Compressing Datalog Materialization

Jacopo Urbani
Vrije Universiteit Amsterdam, The Netherlands

November 17, 2021

VRIJE
UNIVERSITEIT
AN° AMSTERDAM

Datalog: The Scalability Problem

A key reasoning task with Datalog rules is materialization

Definition (informal)

Given as input a set of facts F and a set of Datalog rules P, the materialization is a
process that computes the smallest set of facts Mz p O F that satisfies all the rules
in P. Sometimes, we call Mz p a model of 7 and P.

Datalog engines perform materialization prior query answering OR perform
materialization during query answering (magic sets)

J. Urbani 1/25

References

Datalog: The Scalability Problem

In practice, materialization is a task applied in many large-scale scenarios

Some examples
® (Some) reasoning with ontologies can be expressed with rules (OWL RL)

® Rules can be used for data wrangling or recursive graph queries ‘

LinkedIn uses a Datalog engine in production

Google has developed its own Datalog engine (Yedalog)

® Samsung proposed its usage on mobile devices

Problem: We must find ways to materialize very large inputs

J. Urbani 2/25

References

Datalog: The Scalability Problem
Terminology

Database: Set of facts F Rule: pi(x1) A ... A pn(xn) — q(y
Program: Set of rules P

~—

body head

For convenience, we view Mz p as AgUA; UArU...UA, where Ag = F and
Aj,i > 0 contains all the facts obtained by applying a rule in P on U;;A;

Problems
1. F can be too large to be stored on one machine
M F p can be too large to be stored on one machine
Computing A; can be time consuming
n can be very large

AR

The problem is PTIME-complete

J. Urbani

3/25

Techniques for Scalable Materialization

Parallelization and/or distribution is the mainstream approach to improve scalability

= & B

Rule parallelism
(e.g., RDFOx) apply n on F apply non F apply 3 on F apply r, on F
where ri,rm,r3, 1, € P

T " e B

Data parallelism
(e.g., WebPIE) apply ron F1 apply ron 72 apply ron F3 apply r on F4
where r € P and Fq1 U FoF3 U Fy = F

J. Urbani 4/25

References
Compressing Materialization

Compression is an alternative, possibly complementary, way to improve the scalability
of rule-based reasoning.
Advantages

® We can reduce the input size, hence addressing Problems (1) and (2)

e Compression addresses also Problem (3)

® In contrast to parallelism, we do not suffer from Problem (5)

® |t can be combined with parallelism to further improve the performance

Example (Dictionary Encoding (DE))
Build a bijective mapping ¢ that maps every symbol in F to a unique integer. Then,

replace every symbol s with ¢(s) in F.

J. Urbani

5/25

References

Dictionary Encoding

DE is a popular form of compression that is often done in a suboptimal way

KOGNAC: The choice of numbers matters! [Urbani et al. (2016a)]

® Popular symbols should get smaller numbers

® “Similar” symbols should get consequent numbers
RDF Graph Frequency-based encodingfl Dictionary

Use frequent set mining algos
to find popular symbols. They
receive small numbers

Improvement up to 10x!

Classes are grouped in a taxon-
omy. Symbols in the same class
get consecutive IDs

J. Urbani

Frequency estimation

arrays
:

threads

iy

Locality-based encoding

Teate Class
taxonomy oo ‘Assign counter ID
N ogoog to all terms

§\\ <x,class2>

threads

Annotate each <ynull>
input term with @ | <zclass0>
class ID

D

wN = o

Term
<a>

<Cc>
<x>

6/25

V0iog

VLog is a reasoner that exploits columnar storage and compression to improve the
scalability of materialization [Urbani et al. (2016b)]

Main features

® Supports materialization with Datalog and existential rules (skolem and restricted
chase)

® Supports negation via stratification

® |mplements several acyclicity conditions

® Supports equality reasoning via standard axiomatization, singularization, and
replacement

® The core engine is written in C++ and has very few dependencies. It works on
Windows, Linux, MacOS, Android

