
Multi-Agent Planning with Interacting
Actions

Shashank Shekhar

LIRMM & LAAS, CNRS

February 20, 2023



Automated Planning

▶ It is an explicit deliberation process of “selecting” and
“organizing” actions by anticipating their (possible)
outcomes.

▶ In automated planning, we study this explicit deliberation
process computationally.



Talk Outline

▶ Basic terminologies for automated (multi-agent) planning

▶ General motivation

▶ Notations, problem specifications, models, etc.

▶ Planning with interacting actions

▶ Compact representation from which one can quickly determine
the effect of every joint action

▶ MAP formalism, agents’ actions interact - specifications

▶ Extension to human-robot interaction/collaboration

▶ How does interacting actions in HRC challenge us differently?



Background



Single-Agent Planning
▶ Synthesizes a plan that satisfies a desired goal from the given

initial situation
▶ Centralized process

▶ Done by a single planning entity or agent

▶ Assumptions:
▶ full-observability, instantaneous actions, deterministic

outcomes, etc.



AI Planning: Key Concepts

▶ Language – for describing a (planning) model implicitly

▶ Plays two roles...

▶ Specification: concise model description

▶ Computation: reveals useful information about the problem’s
structure

▶ Examples: STRIPS, SAS+, PDDL, HDDL, etc.

▶ Model – describes the aspects of the world that needs to be
captured

▶ Should be intuitive

▶ Could be very large and difficult to work with

▶ We should be clear with what we want to solve

▶ Captures the assumptions about the world, e.g., the closed
world assumptions



AI Planning: Key Concepts

▶ Interpretation – maps b/w the expressions in the language
and the model

▶ Tells us how to build the whole search-space eventually

▶ Example: state model for classical AI planning

▶ Finite state space S

▶ An initial state s0 ∈ S

▶ A set G ⊆ S

▶ Applicable actions A(s) ⊆ A for s ∈ S

▶ A transition function s ′ = f (a, s) for all a ∈ A(s), s ∈ S

▶ Cost function: A∗ → [0,∞)

▶ Query – a question we wish to answer, e.g., find a plan

▶ Planning algorithms



Multi-Agent Planning (MAP)

▶ MAP generalizes the problem of automated planning

▶ Several agents plan and act together by combining their
knowledge, perspectives, capabilities, etc.



Why Multi-Agent Planning?

▶ Internet of Things (IoT)

▶ (Ad-hoc) Multi-Robot System & Human-Robot Collaboration
(and Interaction)

▶ (Limited) collaboration among various entities

▶ Examples: companies, contractors, etc.

▶ Useful abstraction for factored planning and distributed
planning

▶ Generates faster solutions for single-agent cases

...content taken from Ronen Brafman’s talk at ICAPS 2016.



The Spectrum of MAP Models

▶ Who are the agents?

▶ Do they share capabilities?

▶ Can they act simultaneously (concurrently)?

▶ Who is handling the planning part?

▶ Orthogonal issues: uncertainty, time, resources, etc.



Our Focus: MA-STRIPS Model

▶ STRIPS vs Multi-Agent STRIPS (minimalistic extension)

▶ MA-STRIPS associates each action with an agent

▶ ⟨P,A, I ,G⟩ vs ⟨P, {A}k
i=1, I ,G⟩

▶ No interaction, cooperative agents, and easy to enhance



Logistics Example (Useful Abstraction)

▶ A single-agent planning domain with natural components

▶ To deliver packages to different places using vehicles

▶ Vehicles operate in different regions

▶ We model each vehicle as an agent (an abstraction)

▶ Agent’s actions

▶ Move: (move ?vehicle ?from ?to)

▶ Load/Unload: (load ?pkg ?vehicle ?locA)



Factored Planning (based on Roni Stern’s slides)

▶ AGENTS = abstractions (of these natural components)

▶ Do we gain anything by viewing this as a MAP problem?

▶ From STRIPS to MA-STRIPS

▶ Potential exponential gain!



Collaborative MAS - Short/Long Term Goals

▶ Our short/long term goals are to enhance the abilities of
multi-agent systems consisting of robots (and also humans,
sometimes) that are collaborative by nature

▶ To efficiently and autonomously exploit their combined
capabilities, knowledge, perspectives, etc.

