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A few preliminary notions

This part will focus on the notions of model and universal model.

Definition

A model of a knowledge base K = ⟨R,F ⟩ is a set of atoms M such that
F ⊆ M and M ⊨ R.

Definition

A universal model U of a knowledge base K is a model of K such that
for every model M of K, M ⊨ U .

The chase aims at finding a universal model for the knowledge base by
expanding the initial factbase, via rule application.

F
π(B) πR(H)creates
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Why the equivalent chase?

In this part, we will focus on the equivalent chase, which stops whenever
all rule applications yield an equivalent factbase.

Theorem (A. Deutsch, A. Nash, and J. B. Remmel., 2008)

The equivalent chase terminates on a knowledge base K if and only if K
admits a finite universal model.

This theorem lets us use logics instead of algorithmics to prove
termination.

In addition, the equivalent chase is the reason we have three normalization
procedures and not two.
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Single-piece translation - Piece graph

Definition

The piece graph of a rule B → H1[y⃗1] ∧ . . . ∧ Hn[y⃗n] is the following:

Vertices: Atoms in the head (H1[y⃗1], . . . ,Hn[y⃗n]).

Edges: Edge between Hi [y⃗i ] and Hj [y⃗j ] if y⃗i and y⃗j share an existential
variable.

A rule piece is a connected component of the piece graph.

Example:

R = P(x , x) → ∃y , z , v ,w . P(x , y)∧Q(x , y)∧Q(x ,w)∧P(z ,w)∧Q(z , v)

has the following piece graph:

Q(x , y)P(x , y) Q(x ,w) P(z ,w) Q(z , v)
y w z
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Single-piece translation

Definition

The single-piece translation of a rule R = B → H is the set sp(R),
composed of the rules B → Hi for Hi rule pieces of R.

Example:

R = P(x , x) → ∃y , z , v ,w . P(x , y)∧Q(x , y)∧Q(x ,w)∧P(z ,w)∧Q(z , v)

gives the rules:

P(x , x) → ∃y . P(x , y) ∧ Q(x , y)

P(x , x) → ∃z , v ,w . Q(x ,w) ∧ P(z ,w) ∧ Q(z , v)

The single-piece translation is an equivalent transformation: R and sp(R)
produce the same models, and in particular, the same universal models. As
such, it preserves the termination of the equivalent chase.
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Conservative extension

We now consider normalization procedures that produce rule sets that only
have one atom in the head.

It cannot be done without introducing new predicates. Thus, we are
looking for conservative extensions.

Definition

R′ is a conservative extension of R if for any factbase F :

The restriction of any model of ⟨R′,F ⟩ to the predicates in R is a
model of ⟨R,F ⟩.
Any model M of ⟨R,F ⟩ can be extended into a model of ⟨R′,F ⟩
that agrees with M on the predicates in R.

A conservative extension preserves logical interpretation, which lets us use
it to solve query entailment for the initial knowledge base.
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One-way Atomic Decomposition

Let us have a look at the standard procedure:

Definition

For R = B → (H1 ∧ . . . ∧ Hn)[y⃗ ] a rule, 1ad(R) is composed of:

B → XR [y⃗ ]

for each i ≤ n, XR [y⃗ ] → Hi

Example:

R = Manager(x) → ∃y . ∃z . ReportsTo(x , y) ∧ ReportsTo(z , x)

gives the rules:

Manager(x) → ∃y . ∃z . XR(x , y , z)

XR(x , y , z) → ReportsTo(x , y)

XR(x , y , z) → ReportsTo(z , x)
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Result regarding the One-way Atomic Decomposition

Theorem

The one-way atomic decomposition does not preserve the termination of
the equivalent chase.

Counter-example:

P(x , y) → ∃z . P(y , z) ∧ P(z , y)

a

b

x1

x2

x2

P(x , y) → ∃z . X (y , z)

X (y , z) → P(y , z)

X (y , z) → P(z , y)

a

b

x1

x2

x3
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Universal-conservative extension

Obviously, conservative extensions are not enough. We introduce
universal-conservative extensions:

Definition

R′ is a universal-conservative extension of R if for any factbase F :

The restriction of a UM of ⟨R′,F ⟩ to the predicates in R is a UM of
⟨R,F ⟩.
Any UM M of ⟨R,F ⟩ can be extended into a UM of ⟨R′,F ⟩ that
agrees with M on the predicates in R.

