### Normalisations of Existential Rules: Not so Innocuous!

David Carral<sup>1</sup>, Lucas Larroque<sup>2</sup>, Marie-Laure Mugnier<sup>1</sup>, Michaël Thomazo<sup>3</sup>

<sup>1</sup>LIRMM, Inria, University of Montpellier, CNRS, Montpellier, France
<sup>2</sup>DI ENS, ENS, CNRS, PSL University, Paris, France
<sup>3</sup>Inria, DI ENS, ENS, CNRS, PSL University, Paris, France

# Background

- Existential rule:  $\forall \vec{x}. \ \forall \vec{y}. \ B[\vec{x}, \vec{y}] \rightarrow \exists \vec{z}. \ H[\vec{x}, \vec{z}]$
- **Datalog rule:** no existential variable  $(\vec{z} = \emptyset)$
- **KB:** K = (R, F) with R and F finite sets of existential rules and of facts
- Basic query entailment problem:

Given a KB K and a Boolean conjunctive query q, does  $K \models q$  hold?

- Two main techniques
  - Chase F with  $\mathcal{R}$ :  $\mathcal{K} \models q$  iff  $\mathit{chase}(\mathcal{K}) \models q$
  - Rewrite q into a FO-query q' such that:  $\mathcal{K} \models q$  iff  $F \models q'$

### Question

Hence, two fundamental properties of rule sets:

- Chase termination (for any set of facts F)
- FO-rewritability (for any conjunctive query q)

Rule sets are often normalized

Two common procedures:

- rule heads decomposed into pieces (piece decomposition)
- rule heads decomposed into atoms (atomic-head decomposition)

What is their impact on chase termination and FO-rewritability?

### Normalization: Piece decomposition

Piece of a rule head: maximal subset connected by existential variables

- Piece graph of a rule head: one node per atom and an edge AB if A and B share an existential variable
- Piece: connected component of the piece graph
- From a rule  $R = B \rightarrow H$ , we obtain rules  $B \rightarrow P_i$ , for each piece  $P_i$

$$R = p(x,x) \rightarrow \exists y, z, v, w. \ p(x,y) \land q(x,y) \land q(x,w) \land p(z,w) \land q(z,v)$$



#### We obtain:

- $p(x,x) \rightarrow \exists y. \ p(x,y) \land q(x,y)$
- $p(x,x) \rightarrow \exists z, v, w. \ q(x,w) \land p(z,w) \land q(z,v)$

# Normalization: Atomic decomposition

For each rule  $R = B[\vec{x}, \vec{y}] \rightarrow \exists \vec{z}. \ H[\vec{x}, \vec{z}]$ , we introduce a fresh predicate  $X_R$  and obtain the rules:

- $B[\vec{x}, \vec{y}] \rightarrow \exists \vec{z}. \ X_R(\vec{x}, \vec{z})$
- $X_R(\vec{x}, \vec{z}) \rightarrow A_i$ , for each  $A_i \in H$

$$R = Manager(x) \rightarrow \exists y. \ \exists z. \ ReportsTo(x,y) \land ReportsTo(z,x)$$

We obtain:

- $Manager(x) \rightarrow \exists y. \ \exists z. \ X_R(x,y,z)$
- $X_R(x, y, z) \rightarrow ReportsTo(x, y)$
- $X_R(x, y, z) \rightarrow ReportsTo(z, x)$

### Back to our question

- ullet Piece decomposition of  $\mathcal{R}$ : yields a set logically equivalent to  $\mathcal{R}$
- $\bullet$  Atomic decomposition of  ${\cal R}:$  yields a conservative extension of  ${\cal R}$

Hence both transformations preserve query entailment

What is their impact on chase termination and FO-rewritability?

FO-rewritability: no impact actually

⇒ Focus on chase termination

### Chase variants:

# Oblivious, Semi-Oblivious, Restricted, Equivalent

**Oblivious** (①): all rule applications

Semi-oblivious (SO): rule applications that differ on the rule frontiers

Similar to Skolem chase: all rule applications with skolemized rules

$$\mathsf{F} = \{p(a,b)\}\$$

$$p(\mathbf{x}, y) \to \exists z. p(\mathbf{x}, z)$$

Skolemized rule:

$$p(x,y) \rightarrow p(x,f(x))$$



O-chase does not terminate, SO-chase does

### Chase variants: Restricted

**Restricted chase** ( $\mathbb{R}$ ): rule applications not already "satisfied"

The added atoms cannot be folded on the previous set of facts

[The homomorphism from the rule body cannot be extended to a homomorphism from the rule head]

$$F = \{p(a, b)\}$$
$$p(x, y) \to \exists z. p(y, z) \land p(z, y)$$



R-chase terminates

### Chase variants: Restricted

For the restricted chase, the order of rule applications matters

$$F = \{p(a, b)\}\$$

$$p(x, y) \to \exists z.p(y, z)\$$

$$p(x, y) \to p(y, y)\$$



# Datalog-first restricted chase

Datalog-first restricted chase ( $\mathbb{DF}$ - $\mathbb{R}$ ): priority to Datalog rules

Idea: help folding the atoms of purely existential rules

$$F = \{p(a,b)\}\$$

$$p(x,y) \to \exists z.p(y,z)$$

$$p(x,y) \to p(y,y)$$

Surprisingly: Datalog-first is not always the best strategy!

