
Rewriting the Description Logic
ALCHIQ to Disjunctive
Existential Rules
David Carral and Markus Krötzsch

Knowledge-Based Systems Group

February 10, 2021

Link to the paper:
iccl.inf.tu-dresden.de/web/
Inproceedings3244/en

iccl.inf.tu-dresden.de/web/Inproceedings3244/en

Rewritings

Definition
Consider fragments L and L′ of FOL. An L′-theory T ′ is a
rewriting of an L-theory T if, for all fact sets F over the signature
of T , we have that T ∪ F and T ′ ∪ F are equisatisfiable.
If we can always compute such a rewriting, L is rewritable to L′.

Motivation

Theoretical: understand the expressivity of FOL fragments.
Practical: reuse existing reasoners across FOL fragments.
◮ Assume that L is rewritable to L′.
◮ Consider T ∪ F with T an L-theory and F a fact set.
◮ Compute an equisatisfiable theory T ′ ∪ F with T ′ ∈ L′.
◮ Use an L′-reasoner to decide if T ′ ∪ F is satisfiable.
◮ The result determines whether T ∪ F is satisfiable.

1 4

Rewritings

Definition
Consider fragments L and L′ of FOL. An L′-theory T ′ is a
rewriting of an L-theory T if, for all fact sets F over the signature
of T , we have that T ∪ F and T ′ ∪ F are equisatisfiable.
If we can always compute such a rewriting, L is rewritable to L′.

Motivation

Theoretical: understand the expressivity of FOL fragments.
Practical: reuse existing reasoners across FOL fragments.
◮ Assume that L is rewritable to L′.
◮ Consider T ∪ F with T an L-theory and F a fact set.
◮ Compute an equisatisfiable theory T ′ ∪ F with T ′ ∈ L′.
◮ Use an L′-reasoner to decide if T ′ ∪ F is satisfiable.
◮ The result determines whether T ∪ F is satisfiable.

1 4

Rewritings

Definition
Consider fragments L and L′ of FOL. An L′-theory T ′ is a
rewriting of an L-theory T if, for all fact sets F over the signature
of T , we have that T ∪ F and T ′ ∪ F are equisatisfiable.
If we can always compute such a rewriting, L is rewritable to L′.

Motivation

Theoretical: understand the expressivity of FOL fragments.

Practical: reuse existing reasoners across FOL fragments.
◮ Assume that L is rewritable to L′.
◮ Consider T ∪ F with T an L-theory and F a fact set.
◮ Compute an equisatisfiable theory T ′ ∪ F with T ′ ∈ L′.
◮ Use an L′-reasoner to decide if T ′ ∪ F is satisfiable.
◮ The result determines whether T ∪ F is satisfiable.

1 4

Rewritings

Definition
Consider fragments L and L′ of FOL. An L′-theory T ′ is a
rewriting of an L-theory T if, for all fact sets F over the signature
of T , we have that T ∪ F and T ′ ∪ F are equisatisfiable.
If we can always compute such a rewriting, L is rewritable to L′.

Motivation

Theoretical: understand the expressivity of FOL fragments.
Practical: reuse existing reasoners across FOL fragments.

◮ Assume that L is rewritable to L′.
◮ Consider T ∪ F with T an L-theory and F a fact set.
◮ Compute an equisatisfiable theory T ′ ∪ F with T ′ ∈ L′.
◮ Use an L′-reasoner to decide if T ′ ∪ F is satisfiable.
◮ The result determines whether T ∪ F is satisfiable.

1 4

Rewritings

Definition
Consider fragments L and L′ of FOL. An L′-theory T ′ is a
rewriting of an L-theory T if, for all fact sets F over the signature
of T , we have that T ∪ F and T ′ ∪ F are equisatisfiable.
If we can always compute such a rewriting, L is rewritable to L′.

Motivation

Theoretical: understand the expressivity of FOL fragments.
Practical: reuse existing reasoners across FOL fragments.
◮ Assume that L is rewritable to L′.

