“TEST SCENARIOS GENERATION FOR LOGICAL
CONTROLLERS USED IN EDF NUCLEAR
POWER PLANTS

Supervisors:

Aziz SFAR

Thesis 2022-2025 > Dina IROFTI (EDF)

> Madalina CROITORU (LIRMM)
N’ N’

= 7,

N’ o’

Logic Controllers

inputs ——>

Logic Control
System

; outputs

—>

Logic Controllers

Logic Control
System

; outputs

—>

Logic Controllers

inputs : Logic Control ? outputs
S System —

sensors actuators

~N

rrl\ 'T:
RN e
the ¢
&g
3 <

| i

Validation Tests

inputs ——>

Logic Control
System

; outputs

—>

Validation Tests

Black Box

inputs : Logic Control : outputs

— System —

Validation Tests

Black Box

Logic Control
System

Validation Tests

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Black Box

Logic Control
15 System 5 1

Validation Tests

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Black Box -

Logic Control
15 System 5 1

Validation Tests

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Black Box -

Logic Control
15 System 5 1

Funtional
Specification
(System Design)

Validation Tests

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Black Box

Logic Control
15 System 5 1

A model that describes how
the control system should
operate.

Funtional
Specification
(System Design)

THE EXPECTED BEHAVIOR OF THE SYSTEM

Validation Tests

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Black Box
0 — > 7= — 1
] 3 Logic Control S 0
13 System | 5
2\
A model that describes how
the control system should
operate.
Funtional
Specification > Program

(System Design)

THE EXPECTED BEHAVIOR OF THE SYSTEM

Validation Tests

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Black Box
0 — > 7= — 1
] 3 Logic Control S 0
13 System | 5
2\
A model that describes how
the control system should
operate.
Funtional
Specification > Program

(System Design)

THE EXPECTED BEHAVIOR OF THE SYSTEM

Validation Tests

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Black Box

Logic Control
— s System | S

Funtional Input sequence: 0 0 1/0 0 O0/1 0 O
Specification >
(System Design)

Output sequence: 1 1 1 /0 1 0/0 0 O

THE EXPECTED BEHAVIOR OF THE SYSTEM

Validation Tests

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Black Box

Logic Control
— 5 System |5 x

Funtional
Specification >
(System Design)

Input sequence: 0 0 1/0 0 0/1 0 O

Output sequence: 1 1 1/0 1 0/0 0 O

THE EXPECTED BEHAVIOR OF THE SYSTEM

Validation Tests

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Black Box

Logic Control
0 __ 5 System |5 x o

Funtional Input sequence: 0 0 1/0 0 0/1 0 O
Specification >
(System Design)

Output sequence: 1 1 1 /0 1 0/0 0 O

THE EXPECTED BEHAVIOR OF THE SYSTEM

Validation Tests

THE ACTUAL OBSERVED BEHAVIOR OF THE SYSTEM

Black Box
| — . —> Xx 0
: S| Logic Control > x 0
— > System |_ 5 x o
Funtional Input sequence: 0 0 1/0 0 O0/1 O O
Specification >

I Output :1 1 1/01 0/O0 0 O
(System Deslgn) utput sequence / /

THE EXPECTED BEHAVIOR OF THE SYSTEM

System specification

e

i1
— Hp
i2 |

)
W,

Logical Diagram

01

System specification

1

—~
[—_/

M,

}'—"E

L He

=
|/

Logical Diagram

01

11 0/0

() _——_

oo

0
_./
)

Mealy Machine

3

System specification

01

]
L

\
[
i

Logical Diagram
1/1 0/0

() /\m
v :
e How is the transformation done ? k)

KB representation of the problem ?

Mealy Machine ;

Specifications : Logical Diagrams

Specifications : Logical Diagrams

1 : _—l E M,

L

A logical Diagram is composed of the following elements

Specifications : Logical Diagrams

i1) _ ME M;

L

A logical Diagram is composed of the following elements

e l: inputs

Specifications : Logical Diagrams

i) __l E M,

L

A logical Diagram is composed of the following elements
e l: inputs

O: outputs

Specifications : Logical Diagrams

i) _-_l E M,

LJ

A logical Diagram is composed of the following elements
e l: inputs

O: outputs
e LG: logic gates

Specifications : Logical Diagrams

iy D— — E M,

LJKW

A logical Diagram is composed of the following elements
e l: inputs

O: outputs
e LG: logic gates

* M: memory blocks

Specifications : Logical Diagrams

D_

k‘)LJ

Specifications : Logical Diagrams

D=l
P

Evaluation of Logical Diagrams

01

Evaluation of Logical Diagrams

>7_]E M:
) e

|

Evaluation of logic gates :

Logic gates: AND, OR , NOT

Evaluated from left to right

01

Evaluation of Logical Diagrams

01

Evaluation of Logical Diagrams

N HP
iz_ﬂ =] "
D — " | .
—
|

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

Evaluation of Logical Diagrams

N HP
iz__\ =] "
D — " | .
—)L
|

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

)

