THE UNIVERSITY of EDINBURGH University of Cyprus

). informatics

Explaining Answers to Datalog Queries

based on joint work with Marco Calautti, Ester Livshits and Markus Schneider

Andreas Pieris

School of Informatics, University of Edinburgh
Department of Computer Science, University of Cyprus

Workshop on Formal Logic and Database Theory at Montpellier, February 11, 2025

Datalog: Another Success Story of LiCS

Important recursive query language
Benchmark for other query languages

Has influenced the SQL3 standard

Successfully used in many applications, e.g., code querying, web data extraction,

business process, modeling and automation, ontological query answering, ...

Large projects and some companies are “Datalog-based”

- _ 7
e EDRDFOX

N4

| §
‘ > DeepReason.ai Relational Al

Datalog at First Glance

Edge | start | end
. O0—0O—(—©

TrClosure(x,y) :- Edge(x,y)
TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

Answer | start | end
a b
a C
a d
b C
b d
C d

Syntax of Datalog

A Datalog rule is an expression of the form

Ro(%) = RolS), - Ry
S

head body

* n=0 - the body might be empty
* Ry,...,R,arerelation names
* Xp,..., X, are tuples of variables

* Eachvariable in the head occurs also in the body - safety condition

Syntax of Datalog

Datalog program P: a finite set of Datalog rules

Extensional relation: does not occur in the head of a rule of P
Intensional relation: occurs in the head of some rule of P
Extensional schema: the set of extensional relations of P
Intensional schema: the set of intensional relations of P

Datalog query Q: a pair of the form (P, Answer), where P is a Datalog program,

and Answer a distinguished intensional relation (the output relation)

Semantics of Datalog

e Semantics: a mapping from databases of the extensional schema to databases of the

intensional schema, and the answer is determined by the output relation

Answer | start | end
a b

Edge | start | end
a C

a b
a d

b C
b C

C d
b d
C d

e Equivalent ways for defining the semantics
* Model-theoretic: logical sentences asserting a property of the result
e Fixpoint: solution of a fixpoint procedure

* Proof-theoretic: based on proof trees

Proof-theoretic Semantics of Datalog

Given a database D and a Datalog query Q = (P, Answer), we first define the output

of P on D, denoted P(D), and then collect the content of the relation Answer in P(D)

We define the notion of proof of a relational atom w.r.t. D and P, and then the

output of P on D are all the atoms that can be proven - “proof-theoretic semantics”

Proof Tree by Example

D = {Edge(a,b), Edge(b,c), Edge(c,d)}

Answer(a,c)

TrClosure(a,c)

/\

Edge(a,b) TrClosure(b,c)

Edge(b,c)

P = <

TrClosure(x,y) :- Edge(x,y)
TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

~

Answer(x,y) :- TrClosure(x,y)

Answer(b,d)

TrClosure(b,d)

/\

Edge(b,c) TrClosure(c,d)

Edge(c,d)

Proof Tree by Example

D = {Edge(a,b), Edge(b,c), Edge(c,d)} P =<

Answer(a,d)

TrClosure(a,d)

TrClosure(x,y) :- Edge(x,y)
TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

/\

TrClosure(b,d)

T~

Edge(a,b)

Edge(b,c)

TrClosure(c,d)

Edge(c,d)

~

Proof-theoretic Semantics of Datalog

Given a database D and a Datalog query Q = (P, Answer), we first define the output

of P on D, denoted P(D), and then collect the content of the relation Answer in P(D)

We define the notion of proof of a relational atom w.r.t. D and P, and then the

output of P on D are all the atoms that can be proved - “proof-theoretic semantics”

P(D) = {R(cy,...,c,) : thereis a proof tree of R(c,...,c,) w.r.t. D and P}

for a Datalog query Q = (P, Answer), Q(D) = {(c4,...,C,,) : Answer(cy,...,c,) € P(D)}

Explaining Answers to Datalog Queries

D = {Edge(a,b), Edge(b,c), Edge(c,d)} P =<

Answer(a,c)

TrClosure(a,b)

/\

Edge(a,b) TrClosure(b,c)

Edge(b,c)

TrClosure(x,y) :- Edge(x,y)
TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

Q = (P, Answer)

why (a,c) € Q(D)?

