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BTS Notions

Treewidth

Example (Cont.): Let F = {p(x, a), q(x, a, b), r(y,a, b)}

® & o

Width: Largest node minus 1.

Treewidth: Smallest width among all tree decompositions.
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Treewidth: Smallest width among all tree decompositions.

Lyon (TU Dresden) 17 November 2021 9/35



The Importance of Treewidth

Theorem (Courcelle, 1990)

The first-order theory of a class of first-order structures with bounded
treewidth is decidable.

Bounded Treewidth Sets: A rule set R is bts iff for any fact F, (F,R)
has a universal model of bounded treewidth.

Universal Model: A model for a FO theory that has a homomorphism
into every other model.

Theorem (Baget et al. 2011)
If R is bts, then query entailment is decidable. J

Lyon (TU Dresden) 17 November 2021 10 /35



Alternative Formulation of BTS: adbts

All-Derivation Bounded Treewidth Sets: R is adbts iff for any F,
there exists an n € N, if F’ is derivable from F, then tw(F’) < n.
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BTS Notions

Alternative Formulation of BTS: adbts

All-Derivation Bounded Treewidth Sets: R is adbts iff for any F,
there exists an n € N, if F’ is derivable from F, then tw(F’) < n.

Example: F = {p(a,b)}, R = {p(x,y) = p(y,z)}, n=1.

z1 m

Finding: adbts is a proper subset of bts.

Theorem
adbts C bts

Lyon (TU Dresden) 17 November 2021
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Derivation Graph (Baget et al. 2011): A DAG that keeps track of how
facts are derived.
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Example: F = {p(x,y)} and

R={
p(x,y) = aqly, 2),
p(x,y) Aaly,z) = ply,y),
p(y,y) = aly,y),
q(x, x)Ap(y,z) = r(x,y, z).
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Derivation Graphs
Derivation Graph (Baget et al. 2011): A DAG that keeps track of how

facts are derived.

Example: F = {p(x,y)} and

R=A{ y
p(x,y) = qly, z),
p(x,¥) AN aly,z) = p(y,y), @
y
y

p(y.y) = aly,y),
a(x,x)Ap(y,z) — r(x,y, z).

}
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Derivation Graphs
Derivation Graph (Baget et al. 2011): A DAG that keeps track of how

facts are derived.
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Derivation Graphs

Derivation Graphs and Tree Decompositions

Idea (Baget et al. 2011): For a rule set R, if derivation graph ~~ tree for
any fact, then R is BTS.

y y
\ @ @ X
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Derivation Graphs

Reduction Operations

Term Removal: If a term labels two converging arcs, it may be removed
from one.

4 i Xy 4 i Xy
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Derivation Graphs

Reduction Operations

Arc Removal: If an arc is labelled with (3, then it may be deleted.

.
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Derivation Graphs

Reduction Operations

Arc Contraction: If a node X sees a node Y and terms(Y) C terms(X),

then they can be merged.
X
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Derivation Graphs

Reduction Operations

Cycle Removal: If there are arcs (X, Z) and (Y, Z) with an “ancestor”
W such that L(X,Z)U L(Y,Z) C terms(W), then (1) delete (X, Z),
(Y, Z2), (2) add (W, Z), and (3) let L(W, Z) = Lab(X, Z) U L(Y, Z).
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Reduction Operations
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Derivation Graphs

Properties of Reduced Derivation Graphs

Theorem (Baget et al. 2011)
A reduced derivation graph is a tree decomposition.
Width is bounded by max{ |terms(F)| , (head(R))|rer }

F={p(x,y)}

732{
p(x,y) = qly,2), y Y\ xy
p(x,y) A aly,z) = ply.y),
p(y,y) = q(y,y),

4 q(X:X)AP(y,Z)—H(X Y, Zz)

}
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Derivation Graph Sets

Acyclic Derivation Graph Set (adgs): A rule set R is adgs iff for any F
and any derivable F’, the derivation graph of every derivation of F’ from F
is reducible to a tree.

