated with just one rule application.

Tree #1 Tree #2 Tree #3

= ===> pnext

— leftright el O
’:48;‘-\"'“&;;-
--====> |evel counter .

-------- all relations

o L3

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 36 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Beyond P in standard chase

Problem: We rely on the Datalog-first chase. With standard chase, cycles will eventually
be found (fairness), but flooding rules might be applied too late to prevent new nulls

Solution: Create an emergency break that can be activated with just one rule application.

® Use a new unary predicate real, expected for all domain elements used so far, and
require it for all elements in all rules

Introduce a unique “break” element that is almost a critical instance, but not real:

— dx.break(x) A start(x, x, x) A succ(x,x) Aendx) A ...

all possible facts over x, except real(x)

Connect new nulls to this “break” element upon creation
(doing this properly requires a rewriting to split start into several binary relations)

® To activate the emergency break, use a rule like

tnext(x, x) A break(u) — real(u)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 36 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Beyond P in standard chase

Summary
® The emergency-break technique ensures termination by relying on fairness
* Hence, there are no runtime guarantees, but the rules are in CTS¢

Theorem: There is a rule set = € CTS and a BCQ ¢ that express a
non-elementary Boolean query.

Note: Very recent research found that fairness is never needed for termination when
rules have a single head atom only [Gogacz et al. CoRR abs/1901.03897, 2019]

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 37 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Part 3:

Expressivity in P

Back to P

High expressivity can be a plus, but many practical problems are in P anyway.

Can the terminating skolem chase solve every problem in P?

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 39 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Back to P

High expressivity can be a plus, but many practical problems are in P anyway.

Can the terminating skolem chase solve every problem in P?

No, certainly not:
® Like Datalog, it does not capture P
® One would need to add input negation and linear order

® |n particular, Datalog (and so CT@k) can only express queries that are closed under
homomorphism (i.e., monotone)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 39 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Back to P

High expressivity can be a plus, but many practical problems are in P anyway.

Can the terminating skolem chase solve every problem in P?

No, certainly not:
® Like Datalog, it does not capture P
® One would need to add input negation and linear order

® |n particular, Datalog (and so CT@k) can only express queries that are closed under
homomorphism (i.e., monotone)

Can the terminating skolem chase express every homomorphism-closed query in P?

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 39 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Back to P

High expressivity can be a plus, but many practical problems are in P anyway.

Can the terminating skolem chase solve every problem in P?

No, certainly not:
® Like Datalog, it does not capture P
® One would need to add input negation and linear order

® |n particular, Datalog (and so CT@k) can only express queries that are closed under
homomorphism (i.e., monotone)

Can the terminating skolem chase express every homomorphism-closed query in P?

No, but this is less obvious:

® Dawar & Kreutzer discovered a homomorphism closed, polynomial time query that
cannot be expressed in Datalog [ICALP’08]

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 39 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

The Dawar & Kreutzer query

Input: A directed graph G with two distinguished vertices s and ¢
Question: i
Is G cyclic, or is there a simple path from s to ¢ of length 22" for some n € N?

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 40 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

The Dawar & Kreutzer query

Input: A directed graph G with two distinguished vertices s and ¢
Question: }
Is G cyclic, or is there a simple path from s to ¢ of length 22" for some n € N?

Definition: The DK query Dpk is the abstract Boolean query containing exactly
those concrete databases that encode an instance of this decision problem using
a binary relation edge and constant symbols s and t.

This query is:
® closed under homomorphisms
® solvable in polynomial time

® not expressible in Datalog, hence not expressible in CT§k

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 40 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

DK in Datalog-first chase

We find that Datalog-first is more powerful than skolem even for polynomial problems:

Theorem: There is a rule set = € CT9" and BCQ g that realise the DK query.
The Datalog-first chase on X is polynomial in the size of the input database.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 41 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

DK in Datalog-first chase

We find that Datalog-first is more powerful than skolem even for polynomial problems:

Theorem: There is a rule set X € CTg'\f, and BCQ ¢ that realise the DK query.
The Datalog-first chase on X is polynomial in the size of the input database.

