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Outline

Published or Submitted

1. Rewriting the Description Logic ALCHIQ to Disjunctive ∃-Rules
2. Materializing Knowledge Bases via Trigger Graphs
3. A Journey to the Frontiers of Query Rewritability

Ongoing Work

4. Descriptive Complexity of Existential Rule Languages
5. Checking Chase Termination over Ontologies of Disjunctive Existential Rules: A Very

Undecidable Decision Problem
6. Su�cient Notions for (Non)Termination of the Disj. Skolem Chase

Remark

All of the above are sorted by “chronological” order.
Titles (4–6) will likely be changed before publication/submission.
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1. Rewriting the DL ALCHIQ to
Disjunctive Existential Rules
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Rewriting ALCHIQ to Disjunctive ∃-Rules

In a Nutshell
We present a consequence-preserving translation from ALCHIQ
theories into existential rule sets with a terminating chase.
Our approach produces polynomial rule sets that contain rules of
bounded size (independent of the input).

Coauthor
Markus Krötzsch at the Technical University of Dresden

Status
Accepted at IJCAI 2020
Link: https:
//iccl.inf.tu-dresden.de/web/Inproceedings3244/en
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ALCHIQ to Disj. ∃-Rules: Introduction

Introductory Videos
5 mins:
https://www.youtube.com/watch?v=O67mTVKFkco&t=13s
17 mins:
https://www.youtube.com/watch?v=Lpsw0bn7rN4&t=102s
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ALCHIQ to Disj. ∃-Rules: Future Work

Remark
Some of our results are superseded by (3) where we show that ∃-rule
sets that terminate w.r.t. the restricted chase can express every
monotonic decidable query.

However, (I hope that) the techniques in this paper can be
reused/extended to show:

Hypothesis
If a rule set has the bounded treewidth property, then it has the �nal
model property.

If the previous hypothesis is shown, then (I hope that) we can
eventually show that:

Hypothesis
All “decidable” rule sets have the �nal model property.

In the above, “decidable” = BTP, FES, or FUS.
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2. Materializing Knowledge Bases
via Trigger Graphs
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Materializing KBs via Trigger Graphs

In a Nutshell
Trigger graphs are �nite DAGs that are used to guide the
application of rules during the computation of the chase with the
goal of avoiding redundant computation.
Trigger graphs are analogous to query plans.

Coauthors
Enrico Malizia at the University of Bologna
Efthymia Tsamoura at Samsung AI Research in Cambridge
Jacopo Urbani at the Free University of Amsterdam

Status
Accepted at VLDB 2021
Link: https://arxiv.org/abs/2102.02753
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Materializing KBs via Trigger Graphs: Intro

Informal De�nition
A trigger graph G for a rule set R is somewhat similar to the graph of
rule dependencies. The main di�erences are:

Trigger graphs may contain arbitrarily many nodes labelled with
the same rule in R. Potentially, these structures may be in�nite.
Trigger graphs are acyclic directed graphs.

Example
Consider the rule set R containing all of the following:

ρ1 = A(x)→ B(x) ρ2 = B(x)→ C(x) ρ3 = A(x)→ C(x)

Then, G = 〈{u, v,w}, {u→ v}〉 where u is labelled with rule ρ1, and v
and w are labelled with rule ρ2. Note that ρ3 can be safely ignored

David Carral (Inria) 9 / 31
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Trigger Graphs: Theoretical contribution

1. Characterisation of rule sets that admit trigger graphs:

Remark
Not all rule sets admit (�nite) trigger graphs. For instance, neither
{R(x, y)→ ∃z.R(y, z)} nor {R(x, y)∧ R(y, z)→ R(x, z)} admit such graphs!

Theorem
A rule set admits a trigger graph i� it is (uniformly)-bounded.

2. We de�ne two algorithms to compute “minimal” trigger graphs for
linear and Datalog rule sets (that admit trigger graphs).

David Carral (Inria) 10 / 31
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Trigger Graphs: Practical Contribution

Empirical Claim
Trigger graphs can be used to develop a very e�cient implementation
of the chase algorithm.

