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Conjunctive query (CQ) is FO formula using only connectives ^, 9, e.g.

q(student, lecturer) = 9course
�
attends(student, course) ^ teaches(lecturer, course)

�

Free variables referred to as answer variables 

• ` 2 {+,�} is the label (positive or negative example)

The fitting problem: 

Question: is there a CQ q that fits all examples, i.e.

Of course one may also ask to compute a concrete such q (if existent)

Labeled data example: triple (D, ā, `) with

• D a database instance (finite relational structure)

• ā a tuple over the active domain / universe of D

for all (D, ā, `) 2 E: ā 2 q(D) iff ` = +

CQs and the Fitting Problem

Input: collection E of labeled examples

+ + +

- -

q



Motivation
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Old school: query by example (QBE)

a user wants to write a query, but is not able to formalize it 

they give positive and negative examples and want the query to be derived automatically

New school: machine learning

fundamental theorem of machine learning theory tightly links fitting algorithms to PAC learning

if there is a PAC learner at all, then every algorithm that produces a fitting object is PAC

(but is there a PAC learner for CQs? — we’ll see)



Homomorphisms Everywhere
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CQ evaluation is about homomorphisms:

homomorphism
existenceCQ containment is about homomorphisms: 

Theorem [ChandraMerlin1977]

CQ q1 is contained in CQ q2, written q1 ✓ q2,

student course lecturer
attends teaches

CQ q(x̄) can be viewed as finite relational structure with distinguished elements (q, x̄)

For all CQs q1(x̄), q2(x̄): q1 ✓ q2 iff (q2, x̄) �! (q1, x̄)

if for all databases D: q1(D) ✓ q2(D)

for CQ q(x̄) and database D: ā 2 q(D) iff (q, x̄) �! (D, ā)



Fitting Existence and Construction - Example

Try to find a fitting Boolean (i.e. 0-ary) CQ:

Let  be the cycle of length  Ci iI.e. digraphs

(C3,+) (C5,+) (C7,+) (C105,−)

Such a  does not exist:q

Fittings are related to … products!

consider any cycle in , say of length q i

since ,  is a divisible by 3q → C3 i …and 5 …and 7

3, 5, 7 are prime, so  is also divisible by i 3 ⋅ 5 ⋅ 7 = 105

this can be used to show q → C105

 must contain a cycle, otherwise q q → C105

Consider databases over schema that contains single binary relation

5



• check whether (P, b̄) �! (D, ā) for any (D, ā,�) 2 E

• compute direct product of positive examples (P, b̄) :=
Y

(D,ā,+)2E

(D, ā)

The (Basic) Fitting Problem
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Theorem [Willard2010 / tenCateDalmau2015]

The fitting problem for conjunctive queries is coNExpTime-complete.

Algorithm for upper bound: 

Lower bound by reduction from the 2n ⇥ 2n tiling problem

Hints: • bit-wise decomposition of the 2n ⇥ 2n-grid into n positive examples

• single negative example ensures existence of tiling

return ‘no’ if this is the case, otherwise (P, b̄) viewed as CQ fits all examples



Extremal Fitting CQs
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In general, there may be many different CQs that fit given set of examples, e.g.

Positive example Negative example

What fitting (Boolean) CQs can you think of?

RR

We can compare fittings  by query containment:q1, q2

 meansq1 ⊆ q2      “  is more general than ” q2 q1

Two extremes: 
✓most-general fitting queries

most-specific fitting queries

(no strictly more general query fits)

(no strictly more specific query fits)

Together describe
space of all fittings:

In machine learning, this is called 

 and “  is more specific than ”q1 q2

version space representation 

Do extremal fittings exist? Are they unique?

How to compute them?
Are there only finitely many?

How to verify them?
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The Homomorphism Lattice

Homomorphism order  induces (pre)-lattice on set of all CQs (Boolean, fixed schema) ⟶
greatest lower bound of :    direct product  q1, …, qn q1 × ⋯ × qn

least upper bound of :         disjoint union  q1, …, qn q1 ⊎ ⋯ ⊎ qn

The structure of this lattice is interesting:

large parts of it are dense: if  then we find  with q1 ⟶ q2 q q1 ⟶ q ⟶ q2

the density gaps have been exactly characterized:

incidence graph acyclic (aka Bergé-acyclicity)

[NesetrilTardif2000]

2. these are the only density gaps

1. every acyclic CQ  gives rise to density gap:  has a covered elementq2 q2

it actually suffices that homomorphism core of  has acyclic connected componentq2
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The Homomorphism Lattice

A tiny glimpse (single binary relation):

length 2 length 3 length 5 length 7

…

…

incomparable
w.r.t. ⟶
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The Homomorphism Lattice

A tiny glimpse (single binary relation):

length 2 length 3 length 5 length 7

…incomparable
w.r.t. ⟶

???