◮ Consider T ∪ F with T an L-theory and F a fact set.
◮ Compute an equisatisfiable theory T ′ ∪ F with T ′ ∈ L′.
◮ Use an L′-reasoner to decide if T ′ ∪ F is satisfiable.
◮ The result determines whether T ∪ F is satisfiable.

1 4

Rewritings

Definition
Consider fragments L and L′ of FOL. An L′-theory T ′ is a
rewriting of an L-theory T if, for all fact sets F over the signature
of T , we have that T ∪ F and T ′ ∪ F are equisatisfiable.
If we can always compute such a rewriting, L is rewritable to L′.

Motivation

Theoretical: understand the expressivity of FOL fragments.
Practical: reuse existing reasoners across FOL fragments.
◮ Assume that L is rewritable to L′.
◮ Consider T ∪ F with T an L-theory and F a fact set.

◮ Compute an equisatisfiable theory T ′ ∪ F with T ′ ∈ L′.
◮ Use an L′-reasoner to decide if T ′ ∪ F is satisfiable.
◮ The result determines whether T ∪ F is satisfiable.

1 4

Rewritings

Definition
Consider fragments L and L′ of FOL. An L′-theory T ′ is a
rewriting of an L-theory T if, for all fact sets F over the signature
of T , we have that T ∪ F and T ′ ∪ F are equisatisfiable.
If we can always compute such a rewriting, L is rewritable to L′.

Motivation

Theoretical: understand the expressivity of FOL fragments.
Practical: reuse existing reasoners across FOL fragments.
◮ Assume that L is rewritable to L′.
◮ Consider T ∪ F with T an L-theory and F a fact set.
◮ Compute an equisatisfiable theory T ′ ∪ F with T ′ ∈ L′.

◮ Use an L′-reasoner to decide if T ′ ∪ F is satisfiable.
◮ The result determines whether T ∪ F is satisfiable.

1 4

Rewritings

Definition
Consider fragments L and L′ of FOL. An L′-theory T ′ is a
rewriting of an L-theory T if, for all fact sets F over the signature
of T , we have that T ∪ F and T ′ ∪ F are equisatisfiable.
If we can always compute such a rewriting, L is rewritable to L′.

Motivation

Theoretical: understand the expressivity of FOL fragments.
Practical: reuse existing reasoners across FOL fragments.
◮ Assume that L is rewritable to L′.
◮ Consider T ∪ F with T an L-theory and F a fact set.
◮ Compute an equisatisfiable theory T ′ ∪ F with T ′ ∈ L′.
◮ Use an L′-reasoner to decide if T ′ ∪ F is satisfiable.

◮ The result determines whether T ∪ F is satisfiable.

1 4

Rewritings

Definition
Consider fragments L and L′ of FOL. An L′-theory T ′ is a
rewriting of an L-theory T if, for all fact sets F over the signature
of T , we have that T ∪ F and T ′ ∪ F are equisatisfiable.
If we can always compute such a rewriting, L is rewritable to L′.

Motivation

Theoretical: understand the expressivity of FOL fragments.
Practical: reuse existing reasoners across FOL fragments.
◮ Assume that L is rewritable to L′.
◮ Consider T ∪ F with T an L-theory and F a fact set.
◮ Compute an equisatisfiable theory T ′ ∪ F with T ′ ∈ L′.
◮ Use an L′-reasoner to decide if T ′ ∪ F is satisfiable.
◮ The result determines whether T ∪ F is satisfiable.

1 4

Rewritings

Definition
Consider fragments L and L′ of FOL. An L′-theory T ′ is a
rewriting of an L-theory T if, for all fact sets F over the signature
of T , we have that T ∪ F and T ′ ∪ F are equisatisfiable.
If we can always compute such a rewriting, L is rewritable to L′.

Motivation

Theoretical: understand the expressivity of FOL fragments.
Practical: reuse existing reasoners across FOL fragments.

Contribution

Establish that ALCHIQ is rewritable into rule-based languages.