Some (cherry-picked) results that support our claim:

VLog RDFOx GLog
LUBM 170s 115s 16s
DBpedia 41s 198s 19s
Claros 431s 2373s 122s

Remarks
The above theories only contain Datalog rules.
When using trigger graphs, we only remove duplicates at the end.
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Trigger Graphs: Future Work

Study the notion of cyclic trigger graphs, which (I believe) can be used
to reason over rule sets with the bounded treewidth property:

Hypothesis
Given some rule set R with the bounded treewidth property, there is a
cyclic trigger graph G such that:
1. 〈R,D〉 |= ϕ ⇐⇒ G(D) |= ϕ for all databases D and all facts ϕ.
2. Every node in a cycle in G is labelled with a Datalog rule.

Note that, in the above, we can compute G(D) because of (2).

David Carral (Inria) 12 / 31
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3. A Journey to the Frontiers of
Query Rewritability
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To the Frontiers of Query Rewritability

In a Nutshell
Solved the FES/FUS conjecture (for rule sets where all rules with
existentially quanti�ed variables have frontier at most one...)
Discovered a FUS rule set with rewritings of k-exponential size.

Coauthors
Jerzy Marcinkowski and Piotr Ostropolski-Nalewaja at the
University of Wroclaw
Sebastian Rudolph at the Technical University of Dresden

Status
Submitted to LICS 2021
ArXiv Link: https://arxiv.org/abs/2012.11269

David Carral (Inria) 14 / 31

https://arxiv.org/abs/2012.11269


To the Frontiers of Query Rewritability

In a Nutshell
Solved the FES/FUS conjecture (for rule sets where all rules with
existentially quanti�ed variables have frontier at most one...)
Discovered a FUS rule set with rewritings of k-exponential size.

Coauthors
Jerzy Marcinkowski and Piotr Ostropolski-Nalewaja at the
University of Wroclaw
Sebastian Rudolph at the Technical University of Dresden

Status
Submitted to LICS 2021
ArXiv Link: https://arxiv.org/abs/2012.11269

David Carral (Inria) 14 / 31

https://arxiv.org/abs/2012.11269


To the Frontiers of Query Rewritability

In a Nutshell
Solved the FES/FUS conjecture (for rule sets where all rules with
existentially quanti�ed variables have frontier at most one...)
Discovered a FUS rule set with rewritings of k-exponential size.

Coauthors
Jerzy Marcinkowski and Piotr Ostropolski-Nalewaja at the
University of Wroclaw
Sebastian Rudolph at the Technical University of Dresden

Status
Submitted to LICS 2021
ArXiv Link: https://arxiv.org/abs/2012.11269

David Carral (Inria) 14 / 31

https://arxiv.org/abs/2012.11269


Contributions: The FES/FUS Conjecture

Hypothesis: The FES/FUS Conjecture
A rule set is bounded if and only if it is both FES and FUS.

De�nition: Local Theories
A rule set R is local if, for some k ≥ 1 and all databases D,⋃

F⊆D,|F|≤k
Ch(R,F) = Ch(R,D)

Theorem: Local Theories
If a rule set R is local, then it is also FUS.
If a rule set R is FUS, AND

[
every non-Datalog rule in R has at

most one variable in its frontier OR R is guarded
]
; then R is local.

The FUS/FES conjecture holds for all local theories.

David Carral (Inria) 15 / 31
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Contributions: Distancing Theories

Remark
Not all classes of FUS rule sets are local. For example, the singleton rule
set {E(x, y, y′, t) ∧ R(x, t′)→ ∃y′′.E(x, y′, y′′, t′′)} is sticky and non-local.

To tackle the FES/FUS conjecture, we developed a more general class
that captures all classes of FUS rule sets:

Distancing Rule Sets
A rule set R is distancing if there is some kR ≥ 1 such that

distCh(R,D)(c,d) ≤ n =⇒ distD(c,d) ≤ kR · n

for all databases D, all c,d ∈ Consts, and all n ≥ 1.

Theorem
All the known decidable BDD classes are bounded degree local.

In the above, “known” = linear, multi-linear, sticky, or backwards-shy

David Carral (Inria) 16 / 31
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Contributions: Distancing Theories and Beyond

Unfortunately, we were not able to show that the FES/FUS conjecture
holds for distancing theories...

Nevertheless, we found out something
interesting! Namely, not all FUS rule sets are distancing:

De�nition: The Rule Set R

x y z

w v

x

u

v

v

Proposition
Consider a database D, some c,d ∈ Consts, and some n ≥ 1 such that
distD = 2n. Then, it is possible that distCh(R,D) = 2n+ 1.

Implication: “. . . there is a lot of room for new decidable/syntactic
classes of BDD theories, richer than all that was considered so far.”

