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Algorithmic Meta-Theorems (AMTs):

General conditions that imply the automatic derivation of efficient algorithms.

“Algorithms that output algorithms”

• Provide uniform explanation why problems are tractable.
• Establish general algorithmic techniques for solving them.

Form of an AMT:

“All problems definable in a certain logic on a certain class of structures can be solved efficiently.”
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First-Order Logic (FO):

First-order variables vertices x , y , . . .

equality predicate x = y

adjacency predicate adj(x , y)

}
Combined with ∧, ∨, ¬
and quantification ∃x , ∀x

▶ (Induced) Subgraph Containment.

Does G contain H as a subgraph?

∃x∃y∃z
(
adj(x , y) ∧ adj(y , z) ∧ ¬adj(x , z)

)

▶ Vertex Cover.

Does G contain a set S of k vertices that intersects all edges of G?

∃v1 . . . ∃vk ∀x ∀y
(
adj(x , y) →

∨
i∈{1,...,k}(vi = x ∨ vi = y)

)
▶ Feedback Vertex Set.
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Monadic Second-Order Logic (MSO):

Extend FO by allowing quantification over sets of vertices ∀X ,∃X .

▶ 3-colorability.

∃V1∃V2∃V3

((
∀x (x ∈ V1∨x ∈ V2∨x ∈ V3)

)
∧
(
∀x∀y (x , y ∈ V1)∨(x , y ∈ V2)∨(x , y ∈ V3) =⇒ ¬adj(x , y)

))

▶ Connectivity.

∀x ∀y ¬
(
∃V

(
x ∈ V ∧ y /∈ V ∧

(
∀u ∀v adj(u, v) =⇒ (u ∈ V ⇔ v ∈ V )

)))
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Model-checking
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Complexity of model-checking.

FO:
We can test whether an FO-formula φ is satisfied on a graph G (G |= φ), in time |G |O(|φ|).

• Assuming ETH, we cannot test G |= φ in time |G |o(|φ|) for general graphs.

MSO:
3-Colorability is NP-complete.

• Assuming P ̸= NP, we cannot test G |= φ in time |G |f (|φ|) for any function f .

▶ Our notion of efficiency:

Fixed-Parameter Tractability, i.e., algorithms running in time f (|φ|) · |G |O(1).
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Form of an AMT:

“All problems definable in a certain logic on a certain class of structures can be solved efficiently.”

Every MSO2 property can be tested in linear time on graphs of bounded treewidth.
[Courcelle, 1990]

Every FO property can be tested in (almost) linear time on nowhere dense graph classes.
[Grohe, Kreutzer, & Siebertz, 2017]
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(C)MSO1: bounded cliquewidth. [Courcelle, Makowski, & Rotics, 2000] + [Oum & Seymour, 2006]

FO:

Sparse classes:

bounded degree [Seese, 1996]

locally bounded treewidth [Frick & Grohe, 2001]

excluding a minor [Flum & Grohe, 2001]

locally excluding a minor [Dawar, Grohe, & Kreutzer, 2007]

bounded expansion [Dvǒrák, Krá̌l, & Thomas, 2011]

nowhere dense [Grohe, Kreutzer, & Siebertz, 2017]

bounded twinwidth∗ [Bonnet, Kim, Thomassé, & Watrigant, 2022]
∗ given an identification sequence with the input.

Dense classes:

structurally bounded degree [Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016]

structurally bounded expansion [Gajarský, Kreutzer, Nešeťril, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018]

structurally nowhere dense [Dreier, Mählmann, Siebertz, 2023]

structurally bounded local cliquewidth [Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022]
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nowhere dense

bounded treewidth

FO MSO

[Grohe, Kreutzer, & Siebertz]

[Courcelle]

Assuming ETH:

• No FPT algorithm for MSO on unbounded treewidth classes.

• No FPT algorithm for FO on subgraph-closed somewhere dense classes.
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nowhere dense

bounded treewidth

FO MSO

[Grohe, Kreutzer, & Siebertz]

[Courcelle]

What to do next?

▶ Meta-algorithmics of FO:
counting predicates, transitive-closure operators, fixed-point operators,

successor-invariant formulas, FO-interpretability,...

▶ Consider logics between FO and MSO.
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Separator Logic & (Scattered) Disjoint-Paths Logic
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Separator logic (FO+conn):
[Schirrmacher, Siebertz, & Vigny, 2021]

[Bojańczyk, 2021]

Additional predicate connk(x , y , z1, . . . , zk):

There is an (x , y)-path that avoids z1, . . . , zk .

Can express:
k-connectivity. “∀x∀y∀z1 . . . ∀zk−1connk−1(x, y , z1, . . . , zk−1)”

Feedback Vertex Set.

Cannot express:
Planarity, (Topological) Minor Containment.

x

y

z1

z2

z3

FO ⊆ FO+conn ⊆ MSO
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nowhere dense

excluding a top. minor

bounded treewidth

FO FO+conn MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Courcelle]

Every FO+conn property can be tested in cubic time on graphs excluding a topological minor∗.
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny, 2022]

• Model checking FO+conn on graphs not excluding a top. minor: as hard as FO on general graphs.
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FO+DP
[Schirrmacher, Siebertz, & Vigny, 2021]

Additional predicate dpk(x1, y1, . . . , xk , yk):

There are pairwise vertex-disjoint paths
between xi and yi , for every i ∈ {1, . . . , k}.

Can express:
(Topological) Minor Containment.

Cannot express:
Bipartiteness.

x1

x2

x3

y1

y2

y3

FO ⊆ FO+conn ⊆ FO+DP ⊆ MSO
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nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+DP MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Courcelle]

Every FO+DP property can be tested in quadratic time on graphs excluding a minor∗.