11

The Homomorphism Lattice

A tiny glimpse (single binary relation):

length 2 length 3 length 5 length 7

…incomparable
w.r.t. ⟶

length 3 length 5



Extremal Fitting CQs
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In general, there may be many different CQs that fit given set of examples, e.g.

Positive example Negative example

What fitting (Boolean) CQs can you think of?

RR

We can compare fittings  by query containment:q1, q2

 meansq1 ⊆ q2      “  is more general than ” q2 q1

Two extremes: 

most-general fitting queries

most-specific fitting queries

(no strictly more general query fits)

(no strictly more specific query fits)

Together describe
space of all fittings:

In machine learning, this is called 

 and “  is more specific than ”q1 q2

version space representation 

✓

Do extremal fittings exist? Are they unique?

How to compute them?
Are there only finitely many?

How to verify them?
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Most Specific Fitting CQs

We already know everything to construct most-specific fitting CQs:

it is unique (up to equivalence), more precisely: it is q(P,b̄)

It follows that:

a most-specific fitting CQ always exists (if there is any fitting CQ at all)

Fitting Existence is coNExpTime-complete, Fitting Construction is in ExpTime

thus q(x̄) �! (P, b̄) =
Y

(D,ā,+)2E

(D, ā) thus q(P,b̄) ✓ q

(P, b̄) viewed as CQ

Side Remark: For acyclic CQs, the situation is different (e.g. existence not guaranteed)

take any CQ q(x̄) that fits set of examples E

then q(x̄) �! (D, ā) for every positive example (D, ā,+) 2 E

Intuition: we stick to the positive examples as closely as possible
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Most General Fitting CQs

Consider database Graph  has homomorphism to G K2
iff  is 2-colorableG

K2 =

Most-general fitting CQs need not exist, even when there is a fitting CQ

iff  has no cycle of odd lengthG

Consider following set of examples:

no positive example

negative example K2

Let  be any fitting. We show:  is not most generalq q q

 must contain odd cycle, say of length q k
let  be the odd cycle of length q′ 3k

q′ 

When do most general fitting CQs exist?
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Frontiers

Example (Boolean):

R

S T

R

S

R

T S T

R R

S T

:q Some generalizations:

Let  be a CQ. A frontier for  is a finite set  such thatq q {q1, …, qn}
Definition (Frontier)

1.  and  for .q ⊆ qi qi ⊈ q 1 ≤ i ≤ n
2. for all CQs  with  and :    for some .q′ q ⊆ q′ q′ ⊈ q qi ⊆ q′ i

more
general

T

R R

S

Frontier!

S T

A frontier of a CQ is a finite complete set of minimal generalizations
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When do Frontiers exist?

Theorem [tenCateDalmau2021]

1. A CQ has a frontier if and only if its homomorphism core is c-acyclic. 
2. The frontier of a c-acyclic CQ can be computed in polynomial time. 

For non-Boolean CQs, we need slight generalization of acyclicity:

We sketch the construction underlying Point 2

a CQ  is c-acyclic if every cycle in incidence graph passes through variable from  q(x̄) x̄

For simplicity, we consider only Boolean acyclic connected CQs

Point 1 is essentially a consequence of the mentioned results on density of hom-lattice

A Boolean CQ  having a frontier implies a density gap below  in the hom-lattice q q
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Frontiers

Given a Boolean acyclic connected CQ  (wlog assume to be core), do the following:q

:q a

b c

d e

introduce copies of each variable, one for each atom in which it occurs 

a a

b b b c

d e

link the copies exactly like the original variables

drop any edge between two copies that are both associated with that edge

(Only) CQ
in frontier:
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Frontiers

Construction clearly works in polynomial time

:q a

b c

d e

introduce copies of each variable, one for each atom in which it occurs 

a a

b b b c

d e

link the copies exactly like the original variables

drop any edge between two copies that are both associated with that edge

(Only) CQ
in frontier:

Frontier contains only single CQ; but no longer when Booleanness / connectedness is dropped!

Given a Boolean acyclic connected CQ  (wlog assume to be core), do the following:q
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Frontiers

:q a

b c

d e

introduce copies of each variable, one for each atom in which it occurs 

a a

b b b c

d e

link the copies exactly like the original variables

drop any edge between two copies that are both associated with that edge

(Only) CQ
in frontier:

Construction clearly works in polynomial time
Frontier contains only single CQ; but no longer when Booleanness / connectedness is dropped!
Note: CQs in frontier are not trees, but still close to trees

Given a Boolean acyclic connected CQ  (wlog assume to be core), do the following:q
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Let  be a collection of examples and  a CQ. TFAE: E q
Proposition