David Carral (Inria) 17 / 31
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Journey to the Frontiers: Future Work

Using the rule set from the previous slide, we can (hopefully) show:

Hypothesis
Given an ExpSpace Turing machineM, one can compute a FUS rule set
RM such that, for all input words w ∈ Γ∗, there is a BCQ γw such that
〈RM, {Accept(c)}〉 |= γw ⇐⇒ M accepts w.

Corollary
The query complexity of solving BCQ entailment over FUS rule sets is at
least ExpSpace hard.

In fact, (I think that) we can show the above hypothesis for any kind of
Turing machine. . .

David Carral (Inria) 18 / 31
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4. Descriptive Complexity of Exis-
tential Rule Languages

David Carral (Inria) 19 / 31



Descriptive Complexity of ∃-Rule Languages

In a Nutshell
We describe the queries that can be expressed with disjunctive
Datalog, weakly guarded rules, and rule sets that terminate with
respect to the restricted chase.
Using each of these rule languages, one can express all monotonic
queries that are in co-NP, in ExpTime, and decidable, respectively.

Coauthors
Camille Bourgaux and Michaël Thomazo at ENS Paris
Markus Krötzsch and Sebastian Rudolph at TU Dresden

Status
Planning a submission to KR 2021
Draft still not available

David Carral (Inria) 20 / 31
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Descriptive Complexity: Queries

De�nition
Consider some (Boolean) query γ de�ned over the set of all databases.

The query γ is closed under homomorphisms if[
γ(D) = TRUE and there is some h : D → D′

]
=⇒ γ(D′) = TRUE

for all databases D and D′.
The query γ is in (e.g.) NP if it can be decided with a
non-deterministic poly Turing machine.

Remarks
Without loss of generality, we only consider queries that are
agnostic with respect to constant names.
We often de�ne a query as a set of databases.
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Descriptive Complexity: Expressing Queries

De�nition
A query γ is expressed by a tuple 〈R,Goal〉 with R a rule set and Goal a
nullary predicate if 〈R,D〉 |= Goal ⇐⇒ D ∈ γ for all databases D.

Example
Let γ be the set of all databases that (i) are de�ned over the binary
predicate Edge and (ii) are not three-colourable. This query is
expressed by 〈R,N3C〉 where R is the rule set containing:
Edge(x, y)→ Node(x) ∧ Edge(y, x) R(x) ∧ Edge(x, y) ∧ G(y)→ N3C
Node(x)→ R(x) ∨ G(x) ∨ B(x) G(x) ∧ Edge(x, y) ∧ B(y)→ N3C

B(x) ∧ Edge(x, y) ∧ R(y)→ N3C

Hypothesis
Homomorphism-closed, decidable queries are expressible with rule
sets with a terminating restricted chase. Therefore, this class of rule
sets is as expressive as any other decidable FOL fragment.
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5. Checking Chase Termination
over Ontologies of Disjunctive
Existential Rules: A Very Unde-
cidable Decision Problem

David Carral (Inria) 23 / 31



Chase Termination over Disjunctive ∃-Rules

In a Nutshell
We show that deciding if the oblivious/restricted/core chase
variant terminate on an input ontology is an RE-complete problem.
Furthermore, we show that deciding if the
oblivious/restricted/core chase variant universally terminates for
a rule set is Π0

2 -complete.

Coauthor
Markus Krötzsch at the Technical University of Dresden

Status
Hope to �nish during/after the summer of 2021
Draft still not available
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Chase Termination: Preliminaries

De�nition
A language L is recursively enumerable (RE) if it can be recognised by a
Turing machine. That is, if there is a Turing machine (TM)M such that:

For all w ∈ L, the TMM accepts w.
For all w /∈ L, the TMM rejects or does not halt on w.

A language L is in Π0
2 if the complement of L can be recognised with an

oracle TM (OTM) with an RE-oracle.

Remark
The canonical decision problem in Π0

2 is that of universal Turing
machine halting UH, which is formally de�ned as follows:

{M | there exists a word w ∈ Γ∗ such thatM does not halt on w}
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Chase Termination: The Decision Problems

De�nition
Let ? be one of the following variants of the chase algorithm: oblivious,
restricted, and core.