#### Theorem

There are rule sets  $\mathcal{R}$  s.t.

- ullet any KB  $(F,\mathcal{R})$  admits a terminating  $\mathbb{R}$ -chase sequence, but
- there is a KB  $(F, \mathcal{R})$  without any terminating  $\mathbb{DF}$ - $\mathbb{R}$ -chase sequence.

### Equivalent chase

**Equivalent chase** ( $\mathbb{E}$ ): rule applications s.t. the obtained set of facts is not equivalent to the previous one

Same behavior regarding termination as the core chase

$$F = \{p(a, b)\}\$$

$$p(x, y) \to \exists z.p(y, z)\$$

$$p(x, y) \land p(y, z) \to p(y, x)\$$



 $\mathbb{E}\text{-chase terminates}$  while all  $\mathbb{R}\text{-chase sequences}$  are infinite

### Classes of rule sets that ensure chase termination

#### Given a chase variant X

- $\mathcal{R}$  ensures always termination if for all KB  $(\mathcal{R}, F)$ , all (fair) X-chase sequences are finite Notation:  $\mathcal{R} \in \mathcal{CT}_{\forall \forall}^{X}$
- R ensures sometimes termination if for all KB (R, F), at least one (fair) chase sequence is finite Notation: R∈ CT<sup>X</sup><sub>∀∃</sub>

This distinction is relevant for the restricted chase only

#### **Known inclusions:**

$$CT^{\mathbb{O}}_{\forall\forall} \subset CT^{\mathbb{SO}}_{\forall\forall} \subset CT^{\mathbb{R}}_{\forall\forall} \subset CT^{\mathbb{DF-R}}_{\forall\forall}$$
$$\subset CT^{\mathbb{DF-R}}_{\forall\exists} \subset CT^{\mathbb{R}}_{\forall\exists} \subset CT^{\mathbb{E}}_{\forall\forall}$$

### Piece decomposition - Results

|                        | 0 | SO | R<br>(∃) | <b>ℝ</b> (∀) | DF-R(3)  | $\mathbb{DF}	ext{-}\mathbb{R}(orall)$ | $\mathbb{E}$ |
|------------------------|---|----|----------|--------------|----------|----------------------------------------|--------------|
| Piece<br>decomposition | = | +  | <b>≠</b> | <b>≠</b>     | <b>≠</b> | <b>≠</b>                               |              |

Chase termination:

+ can be gained.

can be lost.

= is unaffected.

≠ can be gained and lost.

# Piece decomposition - Results

### Restricted chase always-termination can be gained

$$p(a,b)$$
  
 $p(x,y) \rightarrow \exists z. p(x,z) \land r(x,y)$ 



After piece decomposition:

$$p(x,y) \rightarrow \exists z.p(x,z)$$
  
 $p(x,y) \rightarrow r(x,y)$ 



## Piece decomposition - Results

### Restricted chase always-termination can be lost

$$A(x) \to \exists z. p(x, z) p(x, y) \to p(y, y) \land A(y)$$



$$A(x) \rightarrow \exists z.p(x,z)$$
  
 $p(x,y) \rightarrow p(y,y)$   
 $p(x,y) \rightarrow A(y)$ 





### Atomic decomposition - Results

|                              | 0 | SO | R<br>(∃) | <b>ℝ</b> (∀) | DF-R(3) | $\mathbb{DF}	ext{-}\mathbb{R}(orall)$ | E |
|------------------------------|---|----|----------|--------------|---------|----------------------------------------|---|
| One-way atomic decomposition | = | II | _        | -            | _       | I                                      | _ |

Impact on termination:

+ can be gained.

- can be lost.

= is unaffected.

 $\neq$  can be gained and lost.

