
Rewriting the Infinite Chase

Michael Benedikt, Maxime Buron, Stefano Germano, Kevin Kappelmann, Boris Motik

28/04/2022 - GraphIK

Context

Ontology Mediated Query Answering

facts rules

knowledge base

query

1

Context: Ontology Mediated Query Answering with Guarded Rules

facts rules

knowledge base

queryguarded
rules

2

Problem Statement: Datalog Rewriting

facts rules

knowledge base

query

quantifier-free
conjunctive queryDatalog

Ground facts

3

Datalog Rewriting of a Rule Set

Definition
An existential rule r = ∀x̄∀ȳB(x̄ , ȳ)→ ∃z̄H(x̄ , z̄) is guarded if there exists an atom G ∈ B

such that x̄ ∪ ȳ = var(G). We say that G is a guard of r .

Definition
Given R a set of guarded rules, PR is a Datalog rewriting of R iff:

1. PR is a finite set of Datalog rules,

2. for every F fact base and every A ground fact,

F ,R |= A iff F ,PR |= A.

4

Motivating Example

F = {A(a),R(a, b)}

R(u, v)→ ∃w R(v ,w) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Q(x)← C (x)

• The chase is infinite because of 1

• The rule set is not FUS because of 2

• We can not derive C (b) without the non-full rule 1

A Datalog rewriting of these rules is the set containing 2, 3 and the rule:

R(x , y) ∧ A(y)→ C (y) (4)

5

Outline

Tree-like Chase

Existential-based Datalog Rewriting

Skolem Datalog Rewriting

Hyper-resolution Datalog Rewriting

Implementation and Experiments

6

Tree-like Chase

Tree-like Chase

Definition
We say that A an atom is guarded in an atom set S if there exists B ∈ S such that
terms(A) ⊆ terms(B).

Definition
A R tree-like chase sequence is a sequence of trees T0, . . . ,Tn such that:

• each vertex v in Ti is associated with a set of facts Fi (v),

• Ti+1 is obtained from Ti by applying either:
• chase step, where r in R is triggered by π on Fi (v),

• if r is Datalog, then Fi+1(v) = Fi (v) ∪ π(head(r)),
• otherwise, we create v ′ a child of v in Ti+1, with

Fi+1(v
′) = πsafe(head(r)) ∪ {a ∈ Fi (v) | a is guarded in πsafe(head(r))}

• propagation step, where if v and v ′ two vertices in Ti , and a ∈ Fi (v) guarded in Fi (v
′),

then we define Fi+1(v
′) = Fi (v

′) ∪ {a}.

7

Tree-like Chase

Definition
We say that A an atom is guarded in an atom set S if there exists B ∈ S such that
terms(A) ⊆ terms(B).

Definition
A R tree-like chase sequence is a sequence of trees T0, . . . ,Tn such that:

• each vertex v in Ti is associated with a set of facts Fi (v),

• Ti+1 is obtained from Ti by applying either:
• chase step, where r in R is triggered by π on Fi (v),

• if r is Datalog, then Fi+1(v) = Fi (v) ∪ π(head(r)),
• otherwise, we create v ′ a child of v in Ti+1, with

Fi+1(v
′) = πsafe(head(r)) ∪ {a ∈ Fi (v) | a is guarded in πsafe(head(r))}

• propagation step, where if v and v ′ two vertices in Ti , and a ∈ Fi (v) guarded in Fi (v
′),

then we define Fi+1(v
′) = Fi (v

′) ∪ {a}.

7

Tree-like Chase

Definition
We say that A an atom is guarded in an atom set S if there exists B ∈ S such that
terms(A) ⊆ terms(B).