▶ By providing efficient representations, effective models, and
algorithms for collaborative (task) planning and execution



Planning with Interacting Actions



Concurrent and Interacting Actions

▶ Sometimes the effect of an agent’s action is dependent on
what others are doing at that moment

▶ Agents must coordinate their actions carefully

▶ Relevant scenarios

▶ If a table is “not lifted” from both sides concurrently, objects
on it will fall

▶ Pushing a heavy box:

▶ An agent alone may be unable to push it

▶ Multiple agents simultaneously can

▶ In advanced RoboCup teams:

▶ An agent passes the ball to a free region while the intended
receiver moves to this area simultaneously

▶ The Human-Robot handover task



Concurrent and Interacting Actions

▶ What happens when agents perform actions concurrently?

▶ In principle, every combination of their actions defines a
different transition model

▶ Number of joint-actions is exponential in the number of
agents

▶ Impractical to explicitly model each joint action



Concurrent and Interacting Actions

There should be a way to deduce the effect of the con-
current execution ⟨a1, a2, ..., an⟩ of n agents

*there should be a way to combine the smaller effects*

▶ Can we use logical language? (one way: a nonclassical logic)

▶ describing each combination by a set of formulas in it

▶ each such set represents a unique transition model

▶ Challenges:

▶ To describe a model for joint-actions

▶ Given a large set of agents, and/or;

▶ Large sets of individual actions

▶ The model should

▶ Be succinct in natural settings;

▶ Support efficient planning



Relevant Part (ICAPS 2018 and AI Journal 2020)

1. An intuitive formalism for specifying joint-actions in a
compositional manner

▶ Relevant to collaborative and non-collaborative domains

2. An effective compilation approach to collaborative
planning

▶ Different schemes for different interaction types

3. Experimental Evaluation

▶ New planning domains

▶ Evaluation of our proposed compilation approach

...work done jointly with Ronen Brafman.



Related Work (Boutilier and Brafman, 2001)

▶ Boutilier and Brafman’s (BB) approach was the first to
extend STRIPS-like languages to address interacting actions

▶ Example: In the box pushing case, if two agents push a
heavy box it moves, although the movement is conditional

Action: PushHeavy(agent, box, location)

Pre: at(agent, location), at(box, location), heavy(box)

Concurrency: (exists agent’) PushHeavy(agent’, box, location),

agent’ != agent

Effect: NOT at(box, location).

▶ It is semantically clean and clear but has some drawbacks...

▶ Non-standard syntactic requirement of concurrency

▶ Schema generally requires existential quantifiers

▶ E.g., Agent’s identity does not impact the interaction



Related Work

▶ Work in KR focus mainly on the representational issues, and
they use non-monotonic reasoning (Poole 1997)

▶ Non-monotonic reasoning is hard to integrate with the
modern planning algorithms

▶ The action language Ac (Baral and Gelfond 1997):

▶ Use statements like “p is an effect of A, if c”

▶ “p is also an effect of every B ⊇ A given c”, if there is no:

▶ Other set of actions D such that B ⊇ D ⊇ A, and

▶ ¬p is an effect of D given c, which is non-monotonic in
nature

▶ Simplest and intuitive, and closest to our formalism as well

▶ Our formalism is a monotonic variant of this action language



The Planning Model

▶ MAP model is tuple ⟨S ,A, s0,G ,Φ, {Ai : 1 ≤ i ≤ n}⟩

▶ A is a set of joint-actions

▶ Formally, a ∈ A is a vector of the form ⟨a1, a2, a3, . . . , an⟩

▶ Each ai is an action of agent φi or a no-opi

▶ A plan π = ja1, ja2, . . . , jak

▶ It is a sequence of joint-actions

▶ Such that jak(· · · (ja1(s0))) ∈ G



Important Terminology

▶ Collaborative Action

▶ A minimal combination of SA actions that cannot be defined
as the union of its components

▶ E.g., 2push(a1, a2,B) – composed of two SA push actions,
s.t.,

eff(2push(a1, a2,B)) ̸= eff(push(a1,B)) ∪ eff(push(a2,B))

▶ Multi-Action

▶ Set of single-agent and collaborative actions (its components)
with consistent preconditions and consistent effects