Evaluation of Logical Diagrams

— Hp
iz__\ =] "
) — e " |
—
|/

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

|Sequen’ria| evaluation of memory blocks in accordance to an order @

Evaluation of Logical Diagrams

— Hp
iz__\ =] "
) — e ™ | ,
—
|/

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

M_O
| |Sequen’ria| evaluation of memory blocks in accordance to an order @
E . ""H H
Example W = (M2, M1)
M 1

Evaluation of Logical Diagrams

B
&

j
aE
o
o

01

L

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

M_O
| |Sequen’ria| evaluation of memory blocks in accordance to an order @
E . ""H H
Example W = (M2, M1)
M 1

Evaluation of Logical Diagrams

B
&

j
aE
o
o

01

L

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

M_O
| |Sequen’ria| evaluation of memory blocks in accordance to an order @
E . ""H H
Example W = (M2, M1)
M 1

Evaluation of Logical Diagrams

[
Bk

=

01

L

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

M_O
| |Sequen’ria| evaluation of memory blocks in accordance to an order @
E . ""H H
Example W = (M2, M1)
M 1

Evaluation of Logical Diagrams

— | Hp
iz__\ _IE M,
D e |,
—T
|

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

M_O
| |Sequen’ria| evaluation of memory blocks in accordance to an order @
E . ""H H
Example W = (M2, M1)
M 1

Evaluation of Logical Diagrams

Hp
i2 —\ _ =] c M,
_j Ia 37 ’ 7 01
—T
|

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

M_O
| |Sequen’ria| evaluation of memory blocks in accordance to an order @
E . ""H H
Example W = (M2, M1)
M 1

Evaluation of Logical Diagrams

:D_\;L] E iV|1

Hp
i2 —\ _ =] c M,
_j Ia 37 ’ 7 01
—T
|

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

M_O
| |Sequen’ria| evaluation of memory blocks in accordance to an order @
E . ""H H
Example W = (M2, M1)
M 1

Evaluation of Logical Diagrams

— | Hp
iz__\ _IE M,
D e |,
—T
|

Evaluation of memory blocks: We call memory blocks as status blocks : the output value of the
block depends on the values of its inputs and its current output value.

M_O
| |Sequen’ria| evaluation of memory blocks in accordance to an order @
E . ""H H
Example W = (M2, M1)
M 1

First Problem: Test Generation based on Logical Diagrams

LJ
|
T

01

First Problem: Test Generation based on Logical Diagrams

N HP
i2 _| L

—~
|

e
01

) e
v,

* Logical diagrams do not explicitly represent how the output values evolve
in response to changes of input values.

First Problem: Test Generation based on Logical Diagrams

i1

N HP
i2 _| L

) |
W, 2

e
01

) e
v,

* Logical diagrams do not explicitly represent how the output values evolve

in response to changes of input values.
 The whole behavior is described by the evaluation of the diagram for all

the 2! . 2Mpossibilities.

First Problem: Test Generation based on Logical Diagrams

) e I
— Hp |
i2 _|

—~
|

e
01

) e
v,

* Logical diagrams do not explicitly represent how the output values evolve
in response to changes of input values.

 The whole behavior is described by the evaluation of the diagram for all
the 2! . 2Mpossibilities.

* Each evaluation of the outputs for a given set of input values my have to
go through many simulations of the Logical Diagram.

First Problem: Test Generation based on Logical Diagrams

) e I
— Hp |
i2 _|

—~
|

e
01

) e
v,

* Logical diagrams do not explicitly represent how the output values evolve
in response to changes of input values.

 The whole behavior is described by the evaluation of the diagram for all
the 2! . 2Mpossibilities.

* Each evaluation of the outputs for a given set of input values my have to
go through many simulations of the Logical Diagram.

> Generation and selection of test sequences is not obvious.

Second problem : Output values have to converge

FD—\;_IE " ® = (M2, M1)

Second problem : Output values have to converge

FD—\;_IE " ® = (M2, M1)

)
1
0

»

)

Second problem : Output values have to converge

FDTQE " ® = (M2, M1)
o
: =D

Second problem : Output values have to converge

FDTQ = v, ® = (M2, M1)
o

) \—E | M O

|/ 1 — ; 1

Second problem : Output values have to converge

FDTQE " ® = (M2, M1)
o
: =D

Second problem : Output values have to converge

FD—\;_IE " ® = (M2, M1)

Second problem : Output values have to converge

FD—\;_IE " ® = (M2, M1)

Second problem : Output values have to converge

FD—\;_IE " ® = (M2, M1)

Second problem : Output values have to converge

;i£>——1_:JE " ® = (M2, M1)

1=0011 > 0=1lor0?

State graph representation of logical diagrams

10

State graph representation of logical diagrams

ny

n3

My 1 M1

My 1 M0

_T

I1

M1 0 M2 1

My 0 M2 O

n2

Na

10

State graph representation of logical diagrams

I |:: L~ E M, ny

N3

My 1 M1

_T

I1

My 0 M2 1

We propose a formal representation of logical diagrams for:

 Convergence property checking (and possible other properties).

