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Introduction



Introduction

• Context: implementation of ethical automated agents

[Tolmeijer et al., 2020].

• Problem: ethical values are often hard to elicit as people have

different views on morality and the opinion of domain experts

(philosophers in our case) is expensive to elicit.

• Example (taking control of a autonomous vehicle):

An AI-equipped vehicle can spontaneously take control from the

human driver under dangerous circumstances. Each situation

revolves around either taking control of the vehicle, or doing nothing.
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Introduction

• Question: how can we find this answer in different situations?

Should we ask experts? Should we survey people? How can we

cover unseen scenarios?

• Idea: imagine we have a knowledge base with plenty of cases, we

could get the most similar/relevant ones and look at their answers

to produce a decision for new cases. E.g:

1. The driver is speeding past the legal limit to take a passenger to a

hospital.

2. The driver has been going in and out of his/her lane with no objects

discernible ahead.

3. etc...

• In other words, we can apply case-based reasoning.

3



Introduction

• How: developing a framework with which we:

1. Crowd-source answers to different ethically-nuanced scenarios related

to a specific problem at hand,

2. Retrieve the most similar past cases to this problem, and

3. Generalize these past cases on ethical terms.

Figure 1: Overall architecture
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Case-based reasoning

• Case-based reasoning (CBR) is a methodology which consists of

finding and reusing past problems to solve new ones.

• A case base is a collection CB = (xi , yi )i of (possibly non-unique)

problem/solution pairs.

• Given a case base and a novel problem xnew , case-based reasoners

suppose that CB follows an unknown relation Sols ⊆ P × S and its

objective is to replicate its behaviour such that (xnew , ynew ) ∈ Sols.
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Case-based reasoning

• The CBR process typically consists of [Aamodt and Plaza, 1994]:

1. Retrieve the k cases that maximize a similarity function

sim : P × P 7→ [0, 1] between cases and xnew .

2. Adapt the retrieved cases from the previous step by integrating their

solutions into a solution for xnew .

3. Retain the new solution after validation into CB if necessary.

Figure 2: Case-based reasoning cycle. 6



Crowd-sourcing ethical

preferences



Crowd-sourcing ethical preferences

• Situation: in ethical dilemmas, no choice is perfectly ethical, still,

AI systems have to make choices, for example, by using preferences.

• Problem: preferences are largely subjective in ethics, people

contradict each other and sometimes people make inconsistent

choices in very similar situations.

• Idea: infer ethical preferences from surveys given to a large number

of people and aggregate their decisions.
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Crowd-sourcing ethical preferences

Example (autonomous vehicle continued): We can model the case

base such that:

• A case xi is represented by a set of predicates of the form

Duty(Situation,Option,Value) where Duty ∈
{preventCollision, respectAutonomy ,withinLimit, preventHarm},
Option ∈ {takeControl , doNothing}, Value ∈ {true, false}.

• A solution yi ∈ {takeControl , doNothing}.
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Crowd-sourcing ethical preferences

• Sample duty: preventCollision(s, takeControl , true) means taking

control of the car in situation ‘s’ guarantees preventing a collision.

• Sample case: driving alone, there is a bale of hay ahead in the
driver’s lane. There is a vehicle close behind that will run the driver’s
vehicle upon sudden braking and he/she can’t change lanes, all of
which can be determined by the system. The driver starts to brake.

Σs ={preventCollision(s, takeControl , false), respectAutonomy(s, takeControl , false),

preventHarm(s, takeControl , true), preventCollision(s, doNothing , false),

respectAutonomy(s, doNothing , true), preventHarm(s, doNothing , false)}

• In practice: users receive a detailed description of several cases and

decide whether to takeControl, or doNothing.
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Crowd-sourcing ethical preferences

• Problem: infer a set of logic-based rules that can take decisions

using ethical preferences. In this case, determine whether to take

control of the vehicle or not.

• Approach 1: we tried to infer a set of rules using first-order logic,

but we got very poor results because:

1. People have different ethical values and the case base is largely

inconsistent.

2. Even a single user can contradict him/her-self by selecting different

answers for two situations that are almost identical.

3. First-order logic inference has very poor results for noisy data.

• Approach 2: extend the logic rules with probabilistic annotations

and infer a set of this type of rules.
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Probabilistic logic induction

• A probabilistic rule:

p :: H ← B1, . . . ,Bk

is composed of a probabilistic annotation p ∈ [0, 1], a head atom H

and a finite list of body atoms B1, . . . ,Bk .

• We consider atoms of the form P(t1, . . . , tn) is a predicate P of arity

n ∈ N0 applied to terms t1, . . . , tn (constants, variables or functors).

• The rules we consider don’t contain negation.

• Intuition: p :: H ← B1, . . . ,Bk represents that there is a p chance

of H ← B1, . . . ,Bk holding, NOT that, given B1, . . . ,Bk , there is a

p chance that H holds.

11



Probabilistic logic induction

• A ProbLog [De Raedt and Kimmig, 2015] program

T = {p1 :: r1, . . . , pn :: rn} is a finite set of probabilistic rules.

• Given a finite set of possible grounding substitutions {θi,1, . . . , θi,mi}
for each probabilistic rule pi :: ri ∈ T , a ProbLog program T defines

a probability distribution over the subsets L ⊆ LT of possible

groundings LT = {r1θ1,1, . . . , r1θ1,m1 , . . . , rnθn,1, . . . , rnθn,mn} of
(non-annotated) rules in T as:

P(L | T ) =
∏

riθj∈L

pi
∏

riθj∈LT\L

(1− pi )

• The success probability of a query q (i.e. finite conjunction of

atoms) is the overall probability that a random subset L ⊆ LT
entails q:

Ps(T |= q) =
∑
L⊆LT

L∪T |=q

P(L | T )
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Probabilistic logic induction

• An toy example of querying (surfing):

s un sh i n e ( t ) .

w indStrong ( t ) .