# Atomic decomposition - Results

### Restricted chase always-termination can be lost

$$p(x,y) \to \exists z. p(y,z) \land p(z,y)$$

After normalization:

$$p(x,y) \to \exists z. X(y,z)$$

$$X(y,z) \rightarrow p(y,z)$$

$$X(y,z) \rightarrow p(z,y)$$





# Two-way atomic decomposition

For each rule  $R = B[\vec{x}, \vec{y}] \rightarrow \exists \vec{z}. \ H[\vec{x}, \vec{z}]$ , we introduce a fresh predicate  $X_R$  and obtain the rules:

- $B[\vec{x}, \vec{y}] \rightarrow \exists \vec{z}. \ X_R(\vec{x}, \vec{z})$
- $X_R(\vec{x}, \vec{z}) \rightarrow A_i$ , for each  $A_i \in H$
- $H \rightarrow X_R(\vec{x}, \vec{z})$

 $R = Manager(x) \rightarrow \exists y. \ \exists z. \ ReportsTo(x,y) \land ReportsTo(z,x)$  yields:

- $Manager(x) \rightarrow \exists y. \ \exists z. \ X_R(x,y,z)$
- $X_R(x, y, z) \rightarrow ReportsTo(x, y)$
- $X_R(x, y, z) \rightarrow ReportsTo(z, x)$
- ReportsTo(x, y)  $\land$  ReportsTo(z, x)  $\rightarrow X_R(x, y, z)$

## Two-way helps $\mathbb{R}$ -chase sometimes-termination

After one-way decomposition:

$$p(x,y) \rightarrow \exists z. X(y,z)$$

$$X(y,z) \rightarrow p(y,z)$$
  
 $X(y,z) \rightarrow p(z,y)$ 

After two-way decomposition:

$$p(x,y) \to \exists z. X(y,z)$$

$$X(y,z) \rightarrow p(y,z)$$

$$X(y,z) \rightarrow p(z,y)$$

$$p(y,z) \wedge p(z,y) \rightarrow X(y,z)$$



# Two-way atomic decomposition - Results

|                              | 0 | SO | <b>ℝ</b><br>(∃) | R<br>(∀) | DF-R(∃) | $\mathbb{DF}	ext{-}\mathbb{R}(orall)$ | E |
|------------------------------|---|----|-----------------|----------|---------|----------------------------------------|---|
| One-way atomic decomposition | = | =  | -               | _        | _       | _                                      | _ |
| Two-way atomic decomposition | = | =  | +               | _        | =       | =                                      | = |

Two-way improves over one-way:

- $\bullet$  No impact on  $\mathbb{DF}\text{-}\mathbb{R}\text{-}\text{chase}$  nor  $\mathbb{E}\text{-}\text{chase}$
- ullet Positive impact on sometimes-termination of  ${\mathbb R}$ -chase
- ullet ... but still a negative impact on always-termination of  ${\mathbb R}\text{-chase}$

### No better atomic decomposition?

There is no **computable** atomic decomposition that **exactly preserves**  $\mathbb{R}$ -chase always-termination.

 $CT_{F\forall}^{\mathbb{R}}$ , with F fixed: class of rule sets  $\mathcal{R}$  s.t. all  $\mathbb{R}$ -chase sequences from the KB  $(\mathcal{R},F)$  are finite

#### Theorem

- For all F, the subset of  $CT_{F\forall}^{\mathbb{R}}$  restricted to atomic-head rules is recursively enumerable
- There is F such that  $CT^{\mathbb{R}}_{F\forall}$  is **not** recursively enumerable  $(\Pi^2_0$ -hard)

Hence, no computable function f exists that maps rule sets to atomic-head rule sets s.t., for all F and  $\mathcal{R}$ ,  $\mathcal{R} \in CT_{F\forall}^{\mathbb{R}}$  iff  $f(\mathcal{R}) \in CT_{F\forall}^{\mathbb{R}}$ 

### Conclusions

|              | 0 | SO | $\mathbb{R}$ | $\mathbb{R}$ | DF-R     | DF-R     | $\mathbb{E}$ | FO            |
|--------------|---|----|--------------|--------------|----------|----------|--------------|---------------|
|              |   |    | (∃)          | (∀)          | (∃)      | (∀)      |              | Rewritability |
| Piece        | = | +  | <b>≠</b>     | <b>≠</b>     | <b>≠</b> | <b>≠</b> | =            | =             |
| 1-way atomic | = | =  | _            | _            | _        | _        | _            | =             |
| 2-way atomic | = | =  | +            | _            | =        | =        | =            | =             |

#### Further results on the restricted chase:

- Datalog-first strategy is not optimal regarding termination
- ullet Termination of  $\mathbb{R}$ -chase on a KB is not recursively enumerable (while it is for atomic-head rules)

### **Future Work**

- Develop normalisation procedures that (A) transform FO-theories into sets of disjunctive existential rules and (B) preserve query entailment (over the original signature), chase termination, and FO-rewritability
- 2 The theorem that we proved:

#### Theorem

There is no **computable** atomic decomposition that **exactly preserves**  $\mathbb{R}$ -chase always-termination.

The one that we wanted is obtained by removing "exactly" above. This result would follow from:

**Hypothesis.** The subset of  $CT^{\mathbb{R}}_{\forall\forall}$  restricted to atomic-head rules is recursively enumerable

#### Thank you for your attention!