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The Complexity Landscape of Probabilistic Query 
Evaluation



Overview

• Probabilistic databases: a gentle introduction 

• The complexity of probabilistic query evaluation 

• The dichotomy for unions of conjunctive queries over probabilistic databases 

• Weighted model counting and approximability 

• Ontology-mediated queries over probabilistic data 

• Hardness of a simple unbounded query 

• Homomorphism-closed queries: Datalog, RPQs, OMQs 

• The dichotomy for homomorphism-closed queries over probabilistic graphs 

• Open problems, challenges, outlook
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Probabilistic Databases



Probabilistic Databases
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StarredIn
deNiro taxiDriver
foster taxiDriver

thurman pulpFiction
travolta pulpFiction

DirectedBy
pulpFiction tarantino
taxiDriver scorsese

whiteRibbon haneke
winterSleep ceylan

∃x, y StarredIn(x, y) ∧ DirectedBy(y, tarantino)
true - false



Probabilistic Databases
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StarredIn P
deNiro taxiDriver 0.7
foster taxiDriver 0.2

thurman pulpFiction 0.1
travolta pulpFiction 0.3

DirectedBy P
pulpFiction tarantino 0.8
taxiDriver scorsese 0.6

whiteRibbon haneke 0.7
winterSleep ceylan 0.8

∃x, y StarredIn(x, y) ∧ DirectedBy(y, tarantino)

0.296



Possible Worlds
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StarredIn P
deNiro taxiDriver 0.7
foster taxiDriver 0.2

thurman pulpFiction 0.1
travolta pulpFiction 0.3

DirectedBy P
pulpFiction tarantino 0.8
taxiDriver scorsese 0.6

whiteRibbon haneke 0.7
winterSleep ceylan 0.8

A (tuple-independent) PDB defines a probability distribution over the possible worlds : 

                                  

D

P(D) = ∏
t∈D

P(t)∏
t∉D

(1 − P(t))

D1 = {StarredIn(deNiro, taxiDriver), StarredIn(foster, taxiDriver)}

A PDB compactly encodes a set of possible worlds (i.e., classical databases):                          

P(D1) = 0.7 ⋅ 0.2 ⋅ (1 − 0.1) ⋅ (1 − 0.3) ⋅ (1 − 0.8)⋯



Query Evaluation in Probabilistic Databases

7

D3

D2

D1

P(D) = ∏
t∈D

P(t)∏
t∉D

(1 − P(t))

P(Q) = ∑
D⊧Q

P(D)
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D3

D2

D1

P(D) = ∏
t∈D

P(t)∏
t∉D

(1 − P(t))

P(Q) = ∑
D⊧Q

P(D)

Possible world semantics:  

• Views every PDB fact as an independent random variable. 

• Closed-world: only accounts for the facts in the PDB, everything else has probability 0! 

• Computationally demanding nevertheless - exponentially many possible worlds!
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Probabilistic Query Evaluation
Problem: Probabilistic query evaluation 

Input: A PDB and a Boolean query  

Output: 

Q

P(Q)



How Hard is Probabilistic Query Evaluation?
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Q1 := ∃ x, y StarredIn(x, y) ∧ Movie(y)

9

Our focus is on data complexity: PQE( ) for some fixed query .Q Q

StarredIn P
deNiro taxiDriver 0.7
foster taxiDriver 0.2

thurman pulpFiction 0.1
travolta pulpFiction 0.3

Movie P
pulpFiction 0.8
taxiDriver 0.6

whiteRibbon 0.7
winterSleep 0.8

Actors P
deNiro 0.9
foster 0.8

thurman 0.7
travolta 1

Q2 := ∃ x, y Actor(x) ∧ StarredIn(x, y) ∧ Movie(y)

Computing  is easy on any PDB, whereas computing  is hard!P(Q1) P(Q2)
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of accepting computation paths. 
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#P: Class of function problems recognized by a poly-bounded non-deterministic TM that outputs the number 
of accepting computation paths. 

#SAT is a canonical #P-complete problem:

Problem: #SAT 

Input: A propositional formula  

Output: The number of satisfying assignments, i.e., # .

ϕ
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#P: Class of function problems recognized by a poly-bounded non-deterministic TM that outputs the number 
of accepting computation paths. 

