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Plan of the talk

1. Dramatis personae.

And some simple examples and observations. (short)
2. Introducing the Query Containment Problem.
3. An attempt on proving decidability. (long)
4. Some attempts on proving undecidability. (long)
5.

Conclusion. And a short rant, slightly off-topic.
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Dramatis personae. Queries and semantics.

Example (UCQ/ ):

Imagine a database D with relations Owns, Dog and Cat

and a UCQ:
® = (Ix Owns(t,x), Dog(x)) V (Ix Owns(t,x), Cat(x))

What will ®(D) be ?

®(D) is the of all people who own a dog and a cat.

A cat-dog owner occurs his #(dogs) + #(cats) times.
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. Introducing the Query Containment Problem.
. An attempt on proving decidability.
. Some attempts on proving undecidability.

. Conclusion. And a short rant, slightly off-topic.



Introducing Query Containment Problem (QCP)



Introducing Query Containment Problem (QCP)

QCP is a decision problem:

They give us two queries, ¢. and ¢,

and ask whether for each D it holds that (D) C ¢,(D)
(in short “®, is contained in ¢, or &, Cy d,)



Introducing Query Containment Problem (QCP)

QCP is a decision problem:

They give us two queries, ¢. and ¢,

and ask whether for each D it holds that (D) C ¢,(D)
(in short “®, is contained in ¢, or &, Cy d,)

Example:
&, = 3x,y Owns(t,x), Owns(t,y), Dog(x), Cat(y)
&, = Ix Owns(t, x), Dog(x)



Introducing Query Containment Problem (QCP)

QCP is a decision problem:

They give us two queries, ¢. and ¢,

and ask whether for each D it holds that (D) C ¢,(D)
(in short “®, is contained in ¢, or &, Cy d,)

Example:
&, = 3x,y Owns(t,x), Owns(t,y), Dog(x), Cat(y)
&, = Ix Owns(t, x), Dog(x)

Then, of course, . Cy d,



Introducing Query Containment Problem (QCP)

QCP is a decision problem:

They give us two queries, ¢. and ¢,

and ask whether for each D it holds that (D) C ¢,(D)
(in short “®, is contained in ¢, or &, Cy d,)

Example:
&, = 3x,y Owns(t,x), Owns(t,y), Dog(x), Cat(y)
&, = Ix Owns(t, x), Dog(x)

Then, of course, ®, Cy; dy. (under set semantics)



Introducing Query Containment Problem (QCP)

QCP is a decision problem:

They give us two queries, ¢. and ¢,

and ask whether for each D it holds that (D) C ¢,(D)
(in short “®, is contained in ¢, or &, Cy d,)

Example:
&, = 3x,y Owns(t,x), Owns(t,y), Dog(x), Cat(y)
&, = Ix Owns(t, x), Dog(x)

Then, of course, ®, Cy; dy. (under set semantics)

Exercise:
But what happens when we consider multiset semantics?



Introducing Query Containment Problem (QCP)

QCP is a decision problem:

They give us two queries, ¢. and ¢,

and ask whether for each D it holds that (D) C ¢,(D)
(in short “®, is contained in ¢, or &, Cy d,)

Example:
&, = 3x,y Owns(t,x), Owns(t,y), Dog(x), Cat(y)
&, = Ix Owns(t, x), Dog(x)

Then, of course, ®, Cy; dy. (under set semantics)

Exercise:
But what happens when we consider multiset semantics?

Then, neither ¢, Cy, &, nor ¢, Cy ;. holds.
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A glimpse of set-semantics QCP

Example:

&, = 3x,y Owns(t,x), Owns(t,y), Dog(x), Cat(y)
&, = Ix Owns(t, x), Dog(x)

Of course, ¢, Cy O,

Observation (from the 1970s):
Let &, and ¢, be CQs. Then &, Cy &, iff [[®,]] E &s ...

.. iff there exists a homomorphism from [[®,]] to [[®]].
Corollary: Set-semantics QCP for CQs is NP-complete.

Remark: Complexity of set-semantics QCP for UCQs
and CQ. is slightly higher. (Well-understood since 1990s).
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Remark:

®, and ¢, are boolean: they have no free variables.
All they can return is yes some number of times.
o, Cy ¢, means ®, never says yes more times than ¢,.

(Almost) all our future queries will be boolean.
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Hilbert's 10th problem:
The following decision problem is undecidable:
— the instance are two polynomials, like our 7 and p;

— the question is whether 74(§) < m(€) for
each natural valuation €.

Observation: For any two polynomials 7, and 7,

with natural coefficients, we can encode them,

in the above way, as ¢, and ¢,

and the equivalence will hold:

o, Cy &, iff 74(E) < mp(§) for each natural valuation ¢

Observation (1990s): Multi-set semantics QCP
for the UCQ case is undecidable.



