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System specification

• How is the transformation done ?


• KB representation of the problem ?
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Evaluation of Logical Diagrams

Logic gates: AND, OR , NOT


Evaluated from left to right

Evaluation of logic gates  :
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First Problem: Test Generation based on Logical Diagrams

• Logical diagrams do not explicitly represent how the output values evolve 
in response to changes of input values.

• The whole behavior is described by the evaluation of the diagram for all 
the possibilities. 2𝐼 . 2𝑀

• Each evaluation of the outputs for a given set of input values my have to 
go through many simulations of the Logical Diagram.

➢ Generation and selection of test sequences is not obvious.

8
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State graph representation of logical diagrams

We propose a formal representation of logical diagrams for: 


• Convergence property checking (and possible other properties).


• Generation of test sequences.
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The Sequential Graph of State Transition (SGST)

SGST: (N, E)


• N: set of nodes. They represent the possible states 
of the logical diagram.


• E: set of edges. They represent all the theoratical 
evolution possibilities. Each edge corresponds to 
one evolution of one status block M.
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Effective trails in the SGST and Convergence checking

⇒ The infinite traversal of circuit n1-n2 is possible :


Inputs 0 0 1 1 and 1 0 1 1 cause a non-stable signal at 
the output of M2 

Loop structures cause this behavior.

The presence of loops doesn’t necessarily 
mean that a non-convergent scenario exists.

This is verifiable on the graph by finding trails 
that contain circuits.
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Trail1 : n1 – n2 – n1 – n3

Condition1 : i3.i4.i2.~i1

Two possible trails from n1 to 
n3:

An arc (nj, nk) represents all the full simulations of the diagram 
from nj to n_k

Transition : n1 – n3

Condition: Condition1 + Condition 2

               =i2 & ~i1 & (i4 | ~i3)
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Equivalent Mealy Machine

in= i1 i2 i3 i4 
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➔ GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

• States: s1 and s2


• Inputs: i1 and i2; in=i1 i2


• Outputs: o1 and o2; out=o1 o2
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➔ GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

A Scenario is a sequence of input/output values. That is 
a succession of transitions in the Mealy Machine.

For example : <01/00> <11/01>< 01/ 00>

KB Representation
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Fact Base: input sequence

input(v0)


input(v1)

…

input(vn)


inputValue(v1, ‘01’)

…

inputValue(vn, ‘01’)


KB Representation

1


1

0


1

v0 v1 vn

…
i1:


I2:
Ø

Timeline

next(v0, v1)


next(v1, v2)

…

next(vn-1, vn)


20



Fact Base: initial state

X0 X1

state(X0)


state(X1)


next(X0, X1)


done(X0)


value(X0, ‘s1’)


KB Representation
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Fact Base: initial output

OØ O1

KB Representation

output (OØ)


output(O1)


next(OØ, O1)


done(OØ)


value(O0, ‘NOT ACTIVE’)
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Rules: transitions
Next state in the chain:


state(Xnext), next(Xcurrent, Xnext)


done(Xcurrent), not done(Xnext)

Find next input vector in the chain:


input(vnext), next(vcurrent, vnext)


done(vcurrent), not done(vnext)

Find next output in the chain:


output(Onext), next(Ocurrent , Onext)


done(Ocurrent), not done(Onext)

Transition (s1 01 00 s2):


Value(Xcurrent, ‘s1 ’)


Value(vnext, ‘01’)

KB Representation

Transition (s1 01 00 s2)
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Rules: transitions
Next state in the chain:


state(Xnext), next(Xcurrent, Xnext)


done(Xcurrent), not done(Xnext)

Find next input vector in the chain:


input(vnext), next(vcurrent, vnext)


done(vcurrent), not done(vnext)

Find next output in the chain:


output(Onext), next(Ocurrent , Onext)


done(Ocurrent), not done(Onext)
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Rules: transitions
Next state in the chain:


state(Xnext), next(Xcurrent, Xnext)


done(Xcurrent), not done(Xnext)

Find next input vector in the chain:


input(vnext), next(vcurrent, vnext)


done(vcurrent), not done(vnext)

Find next output in the chain:


output(Onext), next(Ocurrent , Onext)


done(Ocurrent), not done(Onext)

KB Representation

Transition (s2 11 01 s1):


Value(Xcurrent, ‘s2 ’)


Value(vnext, ‘11’)

Transition (s2 11 01 s1)
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Rules: transitions

KB Representation

Transition (s1 01 00 s2)

value(Xnext , ‘s2’)


value(Onext , ‘00’)


done(Xnext)


done(Onext)


done(vnext)

∃ Xfollowing next(Xnext , Xfollowing)


∃ Ofollowing next(Onext , Ofollowing)
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Rules: transitions

KB Representation

done(Xnext)


done(Onext)


done(vnext)

∃ Xfollowing next(Xnext , Xfollowing)


∃ Ofollowing next(Onext , Ofollowing)
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Rules: transitions

KB Representation

done(Xnext)


done(Onext)


done(vnext)

∃ Xfollowing next(Xnext , Xfollowing)


∃ Ofollowing next(Onext , Ofollowing)


Transition (s2 01 00 s1)

value(Xnext , ‘s1’)


value(Onext , ‘01’)
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Queries:

KB Representation

…

Input sequence

Input sequence

Input sequence

Fact base:

We want to find a test sequence 
that verifies that the pump is 
always deactivated (o1=0) when 
the emergency button is on (i1=1)  
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Thank you !