▶ No agent participates in more than one action in this set

E.g., am = {2push(a1, a2,B),move(a3)} – for 3 agents

▶ Its elements are: SA actions + SA actions comprising the
collaborative actions

E.g., e(am) = {push(a1,B),push(a2,B),move(a3)}



The Language

▶ Domain specification consists of ⟨P, I , g ,Φ, {A1, . . .An},Ac⟩

▶ P is a set of ground propositions

▶ I ⊂ P, g ⊂ P, and Φ is a set of agents

▶ Ai is a set of SA actions and Ac is a set of collaborative
actions

▶ SA action has the form a = ⟨symbol , pre(a), eff (a)⟩, denoting
the action’s name, its preconditions and effects

▶ Ac ∋ ac = ⟨symbol , pre(ac), eff (ac), e = {a1, . . . , ak}⟩
denotes a collaborative action

▶ Element set e(ac), contains only SA action symbols

▶ No two action symbols in e(ac) belong to the same agent



Interpretation

▶ Joint-actions correspond to “good” multi-actions

▶ Each multi-action am = {a1, . . . , ak} (some SAs, some CAs)

▶ e(am) = e(a1) ∪ · · · ∪ e(ak)

▶ No two elements belong to the same agent

▶ pre(am) = pre(a1) ∪ · · · ∪ pre(ak)

▶ eff (am) = eff (a1) ∪ · · · ∪ eff (ak)

▶ Subsumption (⊒) Criteria (informal)

{push(a1,B),push(a2,B),move(a3)} ⊑ {2push(a1, a2,B),move(a3)}

▶ Components can be combined to form a more complex
collaborative action contained in other

▶ They must contain the same element set



Interpretation

▶ Box-Pushing Domain:

▶ Actions: push, 2push, and 3push

▶ Multi-action {push(a1,B),push(a2,B),push(a3,B)}:

▶ Is subsumed by {2push(a1, a2,B),push(a3,B)}

▶ The above two are subsumed by am = {3push(a1, a2, a3,B)}

▶ A well-defined multi-action is one that never gets subsumed

▶ Every well-defined multi-action am defines a joint-action

{3push(a1, a2, a3,B)} ≡ ⟨push(a1,B),push(a2,B), push(a3,B)⟩

▶ no-opi is added to it for each non-acting agent φi



Compilation Approach

▶ Reduces centralized MA planning to centralized SA planning

▶ Different schemes depending on whether multi-actions
contain interfering components

▶ Interfering components: one deletes precond of the other

▶ No interference: all possible interactions are already
captured by collaborative actions

▶ Concurrent and sequential executions of the components
produce the same effect

▶ A sequential algorithm can be used, and later, a parallelization
approach can be used to reduce makespan

▶ Interference: concurrent and sequential executions of
components differ

E.g., sail(a1, boat1, l1, l2) and sail(a2, boat1, l1, l2)

▶ Compilation is required



Pre/Eff Interactions: High-Level Steps

▶ Approach builds on [Crosby, Jonsson, and Rovatsos, 2014]

▶ Multi-action {a1, . . . , ak} is represented by action sequence
⟨astart , a′1, . . . , a′k , aend⟩

▶ Order of execution of components of a well-defined
multi-action is unimportant, therefore,

▶ When emulating multi-action execution, must maintain the
same truth assignments to the propositions as in state
before astart , but

▶ Must keep track of their effects



Pre/Eff Interactions: High-Level Steps

▶ New bookkeeping propositions are added

▶ Two new copies of every proposition: allow maintaining same
”true” state throughout, while tracking component effects

▶ Propositions that track which elements and components where
done and by which agents: allow ensuring multi-action is
consistent and well-defined

▶ Original actions modified to update added propositions

▶ Preconditions enhanced to ensure multi-action is well-defined

▶ Actions astart and aend are added to indicate start and end of
the multi-action components

▶ aend updates true state and resets value of bookkeeping
propositions



Empirical Evaluation

▶ No implemented algorithms to compare against

▶ No established MA-PDDL domains with interacting actions

▶ Two new domains and two updated ones with interacting
actions, and the problem instances

