
TEST SCENARIOS GENERATION FOR LOGICAL
CONTROLLERS USED IN EDF NUCLEAR
POWER PLANTS

Supervisors:

➢ Dina IROFTI (EDF)

➢ Madalina CROITORU (LIRMM)

Aziz SFAR
Thesis 2022-2025

Logic Controllers

1

Logic Control
System

inputs outputs

Logic Controllers

1

Logic Control
System

inputs outputs

Logic Controllers

1

Logic Control
System

inputs outputs

sensors actuators

Logic Controllers

1

Logic Control
System

inputs outputs

Validation Tests

2

Logic Control
System

inputs outputs

Black Box

Validation Tests

2

Logic Control
System

Black Box
0
1
1

1
0
1

Validation Tests

2

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Logic Control
System

Black Box
0
1
1

1
0
1

Validation Tests

2

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Logic Control
System

Black Box
0
1
1

1
0
1

?

Validation Tests

2

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Logic Control
System

Black Box
0
1
1

1
0
1

?

Funtional
Specification

(System Design)

Validation Tests

2

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Logic Control
System

Black Box
0
1
1

1
0
1

THE EXPECTED BEHAVIOR OF THE SYSTEM

?

Funtional
Specification

(System Design)

Validation Tests

A model that describes how
the control system should
operate.

2

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Logic Control
System

Black Box
0
1
1

1
0
1

THE EXPECTED BEHAVIOR OF THE SYSTEM

?

Funtional
Specification

(System Design)

Validation Tests

Program

A model that describes how
the control system should
operate.

2

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Logic Control
System

Black Box
0
1
1

1
0
1

THE EXPECTED BEHAVIOR OF THE SYSTEM

Funtional
Specification

(System Design)

Validation Tests

Program

A model that describes how
the control system should
operate.

2

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Logic Control
System

Black Box

THE EXPECTED BEHAVIOR OF THE SYSTEM

Funtional
Specification

(System Design)

Validation Tests

Output sequence: 1 1 1 / 0 1 0 / 0 0 0

Input sequence: 0 0 1 / 0 0 0 / 1 0 0
Test Generation

2

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Logic Control
System

Black Box

THE EXPECTED BEHAVIOR OF THE SYSTEM

Funtional
Specification

(System Design)

Validation Tests

Output sequence: 1 1 1 / 0 1 0 / 0 0 0

Input sequence: 0 0 1 / 0 0 0 / 1 0 0
Test Generation

0
0
1

1
1
1

x
x
x

2

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Logic Control
System

Black Box

THE EXPECTED BEHAVIOR OF THE SYSTEM

Funtional
Specification

(System Design)

Validation Tests

Output sequence: 1 1 1 / 0 1 0 / 0 0 0

Input sequence: 0 0 1 / 0 0 0 / 1 0 0
Test Generation

0
0
0

0
1
0

x
x
x

2

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Logic Control
System

Black Box

THE EXPECTED BEHAVIOR OF THE SYSTEM

Funtional
Specification

(System Design)

Validation Tests

Output sequence: 1 1 1 / 0 1 0 / 0 0 0

Input sequence: 0 0 1 / 0 0 0 / 1 0 0
Test Generation

1
0
0

0
0
0

x
x
x

2

System specification

Logical Diagram

3

System specification

Logical Diagram

Mealy Machine 3

System specification

• How is the transformation done ?

• KB representation of the problem ?