1 4

Rewritings

Definition
Consider fragments L and L′ of FOL. An L′-theory T ′ is a
rewriting of an L-theory T if, for all fact sets F over the signature
of T , we have that T ∪ F and T ′ ∪ F are equisatisfiable.
If we can always compute such a rewriting, L is rewritable to L′.

Motivation

Theoretical: understand the expressivity of FOL fragments.
Practical: reuse existing reasoners across FOL fragments.

Contribution
Establish that ALCHIQ is rewritable into rule-based languages.

1 4

The DL ALCHIQ: Syntax and Semantics

Definition: ALCHIQ
A ⊓ B ⊑ C A(x) ∧ B(x) → C(x)

A ⊑ B ⊔ C A(x) → B(x) ∨ C(x)
A ⊑ ∀R.B A(x) ∧ R(x, y) → B(y)
A ⊑ ∃R.B A(x) → ∃y.R(x, y) ∧ B(y)
A ⊑ "1R.B A(x) ∧ R(x, y) ∧ B(y) ∧ R(x, z) ∧ B(z) → y ≈ z

R ⊓ S ⊑ V R(x, y) ∧ S(x, y) → V(x, y)
R ⊑ S ⊔ V R(x, y) → S(x, y) ∨ V(x, y)

R− ⊑ S R(y, x) → S(x, y)

In the above, A, B, and C are unary predicates (i.e., concept names) and
R, S, and V are binary predicates (i.e., role names)

2 4

Datalog∨∃: Syntax and Semantics

Definition
A disjunctive existential rule is a FOL formula of the form

∀!x.
!
β[!x] →

"n

i=1
∃!yi.ηi[!xi,!yi]

#
.

where β[!x] and ηi[!xi,!yi] are atom conjunctions using variables in
the lists !x(i) and !yi, such that !xi ⊆ !x and !x∩!yi = ∅ for all 1 ≤ i ≤ n.

Definition

Datalog∨∃: all sets of disjunctive existential rules.
Datalog∃: Datalog∨∃ without disjunction.
Datalog∨: Datalog∨∃ without existential quantifiers.
Datalog: Datalog∨ without disjunctions.

3 4

Datalog∨∃: Syntax and Semantics

Definition
A disjunctive existential rule is a FOL formula of the form

∀!x.
!
β[!x] →

"n

i=1
∃!yi.ηi[!xi,!yi]

#
.

where β[!x] and ηi[!xi,!yi] are atom conjunctions using variables in
the lists !x(i) and !yi, such that !xi ⊆ !x and !x∩!yi = ∅ for all 1 ≤ i ≤ n.

Definition

Datalog∨∃: all sets of disjunctive existential rules.
Datalog∃: Datalog∨∃ without disjunction.
Datalog∨: Datalog∨∃ without existential quantifiers.
Datalog: Datalog∨ without disjunctions.

3 4

Rewritings of DL-Type Logics to Rule Languages

[Hustadt et al., 2007] ALCHIQ Datalog∨ exp. †
[Eiter et al., 2012] Horn-SHIQ Datalog exp. †

[Rudolph et al., 2012] SHIQbs Datalog∨ exp. †
[Bienvenu et al., 2014] SHI Datalog∨ exp. †

[Carral et al., 2018] Horn-ALCHOIQ Datalog exp. †
[Carral et al., 2019b] Horn-SHIQ Datalog exp. †

[Ortiz et al., 2010] Horn-ALCHOIQ Datalog poly.
[Ahmetaj et al., 2016] ALCHIO Datalog∨ poly.

[Krötzsch, 2011] EL++ Datalog poly. †
[Carral et al., 2019a] Horn-ALC Datalog∃ poly. †
†: rules of bounded size that does not depend on input

Remark
All rewriting techniques from expressive DLs to Datalog(∨)
produce rule sets of exponential size or unbounded arity.