▶ Maze, TableMover, BoxPushing, ApartmentMover

▶ We show only partial results

▶ The compilation approach generates centralized versions of
the MAP domains



Results – centralized SA planning

Domain Ins (#agents) Length Makespan Time (sec)
M
a
ze

P01 (3) 12 12 0.5
P02 (4) 44 40 11.6
P03 (4) 37 33 18.6
P04 (5) 27 25 4.4
P05 (4) 29 24 182.0
P06 (5) 51 38 811.6

T
a
b
le
-

M
o
ve
r

P01 (3) 23 15 1.0
P02 (4) 29 20 9.1
P03 (4) 64 49 392.3
P04 (5) 56 41 399.6
P05 (5) 60 43 2753.5



Interacting actions: Quick Summary

▶ We proposed an intuitive formalism for planning with
interacting actions

▶ Specifies joint-actions in a compositional manner

▶ Supports efficient planning as well

▶ Irrationality: semantics allows for some cases where the
interpretation is not the intuitive one

▶ We improved (simplified) semantics and refined compilation
to enforce it

▶ A refined interpretation + new compilation approach to
support efficient planning (AIJ 2020)

▶ We quickly discuss it next...



Revised Interpretation

▶ Box-Pushing Domain

▶ Actions: push, 2push, and 3push

▶ Multi-action {push(a1,B),push(a2,B),push(a3,B)}:
▶ Is subsumed by {2push(a1, a2,B),push(a3,B)}
▶ The above two are subsumed by am = {3push(a1, a2, a3,B)}

▶ A well-defined multi-action is never subsumed

▶ Consider the following two multi-actions:

▶ a1m = {2push(a1, a2,B),push(a3,B)};
▶ a2m = {push(a1,B), 2push(a2, a3,B)}
▶ e(a1m) = e(a2m) = {push(a1,B),push(a2,B),push(a3,B)}
▶ (Collaborative) actions: push, 2push, and 3push

▶ Both multi-actions are well-defined



Revised Interpretation

Definition

A multi-action am is well-formed if no subset of its primitive elements
{ai1 , ai2 , . . . , aik} ⊆ e(am) satisfies the following two conditions: (1)
{ai1 , ai2 , . . . , aik} contain primitive elements from at least two ac-
tions (components, i.e., SA and CA) in am. (2) There exists a
collaborative action ac ∈ Ac such that e(ac) = {ai1 , ai2 , . . . , aik}.

▶ Consider am = {2push(a1, a2, b),push(a3, b)} (is well-defined)

▶ e(am) = {push(a1, b), push(a2, b), push(a3, b)}

▶ But, push(a2, b) and push(a3, b) can be combined to form
2push(a2, a3, b)

▶ am is not well-formed as per the above definition

▶ (Skip) the new translation scheme



Human-Robot Collaboration

Proposals based on Interacting Actions



HRC - Practical Assumptions

▶ Humans do not want to be controlled while working alongside
robots

▶ humans can be uncontrollable, but congruent, rational, etc.

▶ Both proactive (for some tasks/actions) and lazy (for some
other) while collaborating

▶ hard to model their intentions, mood, etc.

▶ we can consider these as hidden factors that affect their
decision making - can we estimate their effects?

▶ we seek good planning models to capture such behaviors

▶ A collaborative team of humans and robots need to work
together to achieve shared goals in many practical
scenarios.

▶ examples: service robots at homes, robots helping astronauts
in space, (future) workshops, and many more...



Human-Robot Teaming

▶ For effective and efficient collaboration of humans and robots,
the autonomy needs to think for the humans as well

▶ To consider “human-focused perspectives” about joint task

▶ by developing strategies to understand/predict humans’ intent,
tasks, goals, etc.

▶ An automated planning and decision making view to
understand such teaming considering “human-awareness”

▶ Context: how does the presence of the humans and robots
challenge us differently than multi-robot planning?



HR Teaming - Concurrency & Shared Resources

▶ In principle, autonomy needs to generate contingent plans!

▶ Why? (full-observability?)

▶ Note that humans’ actions can only be estimated that brings
contingencies

▶ Autonomy needs to predict the possible action interaction and
take care of shared resources, i.e., implicitly coordinated plans



HR Teaming - Concurrency & Shared Resources

▶ Joint action formation — autonomy needs to prioritize and
emulate humans’ actions, followed by robots’ actions then

▶ Concepts of well-definedness and well-formedness would
change

▶ We would need a different (which is effective) representation
to cater to issues like plan representation, joint-action
formation, etc.

▶ Human operators bring challenges to plan execution, too



Thank You!


	Introduction
	Multi-Agent Planning
	Collaborative Multi-Agent Systems: Key Challenges

	