® Vlog is publicly available https://github.com/karmaresearch/vlog

® There is also a Java library called Rulewerk to facilitate its usage in Java
https://github.com/knowsys/rulewerk

J. Urbani 7/25

https://github.com/karmaresearch/vlog
https://github.com/knowsys/rulewerk

V0iog

We introduce a short example to describe the main idea behind V0Log

Example

Consider the application of rule
P(x,y) A R(x) = 5(x) (1)
and F = {P(aj,bj2) | 1 <i<2n} U{R(bj) |1 <j < n}. Note that such execution

creates n S-facts of the form S(bj)
If we store the facts row-by-row, then the P-, R-, and S-facts are stored as:

P(al, bo), P(al, bl)7 P(a2, bl), P(a3, bg), ey R(bl), R(bg), ey S(bl), R(bz), .

which leads to a total storage of 2« n+ n+ n = 4n symbols

J. Urbani 8/25

References

V0iog

Example (cont.d)

Suppose we store the P- and R-facts as follows

P((al, .. .,32,,>, <b0, ey bn>), R(<b1, ey bn>)

. Then, we can execute P(x,y) A R(x) — S(x) more efficiently.

e We can ignore (as,. .., a2,) when joining P- and R-facts. If we do so, the join
considers 2n symbols instead of 3n.

® No need to store (b1, ..., b,) again for S-facts. Total storage is 3n instead of 4n.

J. Urbani 9/25

The main idea behind VLog is to store the data using columns instead of rows.

P(x,y) R(x) S(x)

(a1, bo) || {b1) | | (b1)

(a2, b1) || (b2) | | (b2)

(a2m, bn) | | (bw) | | (n)
Problem

V0iog

-

P(x,y) R(x) 5(x)
VAV

(a1, (bo, (b1,

az, ba,

220) 'b'n'> ba)

How to deal with updates? Work in append-only mode

J. Urbani

10 / 25

References

Three main advantanges

Advantage 1: Structure sharing

Instead of copying columns, we can store pointers (ok due append-only mode)

Advantage 2: Better compression

b,b,....b) = (bxn from O(n) to O(1) storage
() = (bxn) ((n) to O(1) storage)
(b1, ba,...,bp) = (bj |1 <i<n same as above)

Advantage 3: Avoid duplicate derivations

Consider rules r1 : P(x,y) = Q(y,x) and r2 : Q(x,y) — P(y, x).
If the database contains P(c1, ¢2) and ry inferred Q(pc,, Pe;), Where pc. is a pointer to
ci, then skip r on Q(pc,, pc;) = avoided inference of |c;| duplicates

J. Urbani 11 /25

About the derivation of duplicates (GLog)

Avoiding the derivation of duplicates is the problem that motivated the development of
GLog — a spinoff of V0Log
(https://www.github.com/karmaresearch/glog) [Tsamoura et al. (2021)].

GLog proposes a new data structure, called Trigger Graphs, to perform materialization
without generating (most) duplicates.

Example

Consider the rules

mother(X,Y) — daughter(Y, X) (r)
daughter(X,Y) — mother(Y, X) (r2)

and F = {Mother(Anna, Carla), Mother(Rose, Elena)}.

J. Urbani 12 /25
I

https://www.github.com/karmaresearch/glog

References

V0Log: Evaluation

>

-
4h 36min

Time
40min

Competitors: 30min
¢ RDFOx (ontogic. reasoning)

20min

¢ Socialite (graph analysis)

VLog outperforms the other 10min
systems, often significantly.

