
Obi-Wan: an RDF integration system

Maxime Buron

GraphIK - June 9, 2022



Ontology-Based Data Access (OBDA)

1



Outline

Preliminaries

RDF integration system

Query answering strategies

Query rewriting using GLAV mappings

Tatooine, the Obi-Wan mediator

2



Preliminaries



RDF graph: data and RDFS ontology

3



Graph saturation w.r.t. Rdata and Ronto

Rdata = { (pa, :subproperty , pb), (s, pa, o) → (s, pb, o) . . . }

Ronto = { (p, :subproperty , pa), (pa, :range, o) → (p, :range, o) . . . }

The full saturation of G is GRonto∪Rdata :

4



Basic graph pattern queries

We consider queries over the data and the ontology.

"Find anyone who uses something that is a kind of object"

q(x , y) ← (x , :uses, z), (z , :type, y), (y , :subclass, :Object)

5



Saturation-based query answering

q(x , y) ← (x , :uses, z), (z , :type, y), (y , :subclass, :Object)

q(GRdata∪Ronto) = ⟨ , :LightSaber⟩
⟨ , :Vehicle⟩
⟨ , :StarShip⟩

6



RDF integration system



Ontology-Based Data Access

7



Contributions

More powerful integration setting:

• Global-Local-As-View mappings in an
OBDA context

• Queries on the data and the ontology

8



Global-Local-As-View mapping

9



Global-Local-As-View mapping example

10



RDFS ontology

11



RDFS entailment

12



RDF Integration System

13



Obi-Wan

->Demonstration

https://pages.saclay.inria.fr/maxime.buron/projects/obi-wan/app/ris/
star-wars-example/index.html

14



Query answering problem

15



Query answering strategies



Materialization and mediation-based approaches

Obi-Wan dependencies for:

• materialization
• OntoSQL (triple store)

• mediation
• Graal (rewriting algorithm)
• Tatooine (mediator)

16



Obi-Wan query answering strategies

Obi-Wan implements:

• several techniques to handle a part of
the reasoning at query time or offline

• 9 query answering strategies based on
materialization approach

• 4 query answering strategies based on
mediation approach

17



Classical strategy: all reasoning at query time (REW-CA)

18



Some reasoning at query time method (REW-C): mapping saturation

19



Some reasoning at query time method (REW-C): query time

20



Experiments

RDF Integration System:

• Extension of Berlin SPARQL BenchMark

• 3863 GLAV mappings

• RDFS ontology of 2011 triples

• Induced graph with 108M triples (185M triples when saturated)

• Two data sources: One relational and one JSON

21



Query answering times on heterogeneous data sources

• Materialization (MAT) - kind of reference time
• Full reformulation + rewriting (REW-CA)
• Mapping saturation + partial reformulation + rewriting (REW-C)

22



Query rewriting using GLAV
mappings



Global-Local As View mappings decomposition

Definition
Given m a GLAV mapping

q1(x̄) → q2(f1(x̄), . . . , fn(x̄))

with f1, . . . , fn template functions.

We introduce Vm a view symbol to decompose m in two mappings:

1. mapping lower part
q1(x̄) → Vm(f1(x̄), . . . , fn(x̄))

2. mapping upper part or LAV views:

Vm(y1, . . . , yn) → q2(y1, . . . , yn)

23



Global-Local As View mappings decomposition

Definition
Given m a GLAV mapping

q1(x̄) → q2(f1(x̄), . . . , fn(x̄))

with f1, . . . , fn template functions.

We introduce Vm a view symbol to decompose m in two mappings:

1. mapping lower part
q1(x̄) → Vm(f1(x̄), . . . , fn(x̄))

2. mapping upper part or LAV views:

Vm(y1, . . . , yn) → q2(y1, . . . , yn)

We want to rewriting a query on the integrated graph using the upper part of the mappings.

23



View-based query rewriting

Definition
A view-based rewriting of q is a sound and complete rewriting of q as a conjunctive query
involving only views symbols.

