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Introduction



Setting up the stage

Considered logic

φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | ♢φ | □φ

Path axioms / modal reduction principles

Expression k → k ′ where k, k ′ ∈ N

Also denoted as ♢kp → ♢k′
p

{ k → k ′ } enforces that in models of φ every pair of nodes u, v satisfy:

If u and v are connected with a path of length k...
...then they are connected with a path of length k ′.

2 → 1 is transitivity 0 → 1 us reflexivity 1 → 2 is density
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Open and closed cases

We are interested in deciding satisfiability of extensions of K with MRPs:

General case (k → k ′) is open

J. van Benthem. Modal reduction principles (1976).

reflexivity (0 → 1)
transitivity (2 → 1)
reflexivity + transitivity
density (1 → 2)

See e.g. P. Blackburn, M. de Rijke, Y. Venema. Modal Logic (2001).

General transitivity (k → 1)

via a standard filtration argument.

K4 with any MRPs

M. Zakharyaschev. Canonical formulas for K4. Part I: Basic results (1992).
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Our paper



Quasi-Dense Modal Logic

Quasi-Dense Modal Reduction Principle

is any MRP of the form k → k+ where k < k+.

Quasi-Dense Modal Logic

is any extension of K with a finite number of Quasi-Dense MRPs.
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In this paper

Quasi-Dense Modal Logics can be decided in
EXPSPACE.
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A glimpse into the proof



Step I: RE-Model Building Procedure

For φ ∈ K and set P of QDMRPs. Start with
Pϕ

For ♢ψ ⊆ φ

P♢ψ P♢ψ

Pψ

For □ψ ⊆ φ P□ψ

Pψ

P□ψ

For ψ ∨ ψ′ ⊆ φ Pψ∨ψ′

Pψ

Pψ′
or

For ψ ∧ ψ′ ⊆ φ Pψ∧ψ′ Pψ, Pψ′

For k → k+ ∈ P
k k

k+

If Pp and P¬p appear over a node derive nullary predicate contr.
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Satisfiability via the procedure

We have that:

⟨φ,P ⟩ is satisfiable iff The procedure non-deterministically
derives a structure that does not contain contr.

6



A quick example

φ = □□p

P = {2 → 3}

□□p
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A more complex example

φ = □□p ∧ ♢♢(p ∧ ♢¬p ∨ ¬p ∧ ♢p)

P = {2 → 3}

□□p □p p
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A more complex example

φ = □□p ∧ ♢♢(p ∧ ♢¬p ∨ ¬p ∧ ♢p)

P = {2 → 3}

□□p □p p

¬p

p

p
p ¬p

¬p
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Proof overview

We start with the set S of all structures that can be derived by the
non-deterministic model-building procedure.

We find a way to represent set S via a finite set of bounded-size
structures called templates.

We enumerate the templates, and since their size is at most exponential
in ⟨φ,P ⟩, we get an EXPSPACE algorithm for checking satisfiability.
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Thank you!
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Questions?
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