{Edge(a,b), Edge(b,c)}

~

Explaining Answers to Datalog Queries

D = {Edge(a,b), Edge(b,c), Edge(c,d)} P =<

Answer(a,d)

TrClosure(a,d)

/\

Edge(a,b) TrClosure(b,d)

T~

Edge(b,c) TrClosure(c,d)

Edge(c,d)

TrClosure(x,y) :- Edge(x,y)
TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

Q = (P, Answer)

~

why (a,d) € Q(D)?

{Edge(a,b), Edge(b,c), Edge(c,d)}

Explaining Answers to Datalog Queries

D = {Edge(a,b), Edge(b,c), Edge(c,d), P =X
Edge(a,c)}

Answer(a,d)

TrClosure(a,d)

/\

Edge(a,b) TrClosure(b,d)

T~

Edge(b,c) TrClosure(c,d)

Edge(c,d)

TrClosure(x,y) :- Edge(x,y)
TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

Q = (P, Answer)

~

why (a,d) € Q(D)?

{Edge(a,b), Edge(b,c), Edge(c,d)}

Explaining Answers to Datalog Queries

D = {Edge(a,b), Edge(b,c), Edge(c,d),
Edge(a,c)}

Answer(a,d)

TrClosure(a,d)

/\

Edge(a,c) TrClosure(c,d)

Edge(c,d)

P = <

TrClosure(x,y) :- Edge(x,y)
TrClosure(x,y) :- Edge(x,z), TrClosure(z,y)

Answer(x,y) :- TrClosure(x,y)

Q = (P, Answer)

~

why (a,d) € Q(D)?

{Edge(a,b), Edge(b,c), Edge(c,d)}
{Edge(a,c), Edge(c,d)}

Why-Provenance for Datalog Queries

The support of a proof tree T, denoted support(T), is the set of atoms labelling its leaves

Answer(a,d)

TrClosure(a,d)

T

Edge(a,c) TrClosure(c,d)

Edge(c,d)

Answer(a,d)

TrClosure(a,d)

/\

Edge(a,b) TrClosure(b,d)

T~

Edge(b,c) TrClosure(c,d)

Edge(c,d)

Why-Provenance for Datalog Queries

Given a database D, a Datalog query Q = (P, Answer), and a tuple (c;,...,C,),
the why-provenance of (cy,...,c,) w.r.t. D and Q is the family of sets of atoms

why((cy,...,c,),D,Q) = {support(T) : T is a proof tree of Answer(cy,...,c,,) w.r.t. D and P}

why-provenance can be alternatively defined using the framework of

provenance semirings by adopting the so-called why-provenance semiring

[Green, Karvounarakis, and Tannen, PODS 2007]; [Green, TCS 2011]

Complexity of Why-Provenance

Why-Provenance
Input: a database D, a Datalog query Q, a tuple (cy,...,c,), and D" € D
Question: D’ € why((c,...,c,),D,Q)?

Data complexity - D, (cq,...,c,), D" are part of the input, Q is fixed

Why-Provenance[Q]
Input: a database D, a tuple (c;,...,c,), and D" € D

Question: D’ € why((c,...,c,),D,Q)?