#SAT is a canonical #P-complete problem:

Problem: #SAT 

Input: A propositional formula  

Output: The number of satisfying assignments, i.e., # .

ϕ

ϕ

#SAT remains  #P-hard problem even for restricted fragments of propositional formulas.
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PP: Class of languages recognized by a poly-bounded non-deterministic TM that that accepts an input iff more 
than half of the computation paths do so. 
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PP: Class of languages recognized by a poly-bounded non-deterministic TM that that accepts an input iff more 
than half of the computation paths do so. 

MAJSAT a canonical PP-complete problem:

Problem: MAJSAT 

Input: A propositional formula  

Output: Is the number of satisfying assignments to  more than half?
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PP: Class of languages recognized by a poly-bounded non-deterministic TM that that accepts an input iff more 
than half of the computation paths do so. 

MAJSAT a canonical PP-complete problem:

Problem: MAJSAT 

Input: A propositional formula  

Output: Is the number of satisfying assignments to  more than half?

ϕ

ϕ

The relation of these classes to well-known classes: 

               P ⊆ NP ⊆ PP, PH ⊆ PPP = P#P ⊆ NPPP ⊆ PSpace



How Hard is Probabilistic Query Evaluation?
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Qh := ∃ x, y C(x) ∧ R(x, y) ∧ D(x)

12

StarredIn P
deNiro taxiDriver 0.7
foster taxiDriver 0.2

thurman pulpFiction 0.1
travolta pulpFiction 0.3

Movie P
pulpFiction 0.8
taxiDriver 0.6

whiteRibbon 0.7
winterSleep 0.8

Actors P
deNiro 0.9
foster 0.8

thurman 0.7
travolta 1

 can be computed in polynomial time, whereas computing  is #P-hard!P(Qh) P(Qnh)

Qnh := ∃ x, y C(x) ∧ R(x, y) ∧ D(y)



How Hard is Probabilistic Query Evaluation?

C(x) ∧ R(x, y) ∧ D(x)

C(a) ∧ R(a, y) ∧ D(a) C(b) ∧ R(b, y) ∧ D(b)

R(a, a) R(a, b) R(b, a) R(b, b)

13



How Hard is Probabilistic Query Evaluation?

C(x) ∧ R(x, y) ∧ D(x)

C(a) ∧ R(a, y) ∧ D(a) C(b) ∧ R(b, y) ∧ D(b)

R(a, a) R(a, b) R(b, a) R(b, b)

13

P(Qh) = 1 − ∏
u∈U

(1 − P(∃y C(u) ∧ R(u, y) ∧ D(u)))

P(C(u)) ⋅ P(∃y R(u, y)) ⋅ P(D(u))

1 − ∏
v∈U

(1 − P(R(u, v)))



How Hard is Probabilistic Query Evaluation?

C(x) ∧ R(x, y) ∧ D(x)

C(a) ∧ R(a, y) ∧ D(a) C(b) ∧ R(b, y) ∧ D(b)

R(a, a) R(a, b) R(b, a) R(b, b)

13

P(Qh) = 1 − ∏
u∈U

(1 − P(∃y C(u) ∧ R(u, y) ∧ D(u)))

P(C(u)) ⋅ P(∃y R(u, y)) ⋅ P(D(u))

1 − ∏
v∈U

(1 − P(R(u, v)))

 can be computed in polynomial time, but what makes computing  hard?P(Qh) P(Qnh)
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C(x) ∧ R(x, y) ∧ D(y)

C(a) ∧ R(a, y) ∧ D(y) C(b) ∧ R(b, y) ∧ D(y)

R(a, a) R(a, b) R(b, a) R(b, b)

! !



How Hard is Probabilistic Query Evaluation?
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Different groundings share same D-atoms! 

C(x) ∧ R(x, y) ∧ D(y)

C(a) ∧ R(a, y) ∧ D(y) C(b) ∧ R(b, y) ∧ D(y)

R(a, a) R(a, b) R(b, a) R(b, b)

! !
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Different groundings share same D-atoms! 

Sub-queries are NOT independent! 

C(x) ∧ R(x, y) ∧ D(y)

C(a) ∧ R(a, y) ∧ D(y) C(b) ∧ R(b, y) ∧ D(y)

R(a, a) R(a, b) R(b, a) R(b, b)

! !



How Hard is Probabilistic Query Evaluation?

14

Different groundings share same D-atoms! 