Definition
A R tree-like chase sequence is a sequence of trees T0, . . . ,Tn such that:

• each vertex v in Ti is associated with a set of facts Fi (v),

• Ti+1 is obtained from Ti by applying either:
• chase step, where r in R is triggered by π on Fi (v),

• if r is Datalog, then Fi+1(v) = Fi (v) ∪ π(head(r)),

• otherwise, we create v ′ a child of v in Ti+1, with
Fi+1(v

′) = πsafe(head(r)) ∪ {a ∈ Fi (v) | a is guarded in πsafe(head(r))}

• propagation step, where if v and v ′ two vertices in Ti , and a ∈ Fi (v) guarded in Fi (v
′),

then we define Fi+1(v
′) = Fi (v

′) ∪ {a}.

7

Tree-like Chase

Definition
We say that A an atom is guarded in an atom set S if there exists B ∈ S such that
terms(A) ⊆ terms(B).

Definition
A R tree-like chase sequence is a sequence of trees T0, . . . ,Tn such that:

• each vertex v in Ti is associated with a set of facts Fi (v),

• Ti+1 is obtained from Ti by applying either:
• chase step, where r in R is triggered by π on Fi (v),

• if r is Datalog, then Fi+1(v) = Fi (v) ∪ π(head(r)),
• otherwise, we create v ′ a child of v in Ti+1, with

Fi+1(v
′) = πsafe(head(r)) ∪ {a ∈ Fi (v) | a is guarded in πsafe(head(r))}

• propagation step, where if v and v ′ two vertices in Ti , and a ∈ Fi (v) guarded in Fi (v
′),

then we define Fi+1(v
′) = Fi (v

′) ∪ {a}.

7

Tree-like Chase

Definition
We say that A an atom is guarded in an atom set S if there exists B ∈ S such that
terms(A) ⊆ terms(B).

Definition
A R tree-like chase sequence is a sequence of trees T0, . . . ,Tn such that:

• each vertex v in Ti is associated with a set of facts Fi (v),

• Ti+1 is obtained from Ti by applying either:
• chase step, where r in R is triggered by π on Fi (v),

• if r is Datalog, then Fi+1(v) = Fi (v) ∪ π(head(r)),
• otherwise, we create v ′ a child of v in Ti+1, with

Fi+1(v
′) = πsafe(head(r)) ∪ {a ∈ Fi (v) | a is guarded in πsafe(head(r))}

• propagation step, where if v and v ′ two vertices in Ti , and a ∈ Fi (v) guarded in Fi (v
′),

then we define Fi+1(v
′) = Fi (v

′) ∪ {a}.

7

Example of Tree-like chase

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ ∃y N(x1, y)

R(c , d)

T0

8

Example of Tree-like chase

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ ∃y N(x1, y)

R(c , d)

S(c , d1)

T1

8

Example of Tree-like chase

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ ∃y N(x1, y)

R(c , d)

S(c , d1) R(c , d),T (c , d , d2)

T2

8

Example of Tree-like chase

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ ∃y N(x1, y)

R(c , d)

S(c , d1) R(c , d),T (c , d , d2)

R(c , d),U(c , d , d3)

T3

8

Example of Tree-like chase

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ ∃y N(x1, y)

R(c , d)

S(c , d1) R(c , d),T (c , d , d2)

R(c , d),U(c , d , d3),P(d)

T4

8

Example of Tree-like chase

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ ∃y N(x1, y)

R(c , d)

S(c , d1) R(c , d),T (c , d , d2),P(d)

R(c , d),U(c , d , d3),P(d)

T5

8

Example of Tree-like chase

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ ∃y N(x1, y)

R(c , d)

S(c , d1) R(c , d),T (c , d , d2),P(d),M(c)

R(c , d),U(c , d , d3),P(d)

T6

8

Example of Tree-like chase

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ ∃y N(x1, y)

R(c , d)

S(c , d1),M(c) R(c , d),T (c , d , d2),P(d),M(c)

R(c , d),U(c , d , d3),P(d)

T7

8

Example of Tree-like chase

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ ∃y N(x1, y)

R(c , d)

S(c , d1),M(c)

M(c),N(c , d4)

R(c , d),T (c , d , d2),P(d),M(c)

R(c , d),U(c , d , d3),P(d)

T8

8

Correction and Completeness of Tree-like Chase

Theorem
Given F a set of facts, R a guarded rule set, and Q a Boolean conjunctive query,
F ,R |= Q if and only if there exists T0, . . . ,Tn a R tree-like chase sequence with:

• T0 contains only a root, whose the of set facts is F ,

•
⋃

v∈Tn
Fn(v) |= Q i.e. the facts in Tn implies Q.