A normalization procedure that produces universal-conservative extensions
will preserve the termination of the equivalent chase, using the following
theorem we mentioned previously:

Theorem (A. Deutsch, A. Nash, and J. B. Remmel., 2008)

The equivalent chase terminates on a knowledge base K if and only if K
admits a finite universal model.
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Two-way atomic decomposition

Definition

For R = B → (H1 ∧ . . . ∧ Hn)[y⃗ ] a rule, 2ad(R) is composed of:

B → XR [y⃗ ]

for each i ≤ n, XR [y⃗ ] → Hi

H1 ∧ . . . ∧ Hn → XR [y⃗ ]

Example:

R = Manager(x) → ∃y . ∃z . ReportsTo(x , y) ∧ ReportsTo(z , x)

gives the rules:

Manager(x) → ∃y . ∃z . XR(x , y , z)

XR(x , y , z) → ReportsTo(x , y)

XR(x , y , z) → ReportsTo(z , x)

ReportsTo(x , y) ∧ ReportsTo(z , x) → XR(x , y , z)
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Result, extension

Theorem

The two-way atomic decomposition produces universal-conservative
extensions.

Proof. First, we need to define our extension. We will extend our models
by satisfying the rules of the form

∧
i Hi → XR whenever it is possible.

Example: P(x , y) → ∃z . P(y , z) ∧ P(z , y)

2ad(R):

P(x , y) → ∃z . X (y , z)

X (y , z) → P(y , z)

X (y , z) → P(z , y)

P(y , z) ∧ P(z , y) → X (y , z)

a

b

c
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Proof sketch

Let K = ⟨R,F ⟩ be a knowledge base and let K2ad = ⟨2ad(R),F ⟩.

What we want to prove

1 The restriction of a UM of K2ad to R is a UM of K.

2 Any UM of K can be extended into a UM of K2ad.

First part

KK2ad

UM

M

UV

MN

restr.

h?

ext.

h
restr.

Second part

KK2ad

UM

M

UV

MN

ext.

h?

restr.

h
ext.
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The oblivious and semi-oblivious chase

Those are the simplest of the chase variants considered:

Oblivious chase: One can apply a trigger if it has not been applied yet.

Semi-oblivious chase: One can apply a trigger if it has not been
applied with the same frontier.

For those two chase variants, every transformation preserve the
termination. The proof techniques are also the same for both variants.

O SO

Single-piece
translation

✓ ✓

One-way atomic
decomposition

✓ ✓

Two-way atomic
decomposition

✓ ✓
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Proof sketch - Single-piece translation

The oblivious chase (resp. semi-oblivious chase) produces the same set of
atom after running on a knowledge base regardless of the derivation.

Definition

For X ∈ {O,SO}, and K a knowledge base, consider D an arbitrary fair
derivation from K. We define ChX(K) = res(D).

Thus, we only have to prove the following:

What we want to prove

For X ∈ {O,SO}, F a factbase and R a ruleset, ChX(⟨sp(R),F ⟩) is
injectively embedded in ChX(⟨R,F ⟩).

We show this by induction on an arbitrary derivation from ⟨sp(R),F ⟩.
With this result, if the chase variant terminates on the initial ruleset,
ChX(⟨R,F ⟩) is finite, and so is ChX(⟨sp(R),F ⟩).
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Proof sketch - Atomic decompositions

We use the same idea, but we must remove the new predicates introduced
by the decomposition.

Definition

For R a ruleset and A a set of atoms, we define γR(A) as the maximal
subset of A such that every atom uses only predicates in R.

Thus we want:

What we want to prove

For X ∈ {O,SO}, f ∈ {1ad, 2ad}, F a factbase and R a ruleset,
γR(ChX(⟨f (R),F ⟩)) is injectively embedded in ChX(⟨R,F ⟩).

This result is proven the same way previous result is.
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The restricted chase

In the restricted chase, we cannot apply a trigger if its output can be
retracted in the factbase.
No normalization procedure preserves the termination of the restricted
chase.

R

Single-piece
translation

✗

One-way atomic
decomposition

✗

Two-way atomic
decomposition

✗

The proofs are just counter examples. Note that the counter example we
saw previously, P(x , y) → ∃z . P(y , z) ∧ P(z , y), works for both atomic
decompositions here.
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The Datalog-first restricted chase

Recall the rules in the two-way atomic decomposition of B →
∧

i Hi :

B → XR

∀i , XR → Hi

H1 ∧ . . . ∧ Hn → XR

We thus consider the Datalog-first restricted chase, in which we can
apply an existential trigger only if there is no Datalog rule applicable.

R Df-R

Single-piece
translation

✗ ✗

One-way atomic
decomposition

✗ ✗

Two-way atomic
decomposition

✗ ✓

Datalog
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Df-R-chase and Two-way atomic decomposition

Theorem

The two-way atomic decomposition preserves the termination of the
Datalog-first restricted chase.

Proof. The proof relies on two concepts.