We want to rewrite this query:

q() = (x , :type, :A), (x , :p, y), (y , :type, :B)

using these views :

• V1(u) → (u, :type, :A)

• V2(v) → ∃u (u, :type, :A), (u, :p, v)

• V3(w) → (w , :type, :B)

In this example, we have a single complete rewriting:

rew() = V2(z),V3(z)

24



Naive rewriting algorithm

1. compute the rewriting of the query using the views as existential rules

2. return the view-based rewriting

V1(u) → (u, :type, :A)

V2(v) → ∃u (u, :type, :A), (u, :p, v)

V3(w) → (w , :type, :B)

q() = (x , :type, :A), (x , :p, y), (y , :type, :B)

25



Naive rewriting algorithm

1. compute the rewriting of the query using the views as existential rules

2. return the view-based rewriting

V1(u) → (u, :type, :A)

V2(v) → ∃u (u, :type, :A), (u, :p, v)

V3(w) → (w , :type, :B)

q() = (x , :type, :A), (x , :p, y), (y , :type, :B)

q1() = V1(x), (x , :p, y), (y , :type, :B)

25



Naive rewriting algorithm

1. compute the rewriting of the query using the views as existential rules

2. return the view-based rewriting

V1(u) → (u, :type, :A)

V2(v) → ∃u (u, :type, :A), (u, :p, v)

V3(w) → (w , :type, :B)

q() = (x , :type, :A), (x , :p, y), (y , :type, :B)

q1() = V1(x), (x , :p, y), (y , :type, :B)

q2() = V1(x), (x , :p, y),V3(y)

25



Naive rewriting algorithm

1. compute the rewriting of the query using the views as existential rules

2. return the view-based rewriting

V1(u) → (u, :type, :A)

V2(v) → ∃u (u, :type, :A), (u, :p, v)

V3(w) → (w , :type, :B)

q() = (x , :type, :A), (x , :p, y), (y , :type, :B)

q1() = V1(x), (x , :p, y), (y , :type, :B)

q2() = V1(x), (x , :p, y),V3(y)

q3() = V2(y), (y , :type, :B)

25



Naive rewriting algorithm

1. compute the rewriting of the query using the views as existential rules

2. return the view-based rewriting

V1(u) → (u, :type, :A)

V2(v) → ∃u (u, :type, :A), (u, :p, v)

V3(w) → (w , :type, :B)

q() = (x , :type, :A), (x , :p, y), (y , :type, :B)

q1() = V1(x), (x , :p, y), (y , :type, :B)

q2() = V1(x), (x , :p, y),V3(y)

q3() = V2(y), (y , :type, :B)

rew() = V2(y),V3(y)

25



Naive rewriting algorithm

1. compute the rewriting of the query using the views as existential rules

2. return the view-based rewriting

V1(u) → (u, :type, :A)

V2(v) → ∃u (u, :type, :A), (u, :p, v)

V3(w) → (w , :type, :B)

q() = (x , :type, :A), (x , :p, y), (y , :type, :B)

q1() = V1(x), (x , :p, y), (y , :type, :B)

q2() = V1(x), (x , :p, y),V3(y)

q3() = V2(y), (y , :type, :B)

rew() = V2(y),V3(y)

q4() = (x , :type, :A), (x , :p, y),V3(y)

25



Naive rewriting algorithm

1. compute the rewriting of the query using the views as existential rules

2. return the view-based rewriting

V1(u) → (u, :type, :A)

V2(v) → ∃u (u, :type, :A), (u, :p, v)

V3(w) → (w , :type, :B)

q() = (x , :type, :A), (x , :p, y), (y , :type, :B)

q1() = V1(x), (x , :p, y), (y , :type, :B)

q2() = V1(x), (x , :p, y),V3(y)

q3() = V2(y), (y , :type, :B)

rew() = V2(y),V3(y)

q4() = (x , :type, :A), (x , :p, y),V3(y)

q2() = V1(x), (x , :p, y),V3(y)

25



Naive rewriting algorithm

1. compute the rewriting of the query using the views as existential rules

2. return the view-based rewriting

V1(u) → (u, :type, :A)

V2(v) → ∃u (u, :type, :A), (u, :p, v)

V3(w) → (w , :type, :B)

q() = (x , :type, :A), (x , :p, y), (y , :type, :B)

q1() = V1(x), (x , :p, y), (y , :type, :B)

q2() = V1(x), (x , :p, y),V3(y)

q3() = V2(y), (y , :type, :B)

rew() = V2(y),V3(y)

q4() = (x , :type, :A), (x , :p, y),V3(y)

q2() = V1(x), (x , :p, y),V3(y)

rew() = V2(y),V3(y)