Logical Diagram

Mealy Machine 3

Specifications : Logical Diagrams

4

Specifications : Logical Diagrams

A logical Diagram is composed of the following elements

4

Specifications : Logical Diagrams

A logical Diagram is composed of the following elements
• I: inputs

4

Specifications : Logical Diagrams

A logical Diagram is composed of the following elements
• I: inputs
• O: outputs

4

Specifications : Logical Diagrams

A logical Diagram is composed of the following elements
• I: inputs
• O: outputs

• LG: logic gates

4

Specifications : Logical Diagrams

A logical Diagram is composed of the following elements
• I: inputs
• O: outputs

• LG: logic gates
• M: memory blocks

4

Specifications : Logical Diagrams

5

Specifications : Logical Diagrams

5

Evaluation of Logical Diagrams

6

Evaluation of Logical Diagrams

6

Evaluation of Logical Diagrams

Logic gates: AND, OR , NOT

Evaluated from left to right

Evaluation of logic gates :

6

Evaluation of Logical Diagrams

7

Evaluation of Logical Diagrams

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

7

Evaluation of Logical Diagrams

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

7

Evaluation of Logical Diagrams

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

Sequential evaluation of memory blocks in accordance to an order ω

7

Evaluation of Logical Diagrams

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

Sequential evaluation of memory blocks in accordance to an order ω

Example ω = (M2, M1)

7

Evaluation of Logical Diagrams

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

Sequential evaluation of memory blocks in accordance to an order ω

Example ω = (M2, M1)

0

7

Evaluation of Logical Diagrams

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

Sequential evaluation of memory blocks in accordance to an order ω

Example ω = (M2, M1)

0

7

Evaluation of Logical Diagrams

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

Sequential evaluation of memory blocks in accordance to an order ω

Example ω = (M2, M1)

1

7

Evaluation of Logical Diagrams

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

Sequential evaluation of memory blocks in accordance to an order ω

Example ω = (M2, M1)

1

7

Evaluation of Logical Diagrams

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

Sequential evaluation of memory blocks in accordance to an order ω

Example ω = (M2, M1)

1

7

Evaluation of Logical Diagrams

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

Sequential evaluation of memory blocks in accordance to an order ω

Example ω = (M2, M1)

1

1

7

Evaluation of Logical Diagrams

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

Sequential evaluation of memory blocks in accordance to an order ω

Example ω = (M2, M1)

1

1

7

First Problem: Test Generation based on Logical Diagrams

8

First Problem: Test Generation based on Logical Diagrams

• Logical diagrams do not explicitly represent how the output values evolve
in response to changes of input values.

8

First Problem: Test Generation based on Logical Diagrams

• Logical diagrams do not explicitly represent how the output values evolve
in response to changes of input values.

• The whole behavior is described by the evaluation of the diagram for all
the possibilities. 2𝐼 . 2𝑀

8

First Problem: Test Generation based on Logical Diagrams

• Logical diagrams do not explicitly represent how the output values evolve
in response to changes of input values.

• The whole behavior is described by the evaluation of the diagram for all
the possibilities. 2𝐼 . 2𝑀

• Each evaluation of the outputs for a given set of input values my have to
go through many simulations of the Logical Diagram.

8

First Problem: Test Generation based on Logical Diagrams

• Logical diagrams do not explicitly represent how the output values evolve
in response to changes of input values.

• The whole behavior is described by the evaluation of the diagram for all
the possibilities. 2𝐼 . 2𝑀

• Each evaluation of the outputs for a given set of input values my have to
go through many simulations of the Logical Diagram.

➢ Generation and selection of test sequences is not obvious.

8

Second problem : Output values have to converge

1

1

0

0

 ω = (M2, M1)

O

9

Second problem : Output values have to converge

1

1

0

0

 ω = (M2, M1)

O

9

Second problem : Output values have to converge

1

1

0

0

 ω = (M2, M1)

O

9

Second problem : Output values have to converge

1

1

0

0

1

 ω = (M2, M1)

O

9

Second problem : Output values have to converge

1

1

0

0

 ω = (M2, M1)

O

9

Second problem : Output values have to converge

1

1

0

0

 ω = (M2, M1)

O

9

Second problem : Output values have to converge

1

1

0

0

0

 ω = (M2, M1)

O

9

Second problem : Output values have to converge

1

1

0

0

0

 ω = (M2, M1)

O

9

Second problem : Output values have to converge

1

1

0

0

I = 0 0 1 1 O = 1 or 0 ?

