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CQs and the Fitting Problem

Conjunctive query (CQ) is FO formula using only connectives A, 3, e.g.

g(student, lecturer) = Jcourse (attends(student, course) A teaches(lecturer, course) )

Free variables referred to as answer variables

Labeled data example: triple (D, a, ¢) with + + +
o0 D a database instance (finite relational structure) - S o=

o a atuple over the active domain / universe of D

o ¢ € {+, —} is the label (positive or negative example) Ow o=

The fitting problem:
Input: collection E of labeled examples
Question: is there a CQ q that fits all examples, i.e. for all (D,a,¢) € E: a € q(D)iff £ =+

Of course one may also ask to compute a concrete such ¢ (if existent)
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Motivation

Old school: query by example (QBE)

a user wants to write a query, but is not able to formalize it

they give positive and negative examples and want the query to be derived automatically

New school: machine learning

fundamental theorem of machine learning theory tightly links fitting algorithms to PAC learning

if there is a PAC learner at all, then every algorithm that produces a fitting object is PAC

(but is there a PAC learner for CQs? — we’ll see)
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Homomorphisms Everywhere

CQ ¢(z) can be viewed as finite relational structure with distinguished elements (q, z)

attends teaches
student » COUIse < lecturer

CQ evaluation is about homomorphisms:

for CQ ¢(z) and database D: a € ¢(D) iff (¢,7) — (D, a)

=
\ homomorphism

CQ containment is about homomorphisms: existence

CQ ¢; is contained in CQ g3, written ¢; C ¢,
if for all databases D: ¢1(D) C ¢2(D)

Theorem [ChandraMerlin1977]

For all CQs ¢1(7), ¢2(7): ¢1 C g2 iff (q2,7) — (q1,7)
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Fitting Existence and Construction - Example
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Consider databases over schema that contains single binary relation

l.e. digraphs  Let C, be the cycle of length i

Try to find a fitting Boolean (i.e. 0-ary) CQ:
(C37+) (C57+) (C77+) (Cl()Sa_)

Such a g does not exist:

© g must contain a cycle, otherwise g — C| s

O consider any cycle in g, say of length i

O since g — (5, lis adivisibleby 3 ...and 5 ...and 7
O 3,5, 7 are prime, so i is also divisible by 3 -5 -7 = 105

O this can be used to show g — Cys % Fittings are related to

... products!



The (Basic) Fitting Problem

Theorem [Willard2010 / tenCateDalmau2015]

The fitting problem for conjunctive queries is coNExpTime-complete.

Algorithm for upper bound:

© compute direct product of positive examples (P, b) := H (D, a)
o check whether (P,b) — (D, a) for any (D,a,—) € E

o return ‘no’ if this is the case, otherwise (P, b) viewed as CQ fits all examples

A
Lower bound by reduction from the 2™ x 2" tiling problem
Hints:  © bit-wise decomposition of the 2™ x 2"-grid into n positive examples "

O single negative example ensures existence of tiling HEE{_.
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Extremal Fitting CQs

In general, there may be many different CQs that fit given set of examples, e.g.

Positive example C;) R Negative example oin

What fitting (Boolean) CQs can you think of? Do extremal fittings exist? Are they unique?

" _ Are there only finitely many?
We can compare fittings ¢, ¢, by query containment:

How to compute them?
q, & g, means “g, is more general than g,” How to verify them?

and “q, is more specific than ¢,”

Two extremes: ( )
Together describe ‘

space of all fittings: ol
(no strictly more general query fits) ‘

I . — _J
O most-specific fitting queries
(no strictly more specific query fits) In machine learning, this is called
version space representation

o fitting queries
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The Homomorphism Lattice

Homomorphism order — induces (pre)-lattice on set of all CQs (Boolean, fixed schema)
O greatest lower bound of g, ..., q,: direct product g; X --- X g,

O least upper bound of g, ..., q,:

n

disjoint union g; W -+ W g,

The structure of this lattice is interesting:

O large parts of it are dense: if g, — ¢, then we find g with g, — g — ¢,

O the density gaps have been exactly characterized: [NesetrilTardif2000]

1. every acyclic CQ g, gives rise to density gap: ¢, has a covered element
R\

incidence graph acyclic (aka Bergé-acyclicity)
it actually suffices that homomorphism core of ¢, has acyclic connected component

2. these are the only density gaps
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The Homomorphism Lattice

A tiny glimpse (single binary relation):

()

incomparable

t K ! .‘ ! .‘ ! .| [
W.r.t. — 'y oo s s
o o o o

length 2 length 3 length 5 length 7
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The Homomorphism Lattice

A tiny glimpse (single binary relation):

o
/

7?7

incomparable

t K ! .‘ ! .‘ ! .| [
W.r.t. — 'y oo s s
o o o o

length 2 length 3 length 5 length 7
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The Homomorphism Lattice

A tiny glimpse (single binary relation):

o
/

length 3 length 5

‘~..x ‘~..x
incomparable

' ] ' ] ' ]
.
w.rt. — 'y oo s R
o o o o

length 2 length 3 length 5 length 7
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Extremal Fitting CQs

In general, there may be many different CQs that fit given set of examples, e.g.