1.  is a most-general fitting for q E
2. (i)  fits , (ii)  has a frontier , (iii) every element of  has a homomorphism to a  
    negative example in 

q E q F F
E

Most-General Fitting CQs

Intuition: we stick to the negative examples as closely as possible

Characterization of most-general fitting CQs:

Relevant consequence: 
If a collection  of examples admits a most-general fitting CQ , then E q

 is equivalent to a c-acyclic CQ!q

(if we generalize  just a tiny little bit, we lose a negative example) q
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Most-General Fitting CQs - Verification

“In NP”: Given a CQ  and set of examples , do the followingq E

Verify that  is equivalent to a c-acyclic CQ:q
-  is equivalent to c-acyclic CQ iff it is equivalent to c-acyclic CQ not larger than q q
- we may thus guess c-acyclic  and homomorphisms showing q′ q ⟶ q′ ⟶ q

Verify that  fits  — possible in polytime since  is c-acyclicq′ E q′ 

Compute frontier  of  (in polytime) and verify that every  has 
homomorphism to negative example (guess it)

F q′ ̂q ∈ F

Easier than unrestricted fitting verification, which is DP-complete

Theorem
Verifying whether a given CQ is a most-general fitting for a given set of examples 
is NP-complete.

E



Theorem
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Most-General Fitting CQs - Verification

“NP-hard”:

Verifying whether a given CQ is a most-general fitting for a given set of examples 
is NP-complete.

E

For a fixed directed graph , let  be the problem to decide,
given a directed graph , whether .

G CSP(G)
G′ G′ ⟶ G

It is known that there is a tree  such that  is NP-complete.T CSP(T)
Since  is a tree, it has a frontier .T F Consider  E = {(D,−) ∣ D ∈ F}
Then  iff  (viewed as CQ) is a most-general fitting for G ∈ CSP(T) T ⊎ G E

Easier than unrestricted fitting verification, which is DP-complete
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Most-General Fitting CQs - Existence

Theorem
Given a set of examples , deciding whether  admits a most-general fitting is
ExpTime-complete 

E E

Easier than unrestricted fitting existence, which is coNExpTime-complete

Most-general fittings are c-acyclic and
c-acyclic CQs can be encoded as node-labeled trees over a finite alphabet

We can build tree automaton  that 𝒜
takes (encoded) c-acyclic CQ  as inputq
verifies that  fits q E

verifies that every element of the frontier of  has a homomorphism to some negative exampleq
Thus  iff  admits no most-general fitting L(𝒜) = ∅ E
Automaton has single exponentially many states, emptiness can be checked in polytime

(recall: “close to trees”)
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Most-General Fitting CQs

Most-general fitting CQs need not be unique

Consider following set of examples:
no positive examples

three negative examples: {P(a)} {Q(a)} {R(a)}

Most-general fitting CQs (Boolean):

∃x∃y P(x) ∧ Q(y) ∃x∃y Q(x) ∧ R(y) ∃x∃y P(x) ∧ R(y)

A finite set  of CQs is a basis of most-general fitting CQs for  if B E
Definition (Basis of Most-General Fitting CQs)

1. every CQ in  fits B E
2. for every CQ  that fits , there is a  with      (that is: )q E ̂q ∈ B q ⊆ ̂q ̂q ⟶ q

How can we verify / decide the existence of minimal bases of most-general fitting CQs?
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Homomorphism Duality

A pair , with  sets of CQs, is a homomorphism duality if for all CQs , TFAE:(F, D) F, D q
Definition (Homomorphism Duality)

1.  for some        (that is: )̂q ⊆ q ̂q ∈ D q ⟶ ̂q
2.   for all             (that is: )q /⊆ ̂q ̂q ∈ F ̂q ⟶ q

 for “forbidden patterns”, D for “dual”F

Partitions space of all CQs into two sets: CQs that

- admit a homomorphism to some CQ in  (green part)D
 are more general than some CQ in ≈ D

- admit a homomorphism from some CQ in  (red part)F
 are more specific than some CQ in ≈ F
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Homomorphism Duality

Let , withF = {qF}

path of length k

qF = qD =

R

R

R

R

R

transitive tournament of length k − 1

Intuitively:  is maximally “homomorphically strong” while avoiding  qD qF

q
hom hom

 is homomorphism duality for (F, D) D = {qD}
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Homomorphism Duality

Theorem [AlexeEtAl2011]
A CQ  participates in a homomorphism duality  if and only if 
the homomorphism core of  is c-acyclic. 

q ({q}, D)
q

In contrast to the case of frontiers,  may be exponentially large (with single query)D

Similarly for dualities , but we have to be careful about redundancies(F, D)

[NesetrilTardif2005]