SIS IIIIIIIIIIIIIIIIIIIIIIIY

Out of Memory
Out of Memory

Claros DBpedia LUBM-1K LUBM-5K Twitter Google Webgraph
Rules 2689 9396 170 202 170 202 2 5 5 5
Input tuples 19M 112M 133M 691M 1.75M ™M 2M 5M
Derived tuples 89M 33M 172M 197M 815M 994M 23M 31M 158M 769M

J. Urbani 13 /25

References

Vliog:

Best case: VLog uses 14X less RAM

Worst case: VL0Log uses 2X less RAM

J. Urbani

Evaluation
Memory

usage Out of Memory

16G — < <

7] XA N

I NN

12G —+ \ \

T N N

+ N N

T N N

ot NI

T N N

+ N N

T N N

o] N IR

T N BN

+ N N

Claros DBpedia LUBM-1K LUBM-5K
Rules 2689 9396 170 202 170 202

Input tuples 19M 112M 133M 691M

Derived tuples 89M 33M 172M 197M 815M 994M

14 / 25

References

V0Log: Existential Rules

We extended VLog to support rules with existentially quantified variables

Two challenges
® Termination

® Runtime

Termination

We implemented several well-known acyclicity conditions, namely weak acyclicity,
MFA, MSA, JA, etc. [Urbani et al. (2018)] We also designed a novel condition that
considers EGDs [Carral and Urbani (2020)].

Runtime

We extended the columnar storage to include also null values; we also implement the
checks necessary to execute the restricted and skolem chase.

J. Urbani 15 /25

References

Ion

Evaluati

V0iog

VLog outperforms the competitors also with the restricted (standard) chase

10°

10°

107

10°

)
S

5 & Y o
| 23 3 3 9«

Alowaw 10100 | e daap

‘

@ number of derived facts (right axis)

VLog memory
H RDFox memory

iB

M

00z-daap

001-da3p
fiowaw Jo 1no
MT-Wan

5120

4096

3072

00T-WaN1
0TO-WEN1
WT-Si0100p

1 M0T-s10100p
95z-ABojouo
821-91S
0v0-wgon
0z0-WgoNn
0TO-WgON
08010894
090-19894
0v0-10e3y
0To-10idun

S00-101diun

2048
1024

Aowaw 101n0 | e _daap

00z-daap

B oor-doap
Alowsaw Jo 1no

sec

20

£ VLog time

RDFox time

15

NT-WEN1
00T-WEaNT
oT0-WaN1
INT-S10}00p

| %0T-s10100p
952-ABojoo
821-91S
0v0-WaoN
020-N80N
0T0-WEON
0801089y
090-1088Y
0v0-1089Y
010-01dun

500-104diun

10
5
0

16 / 25

J. Urbani

References

VLog: Web Interface and Docker

Web Interface [Carral et al.
(2019)]

® Good for debugging
® Server mode
e Support querying

e Educational tool

@ docker

docker pull karmaresearch/vlog
docker run -ti karmaresearch/vlog

J. Urbani

c o ocanaet 061 o

Memory Monitor
Occupied A 12616384 B

Rules

" oo - e
0% RPTO(A)
s - A
oI
ot s (s 1000 o)
oo apa

Command ine: RPSXY) - RPA(YX)

RP7X) - PBX)

Lo fromfie
N.losdec ues: 70 Browss.. LUBM Lalog
EDB
Name:Te
Aity3
Size 100868
Type Trident
DB
Gatsize 0B ables
N 108 facts: 121512

W o Rule output

. Dervatans

Runtime

1]

17 / 25

Compression: Moving Forward

We can view columns as first-class citizen symbols [Hu, Urbani, Motik, and Horrocks
(2019)].
Definition

A meta-constant c is a symbol with a mapping pu(c) that points either to a vector of
non-decreasing constants (al, a, ..., a,,> or a to a vector of meta-constants.
Meta-facts are facts with meta-constants.

Differences with VLog:
® all sequences of constants are sorted
® meta-constants are hierarchical objects
® mappings are not immutable

Our goal

Reason efficiently on meta-facts trying to introduce as few meta-constants as possible.J
J. Urbani 18 / 25

Semi joins
Rules that require semi joins are easy to handle.

Example

Consider the rule P(x) A Q(x) — S(x) and the meta-facts P(a) and Q(b) where
w(@) = (a1, a2,...,a2,) and p(b) = (a2, a4, ..., azn).

