
Capturing Homomorphism-Closed Decidable Queries with Existential Rules

Camille Bourgaux David Carral Markus Krötzsch Sebastian Rudolph Michaël Thomazo
CNRS, DI ENS Inria, LIRMM TU Dresden TU Dresden Inria, DI ENS

1. Motivation
• Database: finite relational structures over a countably infinite set of nulls
• Abstract query: finite set of databases closed under isomorphism
• Existential rules: ∀~x.

(
β[~x]→ ∃~y.η[~x, ~y]

)
with β[~x], η[~x, ~y] conjunctions of atoms

Existential rules capture the class of homomorphism-closed queries that are recursively enumerable
Can we characterize an existential rules fragment that can express every decidable homomorphism-closed query?

One way to ensure decidability: chase termination
• chase: repetitive, forward-chaining rule application, starting from the database
• several chase variants
• universal models

2. Results
Standard-chase-terminating existential rules capture the class of all decidable homomorphism-closed queries.
Implies that

• standard-chase-terminating and core-chase-terminating existential rule queries are equally expressive
• no decidable enhancement that preserves homomorphism-closedness can be strictly more expressive

Membership in this fragment is not semi-decidable, but this is unavoidable (via a diagonalisation argument).

3. Overview of the Construction
Let Q be a homomorphism-closed query over signature S, and M = 〈Q,Γ, δ〉 be a Turing machine that decides Q.
We construct a set of standard-chase-terminating existential rules Σ such that D ∈ Q iff 〈Σ,D〉 |= Goal.
Construction in three steps:
• Capturing Q with disjunctive rules (details in 4)

• disjunctive existential rules: ∀~x.
(
β[~x]→

∨k
i=1 ∃~yi.ηi[~xi, ~yi]

)
• guess completion of D (linear order + extensions of predicates and their complements) with disjunctive rules
• simulate the run of M for the initial configuration corresponding to the completion with existential rules

• Ensuring chase termination with the emergency brake technique
• our rules may lead to infinite chase trees
• refine and generalise the "emergency brake" technique of Krötzsch, Marx, Rudolph (ICDT 2019)
• general rule set transformation: given rule setR and fresh nullary predicate Halt

– brake(R, Halt)

* add a "brake" null that will be made "real" only when Halt is derived
* stop the chase when "brake" becomes "real"

– add rules that "pull the brake" by deriving Halt

• Removing disjunctions: express disjunctive Datalog with existential rules
• our rules can be split into disjunctive Datalog and existential rules, s.t. the disjunctive part can be chased first
• given such a rule setR, we define an existential rule set Σ such that 〈R,D〉 |= Goal iff 〈Σ,D〉 |= Goal

• adapt a technique for modeling sets with existential rules from Krötzsch, Marx, Rudolph (ICDT 2019)
– build all possible worlds corresponding to the choices made by disjunctive rules
– simulate the application of the non-disjunctive rules in each world
– aggregate results from all worlds

• the transformation preserves chase termination

4. Focus : Capturing Q with Disjunctive Rules
Construct rule sets R1 ⊆ R2 ⊆ R3 ⊆ R4 ⊆ R5 such that for every database D over S, there is a universal model
set M ofR5 and D such that D ∈ Q iff Goal ∈ I for every I ∈M.
• ApplyingR1 to D

• adds two new nulls (labelled First and Last)
• disjunctively "guesses" all first-to-last linear orders over nulls

– cave: distinct elements may be "misclassified" as equal
• disjunctively "guesses" extensions (and their complements) of all database predicates

– correctly records all relation tuples present in D
– but: some guesses may contain "false positives"

Minimal models of D andR1 represent all such guessed "completions" of D.

→ ∃y.First(y) ∧ DbDom(y) (1)

→ ∃z.Last(z) ∧ DbDom(z) (2)

p(~x) → Inp(~x) ∧
∧

x∈~x DbDom(x) (3)

DbDom(x) → Eq(x, x) (4)

Eq(x, y) → Eq(y, x) (5)

NEq(x, y) → NEq(y, x) (6)

R(~x) ∧ Eq(xi, y) → R(~xxi 7→y) (7)

DbDom(x) ∧ DbDom(y) → Eq(x, y) ∨ NEq(x, y) (8)

LT(x, y) ∧ LT(y, z) → LT(x, z) (9)

First(x) ∧ NEq(x, y) → LT(x, y) (10)

NEq(x, y) ∧ Last(y) → LT(x, y) (11)

NEq(x, y) → LT(x, y) ∨ LT(y, x) (12)∧
x∈~x DbDom(x) → Inp(~x) ∨ NInp(~x) (13)

Eq ("=")
NEq ("6=")
LT ("<")
p ∈ S
Inp
NInp

• ApplyingR2 \ R1 to a minimal model of D andR1

• builds a tree structure where each path represents a sequence of nulls that respects the linear order LT
– may skip some nulls
– but one path is complete: successor relation corresponding to LT

– cave: if disjunctive guessing of LT led to a cycle, chase may be infinite
• replicates relations Inp and NInp as In′p and NIn′p between the tree nodes

First(x) → ∃u.Root(u) ∧ Rep(x, u) (14)

Rep(x, v) ∧ LT(x, z) → ∃w.Chi(v, w) ∧ Rep(z, w) (15)

Last(x) ∧ Rep(x, u) → Leaf(u) (16)

Rep(x, u) ∧ Eq(x, y) → Rep(y, u) (17)

Inp(~x) ∧
∧|~x|

i=1Rep(xi, ui) → In′p(~u) (18)

NInp(~x) ∧
∧|~x|

i=1Rep(xi, ui) → NIn′p(~u) (19)

Chi

Rep

In′p
NIn′p

• ApplyingR3 \ R2 associates each node in the tree with a binary encoding of its distance from the root
• ApplyingR4 \ R3 encodes initial Turing machine configurations corresponding to some branch in the tree

• serializes In′p facts between nulls on the branch using ordering and binary encoding
• ApplyingR5 \ R4 simulates the run of the deterministic Turing machine M on each initial tape

