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In this paper

Quasi-Dense Modal Logics can be decided in
EXPSPACE.
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Step |I: RE-Model Building Procedure

P,
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If P, and P-, appear over a node derive nullary predicate contr.



Satisfiability via the procedure

We have that:

(¢, P) is satisfiable iff The procedure non-deterministically
derives a structure that does not contain contr.
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