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Rewritings

Definition
Consider fragments L and L′ of FOL. An L′-theory T ′ is a
rewriting of an L-theory T if, for all fact sets F over the signature
of T , we have that T ∪ F and T ′ ∪ F are equisatisfiable.
If we can always compute such a rewriting, L is rewritable to L′.

Motivation

Theoretical: understand the expressivity of FOL fragments.
Practical: reuse existing reasoners across FOL fragments.
◮ Assume that L is rewritable to L′.
◮ Consider T ∪ F with T an L-theory and F a fact set.
◮ Compute an equisatisfiable theory T ′ ∪ F with T ′ ∈ L′.
◮ Use an L′-reasoner to decide if T ′ ∪ F is satisfiable.
◮ The result determines whether T ∪ F is satisfiable.
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The DL ALCHIQ: Syntax and Semantics

Definition: ALCHIQ
A ⊓ B ⊑ C A(x) ∧ B(x) → C(x)

A ⊑ B ⊔ C A(x) → B(x) ∨ C(x)
A ⊑ ∀R.B A(x) ∧ R(x, y) → B(y)
A ⊑ ∃R.B A(x) → ∃y.R(x, y) ∧ B(y)
A ⊑ "1R.B A(x) ∧ R(x, y) ∧ B(y) ∧ R(x, z) ∧ B(z) → y ≈ z

R ⊓ S ⊑ V R(x, y) ∧ S(x, y) → V(x, y)
R ⊑ S ⊔ V R(x, y) → S(x, y) ∨ V(x, y)

R− ⊑ S R(y, x) → S(x, y)

In the above, A, B, and C are unary predicates (i.e., concept names) and
R, S, and V are binary predicates (i.e., role names)
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Datalog∨∃: Syntax and Semantics

Definition
A disjunctive existential rule is a FOL formula of the form

∀!x.
!
β[!x] →

"n

i=1
∃!yi.ηi[!xi,!yi]

#
.

where β[!x] and ηi[!xi,!yi] are atom conjunctions using variables in
the lists !x(i) and !yi, such that !xi ⊆ !x and !x∩!yi = ∅ for all 1 ≤ i ≤ n.

Definition

Datalog∨∃: all sets of disjunctive existential rules.
Datalog∃: Datalog∨∃ without disjunction.
Datalog∨: Datalog∨∃ without existential quantifiers.
Datalog: Datalog∨ without disjunctions.
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Rewritings of DL-Type Logics to Rule Languages

[Hustadt et al., 2007] ALCHIQ Datalog∨ exp. †
[Eiter et al., 2012] Horn-SHIQ Datalog exp. †

[Rudolph et al., 2012] SHIQbs Datalog∨ exp. †
[Bienvenu et al., 2014] SHI Datalog∨ exp. †

[Carral et al., 2018] Horn-ALCHOIQ Datalog exp. †
[Carral et al., 2019b] Horn-SHIQ Datalog exp. †

[Ortiz et al., 2010] Horn-ALCHOIQ Datalog poly.
[Ahmetaj et al., 2016] ALCHIO Datalog∨ poly.

[Krötzsch, 2011] EL++ Datalog poly. †
[Carral et al., 2019a] Horn-ALC Datalog∃ poly. †
†: rules of bounded size that does not depend on input

Remark
All rewriting techniques from expressive DLs to Datalog(∨)
produce rule sets of exponential size or unbounded arity.
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Results

Theorem 1
ALCHIQ is poly-time rewritable into terminating Datalog∨∃
rules of bounded size.

Definition: Terminating Datalog∨∃

Language of all sets R of disjunctive existential rules that
terminate with respect to the Datalog-first restricted chase.

Theorem 2
ALCHIQ is poly-time rewritable to Datalog∨ rules (of
unbounded size).
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Results

Simplified Theorem
ALC is poly-time rewritable into terminating Datalog∨∃ rules of
bounded size.

Definition: ALC

A ⊓ B ⊑ C A(x) ∧ B(x) → C(x)
A ⊑ B ⊔ C A(x) → B(x) ∨ C(x)
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In the above, A, B, and C are unary predicates (i.e., concept
names) and R is a binary predicate (i.e., role name)
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Rewriting ALC into Datalog∨∃

Definition: ALC Rewritings
Consider a theory T of ALC axioms and a sequence A1, . . . , An containing all of the
classes in T . Then, the following set of Datalog∨∃ rules is a terminating rewriting for T :

{A(x) ∧ B(x) → C(x) | A ⊓ B ⊑ C ∈ T } ∪ {A(x) → B(x) ∨ C(x) | A ⊑ B ⊔ C ∈ T } ∪

{A(x) ∧ R(x, y) → B(y) | A ⊑ ∀R.B ∈ T } ∪

{A(x) → ∃y.R(x, y) ∧ B(y) ∧ Succ(x, y) | A ⊑ ∃R.B ∈ T } ∪

{ → A(x) ∨ A¬(x), A(x) ∧ A¬(x) → ⊥ | A ∈ Classes(T )} ∪

{A1(x) ∧ A1(z) → SameClasses1(x, z), A¬1 (x) ∧ A¬1 (z) → SameClasses1(x, z)} ∪

{SameClassesi−1(x, z) ∧ Ai(x) ∧ Ai(z) → SameClassesi(x, z),
SameClassesi−1(x, z) ∧ A¬i (x) ∧ A

¬
i (z) → SameClassesi(x, z) | 2 ≤ i ≤ n} ∪

{SameClassesn(x, y) → SameType(x, y)} ∪

{SameType(x, z) ∧ Succ(x, y) ∧ R(x, y) → Succ(z, y) ∧ R(z, y) | R ∈ Roles(T )}
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