0

 ω = (M2, M1)

O

9

State graph representation of logical diagrams

10

State graph representation of logical diagrams

10

State graph representation of logical diagrams

We propose a formal representation of logical diagrams for:

• Convergence property checking (and possible other properties).

• Generation of test sequences.

10

The Sequential Graph of State Transition (SGST)

SGST: (N, E)

• N: set of nodes. They represent the possible states
of the logical diagram.

• E: set of edges. They represent all the theoratical
evolution possibilities. Each edge corresponds to
one evolution of one status block M.

11

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1

Condition:

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1

Condition:

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1

Condition:

(M2 changes)

(M1 changes)

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1- n2

Condition: i3

(M2 changes)

(M1 changes)

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1- n2

Condition: i3

(M2 changes)

(M1 changes)

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1- n2

Condition: i3

(M2 changes)

(M1 changes)

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1- n2 – n1

Condition: i3 . i4

(M2 changes)

(M1 changes)

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1- n2 – n1

Condition: i3 . i4

(M2 changes)

(M1 changes)

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1- n2 - n1 – n3

Condition: i3 . i4 . i2

(M2 changes)

(M1 changes)

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1- n2 - n1 – n3

Condition: i3 . i4 . i2

(M2 changes)

(M1 changes)

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1- n2 - n1 – n3

Condition: i3 . i4 . i2

(M2 changes)

(M1 changes)

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1- n2 - n1 – n3

Condition: i3 . i4 . i2 . ~i1

(M2 changes)

(M1 changes)

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1- n2 - n1 – n3

Condition: i3 . i4 . i2 . ~i1

(M2 changes)

(M1 changes)

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1- n2 - n1 – n3

Condition: i3 . i4 . i2 . ~i1

Trail: n1- n2 - n1 – n2

Condition: i3 . i4 . ~i2

(M2 changes)

(M1 changes)

12

Effective trails in the SGST and Convergence checking

ω = { M2 , M1 }

Trail: n1- n2 - n1 – n3

Condition: i3 . i4 . i2 . ~i1

Trail: n1- n2 - n1 – n2

Condition: i3 . i4 . ~i2

⇒ The infinite traversal of circuit n1-n2 is possible :

Inputs 0 0 1 1 and 1 0 1 1 cause a non-stable signal at
the output of M2

(M2 changes)

(M1 changes)

12

Effective trails in the SGST and Convergence checking

⇒ The infinite traversal of circuit n1-n2 is possible :

Inputs 0 0 1 1 and 1 0 1 1 cause a non-stable signal at
the output of M2

13

Effective trails in the SGST and Convergence checking

⇒ The infinite traversal of circuit n1-n2 is possible :

Inputs 0 0 1 1 and 1 0 1 1 cause a non-stable signal at
the output of M2

Loop structures cause this behavior.
The presence of loops doesn’t necessarily
mean that a non-convergent scenario exists.

13

Effective trails in the SGST and Convergence checking

⇒ The infinite traversal of circuit n1-n2 is possible :

Inputs 0 0 1 1 and 1 0 1 1 cause a non-stable signal at
the output of M2

Loop structures cause this behavior.
The presence of loops doesn’t necessarily
mean that a non-convergent scenario exists.

This is verifiable on the graph by finding trails
that contain circuits.

13

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

(M2 changes)

(M1 changes)

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2 changes)

(M1 changes)

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2 changes)

(M1 changes)

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2 changes)

(M1 changes)

Trail1 : n1 – n2 – n1 – n3

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2 changes)

(M1 changes)

Trail1 : n1 – n2 – n1 – n3

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2 changes)

(M1 changes)

Trail1 : n1 – n2 – n1 – n3

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2 changes)

(M1 changes)

Trail1 : n1 – n2 – n1 – n3

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2 changes)

(M1 changes)

Trail1 : n1 – n2 – n1 – n3

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2 changes)

(M1 changes)