0 . 5 : : g oSu r f i n g (X)← s un sh i n e (X ) .

0 . 7 : : g oSu r f i n g (X)←windStrong (X ) .

q1←goSu r f i n g ( t ) .

• There is only one grounding substitution θ = {X ← t}.

LT = {r1 = goSurfing(t)← sunshine(t).,

r2 = goSurfing(t)← windStrong(t).}

• We calculate:

P(q1) = P({r1,¬r2}) + P({r1, r2}) + P({¬r1, r2}) =
0.5*0.3+0.5*0.7+0.5*0.7=0.85.
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Probabilistic logic induction

• As far as complexity results go, probabilistic logic querying has been

shown to be polynomial on the size of the knowledge base for some

very restrictive classes of rules [De Raedt and Kimmig, 2015].

• In general, querying can easily turn intractable. Therefore many

algorithms and heuristics are being developed.

Figure 3: ProbLog querying
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Probabilistic logic induction

• Probabilistic logic induction [De Raedt et al., 2015] addresses the

task of inferring a set of probabilistic rules that justify a target

predicate from examples and background knowledge.

• Problem setting: given the following:

1. A set of examples E , composed of pairs (xi , pi ) where xi is a

grounding for the target predicate t and pi its probability,

2. A background theory B containing information related to the

examples in the form of a ProbLog program,

3. A loss function loss(H,B,E), measuring the error of a hypothesis

(set of rules) H w.r.t B and E (in [De Raedt et al., 2015]:

loss(H,B,E) =
∑

(xi ,pi )∈E |Ps(B ∪ H |= xi )− pi |), and
4. A space of possible clauses Lh specified as in [Muggleton, 1995].

Find a hypothesis H ⊆ Lh such that H = argmin
H′⊆Lh

loss(H ′,B,E ).
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Probabilistic logic induction

• An toy example of induction, given the KB:

0 . 8 : : w indStrong ( t1 ) . 0 . 7 : : s un s h i n e ( t1 ) .

0 . 8 : : w indStrong ( t2 ) . 0 . 2 : : s un s h i n e ( t2 ) .

0 . 4 : : w indStrong ( t3 ) . 0 . 1 : : s un s h i n e ( t3 ) .

• And the example base:

0 . 7 : : g oSu r f i n g ( t1 ) .

0 . 5 : : g oSu r f i n g ( t2 ) .

0 . 2 : : g oSu r f i n g ( t3 ) .

• Inference results in the theory:

0 . 6 2 5 : : g oSu r f i n g (A)←windStrong (A ) .

0 . 9 5238095 : : g oSu r f i n g (A)← s un sh i n e (A) , w indStrong (A ) .
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Inferring ethical preferences

Consider a novel case, characterized by:

Σs′ ={respectAutonomy(s′, takeControl , false), preventHarm(s′, takeControl , false),

preventCollision(s′, takeControl , true), respectAutonomy(s′, doNothing , true),

preventHarm(s′, doNothing , true), preventCollision(s′, doNothing , true)}

We aggregate past related cases using probabilistic logic induction:

0.8 :: answer(S ,A)←preventHarm(S,A, true), preventCollision(S ,A, false)

0.8 :: answer(S ,A)←respectAutonomy(S ,A, true), preventHarm(S,A, true)

0.2 :: answer(S ,A)←withinSpeedLimit(S ,A, true)

0.2 :: answer(S ,A)←preventCollision(S ,A, true)

Then, we compute the query q = answer(s ′,A):

answer(s′, doNothing) : 0.84

answer(s′, takeControl) : 0.2
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Inferring ethical preferences

• As mentioned before, our approach consists on generating a set of

probabilistic rules from similar past cases to answer ethical dilemmas.

• In a nutshell, we:

1. Select the k most similar ethical dilemmas using all their features.

2. Generate a set of probabilistic rules that identify which answer to

select based on a subset of these features.

3. Query it for each possible solution to the problem.

Figure 4: Overall architecture 18



Implementation



Implementation

• For the representation of our framework, we used a simplified version

of CBROnto [Dıaz-Agudo and González-Calero, 2002], an

OWL-based domain-agnostic ontology for representing CBR systems.

• The retrieval step is performed by using jColibri

[Recio-Gaŕıa and D́ıaz-Agudo, 2006] as a Java library.

• The adaptation phase was implemented using a version of the

ProbFOIL+ algorithm [De Raedt et al., 2015] which is publicly

available 1 with minimal modifications for efficiency.

• The implementation of our system is publicly available at

https://github.com/martinjedwabny/cbr-edm.

1https://bitbucket.org/problog/prob2foil/.
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Conclusion

• Contribution 1: we present a framework for ethical decision-making

through crowd-sourcing with probabilistic logic.

• Contribution 2: we show how to implement the adaptation phase

of a CBR system with noisy data with probabilistic logic induction.

• Contribution 3: our framework alleviates the complexity issues of

probabilistic logic induction by reducing the amount of cases to

generalize (perform induction) and the amount of features to

consider using the CBR methodology.

• Contribution 4: we provide a publicly available implementation for

CBR with uncertainty.
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Conclusion

• For future work:

1. Expand our work in the scale of experimentation and compare the

quality of our results to other similar CBR systems.

2. Compare the performance of our reduction of the adaptation step in

the CBR cycle to other different encodings.

3. Test our implementation with other datasets coming from both

knowledge-intensive and knowledge-light CBR domains.

21



Thank you

Thank you for listening!
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