Weakly Acyclic Derivation Graph Set (wadgs): A rule set R is wadgs
iff for any F and any derivable F’, the derivation graph of some derivation
of F’ from F is reducible to a tree.

Theorem
> adgs C wadgs C adbts C bts
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and any derivable F’, the derivation graph of every derivation of F’ from F
is reducible to a tree.

Weakly Acyclic Derivation Graph Set (wadgs): A rule set R is wadgs
iff for any F and any derivable F’, the derivation graph of some derivation
of F’ from F is reducible to a tree.

Theorem
> adgs C wadgs C adbts C bts
» [f'R is adgs or wadgs, then query entailment is decidable.

Proof: Let R be wadgs and F be a fact.
Assume F’ is R-derivable from F with D
DG(D) reducible to tree decomposition T(F’)
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Greedy Derivations

Greedy Derivation (Thomazo et al. 2012) Frontier of any rule application
is (1) from the KB, or (2) from a single previous rule application.
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Greedy Derivations

Greedy Derivations

Greedy Derivation (Thomazo et al. 2012) Frontier of any rule application
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Greedy Derivations and Decidability

Greedy Bounded Treewidth Set (Thomazo et al. 2012): R is gbts iff
for all facts F and F’, if F’ is derivable from F, then every derivation of F’
from F is greedy.

Weakly Greedy Bounded Treewidth Set: R is wgbts iff for all facts F
and F’, if F' is derivable from F, then some derivation of F’ from F is
greedy.

Theorem
> gbts = adgs
> gbts C wgbts = wadgs C bts.
> [f'R is gbts or wgbts, then query entailment is decidable.
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Greedy Derivations

Greedy Derivations and Derivation Graphs

Cycle Removal: If there are arcs (X, Z) and (Y, Z) with an “ancestor”
W such that L(X,Z)U L(Y,Z) C terms(W), then (1) delete (X, Z),
(Y, Z2), (2) add (W, Z), and (3) let L(W, Z) = Lab(X, Z) U L(Y, Z).
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Showing gbts C wgbts

Rule Dependencies

Dependency (Baget 2004): A rule p’ depends on a rule p, if there exists a
fact F such that applying p to F gives a fact F’ that p’ can be applied to
(and was not previously applicable to).

Example: Let F = {p(a, b)}
R={
p(x;y) = a(x,y)

q(x,y) = r(x,y)
}
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Rule Dependencies

Dependency (Baget 2004): A rule p’ depends on a rule p, if there exists a
fact F such that applying p to F gives a fact F’ that p’ can be applied to
(and was not previously applicable to).

Example: Let F = {p(a, b)}
R={
p(x,y) = a(x.y) (e b))

{p(a,b), q(a, b)}
} q(va)_>r(X7y) {p(a,b),q(a,b),r(a,b)}

q(x,y) = r(x,y) depends on p(x,y) = q(x,y)
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Graph of Rule Dependencies

Graph of Rule Dependencies (Baget 2004): A directed graph showing
all dependencies between rules.
R=A{

B p1 = p(x) = a(x,y)

B p2 = r(x) = s(x,y,2)

p3 = p(x) Ar(y) = q(x,z) As(y,u,v)

A ps=q(x,y) Ns(z,u,v) = t(x, z,u, w)

}
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Graph of Rule Dependencies

Graph of Rule Dependencies (Baget 2004): A directed graph showing
all dependencies between rules.

R={
B o1 = p(x) = q(x,y) @ @ @
.p2:r(x)—>s(xy, )
B o3 =p(x) Ar(y) = q(x,2) As(y, u, v)
(

A ps=q(x,y) Ns(z,u,v) = t(x, z,u, w)
} ()
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Showing gbts C wgbts

An Observation

R = {
B p1=p(x) = q(x,y) @ @ @
B p2 = r(x) = s(x,y,2)
B p3 = p(x) Ar(y) = q(x, z) As(y, u, v)
A p2 = q(x,y) As(z,u,v) — t(x,z,u, w)
} (#)

A Derivation: Let p € {p1, 2, p3}.

