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System specification

• How is the transformation done ? 

• KB representation of the problem ?

Logical Diagram
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Evaluation of logic gates  :
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First Problem: Test Generation based on Logical Diagrams

• Logical diagrams do not explicitly represent how the output values evolve 
in response to changes of input values.

• The whole behavior is described by the evaluation of the diagram for all 
the possibilities. 2𝐼 . 2𝑀

• Each evaluation of the outputs for a given set of input values my have to 
go through many simulations of the Logical Diagram.

➢ Generation and selection of test sequences is not obvious.
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State graph representation of logical diagrams

We propose a formal representation of logical diagrams for:  

• Convergence property checking (and possible other properties). 

• Generation of test sequences.
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The Sequential Graph of State Transition (SGST)

SGST: (N, E) 

• N: set of nodes. They represent the possible states 
of the logical diagram. 

• E: set of edges. They represent all the theoratical 
evolution possibilities. Each edge corresponds to 
one evolution of one status block M.
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Effective trails in the SGST and Convergence checking

⇒ The infinite traversal of circuit n1-n2 is possible : 

Inputs 0 0 1 1 and 1 0 1 1 cause a non-stable signal at 
the output of M2 

Loop structures cause this behavior. 
The presence of loops doesn’t necessarily 
mean that a non-convergent scenario exists.

This is verifiable on the graph by finding trails 
that contain circuits.
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Trail1 : n1 – n2 – n1 – n3

Condition1 : i3.i4.i2.~i1

Two possible trails from n1 to 
n3:

An arc (nj, nk) represents all the full simulations of the diagram 
from nj to n_k

Transition : n1 – n3

Condition: Condition1 + Condition 2 
               =i2 & ~i1 & (i4 | ~i3) 
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Equivalent Mealy Machine

in= i1 i2 i3 i4 
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➔ GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

• States: s1 and s2 

• Inputs: i1 and i2; in=i1 i2 

• Outputs: o1 and o2; out=o1 o2 
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➔ GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

A Scenario is a sequence of input/output values. That is 
a succession of transitions in the Mealy Machine.

For example : <01/00> <11/01>< 01/ 00>
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Fact Base: input sequence

input(v0) 

input(v1) 
… 
input(vn) 

inputValue(v1, ‘01’) 
… 
inputValue(vn, ‘01’) 

KB Representation

1 

1

0 

1

v0 v1 vn

…
i1: 

I2:
Ø

Timeline

next(v0, v1) 

next(v1, v2) 
… 
next(vn-1, vn) 
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Fact Base: initial state

X0 X1

state(X0) 

state(X1) 

next(X0, X1) 

done(X0) 

value(X0, ‘s1’) 

KB Representation
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Fact Base: initial output

OØ O1

KB Representation

output (OØ) 

output(O1) 

next(OØ, O1) 

done(OØ) 

value(O0, ‘NOT ACTIVE’) 
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Rules: transitions
Next state in the chain: 

state(Xnext), next(Xcurrent, Xnext) 

done(Xcurrent), not done(Xnext)

Find next input vector in the chain: 

input(vnext), next(vcurrent, vnext) 

done(vcurrent), not done(vnext)

Find next output in the chain: 

output(Onext), next(Ocurrent , Onext) 

done(Ocurrent), not done(Onext)

Transition (s1 01 00 s2): 

Value(Xcurrent, ‘s1 ’) 

Value(vnext, ‘01’)

KB Representation

Transition (s1 01 00 s2)
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Find next input vector in the chain: 

input(vnext), next(vcurrent, vnext) 
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Rules: transitions
Next state in the chain: 

state(Xnext), next(Xcurrent, Xnext) 

done(Xcurrent), not done(Xnext)

Find next input vector in the chain: 

input(vnext), next(vcurrent, vnext) 

done(vcurrent), not done(vnext)

Find next output in the chain: 

output(Onext), next(Ocurrent , Onext) 

done(Ocurrent), not done(Onext)

KB Representation

Transition (s2 11 01 s1): 

Value(Xcurrent, ‘s2 ’) 

Value(vnext, ‘11’)

Transition (s2 11 01 s1)

23



Rules: transitions

KB Representation

Transition (s1 01 00 s2)

value(Xnext , ‘s2’) 

value(Onext , ‘00’) 

done(Xnext) 

done(Onext) 

done(vnext)

∃ Xfollowing next(Xnext , Xfollowing) 

∃ Ofollowing next(Onext , Ofollowing) 
24



Rules: transitions

KB Representation

done(Xnext) 

done(Onext) 

done(vnext)

∃ Xfollowing next(Xnext , Xfollowing) 

∃ Ofollowing next(Onext , Ofollowing) 
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Rules: transitions

KB Representation

done(Xnext) 

done(Onext) 

done(vnext)

∃ Xfollowing next(Xnext , Xfollowing) 

∃ Ofollowing next(Onext , Ofollowing) 

Transition (s2 01 00 s1)

value(Xnext , ‘s1’) 

value(Onext , ‘01’) 
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Queries:

KB Representation

…

Input sequence

Input sequence

Input sequence

Fact base:

We want to find a test sequence 
that verifies that the pump is 
always deactivated (o1=0) when 
the emergency button is on (i1=1)  
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Thank you !


