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Introduction

Summary
1. Use case

• Overview
• What can currently be done with Graal v2

2. Focus on the Chase
3. Focus on the external storage
4. Quick talk about performances
5. Development perspectives
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Use case - Overview
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Use case - Chase

Use case 1 : Chase on Graal v2 native storage
1. Load facts and rules from Dlgp file
2. Store the facts in a native Graal data structure
3. Read (evaluate queries such as rules body)

• Native Graal algorithm (backtrack ; atom by atom)
4. Write

• Native Graal algorithm from data structure
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Use case - Chase

Use case 2 : Chase on a DBMS
1. Load facts and rules from Dlgp file
2. Store the facts in a database

• Database and schema handled by Graal v2
3. Read

1. Native Graal algorithm (backtrack ; atom by atom)
2. (Conjunctive) Queries translated to DBMS native query

4. Write
1. Native Graal algorithm (atom by atom)
2. Rules translated to DBMS native update
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Use case - Chase

Use case 2bis : Reuse an existing Graal v2 database
1. Connect to an existing Graal v2 database
2. Load (necessary) metadata
3. See use case 2
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Use case - Chase

Use case 3 : Chase with a federation
• Connect to multiple (non-Graal v2) datasource with mappings
• Materialize the mappings into a Graal v2 handled storage system
• See previous use cases
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Zoom on the Chase

Goals
• Research

• Compare different chase algorithms
• Implement a new approach

• Applications
• Offer the best chase version according to the scenario

Solution
Split the chase algorithm in different modules, being able to
combine modules together

Florent TORNIL Graal v2 : Chase and storage September 21 2021 7 / 16



Zoom on the Chase

Integration work and it’s difficulties
• Start from Guillaume’s internship work on Graal 1.3

• oriented towards in-memory native storage
• Adapt to the new objects and architecture
• Add needed implementations
• Ensure correct operation with external storage
• Facilitate the chase creation
• Write the documentation
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Zoom on the Chase

Result - Different options
• Rule scheduler : Naive ; GRD
• Rule application : BreadthFirst ; Parallel ; DirectSQL
• Trigger computing : Naive ; Semi-Naive ; Two Step
• Trigger checking : AlwaysTrue ; Oblivious ; Semi-Oblivious ;
Restricted

• Skolem : Fresh variable ; Body ; Frontier ; Frontier by piece
• Halting conditions : Facts created at previous step ; Has rules to
apply ; Limit number of atoms ; Limit number of steps ; Timeout

• Treatment : Rule split ; Debug
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Zoom on the Chase
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Zoom on the SQL storage

Goals
• Research

• Handle larger dataset (may not fit in memory)
• Compare different storage systems and approaches

• Applications
• Data persistence
• (re)Use existing storage/DBMS

Solution
Split the external storage in different modules, being able to
combine modules together

Florent TORNIL Graal v2 : Chase and storage September 21 2021 11 / 16



Zoom on the SQL storage

Integration work and it’s difficulties
• Start from Clement’s work and Renaud’s internship on Graal 1.3
• Adapt to the new objects and architecture
• Upgrade drivers versions
• Split the implementation in different modules
• Add needed implementations
• Ensure compatibility with Graal v2 (chase, backtrack, ...)
• Facilitate the creation and connection to external storage
systems

• Write the documentation
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Zoom on the SQL storage

Result - Different options
• Driver : SQLite ; HSQLDB ; PostGres ; MySQL
• Strategy : AdHocSQL

p(a, X0), p(X0, a), q(a)

predicates terms pred0 pred1
label arity table label type TERM0 TERM1 TERM0
p 2 pred0 X v a X0 a
q 1 pred1 a c X0 a

X0 v
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Zoom on the SQL storage
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Quick talk about performances

String usage
• Strings are used as names for predicates and terms
• In Graal 1.3, these strings were used in comparison and hash of
the objects

• In Graal v2, a new approach is possible : use an identifier for
comparison and hash

String performances in practice
Small experiments done with the chase in memory
• In Graal 1.3, string operations were most of the execution time
• In Graal v2, these operations are not using strings anymore

• At least while we stay in memory ...
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Perspectives
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Hash code

Why do we use hash
Hash is used to store the objects in temporary data structures in
memory during algorithms.
An example is a Map from variables to terms that represent a
substitution.
Entries of the map are variables identified by the corresponding
hash code

How is hash code computed in java?
The hash code for a String object is computed as :
s[0] ∗ 31(n−1) + s[1] ∗ 31(n−2) + ...+ s[n− 1]
s[i] is the ith character of the string
n is the length of the string
The default hash code for an object is derived from the memory
address
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Use case B - Implicit mappings
• Connection to an existing source

• We do not handle the schema
• No problem (in theory) for reading
• What happen when we want to write ? typing problems

• RDF triplestore : everything can be translated
• SQL

• How to write an existential into a date field?
• How to write a string into a number field?
• Could be handled by keeping some inference in
(another) local base

• JSON
• Key representing the predicate
• Maybe no typing problems because there is no schema
• How do we handle different types in arrays (ie :
[”ciao”,42])
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Use case C - Mappings virtualization

1. Every source stay out of Graal and we only read. Queries are on
the source vocabulary
• Possible with Graal backtrack
• These queries can be obtained by rewriting (once we have
BC in Graal v2)

2. We need to write
• Need mappings and rights for writing
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Use case E - Mappings materialization

• Create a local base (that don’t require mappings)
• We copy only part of the source (what is covered by
mappings)

• Queries are on both vocabularies (ontology and source)
• A predicate P on the ontology is associated to local :p
(invisible to the user)

• We therefore only have queries on the vocabulary of the
sources
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