’7(pi7 hi7 Fi)a(p7 hi+17 Fi+1)7~ . -7(pn7hna Fn)
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Showing gbts C wgbts

An Observation

R={
B o1 =p(x) = q(x,y)
B p2 = r(x) = s(x,y, 2)

p3 = p(x) Ar(y) = q(x,z) As(y, u,v)
(x,y) As(z,u,v) = t(x,z,u,w)

B ps=gq

}

A Derivation: Let p € {p1, 2, p3}.

Fo, ..., (pi»hi, Fi), (p,

* (pl‘” hn7 Fn)

The Observation: We can permute rule applications!

Fo,....(p. hiz1, Fici U (Fix1 \ Fi)), (pi, his Fiz1), -, (Pn, hny Fn)

Lyon (TU Dresden)
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Showing gbts C wgbts

Re-writing Derivations via Permutations

Lemma (Permutation Lemma)

Suppose we have a derivation of the following form:
D := Fo, ..., (pi, his Fiy1), (pit1s hiv1s Fig2)s - -5 (Pn—1, hn—1, Fp)
If pi;1 does not depend on pj, then the following is a derivation as well:

D/ = FOa LRI (pi+1a hi—l—lv Fi/)a (piv hi7 Fi+2)7 LRI (pn—b hn—la Fn)

where F,-/ =FU (Fi+2 — Fi+1).
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A Useful Rule Set for Non-Greediness

R=A{
p(x) = q(x, y)
r(x) = s(x,y,z)
p(x) Ar(y) = q(x, z) As(y, u,v)
q(x,y) ANs(z,u,v) — t(x, z,u,w)

}
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A Useful Rule Set for Non-Greediness

y
R=A
p(x) = q(x, y)
r(x) = s(x,y,z)
p(x) Ar(y) = q(x,z) As(y,u,v)
q(x,y) ANs(z,u,v) — t(x, z,u,w) yw

}

R is not greedy!
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But is R Weakly Greedy?!

R=A{
p(x) = q(x, y)
r(x) = s(x,y, z)
p(x) A r(y) = q(x,z) As(y,u,v)
q(x,y) ANs(z,u,v) = t(x, z,u,w)

}
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But is R Weakly Greedy?!

Xy
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But is R Weakly Greedy?!

Xy
R={
p(x) = a(x,y)
r(x) = s(x,y, z)
p(x) A r(y) = q(x,z) As(y,u,v)
q(x,y) ANs(z,u,v) = t(x, z,u,w)

}

Perhaps R is weakly greedy!
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Showing R is weakly greedy

Idea 1: Use 3 to simulate 1 and 2.

R=A{

p(x) = q(x,y) @ @ @
r(y) = s(y,u,v)
p(x) Ar(y) = q(x, z) As(y, u,v)
q(x,y) ANs(z,u,v) — t(x, z,u,w) @

¥
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Showing R is weakly greedy

Idea 1: Use 3 to simulate 1 and 2.

=
R p(x) = a(x,y) @ @ @

r(y) = s(y,u,v)

p(x) Ar(y) = q(x.z) As(y, u, v)
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Showing R is weakly greedy

Idea 1: Use 3 to simulate 1 and 2.

R=A
p(x) = q(x,y) @ @ @

r(y) = s(y,u,v)
p(x) A r(y) = a(x,2) As(y, u,v)
q(x,y) ANs(z,u,v) — t(x, z,u,w) @
}
Idea 2: Permutation Lemma ~~
(i) Permute instances of 1 or 2 backward to instances of 2 or 1

(ii) Replace 1,2 or 2,1 instances with 3.
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Conclusion

Conclusion

bts

adbts

- ~
- ~

P .
-~ wgbts = wadgs "~

*Note: Proof must be checked in detail.
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