9

The One-Pass Property

Definition
The recently-updated vertex in Ti is the one that has being created or updated in moving
from Ti−1 to Ti .

Definition
The tree-like chase sequence T0, . . . ,Tn is one-pass if:

• every chase or propagate is applied at the recently-updated vertex,

• every propagate step propagates a fact from a child to a parent.

Theorem
Given F a set of facts, R a guarded rule set, and Q a Boolean conjunctive query,
F ,R |= Q if and only if there exists T0, . . . ,Tn a R one-pass tree-like chase sequence with:

• T0 contains only a root, whose the of set facts is F ,

•
⋃

v∈Tn
Fn(v) |= Q .

10

The One-Pass Property

Definition
The recently-updated vertex in Ti is the one that has being created or updated in moving
from Ti−1 to Ti .

Definition
The tree-like chase sequence T0, . . . ,Tn is one-pass if:

• every chase or propagate is applied at the recently-updated vertex,

• every propagate step propagates a fact from a child to a parent.

Theorem
Given F a set of facts, R a guarded rule set, and Q a Boolean conjunctive query,
F ,R |= Q if and only if there exists T0, . . . ,Tn a R one-pass tree-like chase sequence with:

• T0 contains only a root, whose the of set facts is F ,

•
⋃

v∈Tn
Fn(v) |= Q .

10

One-Pass Tree-like Chase Example

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ ∃y N(x1, y)

R(c , d)

S(c , d1) R(c , d),T (c , d , d2),P(d),M(c)

R(c , d),U(c , d , d3),P(d)

T6

11

One-Pass Tree-like Chase Example

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ ∃y N(x1, y)

R(c , d),M(c)

S(c , d1) R(c , d),T (c , d , d2),P(d),M(c)

R(c , d),U(c , d , d3),P(d)

T ′
6

11

One-Pass Tree-like Chase Example

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ ∃y N(x1, y)

R(c , d),M(c)

R(c , d),T (c , d , d2),P(d),M(c)

S(c , d1)

R(c , d),U(c , d , d3),P(d)

M(c),S(c , d4)

T7

11

One-Pass Tree-like Chase Example

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ ∃y N(x1, y)

R(c , d),M(c)

R(c , d),T (c , d , d2),P(d),M(c)

S(c , d1)

R(c , d),U(c , d , d3),P(d)

M(c),S(c , d4)

M(c),N(c , d5)

T8

11

Loops and Datalog Rewriting

Definition
A R loop is T0, . . . ,Tn a R one-pass tree-like chase sequence, where:

• T0 contains a single vertex r ,

• the step from T0 to T1 creates is a chase step creating c a child of r ,

• each chase step from T1 through Tn−1 impacts only the subtree of c ,

• the final step propagates a fact A to r .

We call A the output of the loop.

Theorem
A Datalog rule set P is a Datalog rewriting of R a set of guarded rules if

• P is a logical consequence of R,

• for each fact base F , and each R loop with F0(r) = F and output A, we have F ,P |= A.

12

Loops and Datalog Rewriting

Definition
A R loop is T0, . . . ,Tn a R one-pass tree-like chase sequence, where:

• T0 contains a single vertex r ,

• the step from T0 to T1 creates is a chase step creating c a child of r ,

• each chase step from T1 through Tn−1 impacts only the subtree of c ,

• the final step propagates a fact A to r .

We call A the output of the loop.

Theorem
A Datalog rule set P is a Datalog rewriting of R a set of guarded rules if

• P is a logical consequence of R,

• for each fact base F , and each R loop with F0(r) = F and output A, we have F ,P |= A.