Trail1 : n1 – n2 – n1 – n3

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2 changes)

(M1 changes)

Trail1 : n1 – n2 – n1 – n3

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2 changes)

(M1 changes)

Trail1 : n1 – n2 – n1 – n3

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2 changes)

(M1 changes)

Trail1 : n1 – n2 – n1 – n3

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2 changes)

(M1 changes)

Trail1 : n1 – n2 – n1 – n3

Condition1 : i3.i4.i2.~i1

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2 changes)

(M1 changes)

Trail1 : n1 – n2 – n1 – n3

Condition1 : i3.i4.i2.~i1

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2)

(M2)

(M1) (M1)

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2)

(M2)

(M1) (M1)

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2)

(M2)

(M1) (M1)

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2)

(M2)

(M1) (M1)

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2)

(M2)

(M1) (M1)

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2)

(M2)

(M1) (M1)

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2)

(M2)

(M1) (M1)

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

(M2)

(M2)

(M1) (M1)

Trail2 : n1 – n3

Condition2 : i2.~i3.~i1

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

Two possible trails from n1 to
n3:

14

Permanent state automaton (PSA)

ω = { M2 , M1 }

SGST

An arc represents an elementary evaluation

Trail2 : n1 – n3

Condition2 : i2.~i3.~i1

Trail1 : n1 – n2 – n1 – n3

Condition1 : i3.i4.i2.~i1

Two possible trails from n1 to
n3:

14

Permanent state automaton (PSA)

Trails calculation

ω = { M2 , M1 }

SGST

PSA

An arc represents an elementary evaluation

Trail2 : n1 – n3

Condition2 : i2.~i3.~i1

Trail1 : n1 – n2 – n1 – n3

Condition1 : i3.i4.i2.~i1

Two possible trails from n1 to
n3:

14

Permanent state automaton (PSA)

Trails calculation

ω = { M2 , M1 }

SGST

PSA

An arc represents an elementary evaluation

Trail2 : n1 – n3

Condition2 : i2.~i3.~i1

Trail1 : n1 – n2 – n1 – n3

Condition1 : i3.i4.i2.~i1

Two possible trails from n1 to
n3:

An arc (nj, nk) represents all the full simulations of the diagram
from nj to n_k

14

Permanent state automaton (PSA)

Trails calculation

ω = { M2 , M1 }

SGST

PSA

An arc represents an elementary evaluation

Trail2 : n1 – n3

Condition2 : i2.~i3.~i1

Trail1 : n1 – n2 – n1 – n3

Condition1 : i3.i4.i2.~i1

Two possible trails from n1 to
n3:

An arc (nj, nk) represents all the full simulations of the diagram
from nj to n_k

Transition : n1 – n3

Condition: Condition1 + Condition 2
 =i2 & ~i1 & (i4 | ~i3)

14

Equivalent Mealy Machine

in= i1 i2 i3 i4

15

KB Representation

16

➔ GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

KB Representation

16

➔ GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

KB Representation

16

➔ GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

• States: s1 and s2

• Inputs: i1 and i2; in=i1 i2

• Outputs: o1 and o2; out=o1 o2

KB Representation

16

➔ GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

A Scenario is a sequence of input/output values. That is
a succession of transitions in the Mealy Machine.

For example : <01/00> <11/01>< 01/ 00>

KB Representation

17

➔ GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

Let’s say that :

• i1 is an emergency stop hold button.

• o1 is a water pump

We want to find a test sequence that
verifies that the pump is always
deactivated (o1=0) when the emergency
button is on (i1=1)

KB Representation

18

➔ GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

Let’s say that :

• i1 is an emergency stop hold button.

• o1 is a water pump

We want to find a test sequence that
verifies that the pump is always
deactivated (o1=0) when the emergency
button is on (i1=1)

➔ <01/00> <11/01>

KB Representation

18

➔ GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

Let’s say that :

• i1 is an emergency stop hold button.