4 / 4

Rewritings of DL-Type Logics to Rule Languages

[Hustadt et al., 2007] ALCHIQ Datalog∨ exp. †
[Eiter et al., 2012] Horn-SHIQ Datalog exp. †

[Rudolph et al., 2012] SHIQbs Datalog∨ exp. †
[Bienvenu et al., 2014] SHI Datalog∨ exp. †

[Carral et al., 2018] Horn-ALCHOIQ Datalog exp. †
[Carral et al., 2019b] Horn-SHIQ Datalog exp. †

[Ortiz et al., 2010] Horn-ALCHOIQ Datalog poly.
[Ahmetaj et al., 2016] ALCHIO Datalog∨ poly.

[Krötzsch, 2011] EL++ Datalog poly. †
[Carral et al., 2019a] Horn-ALC Datalog∃ poly. †
†: rules of bounded size that does not depend on input

Remark
All rewriting techniques from expressive DLs to Datalog(∨)
produce rule sets of exponential size or unbounded arity.

4 / 4

Results

Theorem 1
ALCHIQ is poly-time rewritable into terminating Datalog∨∃
rules of bounded size.

Definition: Terminating Datalog∨∃

Language of all sets R of disjunctive existential rules that
terminate with respect to the Datalog-first restricted chase.

Theorem 2
ALCHIQ is poly-time rewritable to Datalog∨ rules (of
unbounded size).

5 / 4

Results

Theorem 1
ALCHIQ is poly-time rewritable into terminating Datalog∨∃
rules of bounded size.

Definition: Terminating Datalog∨∃

Language of all sets R of disjunctive existential rules that
terminate with respect to the Datalog-first restricted chase.

Theorem 2
ALCHIQ is poly-time rewritable to Datalog∨ rules (of
unbounded size).

5 / 4

Results

Theorem 1
ALCHIQ is poly-time rewritable into terminating Datalog∨∃
rules of bounded size.

Definition: Terminating Datalog∨∃

Language of all sets R of disjunctive existential rules that
terminate with respect to the Datalog-first restricted chase.

Theorem 2
ALCHIQ is poly-time rewritable to Datalog∨ rules (of
unbounded size).

5 / 4

Results

Simplified Theorem
ALC is poly-time rewritable into terminating Datalog∨∃ rules of
bounded size.

Definition: ALC

A ⊓ B ⊑ C A(x) ∧ B(x) → C(x)
A ⊑ B ⊔ C A(x) → B(x) ∨ C(x)
A ⊑ ∀R.B A(x) ∧ R(x, y) → B(y)
A ⊑ ∃R.B A(x) → ∃y.R(x, y) ∧ B(y)

In the above, A, B, and C are unary predicates (i.e., concept
names) and R is a binary predicate (i.e., role name)

5 / 4

Results

Simplified Theorem
ALC is poly-time rewritable into terminating Datalog∨∃ rules of
bounded size.

Definition: ALC

A ⊓ B ⊑ C A(x) ∧ B(x) → C(x)
A ⊑ B ⊔ C A(x) → B(x) ∨ C(x)
A ⊑ ∀R.B A(x) ∧ R(x, y) → B(y)
A ⊑ ∃R.B A(x) → ∃y.R(x, y) ∧ B(y)

In the above, A, B, and C are unary predicates (i.e., concept
names) and R is a binary predicate (i.e., role name)

5 / 4

Rewriting ALC into Datalog∨∃

Definition: ALC Rewritings
Consider a theory T of ALC axioms and a sequence A1, . . . , An containing all of the
classes in T . Then, the following set of Datalog∨∃ rules is a terminating rewriting for T :