Data Complexity of Why-Provenance

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2024]):
1. For every Datalog query Q, Why-Provenance[Q] is in NP

2. Thereis a Datalog query Q such that Why-Provenance[Q] is NP-hard

Proof Trees as Withesses

Forn >0, let D, be the database

{Next(ay, a,), ..., Next(a, 4, a,)}

P =<

U

’

{A(0), A(1), B(0,1), Last(a,)}

R(x,y) :- A(y), Next(x,z), B(wy,wW5), R(z,w;), R(z,w>)

R(x,y) :- Last(x), A(y)

] Answer(x,y) :- R(X,y)

Answer(a;,0)

R(alio)

T~

R(a;,0) A(0) Next(aj,a,) B(0,1)

7

R(30,0) R(an1) R(an,0) R(an 1)

Last(a,) A(0) A(1) Last(a,)

Last(a,) A(0) A(1) Last(a,)

a proof tree can be

exponentially large

R(82/1)

~
4

R(3,0) R(an1) R(@n,0) R(an 1)

\

Data Complexity of Why-Provenance

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2024]):
1. For every Datalog query Q, Why-Provenance[Q] is in NP

2. Thereis a Datalog query Q such that Why-Provenance[Q] is NP-hard

1. Upper bound via a compact representation of proof trees

Proof Directed Acyclic Graph (DAG)

D ={S(a), T(a,a,b), T(a,a,c), T(a,a,d), T(b,c,a)}

Answer(d)
A(d)
A(a) T(a,a,

d)
| /l\
e T(b,c,a)
/’\ /V\
aaC

p =

A(x) - Aly), Alz), T(y,z,x)

Answer(x) :- A(x)

Answer(d)

~

Compact Representation of Proof Trees

Proposition: For every Datalog program P, there is a polynomial function f such that, for
every database D, atom R(c,...,c,), and D" € D, the following are equivalent:

1. Thereis a proof tree T of R(cy,...,¢c,) w.r.t. D and P with support(T) = D’

2. Thereis a proof DAG G of R(cy,...,c,) w.r.t. D and P with support(G) = D" and |G| < f(|D])

(1) = (2): The proof consist of three main steps:
1. reduce the depth of the proof tree
2. reduce the subtree count (number of subtrees rooted at nodes with the same label)

3. compression (reuse subtrees by folding the tree into a proof DAG)

Compact Representation of Proof Trees

Proposition: For every Datalog program P, there is a polynomial function f such that, for
every database D, atom R(c,...,c,), and D" € D, the following are equivalent:

1. Thereis a proof tree T of R(c,...,c,) w.r.t. D and P with support(T) =D
2. Thereis a proof DAG G of R(cy,...,c,) w.r.t. D and P with support(G) = D" and |G| < f(|D])

compression

Compact Representation of Proof Trees

Proposition: For every Datalog program P, there is a polynomial function f such that, for
every database D, atom R(c,...,c,), and D" € D, the following are equivalent:

1. Thereis a proof tree T of R(cy,...,¢c,) w.r.t. D and P with support(T) = D’

2. Thereis a proof DAG G of R(cy,...,c,) w.r.t. D and P with support(G) = D" and |G| < f(|D])

(1) = (2): The proof consist of three main steps:
1. reduce the depth of the proof tree
2. reduce the subtree count (number of subtrees rooted at nodes with the same label)

3. compression (reuse subtrees by folding the tree into a proof DAG)

(2) = (1): We simply unfold the proof DAG

Data Complexity of Why-Provenance

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2024]):
1. For every Datalog query Q, Why-Provenance[Q] is in NP

2. Thereis a Datalog query Q such that Why-Provenance[Q] is NP-hard

1. Upper bound via a compact representation of proof trees

2. Lower bound via a reduction from 3SAT

Conceptually Problematic Proof Trees

D ={S(a), T(a,a,b), T(a,a,c), T(a,a,d), T(b,c,a)} P =< A :-A(y),AQZ), T(y,zx)

Answer(x) :- A(x)

Answer(d)
A(d)
A(a) T(a,a,

d)
l /]\
el T(b,c,a)
/’\ /’\
T(a,a,c)

~

Conceptually Problematic Proof Trees

D ={S(a), T(a,a,b), T(a,a,c), T(a,a,d), T(b,c,a)} P =< AKX :-Ay),Al), T(y,zX)

Answer(x) :- A(x)

Answer(d)
A(d) A(a) is derived from itself Answer(d)
/
A(a) T(a, ad\ A(d)
/
S(la) /b]ca\ A(a) T(a,ha)