First, the proof will be done by contrapositive: we want to show that if
there is a non-terminating derivation from ⟨2ad(R),F ⟩, there is a
non-terminating derivation from ⟨R,F ⟩.

This will be done using the other fundamental idea of this proof: we will
break down Datalog-first derivations between the existential triggers and
the Datalog derivations.

Existential triggers are triggers that introduce an existential variable,
whereas Datalog derivations are subderivations composed exclusively of
triggers that introduce no existential variables. Thus, they are always
finite.
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Lemma introduction

What we want

For Dad = (∅,F ad),Dad
0 , (tad1 ,F ad

1 ),Dad
1 , . . . from ⟨2ad(R),F ⟩, there is a

Df-R-derivation D = (∅,F ),D0, (t1,F1),D1, . . . from ⟨R,F ⟩ such that if
Dad is fair, then D is fair.

Assuming we have this lemma, if there is an infinite yet fair derivation Dad

from ⟨2ad(R),F ⟩, there is a derivation D from ⟨R,F ⟩ such that:

D has an infinite number of existential triggers: it is infinite.

D is fair.

By contrapositive, if the Datalog-first restricted chase terminates on
⟨R,F ⟩, it also must terminate on ⟨2ad(R),F ⟩: the two-way atomic
decomposition preserves the termination of the Datalog-first restricted
chase.
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Full lemma

What we want

For Dad = (∅,F ad),Dad
0 , (tad1 ,F ad

1 ),Dad
1 , . . . from ⟨2ad(R),F ⟩, there is a

Df-R-derivation D = (∅,F ),D0, (t1,F1),D1, . . . from ⟨R,F ⟩ such that if
Dad is fair, then D is fair.

To prove the lemma by induction, we need to add a few things to make
the induction hypothesis stronger.

For Dad = (∅,F ad),Dad
0 , (tad1 ,F ad

1 ),Dad
1 , . . . from ⟨2ad(R),F ⟩, there is a

Df-R-derivation D = (∅,F ),D0, (t1,F1),D1, . . . from ⟨R,F ⟩ such that:

There is an isomorphism h from γR(res(Dad)) to res(D).

Forall i , if tadi = (B → XR , π), then ti = (B → H, h ◦ π), with
(B → XR) ∈ 2ad(B → H).

Forall i , Di is h(Dad
i ) in which we remove every trigger using a rule in

2ad(R∃), with R∃ being the set of the non-Datalog rules of R.

In addition, if Dad is fair, then D is fair.
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Fairness proof

Lemma (can be proven by induction)

For a derivation Dad from ⟨2ad(R),F ⟩, there is a derivation D from
⟨R,F ⟩ such that there is an isomorphism from γR(res(Dad)) to res(D).

Now we want to prove that if Dad is fair, then D is fair.

Dad fair implies that res(Dad) is a universal model of ⟨2ad(R),F ⟩.
Since the two-way atomic decomposition is a universal-conservative
extension, then γR(res(Dad)) is a universal model of ⟨R,F ⟩.
Since γR(res(Dad)) is isomorphic to res(D), res(D) is a universal
model of ⟨R,F ⟩.
Thus, every rule of R is satisfied in res(D): D is fair.

Which concludes the proof of the lemma, and the proof of the theorem.
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Conclusion

We introduced a new notion to characterize transformations that preserve
the termination of the equivalent chase, and new proof techniques, notably
the one regarding the Datalog-first restricted chase.

Compilation of the results obtained:

O SO R Df-R E

Single-piece
translation

✓ ✓ ✗ ✗ ✓

One-way atomic
decomposition

✓ ✓ ✗ ✗ ✗

Two-way atomic
decomposition

✓ ✓ ✗ ✓ ✓

Thank you for listening!
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Existential rules

We work in the setting of first-order logic (FOL) without the equality.

Definition

An (existential) rule is a logical formula of the form

∀x⃗∀y⃗ . B[x⃗ , y⃗ ] → ∃z⃗ . H[x⃗ , z⃗ ]

with the body B[x⃗ , y⃗ ] and the head H[x⃗ , z⃗ ] conjunctions of atoms.

For instance:

∀x . Manager(x) → ∃y . ∃z . ReportsTo(x , y) ∧ ReportsTo(z , x)

body head

Next, we denote an existential rule B → H, omitting the variables.
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Knowledge bases and Models

Definition

A factbase is a set of atoms. A knowledge base K = ⟨R,F ⟩ is
composed of a factbase F and a rule set R.

Representation using graphs:
M = {Manager(Bob),ReportsTo(Alice,Bob),ReportsTo(Bob,Carole)}

has for representation: Alice Bob Carole

Definition

A model of a knowledge base K = ⟨R,F ⟩ is a set of atoms M such that
F ⊆ M and M satisfies every rule in R.

