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Plan of the talk

1. Dramatis personae.
And some simple examples and observations. (short)

2. Introducing the Query Containment Problem.

3. An attempt on proving decidability. (long)

4. Some attempts on proving undecidability. (long)

5. Conclusion. And a short rant, slightly off-topic.
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Example (UCQ/multiset):

Imagine a database D with relations Owns, Dog and Cat

and a UCQ:

Φ = (∃x Owns(t, x),Dog(x)) ∨ (∃x Owns(t, x),Cat(x))

What will Φ(D) be ?

Φ(D) is the multiset of all people who own a dog and a cat.

A cat-dog owner occurs his #(dogs) + #(cats) times.
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1. Dramatis personae.
And some simple examples and observations. (short)

2. Introducing the Query Containment Problem.

3. An attempt on proving decidability. (long)

4. Some attempts on proving undecidability. (long)

5. Conclusion. And a short rant, slightly off-topic.



Introducing Query Containment Problem (QCP)



Introducing Query Containment Problem (QCP)

QCP is a decision problem:
They give us two queries, Φs and Φb,
and ask whether for each D it holds that Φs(D) ⊆ Φb(D)

(in short “Φs is contained in Φb” or Φs ⊆∀ Φb)



Introducing Query Containment Problem (QCP)

QCP is a decision problem:
They give us two queries, Φs and Φb,
and ask whether for each D it holds that Φs(D) ⊆ Φb(D)

(in short “Φs is contained in Φb” or Φs ⊆∀ Φb)

Example:
Φs = ∃x , y Owns(t, x),Owns(t, y),Dog(x),Cat(y)

Φb = ∃x Owns(t, x),Dog(x)



Introducing Query Containment Problem (QCP)

QCP is a decision problem:
They give us two queries, Φs and Φb,
and ask whether for each D it holds that Φs(D) ⊆ Φb(D)

(in short “Φs is contained in Φb” or Φs ⊆∀ Φb)

Example:
Φs = ∃x , y Owns(t, x),Owns(t, y),Dog(x),Cat(y)

Φb = ∃x Owns(t, x),Dog(x)

Then, of course, Φs ⊆∀ Φb



Introducing Query Containment Problem (QCP)

QCP is a decision problem:
They give us two queries, Φs and Φb,
and ask whether for each D it holds that Φs(D) ⊆ Φb(D)

(in short “Φs is contained in Φb” or Φs ⊆∀ Φb)

Example:
Φs = ∃x , y Owns(t, x),Owns(t, y),Dog(x),Cat(y)

Φb = ∃x Owns(t, x),Dog(x)

Then, of course, Φs ⊆∀ Φb. (under set semantics)



Introducing Query Containment Problem (QCP)

QCP is a decision problem:
They give us two queries, Φs and Φb,
and ask whether for each D it holds that Φs(D) ⊆ Φb(D)

(in short “Φs is contained in Φb” or Φs ⊆∀ Φb)

Example:
Φs = ∃x , y Owns(t, x),Owns(t, y),Dog(x),Cat(y)

Φb = ∃x Owns(t, x),Dog(x)

Then, of course, Φs ⊆∀ Φb. (under set semantics)

Exercise:
But what happens when we consider multiset semantics?



Introducing Query Containment Problem (QCP)

QCP is a decision problem:
They give us two queries, Φs and Φb,
and ask whether for each D it holds that Φs(D) ⊆ Φb(D)

(in short “Φs is contained in Φb” or Φs ⊆∀ Φb)

Example:
Φs = ∃x , y Owns(t, x),Owns(t, y),Dog(x),Cat(y)

Φb = ∃x Owns(t, x),Dog(x)

Then, of course, Φs ⊆∀ Φb. (under set semantics)

Exercise:
But what happens when we consider multiset semantics?

Then, neither Φs ⊆∀ Φb nor Φb ⊆∀ Φs holds.
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A glimpse of set-semantics QCP

Example:
Φs = ∃x , y Owns(t, x),Owns(t, y),Dog(x),Cat(y)

Φb = ∃x Owns(t, x),Dog(x)

Of course, Φs ⊆∀ Φb.

Observation (from the 1970s):
Let Φs and Φb be CQs. Then Φs ⊆∀ Φb iff [[Φb]] |= Φs ...
... iff there exists a homomorphism from [[Φb]] to [[Φs ]].