/’\ /’\ S(la) S(la)
a d, C

~

Refined Proof Trees

Non-recursive proof trees - an atom occurs at most once on a path

[Bourgaux, Bourhis, Peterfreund, and Thomazo, KR 2022]

D ={S(a), S(b), T(a,a,c), T(b,b,c), T(c,c,d)} P=1< AKX :-Ay)AQz), T(y,zX)

Answer(x) :- A(x)

Answer(d)
A(c) T(c,c,d) A(c)
A(a) T(a,a,c) A(a) A(b) T(b,b,a) A(b)

Refined Proof Trees

Non-recursive proof trees - an atom occurs at most once on a path

[Bourgaux, Bourhis, Peterfreund, and Thomazo, KR 2022]

D ={S(a), S(b), T(a,a,c), T(b,b,c), T(c,c,d)} P

but its ambiguous how
A(c) is derived

[AX) =S
= < A®X) - Aly), Alz), T(y,z,X)
Answer(x) :- A(x)
Answer(d)
A(c) T(c,c,d) A(c)

Refined Proof Trees

Non-recursive proof trees - an atom occurs at most once on a path

[Bourgaux, Bourhis, Peterfreund, and Thomazo, KR 2022]

D ={S(a), S(b), T(a,a,c), T(b,b,c), T(c,c,d)} P=1< AKX :-Ay)AQz), T(y,zX)

Answer(x) :- A(x)

use either the left or Answer(d)

the right subtree /’\

A(c) T(c,c,d) A(c)
A(a) T(a,a,c) A(a) A(b) T(b,b,a) A(b)

Refined Proof Trees

Non-recursive proof trees - an atom occurs at most once on a path

[Bourgaux, Bourhis, Peterfreund, and Thomazo, KR 2022]

Unambiguous proof trees - each occurrence of an atom has the same subtree

[Calautti, Livshits, P., and Schneider, AAAI 2024]

Theorem ([Calautti, Livshits, P.,, and Schneider, PODS 2024 & AAAI 2024]):
Considering only non-recursive or unambiguous proof trees:

1. For every Datalog query Q, Why-Provenance[Q] is in NP

2. Thereis a Datalog query Q such that Why-Provenance[Q] is NP-hard

1. Upper bound via a compact representation of proof trees

2. Lower bound via a reduction from Hamiltonian Cycle

Recap

xe¥e?
* Explaining answers to Datalog queries according to why-provenance is intractable

(NP-complete) in data complexity, even if the recursion is linear

* The space of proof trees can be refined without paying a price in complexity

...can we employ SAT solvers for explaining answers to Datalog queries?

Our Target

Given a database D and a Datalog query Q = (P, Answer),

for a tuple (cy,...,C,),

efficiently enumerate the members of the why-provenance of (c4,...,c,) w.r.t. D and Q

relative to unambiguous proof trees

On-demand why-provenance: instead of computing the why-provenance for all the
query answers, focus on a given query answer (c;,...,C,,) of interest [Elhalawati, Kroetzsch,

and Mennicke, RuleML + RR 2022]

Incremental computation: instead of computing the whole why-provenance in one-shot,

which is very expensive, provide one explanation at a time

Conceptually meaningful explanations: provide only members of the why-provenance

supported by a conceptually meaningful derivation process

From Why-Provenance to SAT

Proposition (informal) ([Calautti, Livshits, P., and Schneider, AAAI 2024]):

Given a database D, a Datalog query Q = (P, Answer), and a tuple (cy,...,¢,), there exists
a Boolean formula ¢ in CNF such that:

1. ¢ can be computed in polynomial time in D and (cy,...,C,)

2. Each member of the why-provenance of (c4,...,c,) w.r.t. D and Q relative to

unambiguous proof trees corresponds to a truth assignment that satisfies ¢

the construction of ¢ relies on an auxiliary data structure (the downward
closure of Answer(c,,...,c,) w.r.t. D and P), that is, a hypergraph that encodes all

the proof trees of Answer(c,,...,c,) w.r.t D and P in their compact representation