Positive example C;) R Negative example

What fitting (Boolean) CQs can you think of? Do extremal fittings exist? Are they unique?

Are there only finitely many?

We can compare fittings ¢, ¢, by query containment:

How to compute them?

q, € g, means “g, is more general than ¢g,”

and “q, is more specific than ¢,”

Two extremes:
Together describe

o fitting queries space of all fittings:

(no strictly more general query fits)

O most-specific fitting queries
(no strictly more specific query fits)

version space representation
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How to verify them?

—

N

In machine learning, this is called



Most Specific Fitting CQs

We already know everything to construct most-specific fitting CQs:
take any CQ ¢(7) that fits set of examples F
then ¢(z) (D, a) for every positive example (D, a,+) € E
P

—
thus ¢(z) — (P,b)= |] (D.a) thus g(pp) < g

(D,a,+)eE
f\\- (P, b) viewed as CQ
It follows that:
O a most-specific fitting CQ always exists (if there is any fitting CQ at all)
© itis unique (up to equivalence), more precisely: it is g p j
O Fitting Existence is coNExpTime-complete, Fitting Construction is in ExpTime
Intuition: we stick to the positive examples as closely as possible

Side Remark: For acyclic CQs, the situation is different (e.g. existence not guaranteed)



Most General Fitting CQs

Most-general fitting CQs need not exist, even when there is a fitting CQ

Consider database K,= e+—e Graph G has homomorphism to K,
iff G is 2-colorable

iff G has no cycle of odd length

Consider following set of examples:
oy o+——0
O no positive example

O negative example K, 7[ Xi

Let g be any fitting. We show: ¢ is not most general

g must contain odd cycle, say of length k
let ¢’ be the odd cycle of length 3k When do most general fitting CQs exist?
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Frontiers |

A frontier of a CQ is a finite complete set of minimal generalizations

Definition (Frontier)

Let g be a CQ. A frontier for g is a finite set {q,, ..., g,} such that
more

1.gCq,andg; L gforl <i<n. general

2. for all CQs ¢’ withg C g’and ¢’ € q: ¢; C g’ for some i.

Example (Boolean):

Frontier!

q: Some generalizations:
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When do Frontiers exist?

A Boolean CQ ¢ having a frontier implies a density gap below g in the hom-lattice
For non-Boolean CQs, we need slight generalization of acyclicity:

a CQ g(x) is c-acyclic if every cycle in incidence graph passes through variable from X

Theorem [tenCateDalmau2021]

1. A CQ has a frontier if and only if its homomorphism core is c-acyclic.

2. The frontier of a c-acyclic CQ can be computed in polynomial time.

Point 1 is essentially a consequence of the mentioned results on density of hom-lattice

We sketch the construction underlying Point 2

For simplicity, we consider only Boolean acyclic connected CQs
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Frontiers

Given a Boolean acyclic connected CQ ¢ (wlog assume to be core), do the following:

O introduce copies of each variable, one for each atom in which it occurs
O link the copies exactly like the original variables

O drop any edge between two copies that are both associated with that edge

ANEC 2SN
/N AN
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Frontiers

Given a Boolean acyclic connected CQ ¢ (wlog assume to be core), do the following:

O introduce copies of each variable, one for each atom in which it occurs
O link the copies exactly like the original variables

O drop any edge between two copies that are both associated with that edge

ANEC 2SN
/N AN

Construction clearly works in polynomial time

Frontier contains only single CQ; but no longer when Booleanness / connectedness is dropped!
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Frontiers

Given a Boolean acyclic connected CQ ¢ (wlog assume to be core), do the following:

O introduce copies of each variable, one for each atom in which it occurs
O link the copies exactly like the original variables

O drop any edge between two copies that are both associated with that edge

(Only) CQ

q- a
/ \ in frontier:
b C
d e

Construction clearly works in polynomial time

Frontier contains only single CQ; but no longer when Booleanness / connectedness is dropped!