• o1 is a water pump

We want to find a test sequence that
verifies that the pump is always
deactivated (o1=0) when the emergency
button is on (i1=1)

➔ <01/00> <11/01>

KB Representation

18

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

Ø

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

Ø

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

S2

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

S2

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

X2

S2

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

X2

S2

0
0

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

X2

S2

0
0

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

X2

S2

0
0

19

KB Representation

1

1

0

1

v0 v1 vn

…

Timeline

i1:

I2:

X0 X1

OØ O1

Fact Base:

Input sequence:

Visited states:

Generated
output sequence:

S1

Ø

O2

X2

S2

0
0

19

Fact Base: input sequence

input(v0)

input(v1)
…
input(vn)

inputValue(v1, ‘01’)
…
inputValue(vn, ‘01’)

KB Representation

1

1

0

1

v0 v1 vn

…
i1:

I2:
Ø

Timeline

next(v0, v1)

next(v1, v2)
…
next(vn-1, vn)

20

Fact Base: initial state

X0 X1

state(X0)

state(X1)

next(X0, X1)

done(X0)

value(X0, ‘s1’)

KB Representation

21

Fact Base: initial output

OØ O1

KB Representation

output (OØ)

output(O1)

next(OØ, O1)

done(OØ)

value(O0, ‘NOT ACTIVE’)

22

Rules: transitions
Next state in the chain:

state(Xnext), next(Xcurrent, Xnext)

done(Xcurrent), not done(Xnext)

Find next input vector in the chain:

input(vnext), next(vcurrent, vnext)

done(vcurrent), not done(vnext)

Find next output in the chain:

output(Onext), next(Ocurrent , Onext)

done(Ocurrent), not done(Onext)

Transition (s1 01 00 s2):

Value(Xcurrent, ‘s1 ’)

Value(vnext, ‘01’)

KB Representation

Transition (s1 01 00 s2)

23

Rules: transitions
Next state in the chain:

state(Xnext), next(Xcurrent, Xnext)

done(Xcurrent), not done(Xnext)

Find next input vector in the chain:

input(vnext), next(vcurrent, vnext)

done(vcurrent), not done(vnext)

Find next output in the chain:

output(Onext), next(Ocurrent , Onext)

done(Ocurrent), not done(Onext)

KB Representation

23

Rules: transitions
Next state in the chain:

state(Xnext), next(Xcurrent, Xnext)

done(Xcurrent), not done(Xnext)

Find next input vector in the chain:

input(vnext), next(vcurrent, vnext)

done(vcurrent), not done(vnext)

Find next output in the chain:

output(Onext), next(Ocurrent , Onext)

done(Ocurrent), not done(Onext)

KB Representation

Transition (s2 11 01 s1):

Value(Xcurrent, ‘s2 ’)

Value(vnext, ‘11’)

Transition (s2 11 01 s1)

23

Rules: transitions

KB Representation

Transition (s1 01 00 s2)

value(Xnext , ‘s2’)

value(Onext , ‘00’)

done(Xnext)

done(Onext)

done(vnext)

∃ Xfollowing next(Xnext , Xfollowing)

∃ Ofollowing next(Onext , Ofollowing)
24

Rules: transitions

KB Representation

done(Xnext)

done(Onext)

done(vnext)

∃ Xfollowing next(Xnext , Xfollowing)

∃ Ofollowing next(Onext , Ofollowing)
24

Rules: transitions

KB Representation

done(Xnext)

done(Onext)

done(vnext)

∃ Xfollowing next(Xnext , Xfollowing)

∃ Ofollowing next(Onext , Ofollowing)

Transition (s2 01 00 s1)

value(Xnext , ‘s1’)

value(Onext , ‘01’)

24

Queries:

KB Representation

…

Input sequence

Input sequence

Input sequence

Fact base:

We want to find a test sequence
that verifies that the pump is
always deactivated (o1=0) when
the emergency button is on (i1=1)

25

Thank you !