Example: F = {Manager(Bob)} and
R = {∀x . Manager(x) → ∃y . ∃z . ReportsTo(x , y) ∧ ReportsTo(z , x)}.
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Homomorphisms

Definition

A homomorphism from F to G is a function mapping the variables of F
to the terms of G such that h(F ) ⊆ G .

This is a homomorphism

Example 1

This is not a homomorphism

Example 2

×
x

y

z

a

b

c d

e

x

y

z

a’

b’

c’ d’

e’

Homomorphism theorem

There is a homomorphism from F to G if and only if G ⊨ F .
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Query entailment and Universal models

Definition

A boolean conjunctive query (BCQ) is an existentially closed
conjunction of atoms.

Note that a BCQ can be seen as a finite factbase.

The problem of BCQ entailment

Given a BCQ q and a knowledge base K, does M ⊨ q hold for every
model M of K?

If that is the case, we write K ⊨ q.

Definition

A universal model U of a knowledge base K is a model of K such that
for every model M of K, M ⊨ U .

If U ⊨ q then K ⊨ q, because for each M model of K, M ⊨ U ⊨ q and we
conclude by transitivity of ⊨
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The chase algorithm

The chase aims at finding a universal model for the knowledge base by
expanding the initial factbase, via rule application.

F
π(B) φ(H)creates

Rule application: R = B → H is a rule, F a factbase, π : B → F a
homomorphism and φ extends π by assigning a fresh variable to each
existential variable in H.
In this presentation, we will focus our interest on a specific variant, the
equivalent chase, which stops whenever all rule applications yield an
equivalent factbase.

Theorem (A. Deutsch, A. Nash, and J. B. Remmel., 2008)

The equivalent chase terminates on a knowledge base K if and only if K
admits a finite universal model.
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Triggers

We only consider the equivalent chase (or E-chase) for the sake of this
presentation.

For π a homomorphism and R a rule, we define πR the extension of π s.t.
for every existential variable z in R, πR(z) = z(R,π) with z(R,π) fresh and
unique for z , π and R.

Definition

Let F be a factbase and R = B → H an existential rule. The pair
t = (R, π) is an E-applicable trigger for F if π is a homomorphism from
B to F and there is no homomorphism from F ∪ πR(H) to F .

F
π(B) πR(H)t
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Derivations

Definition

An E-derivation from a knowledge base K = ⟨R,F ⟩ is a sequence of the
form D = (∅,F0), (t1,F1), (t2,F2), . . . such that:

F0 = F and for all ti = (Ri , πi ), Ri ∈ R
for all i , ti is an E-applicable trigger for Fi−i and Fi = Fi−1 ∪ πR(H).

FiFiFi−1
πi (Bi ) πR

i (Hi )ti

The result of a derivation D, denoted with res(D), is the set
⋃

i Fi .
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Termination

Definition

We say that a E-derivation D from K is fair if no trigger is
E-applicable on res(D).

We say that the E-chase terminates on a knowledge base K if every
E-derivation from K is fair and finite.
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Proof part 1

Let K = ⟨R,F ⟩ be a knowledge base and let K2ad = ⟨2ad(R),F ⟩. We can
now show the first point:

Result we want

The restriction of a UM of K2ad to R is a UM of K.

Let V be a UM of K2ad

Let U be its restriction to R. Show that U is a UM .

Let M be a model of K and N be its extension to K2ad.

V is a UM so let h be a homomorphism from V to N .

U ⊆ V and M ⊆ N so h is a mapping from U to M.

Let P(y⃗) ∈ U . Show that P(h(y⃗)) ∈ M .

Since h is a homomorphism, P(h(y⃗)) ∈ N .

Since U is a model of K, P is a predicate in R.

Thus, P(h(y⃗)) ∈ M , so U is a UM .
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Proof part 2

Let us now continue with the second part of the result:

Result we want

Any UM of K can be extended into a UM of K2ad.

Let U be a UM of K

Let V be U ’s extension as defined. Show that V is a UM .

Let N be a model of K2ad and M its restriction.

U is a UM so let h be a homomorphism from U to M.

Let P(y⃗) ∈ V. Show that P(h(y⃗)) ∈ N . Two cases:

If P is in R, P(y⃗) ∈ U so P(h(y⃗)) ∈ M. M ⊆ N so P(h(y⃗)) ∈ N .

Else, if P = XR does not appear in R:

Rules XR → Hi are satisfied by V so for all i , Hi (y⃗i ) ∈ V.
Hi are in R, so for all i , Hi (y⃗i ) ∈ N .

Since N is a model,
∧

i Hi → XR is satisfied.

Thus, either case, P(h(y⃗)) ∈ N .
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