Sub-queries are NOT independent! 

Clash! 

C(x) ∧ R(x, y) ∧ D(y)

C(a) ∧ R(a, y) ∧ D(y) C(b) ∧ R(b, y) ∧ D(y)

R(a, a) R(a, b) R(b, a) R(b, b)

! !
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Qh := ∃ x, y C(x) ∧ R(x, y) ∧ D(x) Qnh := ∃ x, y C(x) ∧ R(x, y) ∧ D(y)

C, D R

y
x

xy

R

C D
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Hierarchical: either the covers of  do not intersect, or if they do, one is contained in the other.x, y

Qh := ∃ x, y C(x) ∧ R(x, y) ∧ D(x) Qnh := ∃ x, y C(x) ∧ R(x, y) ∧ D(y)

C, D R

y
x

xy

R

C D



How Hard is Probabilistic Query Evaluation?
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Hierarchical: either the covers of  do not intersect, or if they do, one is contained in the other.x, y

Separator variable: for hierarchical queries, there is a seperator variable, decomposing the query 
into independent subqueries.

Qh := ∃ x, y C(x) ∧ R(x, y) ∧ D(x) Qnh := ∃ x, y C(x) ∧ R(x, y) ∧ D(y)

C, D R

y
x

xy

R

C D
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PQE ( ) is #P-hard (unsafe). Qnh
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Proof idea. We have the fixed query    

 

…and need to show #P-hardness. 

Just like #SAT, #DNF is also #P-hard, since  

Counting the satisfying assignments of a bipartite monotone 2DNF is hard: 

                        

Qnh := ∃ x, y C(x) ∧ R(x, y) ∧ D(x)

#ϕ = 2n − #(¬ϕ)

ϕ = ⋁
1≤ j≤m,1≤k≤n

xj ∧ yk

PQE ( ) is #P-hard (unsafe). Qnh



A Canonical Hardness Result
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Proof sketch: Reduce from # , where . Define a PDB:  

• For  variables, add  

• For  variables, add  

• For the clauses, add  

Each world encodes an assignment of  and has probability . 

It is easy to verify that # .

ϕ ϕ = ⋁
1≤ j≤m,1≤k≤n

xj ∧ yk

x ⟨C(x1) : 0.5⟩, . . . , ⟨C(xm) : 0.5⟩

y ⟨D(y1) : 0.5⟩, . . . , ⟨D(yn) : 0.5⟩

⟨R(xj, yk) : 1⟩ for every clause (xj ∧ yk)

ϕ 0.5m+n

ϕ = P(Qnh) ⋅ 2m+n

PQE ( ) is #P-hard (unsafe). Qnh
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The Dichotomy of Probabilistic Query Evaluation

18

Theorem (Small dichotomy): Let  be any conjunctive query without self-joins: Either  is 

hierarchical and hence is safe and PQE( ) is in PTIME; otherwise it is non-hierarchical, and 

hence it is unsafe and PQE( ) is #P-hard.

Q Q

Q
Q
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Theorem (Small dichotomy): Let  be any conjunctive query without self-joins: Either  is 

hierarchical and hence is safe and PQE( ) is in PTIME; otherwise it is non-hierarchical, and 

hence it is unsafe and PQE( ) is #P-hard.

Q Q

Q
Q

Theorem [Dichotomy, (Dalvi and Suciu, 2013)] For every UCQ query , it is either safe 

and PQE( ) is in PTIME, or it is unsafe and PQE( ) is #P-hard. 

This result is recently strengthened to PDBs where all facts have probabilities in : Unsafe 
queries remain unsafe even under this restriction (Kenig and Suciu, 2021)!

Q
Q Q

{0,0.5,1}
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Theorem (Small dichotomy): Let  be any conjunctive query without self-joins: Either  is 

hierarchical and hence is safe and PQE( ) is in PTIME; otherwise it is non-hierarchical, and 

hence it is unsafe and PQE( ) is #P-hard.

Q Q

Q
Q

Theorem [Dichotomy, (Dalvi and Suciu, 2013)] For every UCQ query , it is either safe 

and PQE( ) is in PTIME, or it is unsafe and PQE( ) is #P-hard. 

This result is recently strengthened to PDBs where all facts have probabilities in : Unsafe 
queries remain unsafe even under this restriction (Kenig and Suciu, 2021)!