Why-Provenance via SAT Solvers

D, Q = (P, Answer), (cy,...,C)

(o)
® @@
®@
@)
o ®
@ @)
@ H®

downward closure of

Answer(cy,...,c,) w.r.t. D and P

add constraint for D’

° SAT Solver
(Glucose)

offfoflle

x1 x2 X3

inputs

Boolean formula

Explanation D" of
(cy,...,cq) W.rt. D and Q

Satisfying assignment

Xx;=1,%,=0, ...

Experimental Evaluation

https://gitlab.com/aaai24whyprov/datalog-why-provenance

Several scenarios from the Datalog literature consisting of a query Q and a family

of databases (varying in size) D[Q]

For each query Q and database D from D[Q], we have selected 100 tuples from
Q(D) uniformly at random, and for each tuple, we have incrementally computed its

why-provenance w.r.t. D and Q relative to unambiguous proof trees

Pre-processing: computing the downward closure is the expensive task, whereas

the time for building the Boolean formula is negligible

Enumeration: with the Boolean formula at hand, we can efficiently enumerate the

members of the why-provenance relative to unambiguous proof trees - each

explanation is produced in milliseconds

Recap

e Explaining answers to Datalog queries according to why-provenance is intractable

(NP-complete) in data complexity, even if the recursion is linear
* The space of proof trees can be refined without paying a price in complexity

e Encouraging results on using SAT solvers for the incremental computation of

why-provenance relative to unambiguous proof trees

More Informative Explanations

D ={S(a), S(b), T(a,a,c), T(b,b,c), T(c,c,d)}

Answer(d)

/’\

A(c) T(c,c,d) A(c)
/]\ /]\
Ala) T(aac) Ala) Al@) Tlaac) Al
S(‘a) S(‘a) S(‘a) S(‘a)

- Aly), A@), Tly,zx) 7

Answer(x) :- A(x)

Q = (P, Answer)

why (d) € Q(D)?

{(S(a),4), (T(a,a,c),2), (T(c,c,d), 1)}

More Informative Explanations

D ={S(a), S(b), T(a,a,c), T(b,b,c), T(c,c,d)}

Answer(d)
/’\

A(c) T(c,c,d) A(c)
/l\ /]\
A(b) T(b,b,c) A(b) A(b) T(b,b,c) A(b)
S(‘b) S(‘b) S(‘b) S(‘b)

- Aly), A@), Tly,zx) 7

Answer(x) :- A(x)

Q = (P, Answer)

why (d) € Q(D)?

{(S(a),4), (T(a,a,c),2), (T(c,c,d), 1)}
{(S(b),4), (T(b,b,c),2), (T(c,c,d), 1)}

WhyMultiplicity-Provenance for Datalog Queries

The bagsupport of a proof tree T, denoted bagsupport(T), is the bag of atoms labelling its leaves

Answer(d)

/’\

A(c) T(c,c,d) A(c)
/l\ /]\
Ala) T(@ac) Ala) Ala) T(@ac) Ala)
S(‘a) S(‘a) S(‘a) S(‘a)

{(S(a),4), (T(a,a,c),2), (T(c,c,d), 1)}

WhyMultiplicity-Provenance for Datalog Queries

Given a database D, a Datalog query Q = (P, Answer), and a tuple (c,...,C,),
the whymultiplicity-provenance of (cy,...,c,) w.r.t. D and Q is the family of bags of atoms

whymult((c,,...,c,),D,Q) = {bagsupport(T) : T is a proof tree of Answer(cy,...,c,) w.r.t. D and P}

whymultiplicity-provenance can be alternatively defined using the framework of
provenance semirings by adopting the Boolean provenance polynomial semiring

[Green, Karvounarakis, and Tannen, PODS 2007]; [Green, TCS 2011]

Complexity of WhyMultiplicity-Provenance

WhyMultiplicity-Provenance
Input: a database D, a Datalog query Q, a tuple (c4,...,c,), and a bag B
with D being the underlying set of B; integers are encoded in binary

Question: B € whymult((c,...,c,),D,Q)?