Corollary: Set-semantics QCP for CQs is NP-complete.

Remark: Complexity of set-semantics QCP for UCQs
and CQ̸= is slightly higher. (Well-understood since 1990s).
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(Almost) all our future queries will be boolean.
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Φb = (∃x , y Dog(x),Dog(y)) ∨ (∃x , y Cat(x),Cat(y))

Observation: For any two polynomials πs and πb,

with natural coefficients, we can encode them,
in the above way, as Φs and Φb

and the equivalence will hold:
Φs ⊆∀ Φb iff πs(ξ) ≤ πb(ξ) for each natural valuation ξ

Observation (1990s): Multi-set semantics QCP

for the UCQ case is undecidable.

Hilbert’s 10th problem:
The following decision problem is undecidable:
– the instance are two polynomials, like our πs and πb;
– the question is whether πs(ξ) ≤ πb(ξ) for

each natural valuation ξ.



Decidability of QCP for CQs
has been an open problem
since early 1990s

And it is not because
people did not try.
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S. Kopparty and B. Rossman,
The homomorphism domination exponent
European Journal on Combinatorica 2011

M. Abo Khamis, P. G. Kolaitis, H. Q. Ngo, and D. Suciu,
Bag query containment and information theory,
39th ACM PODS’20,
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An attempt on proving decidability

vee = ∃s, t, t ′ E (s, t),E (s, t ′)

△ = ∃x , y , z E (x , y),E (y , z),E (z , x)

Does △ ⊆∀ vee ? It seems so. But how to prove it ?

9

0

3

3

9

6
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Depends on the message. Consider nationality ...
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There are 258 > 28 nationalities.
Do Aliens need more than 8 bits for their message?

Take 00 for India, 01 for China
and 1XXXXXXXX for the remaining 28 nationalities.

2 bits will be needed half of the time
and 9 bits half of the time

This is 5.5 bits/human in average. H(nationality) ≤ 5.5.



Bottom line: If attribute has n possible values then
H(attribute) = log2 n if the values are uniformy distributed,
H(attribute) < log2 n otherwise.
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Now imagine they want to send (nationality , name)

Is it true that:

H(nationality , name) = H(nationality) + H(name) ?

No, it isn’t. But this is true:

H(nationality , name) = H(nationality) + H(name|nationality)
Entropy of name if
nationality is known.



Bottom line:

If attribute has n possible values then
H(attribute) = log2 n if the values are uniformy distributed,
H(attribute) < log2 n otherwise.

Chain rule for entropy:

H(attr1, attr2) = H(attr1) + H(attr2|attr1)
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two experiments:

Pick, at random,
a column x , y , z

log2 #(△) = H(x , y , z)
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Can this magic be generalized to solve QCP for CQ ?

Some steps forward were made

but then they have hit a wall.



Plan of the talk

1. Dramatis personae.
And some simple examples and observations. (short)

2. Introducing the Query Containment Problem.

3. An attempt on proving decidability. (long)

4. Some attempts on proving undecidability. (long)

5. Conclusion. And a short rant, slightly off-topic.
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What happens if ψb is a CQ ̸= and ψs is a CQ

or the other way round?

Graph product / exponentiation. ϕ(G n) = ϕ(G )n.

Graph blowup. ϕ(G × n) = ϕ(G ) · |var(ϕ)|n.

Observation 2. Let ϕs and ϕb be CQs.

Then (x ̸= x ′ ∧ ϕs) ⊆∀ ϕb if and only if ϕs ⊆∀ ϕb.

Proof: Suppose ϕs(G ) > ϕb(G ).

We will construct G ′ such that (x ̸= x ′ ∧ ϕs)(G
′) > ϕb(G

′).

Let G1 be such that ϕs(G1) > 2 · ϕb(G1). (take G1 = G enough)

Now take G ′ = G1 × 2.
And notice that: (x ̸= x ′ ∧ ϕs)(G

′) ≥ 1
2ϕs(G

′).
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such that γs(D) = γb(D) for correct D

and γs(D) << γb(D) for incorrect D.