Q
Q Q

{0,0.5,1}

Effectiveness: This dichotomy is effective, i.e., there exists a (super-exponential) algorithm which 

can determine whether a query is safe or unsafe. Exact complexity remains open.
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Weighted Model Counting

Problem: WMC 

Input: A propositional formula  and a weight function  

Output: The total weight of satisfying assignments to , given by .

ϕ w : 𝒜 → ℝ

ϕ ∑
ν⊧ϕ

w(ν)
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Output: The total weight of satisfying assignments to , given by .
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ϕ ∑
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Problem: WMC 

Input: A propositional formula  and a weight function  

Output: The total weight of satisfying assignments to , given by .

ϕ w : 𝒜 → ℝ

ϕ ∑
ν⊧ϕ

w(ν)

We can establish a direct correspondence between WMC and PDBs. 

Define the weight function as  and assume that the weight function factorises as: 

                             

A propositional literal corresponds to a probabilistic fact in the PDB; a propositional assignment 
corresponds to a possible world of the PDB.

w : 𝒜 → [0,1]

w(ν) = ∏
l∈ν

w(l) ∏
¬l∈ν

(1 − w(l))



Weighted Model Counting

21

Each query has a lineage (or provenance) representation: 

 can be written as   

This is a (positive) formula in DNF and the transformation is efficient in data complexity. 

Probabilistic UCQ evaluation is essentially weighted DNF counting!

Q = ∃ x, y C(x) ∧ R(x, y) ϕQ = ⋁
u,v∈U

(C(u) ∧ R(u, v))

Problem: WMC 

Input: A propositional formula  and a weight function  

Output: The total weight of satisfying assignments to , given by .

ϕ w : 𝒜 → ℝ

ϕ ∑
ν⊧ϕ

w(ν)
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Randomized algorithm: Let  be a function from a class of formulas to weights. Given 

, a randomized algorithm  is called an -approximation of  if for all :  

                                             

f : ℒ → ℝ
ϵ, δ > 0 ̂f (ϵ, δ) f ϕ ∈ ℒ

P( ∣ ̂f(ϕ) − f(ϕ) ∣ ≤ ϵ) ≥ 1 − δ .
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Randomized algorithm: Let  be a function from a class of formulas to weights. Given 

, a randomized algorithm  is called an -approximation of  if for all :  

                                             

f : ℒ → ℝ
ϵ, δ > 0 ̂f (ϵ, δ) f ϕ ∈ ℒ

P( ∣ ̂f(ϕ) − f(ϕ) ∣ ≤ ϵ) ≥ 1 − δ .

FRPAS: An -approximation algorithm  is called a fully polynomial approximation 
scheme if the running time of algorithm  is polynomial in , , .

(ϵ, δ) ̂f
̂f |ϕ | ϵ−1 log(δ−1)
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Randomized algorithm: Let  be a function from a class of formulas to weights. Given 

, a randomized algorithm  is called an -approximation of  if for all :  

                                             

f : ℒ → ℝ
ϵ, δ > 0 ̂f (ϵ, δ) f ϕ ∈ ℒ

P( ∣ ̂f(ϕ) − f(ϕ) ∣ ≤ ϵ) ≥ 1 − δ .

FRPAS: An -approximation algorithm  is called a fully polynomial approximation 
scheme if the running time of algorithm  is polynomial in , , .

(ϵ, δ) ̂f
̂f |ϕ | ϵ−1 log(δ−1)

Approximability: Weighted DNF counting has an FPRAS (Karp, Luby, and Madras 1989)  - so 
does PQE on UCQs! 

Inapproximability: Weighted CNF counting is NP-hard to approximate (Roth, 1996).
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Probabilistic OMQ Evaluation
Problem: Probabilistic query evaluation 

Input: A PDB and a Boolean OMQ  

Output: 

(Σ, Q)

P(Σ, Q)



Ontology-Mediated Queries
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Query evaluation is model checking whereas OMQA evaluation is reasoning. 

Semantics:   iff for all  where  and , it holds that . 

Convention:  is called an ontology-mediated query (OMQ). 

Notation:  is written instead of .

(Σ, D) ⊨ Q I I ⊨ Σ I ⊨ D I ⊨ Q

(Σ, Q)

D ⊨ (Σ, Q) (Σ, D) ⊨ Q

Problem: Query evaluation 

Input: A database , a Boolean query  

Question: ?