There is close connection between frontiers and homomorphism dualities:

if  is homomorphism duality, then  is frontier for ({q}, D) {q × ̂q ∣ ̂q ∈ D} q

conversely, from frontier for  we can construct homomorphism duality  q ({q}, D)
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Bases and Dualities
We want characterization of finite bases of most-general fittings in terms of dualities

This is quite intuitive:

Let  be a collection of negative examples and  a finite set of CQs. TFAE: E Q
Proposition

1.  is a basis of most-general fittings for Q E
2.  is homomorphism duality,   (Q, QE) QE = {q(D,ā) ∣ (D, ā,−) ∈ E}

•  every fitting CQ must admit a homomorphism from some CQ in Q
•  no fitting CQ must admit a homomorphism to any negative example
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Let  be a collection of negative examples and  a finite set of CQs. TFAE: E Q
Proposition

1.  is a basis of most-general fittings for Q E

Verification of bases of most-general fittings: 

HomDual Verification, that is, given  decide whether it is a homomorphism duality(F, D)

Existence of bases of most-general fittings: 

HomDual Existence, that is, given  decide whether there is  such that  is hom. dualityD F (F, D)

NP-hard and in ExpTime

NP-complete (upper bound quite non-trivial [LaroseLotenTardif07])

(only negative examples)

(only negative examples)

Bases and Dualities
We want characterization of finite bases of most-general fittings in terms of dualities

2.  is homomorphism duality,   (Q, QE) QE = {q(D,ā) ∣ (D, ā,−) ∈ E}
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Relativized Dualities

A pair , with  sets of CQs is a homomorphism duality relative to a CQ  
if for all CQs  with , TFAE:

(F, D) F, D q0
q q0 ⊆ q

Definition (Relativized Homomorphism Duality)

1.  for some      ̂q ⊆ q ̂q ∈ D
2.   for all           q /⊆ ̂q ̂q ∈ F

To include positive examples, we need relativized form of homomorphism duality

Let  be a collection of negative examples and  a finite set of CQs. TFAE: E Q
Proposition

1.  is a basis of most-general fittings for Q E
2. each  fits the positive examples in  and  
     is a homomorphism duality relative to , 
    where  

q ∈ Q E
(Q, Q−

E ) q0 = Π{(D, ā) ∣ (D, ā,+) ∈ E}
Q−

E = {q(D,ā) ∣ (D, ā,−) ∈ E}
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Theorem
Deciding whether a given set of examples  admits a finite basis of most-general  
fitting CQs is NExpTime-complete.

E

For the verification of bases of most-general fittings, a careful analysis shows: 

Theorem
Verifying whether a given finite set of CQs is a basis of most-general fittings for  
a given set of examples  is NExpTime-complete.E

Theorem
Relativized HomDual Existence is NP-complete

Generalizing a construction of Briceno, Bulatov, Dalmau, Larose [2021] yields:

Relativized Dualities
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Summary of Complexity Results

Also have results for unions of CQs (UCQs) and for tree-shaped CQs
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Are CQs PAC Learnable? Efficiently so?

Some basic observations: 

general and (very) classic results from learning theory (Blumer et al. 89) imply: 
CQs can be PAC learned with linear sample complexity, i.e.:

number of required training examples depends only linearly on
desired success probability, desired maximum error, and target CQ size

but this is not possible in (randomized) polynomial time unless RP = NP [Kietz93]

Possibly more surprising:  
lower bound even holds for unary path queries

Theorem [Kietz93]

Unary path queries are not PAC learnable in randomized polynomial time, unless RP = NP.

Proof via NP-hardness of fitting problem

Recent survey [tenCateFunkJungL__24]

R

P

R R R

P



34

Bounded Fitting

Bounded fitting approach (spirit of bounded model checking):

try fitting CQs of increasing size s = 1,2,3,…
return shortest fitting CQ found (Occam algorithm, therefore PAC)

Size-bounded fitting problem: 

Input: collection E of labeled examples and s � 1

Question: is there CQ q of size  s that fits E?

Theorem
The size-bounded fitting problem is  

⌃p
2-complete for CQs1. [GottlobLeoneScarcello97]

2.  NP-complete for CQs of treewidth bounded by some constant k

In Case 2, one can use a SAT solver SPELL system (2023)
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Power to the Learner!

We can get to polynomial time by giving learner access to “membership oracle”:

learner can present example database to oracle and ask for label (positive/negative)

Theorem
CQs are PAC learnable in polynomial time (and with linear sample complexity) using
membership oracles.

Main idea:

let positive examples be (D1, ā1,+), . . . , (Dn, ān,+) (negative examples ignored)

1. take product with (Di, āi) 2. minimize hypothesis CQ using membership queriesand

start with hypothesis CQ qD1,ā1 , then for i = 2, . . . , n:

This yields a polynomial time algorithm because of the minimization and

a PAC algorithm because we return a CQ no larger than the target CQ  (Occam!) 