12

Loop Example

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

Final state of a loop of output P(d):

R(c , d),P(d)

R(c , d),T (c , d , d2),P(d)

R(c , d),U(c , d , d3),P(d)

L

13

Existential-based Datalog
Rewriting

From Loops to Datalog Rewriting

1. R(x1, x2)→ ∃y T (x1, x2, y)

2. T (x1, x2, x3)→ ∃y U(x1, x2, y)

3. U(x1, x2, x3)→ P(x2)

————————————-

Final state of a loop of output P(d):

R(c , d),P(d)

R(c , d),T (c , d , d2),P(d)

R(c , d),U(c , d , d3),P(d)

L

14

From Loops to Datalog Rewriting

1. R(x1, x2)→ ∃y T (x1, x2, y)

2. T (x1, x2, x3)→ ∃y U(x1, x2, y)

3. U(x1, x2, x3)→ P(x2)

————————————-

4. T (x1, x2, x3)→ P(x2)

Final state of a loop of output P(d):

R(c , d),P(d)

R(c , d),T (c , d , d2),P(d)

R(c , d),U(c , d , d3),P(d)

L

14

From Loops to Datalog Rewriting

1. R(x1, x2)→ ∃y T (x1, x2, y)

2. T (x1, x2, x3)→ ∃y U(x1, x2, y)

3. U(x1, x2, x3)→ P(x2)

————————————-

4. T (x1, x2, x3)→ P(x2)

5. R(x1, x2)→ P(x2)

Final state of a loop of output P(d):

R(c , d),P(d)

R(c , d),T (c , d , d2),P(d)

R(c , d),U(c , d , d3),P(d)

L

14

Head Normal Form

Definition
A rule r is in Head Normal Form (HNF), if r is Datalog or every atom in the head of r
contains at least one existential variable.

We can always obtain from any rule a equivalent set of rules in HNF.

Example: The rule A(x)→ ∃y B(x , y),C (y),G (x) becomes the following rules in HNF:

• A(x)→ ∃y B(x , y),C (y)

• A(x)→ G (x)

15

The Existential-Based Rewriting Algorithm (ExbDR)

Definition
The Existential-Based Datalog rewriting inference rule takes a non-full rule τ and a Datalog
rule τ ′ with:

• τ = β(x̄)→ ∃ȳ η(x̄ , ȳ),

• τ ′ = β′(z̄)→ η′(z̄),

and a piece unifier (u,B ′,H ′) with a B ′ subset of β′ (necessarily containing a guard of τ ′)
and H ′ with a subset of η

and returns u(β) ∪ u(β′ \ B ′)→ ∃ȳ u(η ∪ η′) in HNF.

Definition
Given R a set of guarded rule in HNF, the ExbDR algorithm

1. applies the inference rule on the rules in R until it reaches a fixed point,

2. returns all Datalog rules.

The output is a Datalog rewriting of R. 16

Existential-Based Rewriting Example

Input rules:

R(u, v)→ ∃w R(v ,w) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:

17

Existential-Based Rewriting Example

Input rules:

R(u, v)→ ∃w R(v ,w) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:

R(u, v) ∧ A(v)→ ∃w R(v ,w) ∧ A(w) (4)

17

Existential-Based Rewriting Example

Input rules:

R(u, v)→ ∃w R(v ,w) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:

R(u, v) ∧ A(v)→ ∃w R(v ,w) ∧ A(w) (4)

R(u, v) ∧ A(v)→ C (v) (5)

17

Existential-Based Rewriting Example

Input rules:

R(u, v)→ ∃w R(v ,w) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:

R(u, v) ∧ A(v)→ ∃w R(v ,w) ∧ A(w) (4)

R(u, v) ∧ A(v)→ C (v) (5)

The outputted Datalog rewriting is (2), (3) and (5).

17

Terminaison and Complexity of ExbDR

Terminaison

• The rules inferred by ExbDR are guarded,

• The number of variable in the body (resp. head) of the rules inferred by ExbDR is
bounded by the maximum number of variable in the body (resp. head) of the input rules.