Data complexity - D, (cq,...,C,), B are part of the input, Q is fixed

WhyMultiplicity-Provenance[Q]

Input: a database D, a tuple (c,...,¢c,), and a bag B

Question: B € whymult((c,...,c,),D,Q)?

Data Complexity of WhyMultiplicity-Provenance

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2025]):
1. For every Datalog query Q, WhyMultiplicity-Provenance[Q] is in NP

2. There is a Datalog query Q such that WhyMultiplicity-Provenance[Q] is NP-hard

1. Upper bound via a hypergraph-theoretic approach

Hypergraph-theoretic Approach

Proposition (informal): Consider a database D, a Datalog query Q = (P, Answer), a tuple
(cy,...,C), and a bag B with D being the underlying set. The following are equivalent:

1. There is a proof tree T of Answer(c,...,c,) w.r.t. D and P with bagsupport(T) =B

2. There exists a certain hyperpath in a directed hypergraph obtained from D and P

* The above proposition leads to an easy guess-and-check algorithm that runs in polynomial

time in the combined size of D, (cy,...,c,), and B

* Toshow that the “check” step of the above algorithm can be performed in polynomial time,
we had to show that the existence of an Euler hyperpath from a source node to a target

node in a directed hypergraph can be checked in polynomial time

e The latter is shown by characterizing the existence of such an Euler hyperpath via some

simple syntactic conditions that can be verified in polynomial time

Data Complexity of WhyMultiplicity-Provenance

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2025]):
1. For every Datalog query Q, WhyMultiplicity-Provenance[Q] is in NP

2. There is a Datalog query Q such that WhyMultiplicity-Provenance[Q] is NP-hard

1. Upper bound via a hypergraph-theoretic approach

2. Lower bound via a reduction from 3SAT

Non-Recursive Proof Trees

Theorem ([Calautti, Livshits, P.,, and Schneider, PODS 2025]):

Considering only non-recursive proof trees:

1. For every Datalog query Q, WhyMultiplicity-Provenance[Q] is in PSPACE

2. There is a Datalog query Q such that WhyMultiplicity-Provenance[Q] is PSPACE-hard

1. Upper bound via a recursive algorithm that non-deterministically constructs a

proof tree T with the right bagsupport in a depth-first fashion

2. Lower bound via a reduction from Q3SAT

Unambiguous Proof Trees

Theorem ([Calautti, Livshits, P., and Schneider, PODS 2025]):

Considering only unambiguous proof trees:

1. For every Datalog query Q, WhyMultiplicity-Provenance[Q] is in NP

2. There is a Datalog query Q such that WhyMultiplicity-Provenance[Q] is NP-hard

1. Upper bound via a compact representation of proof trees

2. Lower bound via a reduction from Hamiltonian Cycle

summing Up

Arbitrary Non-Recursive | Unambiguous
WhyMultiplicity NP PSPACE NP
Why NP
Arbitrary Non-Recursive | Unambiguous

WhyMultiplicity

Why

NP

Linear recursion: at most one intensional relation in rule-bodies

summing Up

Arbitrary Non-Recursive | Unambiguous
WhyMultiplicity NP PSPACE NP
Why NP

Encouraging results on using SAT solvers for the incremental computation of

on-demand why-provenance relative to unambiguous proof trees

Ongoing Research

Further development of the SAT-based approach for the incremental computation of

explanations (downward closure, diversity of explanations)

Extend our results to Datalog with negation (stratified, well-founded, stable)

Explain answers to guarded ontology-mediated queries

Open Problems

Complexity of Why-Provenance + frequency

Complexity of WhyMultiplicity-Provenance + frequency

Establish P/NP dichotomy results (e.g., Why-Provenance for non-recursive

Datalog is in PTIME)

Thank You!