Note: CQs in frontier are not trees, but still close to trees
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Most-General Fitting CQs

Characterization of most-general fitting CQs:

Let £ be a collection of examples and g a CQ. TFAE:
1. g is a most-general fitting for E

2. (i) g fits E, (ii) g has a frontier F), (iii) every element of F'has a homomorphism to a
negative example in E

Intuition: we stick to the negative examples as closely as possible
(if we generalize g just a tiny little bit, we lose a negative example)

Relevant consequence:
If a collection E of examples admits a most-general fitting CQ ¢, then
q is equivalent to a c-acyclic CQ!
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Most-General Fitting CQs - Verification
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Verifying whether a given CQ is a most-general fitting for a given set of examples E
is NP-complete.

Easier than unrestricted fitting verification, which is DP-complete

“In NP”:  Given a CQ g and set of examples £, do the following

o Verify that g is equivalent to a c-acyclic CQ:

- g is equivalent to c-acyclic CQ iff it is equivalent to c-acyclic CQ not larger than g
- we may thus guess c-acyclic ¢’ and homomorphisms showing g — g’ — ¢

o Verify that ¢’ fits E — possible in polytime since ¢’ is c-acyclic

© Compute frontier F of ¢’ (in polytime) and verify that every g € F has
homomorphism to negative example (guess it)
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Most-General Fitting CQs - Verification

Verifying whether a given CQ is a most-general fitting for a given set of examples E
is NP-complete.

Easier than unrestricted fitting verification, which is DP-complete
“NP-hard”:

For a fixed directed graph G, let CSP(G) be the problem to decide,
given a directed graph G’, whether G' — G.

It is known that there is a tree T such that CSP(T’) is NP-complete.
Since T'is a tree, it has a frontier F. Consider E = {(D,—) | D € F}

Then G € CSP(T) iff T w G (viewed as CQ) is a most-general fitting for E
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Most-General Fitting CQs - Existence

Given a set of examples E, deciding whether £ admits a most-general fitting is
ExpTime-complete

Easier than unrestricted fitting existence, which is coNExpTime-complete

Most-general fittings are c-acyclic and
c-acyclic CQs can be encoded as node-labeled trees over a finite alphabet
We can build tree automaton & that
O takes (encoded) c-acyclic CQ g as input

o verifies that ¢ fits E — (recall: “close to trees”)

© verifies that every element of the frontier of g has a homomorphism to some negative example
Thus L() = @ iff E admits no most-general fitting
Automaton has single exponentially many states, emptiness can be checked in polytime

50 | UNIVERSITAT
LEIPZIG 23




Most-General Fitting CQs

Most-general fitting CQs need not be unique

Consider following set of examples:

O no positive examples

O three negative examples: {P(a)} {O(a)} {R(a)}

Most-general fitting CQs (Boolean):
Jx 3y P(x) A O(y) Jx 3y Q(x) A R(y) Ix3y P(x) A R(y)

Definition (Basis of Most-General Fitting CQs)
A finite set B of CQs is a basis of most-general fitting CQs for E if

1. every CQin B fits E
2. for every CQ g that fits E, thereisa g € Bwithg C g  (thatis: § — ¢)

How can we verify / decide the existence of minimal bases of most-general fitting CQs?
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Homomorphism Duality

Definition (Homomorphism Duality)

A pair (F, D), with F, D sets of CQs, is a homomorphism duality if for all CQs g, TFAE:
1.qg Cgforsome g €D (thatis:g — q)

2.q L gforallg € F (thatis: § - q)

Partitions space of all CQs into two sets: CQs that

- admit a homomorphism to some CQ in D (green part)

g more

~ are more general than some CQ in D g more
general

specific

- admit a homomorphism from some CQ in F’ (red part)
~ are more specific than some CQ in F

F for “forbidden patterns”, D for “dual”
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Homomorphism Duality

Let F' = {gp}, with

dr = * qdp =

R
4 R

R
. —F— 9 — R
hom hom
:

“|
([ J

path of length k transitive tournament of length k — 1

(F, D) is homomorphism duality for D = {qp}

Intuitively: g is maximally “homomorphically strong” while avoiding ¢
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Homomorphism Duality

Theorem [AlexeEtAl2011]

A CQ ¢ participates in a homomorphism duality ({g}, D) if and only if

the homomorphism core of g is c-acyclic.