Proof: The rule set consists of three parts:

(A) Rules to create a “yardstick” to measure the length of single paths starting in s
(B) Rules to derive simple arithmetic relations on this yardstick

(C) Rules to stop the chase if there is a cycle

Our construction is inspired by a previous encoding by Rudolph & Thomazo [IJCAI'15].

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 41 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

(A) The Yardstick

— dx.zero(x) start chain

zero(x) — dist(s, x) distance of s to s

dist(v, x) — dx".succ(x, x") extend chain

dist(v, x1) A edge(v, v2) A succ(xy,xp) — dist(va, xp) distance of v, to s

This creates a chain of succ relations, starting from a /
zero element

® The chain is only extended if its last elements
are needed to measure some distance

* There will only be one chain for the whole graph \/’

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 42 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

(B) The Arithmetic

zero(x) A dist(v,y) — add(x, y,y) A mul(x, y, x)
add(x, y,) A succ(x, x’) A succ(z,z’) — add(’, y,7’)
mul(x, y, z) A succ(x, x') A add(z,y,z’) — mul(x’,y,z’)
zero(x) A succ(x, x”) — exp(x,x”)
exp(x,y) A succ(x, x’) A add(y,y,y") — exp(x’,y")
mul(x, x, y) A exp(y,y") A exp(y’, z) A dist(t, z) — goal

The arithmetic is easy to implement:
® add(x,y,z) means “x +y = z”; mul(x, y, z) means “x xy = 7”; exp(x, y) means “2* = y”
® The last rule recognises the query condition

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 43 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

(C) The Cycle Stopper

edge(vi, v2) — path(vy, v2)
edge(vy, v2) A path(v,, v3) — path(vy, v3)
path(v,v) — goal
dist(v, x) A goal — succ(x, x)

Rules for cycle detection and ensuring termination
® The first three rules derive the goal on cycles
® The last rule will prevent new nulls to be created for extending the Yardstick

This completes the construction. It is easy to verify the claim. O

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 44 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

How about the standard chase?

The rules we used to realise the DK query are in CT9" but not in CTSS:
® The flooding rule dist(v, x) A goal — succ(x, x) might be applied too late

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 45 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

How about the standard chase?
The rules we used to realise the DK query are in CTS), but not in CTSS:
® The flooding rule dist(v, x) A goal — succ(x, x) might be applied too late

We can fix this by creating an emergency break as in the non-elementary computation:
® Add an almost-critical instance, connected to all new nulls

® Rely on fairness to activate the break if a cycle exists

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 45 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

How about the standard chase?

The rules we used to realise the DK query are in CTS), but not in CTSS:
® The flooding rule dist(v, x) A goal — succ(x, x) might be applied too late

We can fix this by creating an emergency break as in the non-elementary computation:
® Add an almost-critical instance, connected to all new nulls
® Rely on fairness to activate the break if a cycle exists

Result: The DK query is in CT\S,‘\?, but our realisation does not yield any runtime bound

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 45 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

How about the standard chase?

The rules we used to realise the DK query are in CTS), but not in CTSS:
® The flooding rule dist(v, x) A goal — succ(x, x) might be applied too late

We can fix this by creating an emergency break as in the non-elementary computation:
® Add an almost-critical instance, connected to all new nulls
® Rely on fairness to activate the break if a cycle exists

Result: The DK query is in CT@‘\?, but our realisation does not yield any runtime bound

But we can do better:

Theorem: There is a rule set X € CTS9 and BCQ ¢ that realise the DK query.
The standard chase on X is at most exponential in the size of the input database.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 45 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

DK in exponential standard chase

Basic idea:
* Replace the Yardstick by a tree that is an unravelled version of the graph:

S I U
SV
N N

® |tis then easy to use tree nodes as distances and to do arithmetic on the tree.