{A(x) ∧ B(x) → C(x) | A ⊓ B ⊑ C ∈ T } ∪ {A(x) → B(x) ∨ C(x) | A ⊑ B ⊔ C ∈ T } ∪

{A(x) ∧ R(x, y) → B(y) | A ⊑ ∀R.B ∈ T } ∪

{A(x) → ∃y.R(x, y) ∧ B(y) ∧ Succ(x, y) | A ⊑ ∃R.B ∈ T } ∪

{ → A(x) ∨ A¬(x), A(x) ∧ A¬(x) → ⊥ | A ∈ Classes(T)} ∪

{A1(x) ∧ A1(z) → SameClasses1(x, z), A¬1 (x) ∧ A¬1 (z) → SameClasses1(x, z)} ∪

{SameClassesi−1(x, z) ∧ Ai(x) ∧ Ai(z) → SameClassesi(x, z),
SameClassesi−1(x, z) ∧ A¬i (x) ∧ A

¬
i (z) → SameClassesi(x, z) | 2 ≤ i ≤ n} ∪

{SameClassesn(x, y) → SameType(x, y)} ∪

{SameType(x, z) ∧ Succ(x, y) ∧ R(x, y) → Succ(z, y) ∧ R(z, y) | R ∈ Roles(T)}

6 / 4

Thank you for your attention!

Link to the paper:
iccl.inf.tu-dresden.de/web/Inproceedings3244/en

iccl.inf.tu-dresden.de/web/Inproceedings3244/en

References I

Ahmetaj, S., Ortiz, M., and Simkus, M. (2016).
Polynomial Datalog rewritings for expressive Description
Logics with closed predicates.
In Kambhampati, S., editor, Proc. 25th Int. Joint Conf. on Artif. Intell.
(IJCAI 2016), pages 878–885. IJCAI/AAAI Press.

Bienvenu, M., ten Cate, B., Lutz, C., and Wolter, F. (2014).
Ontology-based data access: A study through disjunctive
Datalog, CSP, and MMSNP.
ACM Transactions of Database Systems, 39(4):33:1–33:44.

Carral, D., Dragoste, I., and Krötzsch, M. (2018).
The combined approach to query answering in Horn-ALCHOIQ.
In Thielscher, M., Toni, F., and Wolter, F., editors, Proc. 16th Int. Conf.
on Principles of Knowledge Representation and Reasoning
(KR 2018), pages 339–348. AAAI Press.

References II

Carral, D., Dragoste, I., Krötzsch, M., and Lewe, C. (2019a).
Chasing sets: How to use existential rules for expressive
reasoning.
In Kraus, S., editor, Proc. 28th Int. Joint Conf. on Artif. Intell.
(IJCAI 2019), pages 1624–1631. ijcai.org.

Carral, D., González, L., and Koopmann, P. (2019b).
From Horn-SRIQ to Datalog: A data-independent
transformation that preserves assertion entailment.
In Proc. 33rd AAAI Conf. on Artificial Intelligence (AAAI 2019), pages
2736–2743. AAAI Press.
Eiter, T., Ortiz, M., Simkus, M., Tran, T.-K., and Xiao, G. (2012).
Query rewriting for Horn-SHIQ plus rules.
In Hoffmann, J. and Selman, B., editors, Proc. 26th AAAI Conf. on
Artificial Intelligence (AAAI 2012). AAAI Press.

References III

Hustadt, U., Motik, B., and Sattler, U. (2007).
Reasoning in Description Logics by a reduction to disjunctive
Datalog.
J. Automated Reasoning, 39(3):351–384.

Krötzsch, M. (2011).
Efficient rule-based inferencing for OWL EL.
In Walsh, T., editor, Proc. 22nd Int. Joint Conf. on Artif. Intell.
(IJCAI 2011), pages 2668–2673. IJCAI/AAAI.

Ortiz, M., Rudolph, S., and Simkus, M. (2010).
Worst-case optimal reasoning for the Horn-DL fragments of
OWL 1 and 2.
In Lin, F., Sattler, U., and Truszczynski, M., editors, Proc. 12th Int.
Conf. on Principles of Knowledge Representation and Reasoning
(KR 2010). AAAI Press.

References IV

Rudolph, S., Krötzsch, M., and Hitzler, P. (2012).
Type-elimination-based reasoning for the Description Logic
SHIQbs using decision diagrams and disjunctive Datalog.
Logical Methods in Computer Science, 8(1).

