
Graal v2 : Chase and storage
Developments and perspectives

Florent TORNIL
September 21 2021

GraphIK



Introduction

Summary
1. Use case

• Overview
• What can currently be done with Graal v2

2. Focus on the Chase
3. Focus on the external storage
4. Quick talk about performances
5. Development perspectives

Florent TORNIL Graal v2 : Chase and storage September 21 2021 1 / 16



Use case - Overview

Florent TORNIL Graal v2 : Chase and storage September 21 2021 2 / 16



Use case - Chase

Use case 1 : Chase on Graal v2 native storage
1. Load facts and rules from Dlgp file
2. Store the facts in a native Graal data structure
3. Read (evaluate queries such as rules body)

• Native Graal algorithm (backtrack ; atom by atom)
4. Write

• Native Graal algorithm from data structure

Florent TORNIL Graal v2 : Chase and storage September 21 2021 3 / 16



Use case - Chase

Use case 2 : Chase on a DBMS
1. Load facts and rules from Dlgp file
2. Store the facts in a database

• Database and schema handled by Graal v2
3. Read

1. Native Graal algorithm (backtrack ; atom by atom)
2. (Conjunctive) Queries translated to DBMS native query

4. Write
1. Native Graal algorithm (atom by atom)
2. Rules translated to DBMS native update

Florent TORNIL Graal v2 : Chase and storage September 21 2021 4 / 16



Use case - Chase

Use case 2bis : Reuse an existing Graal v2 database
1. Connect to an existing Graal v2 database
2. Load (necessary) metadata
3. See use case 2

Florent TORNIL Graal v2 : Chase and storage September 21 2021 5 / 16



Use case - Chase

Use case 3 : Chase with a federation
• Connect to multiple (non-Graal v2) datasource with mappings
• Materialize the mappings into a Graal v2 handled storage system
• See previous use cases

Florent TORNIL Graal v2 : Chase and storage September 21 2021 6 / 16



Zoom on the Chase

Goals
• Research

• Compare different chase algorithms
• Implement a new approach

• Applications
• Offer the best chase version according to the scenario

Solution
Split the chase algorithm in different modules, being able to
combine modules together

Florent TORNIL Graal v2 : Chase and storage September 21 2021 7 / 16



Zoom on the Chase

Integration work and it’s difficulties
• Start from Guillaume’s internship work on Graal 1.3

• oriented towards in-memory native storage
• Adapt to the new objects and architecture
• Add needed implementations
• Ensure correct operation with external storage
• Facilitate the chase creation
• Write the documentation

Florent TORNIL Graal v2 : Chase and storage September 21 2021 8 / 16



Zoom on the Chase

Result - Different options
• Rule scheduler : Naive ; GRD
• Rule application : BreadthFirst ; Parallel ; DirectSQL
• Trigger computing : Naive ; Semi-Naive ; Two Step
• Trigger checking : AlwaysTrue ; Oblivious ; Semi-Oblivious ;
Restricted

• Skolem : Fresh variable ; Body ; Frontier ; Frontier by piece
• Halting conditions : Facts created at previous step ; Has rules to
apply ; Limit number of atoms ; Limit number of steps ; Timeout

• Treatment : Rule split ; Debug

Florent TORNIL Graal v2 : Chase and storage September 21 2021 9 / 16



Zoom on the Chase

Florent TORNIL Graal v2 : Chase and storage September 21 2021 10 / 16



Zoom on the SQL storage

Goals
• Research

• Handle larger dataset (may not fit in memory)
• Compare different storage systems and approaches

• Applications
• Data persistence
• (re)Use existing storage/DBMS

Solution
Split the external storage in different modules, being able to
combine modules together

Florent TORNIL Graal v2 : Chase and storage September 21 2021 11 / 16



Zoom on the SQL storage

Integration work and it’s difficulties
• Start from Clement’s work and Renaud’s internship on Graal 1.3
• Adapt to the new objects and architecture
• Upgrade drivers versions
• Split the implementation in different modules
• Add needed implementations
• Ensure compatibility with Graal v2 (chase, backtrack, ...)
• Facilitate the creation and connection to external storage
systems

• Write the documentation

Florent TORNIL Graal v2 : Chase and storage September 21 2021 12 / 16



Zoom on the SQL storage

Result - Different options
• Driver : SQLite ; HSQLDB ; PostGres ; MySQL
• Strategy : AdHocSQL

p(a, X0), p(X0, a), q(a)

predicates terms pred0 pred1
label arity table label type TERM0 TERM1 TERM0
p 2 pred0 X v a X0 a
q 1 pred1 a c X0 a

X0 v

Florent TORNIL Graal v2 : Chase and storage September 21 2021 13 / 16



Zoom on the SQL storage

Florent TORNIL Graal v2 : Chase and storage September 21 2021 14 / 16



Quick talk about performances

String usage
• Strings are used as names for predicates and terms
• In Graal 1.3, these strings were used in comparison and hash of
the objects

• In Graal v2, a new approach is possible : use an identifier for
comparison and hash

String performances in practice
Small experiments done with the chase in memory
• In Graal 1.3, string operations were most of the execution time
• In Graal v2, these operations are not using strings anymore

• At least while we stay in memory ...

Florent TORNIL Graal v2 : Chase and storage September 21 2021 15 / 16



Perspectives

Florent TORNIL Graal v2 : Chase and storage September 21 2021 16 / 16



Hash code

Why do we use hash
Hash is used to store the objects in temporary data structures in
memory during algorithms.
An example is a Map from variables to terms that represent a
substitution.
Entries of the map are variables identified by the corresponding
hash code

How is hash code computed in java?
The hash code for a String object is computed as :
s[0] ∗ 31(n−1) + s[1] ∗ 31(n−2) + ...+ s[n− 1]
s[i] is the ith character of the string
n is the length of the string
The default hash code for an object is derived from the memory
address

Florent TORNIL Graal v2 : Chase and storage September 21 2021 16 / 16



Use case B - Implicit mappings
• Connection to an existing source

• We do not handle the schema
• No problem (in theory) for reading
• What happen when we want to write ? typing problems

• RDF triplestore : everything can be translated
• SQL

• How to write an existential into a date field?
• How to write a string into a number field?
• Could be handled by keeping some inference in
(another) local base

• JSON
• Key representing the predicate
• Maybe no typing problems because there is no schema
• How do we handle different types in arrays (ie :
[”ciao”,42])

Florent TORNIL Graal v2 : Chase and storage September 21 2021 16 / 16



Use case C - Mappings virtualization

1. Every source stay out of Graal and we only read. Queries are on
the source vocabulary
• Possible with Graal backtrack
• These queries can be obtained by rewriting (once we have
BC in Graal v2)

2. We need to write
• Need mappings and rights for writing

Florent TORNIL Graal v2 : Chase and storage September 21 2021 16 / 16



Use case E - Mappings materialization

• Create a local base (that don’t require mappings)
• We copy only part of the source (what is covered by
mappings)

• Queries are on both vocabularies (ontology and source)
• A predicate P on the ontology is associated to local :p
(invisible to the user)

• We therefore only have queries on the vocabulary of the
sources

Florent TORNIL Graal v2 : Chase and storage September 21 2021 16 / 16