D Q

D ⊨ Q

Problem: OMQA 

Input: A database , a query , and an ontology  

Question: ?

D Q Σ

(Σ, D) ⊨ Q



OMQ Evaluation in Probabilistic Databases
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D3

D2

D1

P(Σ, Q) = ∑
D⊧(Σ,Q)

P(D)

P(D) = ∏
t∈D

P(t)∏
t∉D

(1 − P(t))
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D3

D2

D1

P(Σ, Q) = ∑
D⊧(Σ,Q)

P(D)

The use of an ontology makes a difference:  

• Facts alone are independent, but the rules in the ontology introduce dependencies. 

• Open-world: Positive probability also for some facts not in the PDB. 

• Computationally more demanding!

P(D) = ∏
t∈D

P(t)∏
t∉D

(1 − P(t))



Probabilistic Ontology-Mediated Query Answering

26

      

          

        

      

        

Q ∃x, y Student(x) ∧ Teaches(x, y) ∧ Course(y)

Σ GradStudent(x) → Student(x)

Student(x) → ∃z HasMentor(x, z)

D Lecturer(stefan) : 0.5, GradStudent(philippo) : 0.7,

Course(logic) : 0.8, Teaches(philippo, logic) : 0.4
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Q ∃x, y Student(x) ∧ Teaches(x, y) ∧ Course(y)

Σ GradStudent(x) → Student(x)

Student(x) → ∃z HasMentor(x, z)

D Lecturer(stefan) : 0.5, GradStudent(philippo) : 0.7,

Course(logic) : 0.8, Teaches(philippo, logic) : 0.4

The use of an ontology makes a difference:  

• Dependence: Being a grad student implies being a student… 

• Open-world: Philippo is a student with a positive probability. 

• Computationally: Need to account for the entailments of the ontology!
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How Hard is Probabilistic OMQ Evaluation?

27

Consider the OMQ , where…(Q, Σ)

Observation: Typical graph reachability query, i.e., a very simple recursive query. 

Observation: Very little is known for queries beyond UCQs, particularly, for query languages that 
feature recursion. 

Fact: This query is already #P-hard! 

Intuition: We can encode (a probabilistic version) of source-target connectivity.

      

     

Q C(t)

Σ C(x) ∧ R(x, y) → C(y)



Probabilistic Ontology-Mediated Query Answering
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Problem: Directed source-target reliability 

Input: A directed probabilistic graph  where each edge holds 
independently with probability , a source node , and a target node . 

Output: Probability of having a directed -path

G = (V, E)
0.5 s t

st



Probabilistic Ontology-Mediated Query Answering
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Proof idea: We construct the PDB as follows: 

• For the source node , add the fact  with probability 1. 

• For each edge in , add the fact  with probability 0.5. 

The probability of the graph  being -connected is equal to !

s C(s)

(u, v) ∈ E R(u, v)

G st P(Σ, Q)

Problem: Directed source-target reliability 

Input: A directed probabilistic graph  where each edge holds 
independently with probability , a source node , and a target node . 

Output: Probability of having a directed -path

G = (V, E)
0.5 s t

st

Can we generalize this observation to a large class of queries featuring recursion?
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Homomorphism-closed Queries
Problem: Probabilistic query evaluation 

Input: A PDB and an infinite unions of 
conjunctive queries. 

Output: P(Q)



Homomorphism-closed Queries over Probabilistic Graphs
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Homomorphism-closed query: If  satisfies  and  has a homomorphism to  then  also 

satisfies . 

• Generalize CQs and UCQs, but also regular path queries, Datalog, OMQs, etc.  

• Do not allow for inequalities or negation 

• A homomorphism-closed query is an infinite union of CQs, denoted UCQ . 

• A UCQ  query is bounded if the union is finite (it is a UCQ), unbounded otherwise 
(i.e., reachability query is unbounded).  

• Allows pretty wild things, e.g., “There is a path whose length is prime”  

Probabilistic graphs: (Tuple-independent) probabilistic database over binary signatures, i.e., 
graphs with independent edge probabilities.

G Q G G′ G′ 

Q

∞

∞



The Dichotomy for Homomorphism-closed Queries
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Could it be the case that all unbounded queries are hard? 