Decidability of QCP for CQs
has been an open problem
since early 1990s

And it is not because
people did not try.
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An attempt on proving decidability

S. Kopparty and B. Rossman,
The homomorphism domination exponent
European Journal on Combinatorica 2011

M. Abo Khamis, P. G. Kolaitis, H. Q. Ngo, and D. Suciu,
Bag query containment and information theory,
39th ACM PODS'20,
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There are 258 > 28 nationalities.
Do Aliens need more than 8 bits for their message?

Take 00 for India, 01 for China
and 1IXXXXXXXX for the remaining 28 nationalities.

2 bits will be needed half of the time
and 9 bits half of the time

This is 5.5 bits/human in average. H(nationality) < 5.5.



Bottom line: If attribute has n possible values then
H(attribute) = logx n  if the values are uniformy distributed,
H(attribute) < log, n  otherwise.
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Is it true that:
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No, it isn't.



Now imagine they want to send (nationality, name)

Is it true that:
H(nationality, name) = H(nationality) + H(name) ?
But this is true:

H(nationality, name) = H(nationality) + H(name|nationality)
Entropy of name if
nationality is known.



Bottom line:

If attribute has n possible values then
H(attribute) = log, n  if the values are uniformy distributed,

H(attribute) < log, n  otherwise.

Chain rule for entropy:
H(attrl, attr2) = H(attrl) + H(attr2|attrl)
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two experiments:

Theorem:
A Cy vee.
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Plan of the talk

(short)

(long)
4. Some attempts on proving undecidability. (long)

5. Conclusion. And a short rant, slightly off-topic.
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What happens if 1), is a CQ and 75 is a CQ
or the other way round?

Graph product / exponentiation. ¢(G") = ¢(G)".
Graph blowup. ¢(G x n) = ¢(G) - |var(¢)|".

Observation 2. Let ¢, and ¢, be CQs.
Then (x £ x" A ¢5) Cy ¢p if and only if o5 Cy @p.

Proof: Suppose ¢s(G) > ¢p(G).

We will construct G’ such that (x # x’ A ¢5)(G’) > ¢p(G).
Let G; be such that ¢,(G;) > 2 ¢,(G;). (take G, = Gemoueh)
Now take G' = G; x 2.

And notice that: (x #x' A ¢5)(G') > ¢4(G).
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CQs naturally translate to monomials
UCQs naturally translate to polynomials
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JM and M. Orda, PODS 2024; JM and PON, submitted:

Given CQs ¢, and ¢y.
Does there exist D such that (1 + ¢)(¢s(D)) > ¢p(D) ?

Fine print:

If D is “the well of positivity” then ¢,(D) = ¢»(D) = 1.

We need to disallow such D.
Therefore we assume that D = & # 9.
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We know that the following is undecidable:

They give us polynomials p; and p,
such that each coefficient in p, is slightly bigger than in p;.

And the question is, whether (1+¢)ps(§) < pp(§)
holds for each natural valuation &.



How do we prove our e-result (roughly) ?



How do we prove our e-result (roughly) ?

Correct database A;:

X X XYY

X,Y-[Q



How do we prove our e-result (roughly) ?

Correct database A;: Example: p=X?+ XY +1.

X X XYY

X,Y-[Q



How do we prove our e-result (roughly) ?

Correct database A;: Example: p=X?+ XY +1.
p will be represented as a CQ 7:

X X XYY

X,Y-[Q



How do we prove our e-result (roughly) ?

Correct database A;: Example: p=X?+ XY +1.
p will be represented as a CQ 7:

X X XYY

X X X Y
Then: 7(Ag) =p(§) +1.
X, Y. Q



How do we prove our e-result (roughly) ?

Correct database A;: Example: p=X?+ XY +1.
p will be represented as a CQ 7:

X X XYY

X X X Y
Then: 7(Ag) =p(§) +1.
X, Y. Q



How do we prove our e-result (roughly) ?

Correct database A;: Example: p=X?+ XY +1.
p will be represented as a CQ 7:

X X XYY

X X X Y
Then: 7(Ag) =p(§) +1.
X, Y. Q

Then, as we prove, the slightly bigger polynomial
benefits much more from the additional planets.
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Phokion is a Bayesian:

More work was done trying
to prove decidability.

We failed, so it is more likely

to be undecidable.

Albert is a frequentist:

It is either one or zero.
We just do not know yet.

(Which is absolutely correct

and absolutely useless)

Albert Atserias
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A short rant, slightly off-topic.

For my PODS 24 paper, | needed 2 names for constants:
e easy to remember; e clearly denoting different objects.

If you cannot handle

the fact that

Mars and Venus
are two different planets,

talk to your therapist.