25



One step view-based rewriting algorithm

1. compute the single piece-unifiers of the query with the views
2. compute all sets of these unifiers that exactly cover the query
3. aggregate the unifiers contained in every set
4. rewrite the query with each aggregated unifiers

26



One step view-based rewriting algorithm

1. compute the single piece-unifiers of the query with the views
2. compute all sets of these unifiers that exactly cover the query
3. aggregate the unifiers contained in every set
4. rewrite the query with each aggregated unifiers

V1(u) → (u, :type, :A)

V2(v) → ∃u (u, :type, :A), (u, :p, v)

V3(w) → (w , :type, :B)

q() = (x , :type, :A), (x , :p, y), (y , :type, :B)

26



One step view-based rewriting algorithm

1. compute the single piece-unifiers of the query with the views
2. compute all sets of these unifiers that exactly cover the query
3. aggregate the unifiers contained in every set
4. rewrite the query with each aggregated unifiers

V1(u) → (u, :type, :A)

V2(v) → ∃u (u, :type, :A), (u, :p, v)

V3(w) → (w , :type, :B)

q() = (x , :type, :A), (x , :p, y), (y , :type, :B)

26



One step view-based rewriting algorithm

1. compute the single piece-unifiers of the query with the views
2. compute all sets of these unifiers that exactly cover the query
3. aggregate the unifiers contained in every set
4. rewrite the query with each aggregated unifiers

V1(u) → (u, :type, :A)

V2(v) → ∃u (u, :type, :A), (u, :p, v)

V3(w) → (w , :type, :B)

q() = (x , :type, :A), (x , :p, y), (y , :type, :B)

rew() = V2(y),V3(y)

26



One step view-based rewriting algorithm

1. compute the single piece-unifiers of the query with the views
2. compute all sets of these unifiers that exactly cover the query
3. aggregate the unifiers contained in every set
4. rewrite the query with each aggregated unifiers

V1(u) → (u, :type, :A)

V2(v) → ∃u (u, :type, :A), (u, :p, v)

V3(w) → (w , :type, :B)

q() = (x , :type, :A), (x , :p, y), (y , :type, :B)

rew() = V2(y),V3(y)

Exact cover

• NP-complete problem

• Knuth’s algorithm X (Dancing Links technique for the implementation: DLX)

26



View-based rewriting optimizations

We simplify each view-based rewriting by:

1. computing its core

2. using the key on the views to simplify the rewriting

We remove every view-based rewriting, which:

1. are redundant, i.e., that are subsumed by another rewriting

2. contains a clash

27



Tatooine, the Obi-Wan
mediator



Tatooine overview

Tatooine

• wraps the answers from
heterogeneous sources as tuples,

• allows to evaluate conjunctive
query plans over heterogeneous
sources.

Plan transformations before the
evaluation:

1. original logical plan

2. optimized logical plan

3. physical plan

28



From view-based rewriting to original logical plan

We unfold each view-based rewriting using the mapping lower parts to build a query plan.

A rewriting:

rew(y) = V1(y),V2(y , a)

The mapping lower parts:

• q1(x) → V1(f1(x))

• q2(u, v) → V2(f2(u), f3(v))

29



Plan optimizations

1. Tatooine optimizes query plan with:
• local transformations of the plan
• based on heuristics (without statistical information)
• to push as many as possible operators to the source queries.

2. It also reorders the join operators in join trees to gather the ones that are on the same
source.

-> An optimized plan example

30



Local optimizations: moving up function operators

Pushing selection through function operator

Pushing join through function operators

31



From logical to physical plan : join implementations

• Hash join:
1. loads the tuples from the left and right children
2. performs the join using a hash of the values taken on the joint columns

• Left (right) bind join:
1. reads the next tuple t from the left child
2. selects the right tuples using the values taken by t on the joint columns
3. concatenates t with each returned right tuples
4. go to 1.

Bind joins requires less memory, but needs the ability to select tuples from one child.

32



Conclusion

• Obi-Wan is an OBDA system that supports RDFS ontologies and GLAV mappings

• Obi-Wan proposes several materialization and mediation-based query answering strategies

• Query rewriting is performed using an one step view-based rewriting

• The mediator Tatooine implements several query plan optimizations
source: https://gitlab.inria.fr/cedar/obi-wan

33


	Preliminaries
	RDF integration system
	Query answering strategies
	Query rewriting using GLAV mappings
	Tatooine, the Obi-Wan mediator