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 46 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

DK in exponential standard chase

Elements of the tree correspond to simple paths, considered as sets of vertices
® ins(v,x,y) means “{v} Ux = y”; especially ins(v, x,x) means “v € x”
® subset(v,w) means “x C y”

0 {s,b,e,f,h} {s,b,e,g,h}) W {s,c,d,e,f,h} }{s,c,d,e, g, h}
Ah hA Ah hA
o e
. g':‘Y V’f g‘.‘Y

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 47 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

DK in exponential standard chase

Elements of the tree correspond to simple paths, considered as sets of vertices
® ins(v,x,y) means “{v} Ux = y”; especially ins(v, x,x) means “v € x”
® subset(v,w) means “x C y”

0 {s,b,e,f,h} {s,b,e, g, h} e, d, e, f, {s,c,d, e, g, h}
Ah hA Ah hA
o e
. g':‘Y V’f g‘.‘Y

Termination trick:
® new sets are only created by adding elements that are not included yet
® relevant facts ins(v, x, x) derived in Datalog, before adding more elements

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 47 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

DK in exponential standard chase

And here are the rules for building the tree:

— dx.zero(x) (1)

zero(x) — dist(s,x) A ins(s,x,x) A done(x) (2)

dist(vy, x1) A edge(vy, v2) A done(x;) — dx,.ins(vy, X1, x2) A subset(x,, x;) (3)
subset(xy, x3) A ins(v, xg, x1) — ins(v, x2,x2) A subset(xg, x) (4)
subset(x, x;) A zero(x;) — ins(s,x,,x2) A done(x,) (5)

dist(vy, x1) A edge(vy, va) A ins(vy, x1,xp) — dist(va, x2) A succ(xy, xz) (6)

When a new set is created (3), we recursively copy elements from all subsets (4), and
only consider the new set “done” when the empty set is reached (5).
(the rest of the proof is as before)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 48 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Discussion and Questions

What we have shown

Notation:

* We refine termination classes by adding a function class, e.g.,

“rules on which the standard chase
CT9(poly) means terminates in polynomial time
(for all strategies and instances)”

® For each rule language CT, we studied the class [CT] of abstract queries that it
can realise (using BCQs)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 50 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

What we have shown

Notation:
* We refine termination classes by adding a function class, e.g.,

“rules on which the standard chase
CT9(poly) means terminates in polynomial time
(for all strategies and instances)”

® For each rule language CT, we studied the class [CT] of abstract queries that it
can realise (using BCQs)

Summary of results:

[Datalog]=[CT]
I

[CTS(poly)]

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 50 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

What we have shown

Notation:
* We refine termination classes by adding a function class, e.g.,

“rules on which the standard chase
CT9(poly) means terminates in polynomial time
(for all strategies and instances)”

® For each rule language CT, we studied the class [CT] of abstract queries that it
can realise (using BCQs)

Summary of results:

[Datalog]=[CT$] c [CTY (poly)]
1l

[CTS(poly)]

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 50 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

What we have shown

Notation:
* We refine termination classes by adding a function class, e.g.,

“rules on which the standard chase
CT9(poly) means terminates in polynomial time
(for all strategies and instances)”

® For each rule language CT, we studied the class [CT] of abstract queries that it
can realise (using BCQs)

Summary of results:

[Datalog]=[CT] c [CT (poly)] ¢ [CTH (exp)] € ... c [Ux CTY (k-exp)]]

Il Ul ul Ul

[CTS(poly)] € [CTSy (poly)]l € [CTSS(exp)]l < ... € [Uy CTSy (k-exp)]]

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 50 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

What we have shown

Notation:
* We refine termination classes by adding a function class, e.g.,

“rules on which the standard chase
CT9(poly) means terminates in polynomial time
(for all strategies and instances)”

® For each rule language CT, we studied the class [CT] of abstract queries that it
can realise (using BCQs)

Summary of results:

[Datalog]=[CT$] c [CT% (poly)]l ¢ [CT% (exp)]l € ... c [Uy CTo(k-exp)] < [CT]
I Ul Ul Ul Ul

[CTS (poly)]l € [CTSG(poly)Tl < [CTSS(exp)l € ... € [CTSS (k-exp)] < [CTSell

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 50 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

What we have learned

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 51 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

What we have learned

Lesson 1: If we want robust chase termination, the skolem chase is much less
expressive than the standard chase

® Differences in highly expressive as well as polynomial queries
® Using function symbols instead of 3 might cost expressive power

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 51 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

What we have learned

Lesson 1: If we want robust chase termination, the skolem chase is much less
expressive than the standard chase

® Differences in highly expressive as well as polynomial queries
® Using function symbols instead of 3 might cost expressive power