Theorem [Hardness, (Amarilli and Ceylan, 2022)] Let  be an unbounded UCQ  query 

 over binary signatures. Then, PQE( ) is #P-hard.

Q ∞

Q Q
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Could it be the case that all unbounded queries are hard? 

Theorem [Hardness, (Amarilli and Ceylan, 2022)] Let  be an unbounded UCQ  query 

 over binary signatures. Then, PQE( ) is #P-hard.

Q ∞

Q Q

The reduction is proceeds on two cases:  

(1) unbounded queries with non-iterable edges: reduce from #PP2DNF,  

(2) unbounded queries with no non-iterable edges: reduce from #U-ST-CON. 

The reductions rely on model-theoretic properties, where (2) is the hard case:  

• Based on the existence of certain minimal models with tight patterns.  

• Minimal tight models can be used to code edges in the input graph.
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(1) For any unbounded UCQ , we know that PQE( ) is #P-hard. 

(2) All bounded queries are UCQs, they are already classified by Dalvi and Suciu

∞ Q



The Dichotomy for Homomorphism-closed Queries
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(1) For any unbounded UCQ , we know that PQE( ) is #P-hard. 

(2) All bounded queries are UCQs, they are already classified by Dalvi and Suciu

∞ Q

Theorem [Dichotomy, (Amarilli and Ceylan, 2022)] For every UCQ  query  over binary 

signatures, it is either equivalent to a safe UCQ (hence bounded) and PQE( ) is in 
PTIME, or it is not and PQE( ) is #P-hard. 

This result is applies to the case where all facts have probabilities in : Unbounded 
queries remain unsafe even under this restriction!

∞ Q
Q

Q

{0,0.5,1}
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(1) For any unbounded UCQ , we know that PQE( ) is #P-hard. 

(2) All bounded queries are UCQs, they are already classified by Dalvi and Suciu

∞ Q

Effectiveness: Open - To be studied for syntactically well-defined fragments. If boundedness is 
decidable (e.g., monadic Datalog), that gives a classification of safe/unsafe queries.

Theorem [Dichotomy, (Amarilli and Ceylan, 2022)] For every UCQ  query  over binary 

signatures, it is either equivalent to a safe UCQ (hence bounded) and PQE( ) is in 
PTIME, or it is not and PQE( ) is #P-hard. 

This result is applies to the case where all facts have probabilities in : Unbounded 
queries remain unsafe even under this restriction!

∞ Q
Q

Q

{0,0.5,1}



On The (In)approximability of Homomorphism-closed Queries
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All bounded queries are UCQs… 

                 These queries admit an FPRAS, as does weighted DNF counting! 

What is the status of unbounded UCQ  queries? 

                                          Largely inapproximable  

                                          Complete characterization is lacking 

                                          Contains some well-known open problems 

                                          E.g., approximability status of #U-ST-CON is open

∞
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Outlook



Open Problems, Challenges, Outlook
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Probabilistic Query Evaluation  

• Dichotomy for FO queries with negation?  

• Dichotomy for homomorphism-closed queries on PDBs (with higher-arity 
signatures)? 

• Fine-grained approximability results (e.g., are all unbounded queries 
inapproximable)?  

• Extensions to include real variables: WMI generalizes WMC with real variables. 

WMI on DNF structures admits an FPRAS (Abboud et al., 2020)! 

• Most of the presented results hold even if we restrict probabilities to : Do the 

results still hold when all probabilities are  (counting models of a query)?

{0,0.5,1}
0.5
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Alternative Data Models and Query Languages 

• Open-world probabilistic databases (Ceylan et al., 2022): allow non-zero 
probabilities for open facts, while assuming closed domain. 

• Probabilistic databases with an infinite open-world assumption (Grohe and Lindner, 
2019): allow open domains, i.e., infinite universe (domains, such as integers, reals). 

• Ontology-mediated querying of data: relaxing the independence assumption, 
integrating common-sense knowledge, open-domain reasoning.
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Problems Beyond Probabilistic Query Evaluation  

• Explaining answers to queries: The most probable database problem (Ceylan et 
al., 2017): identify the most probable database instance, which entails the query. 

• Other explainability problems (SHAP scores) relate to probabilistic query evaluation. 

Systems and Implementations 

• Exact approaches, largely based on knowledge compilation. 

• Approached based on approximate model counting 

• Systems dedicated to PDBs.
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