Let OT?∃∨ (resp. OT?∀∨) be the set of all ontologies for which the
?-chase sometimes (resp. always) terminates.
Let RT?∃∨ (resp. RT?∀∨) be set of all rule sets R such that, for all
databases D, the ?-chase of the ontology 〈R,D〉 sometimes (resp.
always) terminates.
Let OT?∃∧, OT?∀∧, RT?∃∧, and RT?∀∧ be the maximal subsets of OT?∃∨,
OT?∀∨, RT?∃∨, and RT?∀∨, respectively, without rules with disjunctions.

De�nition
A rule set R is (†)-restricted if R contains at most two rules with
existential quanti�ers and one with disjunctions, and all rules in R
have at most 2 variables in the head.

David Carral (Inria) 26 / 31
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Chase Termination: Contribution

Previous Results
1. OToblv∗∧ , OTrest∗∧ , and OTcore∗∧ are in RE.
2. OToblv∗∧ , OTrest∗∧ , and RToblv∗∧ are RE-hard even for (†)-restricted sets.
3. OTcore∗∧ is RE-hard.
4. RToblv∗∧ is in RE.
5. RTrest∃∧ and RTcore∗∧ are Π0

2 -complete.
6. RTrest∀∧ is Π0

2 -complete if we allow one denial constraint.

New Results
1. OToblv∗∨ , OTrest∗∨ , and OTcore∗∨ are in RE.
2. OToblv∗∧ , OTrest∗∧ , and OTcore∗∧ are RE-hard even for (†)-restricted sets.
3. RToblv∗∨ , RTrest∗∨ , and RTcore∗∨ are in Π0

2 .
4. RToblv∗∨ , RTrest∗∧ , and RTcore∗∧ are Π0

2 -hard even for (†)-restricted sets.
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6. Sufficient Conditions for Ter-
mination and Nontermination of
the Disjunctive Skolem Chase
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Sufficient Conditions for the Skolem Chase

In a Nutshell
We de�ne some su�cient conditions that guarantee universal
termination and nontermination for a rule set with respect to the
disjunctive Skolem chase.
Hopefully, we will empirically demonstrate that these notions are
quite general in practice.

Coauthors
Lukas Gerlach and Markus Krötzsch at TU Dresden

Status
Planning to �nish during/after the summer of 2021
Link to Lukas’ Grosser Beleg:
https://iccl.inf.tu-dresden.de/web/Thema3509/en
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Previous Work: Empirical results for MOWLCorp

Results for Rule Sets w/o Disjunctions
#∃ # MSA MFA RMSA RMFA RMFC open
1–4 443 293 293 314 314 127 2
5–69 368 243 243 272 272 72 24
70–1K 409 348 348 350 350 40 19
1–1K 1220 884 884 936 936 239 45 ( 3.6%)

Results for Rule Sets with Disjunctions
#∃ # MSA MFA RMSA RMFA RMFC open
1–9 128 48 48 53 53 3 72
10–59 110 19 19 39 40 5 65
60–1K 118 23 23 30 30 20 68
1– 1K 356 90 90 122 123 28 205 ( 57.6%)
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DMFA: A Novel Conditions for Termination

As RMFA, as our novel notion also makes use of “blocking” to verify that
some triggers are never applied.

Example
Consider the rule set R that contains the following rules:

ρ1 = Pizza(x)→ InFridge(x) ∨ ∃y.(DeliveryService(y) ∧ Delivers(y, x))

ρ2 = PizzaFan(x)→ ∃z.(Pizza(z) ∧ InFridge(z) ∧ Owns(x, z))

For every term t, the trigger 〈ρ1, [x/f z(t)]〉 is blocked. Therefore, this
trigger is never applied during the computation of the disjunctive
Skolem chase over any ontology of the form 〈R,D〉.

Encouraging Results!
Out of 110 rule sets in the ontology in the Oxford ontology library, only
50 are characterised as acyclic by MFA. Our novel notion (i.e., DMFA),
characterises 60 of these rule sets as terminating.
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Thank you for your attention!

Any questions about (1–8)?
1. Rewriting the DL ALCHIQ to Disjunctive ∃-Rules
2. Materializing Knowledge Bases via Trigger Graphs
3. A Journey to the Frontiers of Query Rewritability
4. Descriptive Complexity of Existential Rule Languages
5. Checking Chase Termination over Ontologies of Disjunctive
Existential Rules: A Very Undecidable Decision Problem

6. Sufficient Conditions for (Non)Termination of the
Disjunctive Skolem Chase

7. Extra Topic 1: Decidable Fragments of HyperLTL
8. Extra Topic 2: Computing Cores for the ALC
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