Lesson 2: Our current rule reasoners are more powerful than we thought

* Any restricted chase implementation is sound and complete for CTS, not
just for decidable fragments thereof

® Datalog-first is often implemented already (as a natural heuristic)

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 51 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

What we have learned

Lesson 1: If we want robust chase termination, the skolem chase is much less
expressive than the standard chase

® Differences in highly expressive as well as polynomial queries
® Using function symbols instead of 3 might cost expressive power

Lesson 2: Our current rule reasoners are more powerful than we thought

* Any restricted chase implementation is sound and complete for CTS, not
just for decidable fragments thereof

® Datalog-first is often implemented already (as a natural heuristic)

Lesson 3: A Datalog-first chase strategy might have worst-case runtime benefits
e Other ways of slightly regulating chase strategies might also work
® Even (truly) random strategies might lead to almost certain termination

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 51 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Questions

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 52 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Questions

® Absolute expressibility Does some chase capture all homomorphism-closed
queries? If not, what does it capture?

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 52 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Questions

® Absolute expressibility Does some chase capture all homomorphism-closed
queries? If not, what does it capture?

* Relative expressibility Is [CTSS] c [CTS]? If not, can we rewrite rule sets?
How about the core chase?

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 52 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Questions

® Absolute expressibility Does some chase capture all homomorphism-closed
queries? If not, what does it capture?

* Relative expressibility Is [CTSS] c [CTS]? If not, can we rewrite rule sets?
How about the core chase?

* Complexity relationships Is [[CT@t\j’(pon)]] - [[CT‘?Vlf,(pon)]] strict? (conjecture:
yes) Is the penalty always exponential? Can the Datalog-first chase always be
worst-case optimal?

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 52 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Questions

® Absolute expressibility Does some chase capture all homomorphism-closed
queries? If not, what does it capture?

* Relative expressibility Is [CTSS] c [CTS]? If not, can we rewrite rule sets?
How about the core chase?

* Complexity relationships Is [[CT@t\j’(pon)]] - [[CT‘?Vlf,(pon)]] strict? (conjecture:
yes) Is the penalty always exponential? Can the Datalog-first chase always be
worst-case optimal?

® Decidable termination criteria Which sufficient criteria can detect termination
beyond skolem?

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 52 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Questions

® Absolute expressibility Does some chase capture all homomorphism-closed
queries? If not, what does it capture?

* Relative expressibility Is [CTSS] c [CTS]? If not, can we rewrite rule sets?
How about the core chase?

* Complexity relationships Is [[CT@t\j’(pon)]] - [[CT‘?Vlf,(pon)]] strict? (conjecture:

yes) Is the penalty always exponential? Can the Datalog-first chase always be
worst-case optimal?

® Decidable termination criteria Which sufficient criteria can detect termination
beyond skolem?

* Termination on restricted database classes Should we consider
“not-quite-universal termination” that imposes requirements on the database?
Which?

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 52 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

Questions

® Absolute expressibility Does some chase capture all homomorphism-closed
queries? If not, what does it capture?

* Relative expressibility Is [CTSS] c [CTS]? If not, can we rewrite rule sets?
How about the core chase?

* Complexity relationships Is [[CT@t\j’(pon)]] - [[CT‘?Vlf,(pon)]] strict? (conjecture:

yes) Is the penalty always exponential? Can the Datalog-first chase always be
worst-case optimal?

® Decidable termination criteria Which sufficient criteria can detect termination
beyond skolem?

* Termination on restricted database classes Should we consider
“not-quite-universal termination” that imposes requirements on the database?
Which?

* Practical applications How to exploit beyond-skolem expressive power in
practice?

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 52 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

One can still learn new things about the chase ...

Lessons learnt
® Skolem chase is just Datalog in disguise — standard chase is more
e Existing rule reasoners could be used ways not considered yet
® Rule reasoners should offer some chase strategy control

... but there are many open questions

Markus Krétzsch, ICDT 2019 — Invited Tutorial The Power of the Terminating Chase slide 53 of 54

https://iccl.inf.tu-dresden.de/web/Inproceedings3203/en

CONTACT

_Markus Krotzsch marRus.kroetzsch@tu-dresden.de