Similarly for dualities (', D), but we have to be careful about redundancies

In contrast to the case of frontiers, D may be exponentially large (with single query)
[Nesetril Tardif2005]

There is close connection between frontiers and homomorphism dualities:
o if ({g}, D) is homomorphism duality, then {g X g | § € D} is frontier for g
o conversely, from frontier for g we can construct homomorphism duality ({g}, D)
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Bases and Dualities

We want characterization of finite bases of most-general fittings in terms of dualities

Let E be a collection of negative examples and Q a finite set of CQs. TFAE:
1. Q is a basis of most-general fittings for £
2. (Q, Q) is homomorphism duality, O = {qp 4 | (D,a,—) € E}

This is quite intuitive:
o every fitting CQ must admit a homomorphism from some CQ in Q

o no fitting CQ must admit a homomorphism to any negative example
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Bases and Dualities |

We want characterization of finite bases of most-general fittings in terms of dualities

Let E be a collection of negative examples and Q a finite set of CQs. TFAE:
1. Q is a basis of most-general fittings for £
2. (Q, Q) is homomorphism duality, O = {qp 4 | (D,a,—) € E}

Verification of bases of most-general fittings: (only negative examples)
HomDual Verification, that is, given (F', D) decide whether it is a homomorphism duality
NP-hard and in ExpTime

Existence of bases of most-general fittings:

HomDual Existence, that is, given D decide whether there is F' such that (F, D) is hom. duality

NP-complete (upper bound quite non-trivial [LaroselLotenTardif07]) (only negative examples)
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Relativized Dualities |

To include positive examples, we need relativized form of homomorphism duality
Definition (Relativized Homomorphism Duality)

A pair (F, D), with F', D sets of CQs is a homomorphism duality relative to a CQ g,

if for all CQs g with gy € ¢, TFAE: 1 & C gforsome § € D

2.q Lgforalg €F

| A\

Proposition
Let E be a collection of negative examples and Q a finite set of CQs. TFAE:

1. Q is a basis of most-general fittings for E

2. each g € () fits the positive examples in E and
(Q, Of) is a homomorphism duality relative to g, =

where QE_ = {Q(D,c'l) | (D,a,—) € E}

LR
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Relativized Dualities

Generalizing a construction of Briceno, Bulatov, Dalmau, Larose [2021] yields:

Relativized HomDual Existence is NP-complete I

Deciding whether a given set of examples E admits a finite basis of most-general
fitting CQs is NExpTime-complete.

For the verification of bases of most-general fittings, a careful analysis shows:

Verifying whether a given finite set of CQs is a basis of most-general fittings for
a given set of examples E is NExpTime-complete.
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Summary of Complexity Results

Verification  Existence Construction
Any Fitting DP-c coNExpTime-c In ExpTime
Most-Specific NExpTime-c coNExpTime-c In ExpTime
Most-General NP-c ExpTime-c In 2ExpTime
Basis of Most-General | NExpTime-c NExpTime-c In 3ExpTime
Unique NExpTime-c NExpTime-c In ExpTime

Also have results for unions of CQs (UCQs) and for tree-shaped CQs
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Are CQs PAC Learnable? Efficiently so?

Some basic observations: Recent survey [tenCateFunkJunglL__ 24]

O general and (very) classic results from learning theory (Blumer et al. 89) imply:
CQs can be PAC learned with linear sample complexity, i.e.:

number of required training examples depends only linearly on
desired success probability, desired maximum error, and target CQ size

O but this is not possible in (randomized) polynomial time unless RP = NP [Kietz93]

Possibly more surprising: P P

lower bound even holds for unary path queries ~ ® R ~e R ~e R " R "

Theorem [Kietz93]

Unary path queries are not PAC learnable in randomized polynomial time, unless RP = NP.

Proof via NP-hardness of fitting problem
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UNIVERSITAT
o % LEIPZIG 33




Bounded Fitting

Bounded fitting approach (spirit of bounded model checking):
O try fitting CQs of increasing size s = 1,2,3,...

O return shortest fitting CQ found (Occam algorithm, therefore PAC)

Size-bounded fitting problem: .
Input: collection E of labeled examples and s > 1 :

Question: is there CQ q of size < s that fits £?

les exist: 1 Pleg
SPELL ELTL

The size-bounded fitting problem is
1. X%-complete for CQs [GottlobLeoneScarcello97]
2. NP-complete for CQs of treewidth bounded by some constant k

v

In Case 2, one can use a SAT solver SPELL system (2023)
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Power to the Learner!

We can get to polynomial time by giving learner access to “membership oracle”:

learner can present example database to oracle and ask for label (positive/negative)

CQs are PAC learnable in polynomial time (and with linear sample complexity) using
membership oracles.

Main idea:
O let positive examples be (D1, a1,+),...,(Dpn,Gn, +) (negative examples ignored)
O start with hypothesis CQ ¢p, 4,, thenfori =2,... n:

1. take product with (D;,a;) and 2. minimize hypothesis CQ using membership queries

This yields a polynomial time algorithm because of the minimization and

a PAC algorithm because we return a CQ no larger than the target CQ (Occam!)
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