1. Unfold a, b.
2. Introduce two fresh meta-constants c; and ¢ setting p(c1) = (a1, a3, ..., a2n—1)
and M(CZ) = <327 a4, .. ., 32n>-

3. Replace p(a) with (c1, c2)
4. Return S(c2)

Our approach increased database size by O(1) instead of by O(n) done by a
conventional approach.

J. Urbani 19 / 25

References

Cross joins

Let us look at a more complicated type of rule.

Example
Consider the rule R(x,y) A S(y,z) = T(x, z) and facts R(a;, b) and S(b, ¢;) where
1<i,j<n.
1. Translate the S-facts into a meta-facts S(b, c) where p(b) = (b x n) and
u(c) = {(c1,...,cn).
2. For each R(aj, b), output a meta-fact T(a;, c) where p(a;) = (a1 x n).

Our approach infers O(n) new (meta-)facts instead of O(n?) new facts inferred by a
conventional approach.

J. Urbani 20 /25

Evaluation

||| is the representation size of I, i.e., the number of symbols needed to store the
facts in /

(numbers in millions)

IFIl - IMzpll o IKEwll - [[MFp, m)]]

LUBM-1k 241.3 314.4 : 195.2 195.7
Reactome 22.7 32.3 1 20.2 25.1
Claros, 322 1055 | 28.1 31.2
Claros;g 32.2 10658 | 281 413.9
- Conv. approaches '~ Ours

Observations
e With our approach, the representation size is much smaller

® With our approach, the representation size grows much less

J. Urbani

21 /25

Evaluation
Runtime comparison (in seconds)

RDFOx Vlog Ours

LUBM-1k 488.3 300.1 266.8
Reactome 53.0 27.5 47.3
Claros; 135.9 538.4 59.1

Claros; g 3492.1 3302.3 102k

Observations
® The best case is when the database is very regular
® The worst case is when the rules produces meta-constants with short vectors

Avg. length 1 Max. length 1 Max. depth
LUBM-1k 7993 11.2M 3
Claros; g 127 699k 2268

J. Urbani

22 /25

References

Conclusion

Main message
Compression is an effective way to improve the performance of materialization

Future work
® Explore more adaptive forms of compressions
® |nterleave meta-constants with dictionary encoding

® |nterleave compression with parallel reasoning

Thanks!

J. Urbani 23 /25

References

References |

David Carral and Jacopo Urbani. Checking chase termination over ontologies of
existential rules with equality. In Proceedings of AAAI, pages 2758-2765, 2020.

David Carral, Irina Dragoste, Larry Gonzalez, Ceriel Jacobs, Markus Krotzsch, and
Jacopo Urbani. V0Log: A Rule Engine for Knowledge Graphs. In Proceedings of
ISWC, pages 19-35, 2019.

Pan Hu, Jacopo Urbani, Boris Motik, and lan Horrocks. Datalog Reasoning over
Compressed RDF Knowledge Bases. In Proceedings of CIKM, pages 2065-2068,
2019.

Efthymia Tsamoura, David Carral, Enrico Malizia, and Jacopo Urbani. Materializing
knowledge bases via trigger graphs. Proceedings of VLDB (PVLDB), 14(6):
943-956, 2021.

J. Urbani 24 /25

References

References |l

Jacopo Urbani, Sourav Dutta, Sairam Gurajada, and Gerhard Weikum. KOGNAC:
efficient encoding of large knowledge graphs. In Proceedings of IJCAI, pages
3896-3902, 2016a.

Jacopo Urbani, Ceriel Jacobs, and Markus Krotzsch. Column-Oriented Datalog
Materialization for Large Knowledge Graphs. In Proceedings of AAAI, pages
258-264, 2016b.

Jacopo Urbani, Markus Krotzsch, Ceriel Jacobs, Irina Dragoste, and David Carral.
Efficient Model Construction for Horn Logic with V0Log. In Proceedings of IJCAR,
pages 6380-688, 2018.

J. Urbani 25 /25

	References