Then they put ϕs = γs ∧ πs and ϕb = γb ∧ πb



Y. E. Ioannidis and R. Ramakrishnan, TODS 1995:
Undecidable when both queries are UCQ

T. S. Jayram, P. G. Kolaitis, and E. Vee, PODS 2006:
Undecidable when both queries are CQ ̸= ( 1018 inequalities)

JM and M. Orda, PODS 2024; JM and PON, submitted:
For each ε > 0 the following problem is undecidable:
Given CQs ϕs and ϕb.
Does there exist D such that (1 + ε)(ϕs(D)) > ϕb(D) ?



Y. E. Ioannidis and R. Ramakrishnan, TODS 1995:
Undecidable when both queries are UCQ

T. S. Jayram, P. G. Kolaitis, and E. Vee, PODS 2006:
Undecidable when both queries are CQ ̸= ( 1018 inequalities)

JM and M. Orda, PODS 2024; JM and PON, submitted:
For each ε > 0 the following problem is undecidable:
Given CQs ϕs and ϕb.
Does there exist D such that (1 + ε)(ϕs(D)) > ϕb(D) ?

Fine print:

If D is “the well of positivity” then ϕs(D) = ϕb(D) = 1.



Y. E. Ioannidis and R. Ramakrishnan, TODS 1995:
Undecidable when both queries are UCQ

T. S. Jayram, P. G. Kolaitis, and E. Vee, PODS 2006:
Undecidable when both queries are CQ ̸= ( 1018 inequalities)

JM and M. Orda, PODS 2024; JM and PON, submitted:
For each ε > 0 the following problem is undecidable:
Given CQs ϕs and ϕb.
Does there exist D such that (1 + ε)(ϕs(D)) > ϕb(D) ?

Fine print:

If D is “the well of positivity” then ϕs(D) = ϕb(D) = 1.
We need to disallow such D.
Therefore we assume that D |= ♂ ̸= ♀.
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WHAT ELSE IS ON THE MENU:

– How PODS 2024 implies PODS 2006 ?
– How do we prove this ε-result (roughly) ?
– And then the conclusion and a short rant.
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Idea: The pair γs , γb sort of multiplies by 2.
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How PODS 2024 implies PODS 2006 ?

Suppose QCP is decidable for CQ̸=.
They give us CQs ϕs and ϕb and ask if
there exists D |= ♂ ̸= ♀ such that: 2 · ϕs(D) > ϕb(D)

Define: γs = ♂ ̸= ♀ ∧ P(x) ∧ P(x ′) ∧ P(♀) ∧ P(♂)

and: γb = x ̸= x ′ ∧ P(x) ∧ P(x ′) (P is new)

Observation: There is D such that: γs(D) = 2 · γ(D)

For each D there is: γs(D) ≤ 2 · γb(D)

Can we multiply by 2 without inequality?

No, we can’t. Graph exponentiation bites here!



How do we prove our ε-result (roughly) ?

We know that the following is undecidable:

They give us polynomials ps and pb

such that each coefficient in pb is slightly bigger than in ps.

And the question is, whether (1 + ε)ps(ξ) ≤ pb(ξ)

holds for each natural valuation ξ.
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How do we prove our ε-result (roughly) ?

Correct database Aξ:

X,Y ♀

♂

X X X Y Y

Example: p = X 2 + XY + 1.
p will be represented as a CQ π:

X X X Y

Then: π(Aξ) = p(ξ) + 1.

But what if the database is not correct?
Then, as we prove, the slightly bigger polynomial
benefits much more from the additional planets.



Plan of the talk

1. Dramatis personae.
And some simple examples and observations. (short)

2. Introducing the Query Containment Problem.

3. An attempt on proving decidability. (long)

4. Some attempts on proving undecidability. (long)

5. Conclusion. And a short rant, slightly off-topic.
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Albert Atserias

Phokion is a Bayesian:

More work was done trying

to prove decidability.

We failed, so it is more likely

to be undecidable.

Albert is a frequentist:

It is either one or zero.
We just do not know yet.

(Which is absolutely correct

and absolutely useless)
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A short rant, slightly off-topic.
For my PODS 24 paper, I needed 2 names for constants:
• easy to remember; • clearly denoting different objects.

After my PODS talk
I was charged with
“causing discomfort”
to some members
of the audience.

If you cannot handle
the fact that
Mars and Venus
are two different planets,
talk to your therapist.