[Golovach, S., & Thilikos, 2023]
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FO+SDP

Scattered disjoint paths predicates:

s-dpk(x1, y1, . . . , xk , yk)

There are pairwise vertex-disjoint paths
between xi and yi , for every i ∈ {1, . . . , k}
s.t. no two vertices of two distinct paths are within distance ≤ s.

x1

x2

x3

y1

y2

y3

> s

> s

dpk(x1, y1, . . . , xk , yk) = 0-dpk(x1, y1, . . . , xk , yk)
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nowhere dense

excluding a top. minor

excluding a minor

bounded Euler genus

FO FO+conn FO+DP FO+SDP MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Golovach, S., & Thilikos]

Every FO+SDP property can be tested in quadratic time on graphs of bounded Euler genus.

[Golovach, S., & Thilikos, 2023]
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More logics?

nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+DP

Θ̃dp

MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Fomin, Golovach, Sau, S., & Thilikos]

[Courcelle]

Compound logic(s) Θ̃(s)dp =

{
sentences expressing the recursive removal of MSO-expressible

and bounded treewidth modulators to a FO+(S)DP property.
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Discussion of the proof
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Model checking game [Hinttikka, 1982].
a.k.a. game trees, evaluation trees, morphism trees,...

Example:

G =
(T , t0)

Tφ

φ = ∃x1 ∀x2 ∃x3 (x1 = x2 ∨ E(x2, x3)).

• For a graph of size n and a formula with q quantifiers, the tree is of size nq.
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One can reduce T :

T

• We can “crop” some branches of T to get an “equivalent” T ′.

More formally:

• Fix r ∈ N. For every v̄ ∈ V (G )r ,

pattern0(G , v̄) = set of all atomic formulas that are true for v̄ in G .

• For each i ∈ [r − 1] and every v̄ ∈ V (G )r−i ,

patterni (G , v̄) =
{
patterni−1(G , v̄u) | u ∈ V (G )

}
• patternr (G ) =

{
patternr−1(G , v) | v ∈ V (G )

}
.
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Compute patternr (G ) =⇒ can decide whether G |= φ, for every φ with r quantifiers.

How to compute the patternr (G )?

⋆⋆⋆ Atomic formulas are L-definable =⇒ patternr is L-definable ⋆⋆⋆

• In FO: apply [Grohe, Kreutzer, & Siebertz] if G is sparse.

• In MSO: apply [Courcelle] if G has bounded treewidth.

• In FO+DP ? If G has large treewidth ?
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Large treewidth

Large clique minor Large “flat” grid-like induced subgraph

Flat Wall Theorem
[Robertson & Seymour, Graph Minors XIII, 1995]

[Kawarabayashi, Thomas, & Wollan, 2018]

[Sau, S., & Thilikos, 2022]

Aw̄0 Aw̄1
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How this helps to compute the pattern?

Compute partial patterns!

Linkage Combing Lemma
[Golovach, S., & Thilikos, Combing a linkage in an annulus, 2022]

There is a function f : N → N such that if

- G is a partially disk-embedded graph,

- (C,P) is a disk-embedded railed annulus of size f (k), and

- L is an annulus-avoiding linkage of size ≤ k,

then there is an equivalent linkage L′ that traverses the
middle cycle of C through P.

• Completely control how paths enter the inner part of the annulus.
• We work in a part of small treewidth: can compute partial patterns.
• Same partial patterns =⇒

Combing
same (global) patterns.
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Large treewidth

Large clique minor Large grid-like “flat” structure

• Compute partial patterns in bounded treewidth part.

• Same partial patterns =⇒
Combing

same (global) patterns

• Remove pattern-duplicates and reduce the instance.

• =⇒ get same-pattern graph of bd. treewidth.

[Golovach, S., Thilikos, 2023]
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Large clique minor case:

• (q, k)-unbreakable graph G (mesure of inseparabilty):

For every separation (A,B) of G of order at most k, either |A| ≤ q or |B| ≤ q.

• On graphs with large clique minors that are unbreakable :

Long disjoint paths always existw�
Suffices to check only for short pathsw�

FO+DP collapses to FO

x1x7 y3

x2

x9y1 y5

S1

S2

Sr

...
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Large treewidth

Large clique minor Large grid-like “flat” structure

• Extra assumption: unbreakability.
• FO+DP collapses to FO.
• Using FO-machinery, compute pattern.

[Schirrmacher, Siebertz, S., Thilikos, & Vigny, 2023+]

• Compute partial patterns in bounded treewidth part.

• Same partial patterns =⇒
Combing

same (global) patterns

• Remove pattern-duplicates and reduce the instance.

• =⇒ get same-pattern graph of bd. treewidth.

[Golovach, S., Thilikos, 2023]
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Wrapping up the proof. [Schirrmacher, Siebertz, S., Thilikos, & Vigny, 2023+]

Dynamic programming on a tree-decomposition in unbreakable bags.
[Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh, 2014]

Goal: For every node, compute pattern of the graph corresponding to the subtree.

• For bags without large minors: [Golovach, S., Thilikos, 2023]

• For bags with large minors: unbreakability =⇒ FO+DP collapses to FO =⇒ FO-machinery

• Combine solutions bottom-up: Possible only if the input graph excludes some topological minor.
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nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+DP Θ̃dp MSO

[Grohe, Kreutzer, & Siebertz]

[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, S., Thilikos, & Vigny]

[Golovach, S., & Thilikos]

[Fomin, Golovach, Sau, S., & Thilikos]

[Courcelle]

Thank you!
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