Complexity
The complexity of ExbDR is 2-EXPTIME and EXPTIME, if the arity is bounded.

18

Skolem Datalog Rewriting

Rule Skolemization

Definition
We skolemize a rule by

1. replacing every existential variable by a Skolem term built from a fresh function symbol
and the body variables,

2. splitting the resulting rule into single-headed rules.

Example
The non-full rule A(x)→ ∃y B(x , y),C (y),G (x) becomes the following Skolemized rules:

• A(x)→ B(x , f (x)),

• A(x)→ C (f (x)),

• A(x)→ G (x).

19

The Skolem Datalog Rewriting Algorithm (SkDR)

Definition
The Skolem rewriting inference rule takes two Skolemized rules:

1. τ = β → H that contains only functional atom in its head,

2. τ ′ = β′ → H ′ and B ′ ∈ β′ such that either:
2.1 τ ′ is Datalog and B ′ is a guard,
2.2 B ′ is a functional atom

and u an unifier of B ′ and H,

and returns u(β ∪ (β′ \ {B ′}))→ u(H ′)

Definition
Given R a set of Skolemized guarded rule, the algorithm SkDR

1. applies the inference rule on the rules in R until it reaches a fixed point,

2. returns every Datalog rules.

The output is a Datalog rewriting of R. 20

Skolem Datalog Rewriting Example

Input rules:

R(u, v)→ R(v , f (u, v)) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:

21

Skolem Datalog Rewriting Example

Input rules:

R(u, v)→ R(v , f (u, v)) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:

R(u, v) ∧ A(v)→ A(f (u, v)) (4)

21

Skolem Datalog Rewriting Example

Input rules:

R(u, v)→ R(v , f (u, v)) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:

R(u, v) ∧ A(v)→ A(f (u, v)) (4)

R(u, v) ∧ A(f (u, v))→ C (v) (5)

21

Skolem Datalog Rewriting Example

Input rules:

R(u, v)→ R(v , f (u, v)) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:

R(u, v) ∧ A(v)→ A(f (u, v)) (4)

R(u, v) ∧ A(f (u, v))→ C (v) (5)

R(u, v) ∧ A(v)→ C (v) (6)

21

Skolem Datalog Rewriting Example

Input rules:

R(u, v)→ R(v , f (u, v)) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:

R(u, v) ∧ A(v)→ A(f (u, v)) (4)

R(u, v) ∧ A(f (u, v))→ C (v) (5)

R(u, v) ∧ A(v)→ C (v) (6)

The outputted Datalog rewriting is (2), (3) and (6).

21

Interest of SkDR compared to ExbDR

Proposition
There is a family of guarded rule set (Rn)n∈N, the number of inferred rules in ExbDR is
exponentially larger than in SkDR.

Proof
For each n ∈ N, let Rn contain the following rules.

A(x)→ ∃y⃗ B(x , y)

B(x , y) ∧ Ci (x)→ Di (y) for 1 ≤ i ≤ n

ExDR infers, for I ⊆ {1..n}

A(x) ∧
∧
i∈I

Ci (x)→ ∃y B(x , y) ∧
∧
i∈I

Di (y).

SkDR infers A(x) ∧ Ci (x)→ Di

(
f (x)

)
for 1 ≤ i ≤ n.

22

Interest of SkDR compared to ExbDR

Proposition
There is a family of guarded rule set (Rn)n∈N, the number of inferred rules in ExbDR is
exponentially larger than in SkDR.

Proof
For each n ∈ N, let Rn contain the following rules.

A(x)→ ∃y⃗ B(x , y)

B(x , y) ∧ Ci (x)→ Di (y) for 1 ≤ i ≤ n

ExDR infers, for I ⊆ {1..n}

A(x) ∧
∧
i∈I

Ci (x)→ ∃y B(x , y) ∧
∧
i∈I

Di (y).

SkDR infers A(x) ∧ Ci (x)→ Di

(
f (x)

)
for 1 ≤ i ≤ n.

22

Hyper-resolution Datalog
Rewriting

The Hyper-resolution Datalog Rewriting Algorithm (HyperDR)

Definition

The Hyper-resolution rewriting rule takes guarded rules

τ1 = β1 → H1 . . . τn = βn → Hn and

τ ′ = A′
1 ∧ · · · ∧ A′

n ∧ β′ → H ′,

such that
• each rule τi with 1 ≤ i ≤ n contains only functional atom in its head, and

• rule τ ′ is Datalog,

and an MGU θ of H1, . . . ,Hn and A′
1, . . . ,A

′
n such that conjunction θ(β′) is Datalog, and it

derives
θ(β1) ∧ · · · ∧ θ(βn) ∧ θ(β′)→ θ(H ′).

23

Hyper-resolution Datalog Rewriting on an example

Input rules:

R(u, v)→ R(v , f (u, v)) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:

24

Hyper-resolution Datalog Rewriting on an example

Input rules:

R(u, v)→ R(v , f (u, v)) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:

R(u, v) ∧ A(v)→ A(f (u, v)) (4)

24

Hyper-resolution Datalog Rewriting on an example

Input rules:

R(u, v)→ R(v , f (u, v)) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:

R(u, v) ∧ A(v)→ A(f (u, v)) (4)

R(u, v) ∧ A(v)→ C (v) (5)

24

Hyper-resolution Datalog Rewriting on an example

Input rules:

R(u, v)→ R(v , f (u, v)) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:

R(u, v) ∧ A(v)→ A(f (u, v)) (4)

R(u, v) ∧ A(v)→ C (v) (5)

The outputted Datalog rewriting is (2), (3) and (5).

24

Implementation and
Experiments

Unification index

• Every algorithm defines its own unification indexes.

• The unification indexes provide a fast method, given r a rule, to find C a set of the
candidate rule such that the inference rule could be applied on r and r ′, for r ′ ∈ C .

• The indexes is based on the characteristics (predicate, function term and their position) of
a guard atom, the head atoms or the body functional atoms following the algorithm.

25

Subsumption index

We use an subsumption index based on the atom predicates to help to find :

• forward subsumption: whether a new inferred rule is subsumed by one of the previously
inferred rules,

• backward subsumption: whether a previously inferred rule is subsumed by a new one.

The subsumption we consider does not rely on homomorphism finding, but on atoms
containment after an uniform variable renaming.

26

Experiments Setting

Datasets

1. Description Logics ontologies from the Oxford ontology library: 428 guarded rule sets.

2. Blown up version of these ontologies with arity up to 10 instead of 2 and “satellite atoms”.

Competitor
KAON2 for Description Logics only.
There is no competitor for general guarded rules.

27

Results

Table 1: At the top, the table about ontologies, at the bottom, the table about higher-arity GTGDs.
On the left, the number of inputs on which the algorithm on the row wins against the one on the
column by one order of magnitude. On the right, the number of ontologies on which two algorithms
reach the timeout simultaneously

Exb Sk Hyper KAON2 Exb Sk Hyper KAON2

Exb 0 19 0 19 29
Sk 37 0 0 26 1 19
Hyper 37 12 0 31 3 11 14
KAON2 35 15 0 0 5 15 14 34

Exb Sk Hyper Exb Sk Hyper

Exb 0 61 87 26
Sk 11 0 21 0 62
Hyper 6 4 0 20 56 101

http://www.cs.ox.ac.uk/people/maxime.buron/blog/gsat-exp/ 28

http://www.cs.ox.ac.uk/people/maxime.buron/blog/gsat-exp/

Conclusions

1. We studied a sufficient condition for a Datalog rule set to be a rewriting of a guarded rule
set through the notion of loop in tree-like chase.

2. We proposed three Datalog rewriting algorithms and shows their differences

3. We implemented them with some optimizations and we conducted large experiments on
them.

Thanks

29

	Context
	Tree-like Chase
	Existential-based Datalog Rewriting
	Skolem Datalog Rewriting
	Hyper-resolution Datalog Rewriting
	Implementation and Experiments