 Generation of test sequences.

My 1 M0

My 0 M2 O

n2

Na

The Sequential Graph of State Transition (SGST)

na

My 1 M, 0

My 0 M2 0

n2
SGST: (N, E)
* N: set of nodes. They represent the possible states
of the logical diagram.
» E: set of edges. They represent all the theoratical
evolution possibilities. Each edge corresponds to
N4 one evolution of one status block M.

11

Effective trails in the SGST and Convergence checking

n3

My 1 M0

M, 0 M, 0

nz

w={M2,MI1}
Trail: n1

Condition:

12

Effective trails in the SGST and Convergence checking

n3

My 1 M0

M, 0 M, 0

nz

w={M2,MI1}
Trail: n1

Condition:

12

Effective trails in the SGST and Convergence checking

n3

(M2 changes)

I2
My 1 M, 1 ’ My 1 M2 0
- I
A
i1 i2 (M1 changes)
Y
M1_0 Mz_l M1_0 M?._O

n2

Ny

w={M2,
Trail: n1

Condition:

12

Effective trails in the SGST and Convergence checking

n3

(M2 changes)

I3
M; 1 M, 1 My 1 M0
- 4
A
i1 i2 (M1 changes)
A4

nz

w={M2,
Trail: n1- n2

Condition: i3

12

Effective trails in the SGST and Convergence checking

n3

(M2 changes)

I3
M1 M 1 My 1 M, 0
- I4
A
i1 i2 (M1 changes)
A4

nz

w={M2,
Trail: n1- n2

Condition: i3

12

Effective trails in the SGST and Convergence checking

n3

(M2 changes)

=
M1 M 1 My 1 M, 0
- I4
A
i1 i2 (M1 changes)
A4

nz

w={V>2,MI1}
Trail: n1- n2

Condition: i3

12

Effective trails in the SGST and Convergence checking

n3

(M2 changes)

M1 M 1
‘
A
i1 i2 (M1 changes)
A4
My 0 M2 1

My 1 M0

M, 0 M, 0

nz

w={M2,/}
Trail: n1-n2 = nl

Condition: i3 . i4

12

Effective trails in the SGST and Convergence checking

n3

(M2 changes)

M1 1M 1
‘
A
i1 i2 (M1 changes)
A4
My 0 M2 1

My 1 M0

M, 0 M, 0

nz

w={M2,/}
Trail: n1-n2 = nl

Condition: i3 . i4

12

Effective trails in the SGST and Convergence checking

n3

(M2 changes)

=
M; 1 M, 1 My 1 M0
- 4
A
i1 i2 (M1 changes)
\i

nz

w={V>2,MI1}
Trail: n1-n2-n1 —n3

Condition: i3 .14 . i2

12

Effective trails in the SGST and Convergence checking

n3

(M2 changes)

I
M;p 1 M1 M; 1 M 0
- I4
A
i1 i2 (M1 changes)
\i
My 0 M2 1 M; 0 M, O

nz

w={V>2,MI1}
Trail: n1-n2-n1 —n3

Condition: i3 .14 . i2

12

Effective trails in the SGST and Convergence checking

(M2 changes)

I
M1 M 1 M1 1 M, 0
- I4
A
i1 i2 (M1 changes)
A4
My 0 M2 1 M; 0 M, O

nz

w={M2, "}
Trail: n1-n2-n1 —n3

Condition: i3 .14 . i2

12

Effective trails in the SGST and Convergence checking

(M2 changes)

I
M1 M 1 M1 1 M, 0
- I4
A
i1 i2 (M1 changes)
A4
My 0 M2 1 M; 0 M, O

nz

w={V",MI}
Trail: n1-n2-n1 —n3

Condition: i13.14 .12 . ~il

12

Effective trails in the SGST and Convergence checking

(M2 changes)

=
M1 M 1 M1 1 M, 0
- I4
A
i1 i2 (M1 changes)
A4

nz

w={M2, M1}
Trail: n1-n2-n1 —n3

Condition: i13.14 .12 . ~il

12

Effective trails in the SGST and Convergence checking

(M2 changes)

i
M, 1 M, 1 ® M; 1 My 0
- 4
A
il i2 (M1 changes)
\

w={M2, M1}
Trail: n1-n2-n1 —n3
Condition: i13.14 .12 . ~il

Trail: n1-n2 -n1 — n2

Condition: i3 .14 . ~i2

12

Effective trails in the SGST and Convergence

(M2 changes)

I3 .
N1 M1 M 1] M1 M 0 1))
- 4
A
il i2 (M1 changes)
y
n3 M0 M 1 My 0 M O Ny

= The infinite traversal of circuit n1-n2 is possible :

Inputs 00 1 1 and 1 O 1 1 cause a non-stable signal at
the output of M2

checking

w={M2, M1}
Trail: n1-n2-n1 —n3

Condition: i13.14 .12 . ~il

Trail: n1-n2 -n1 — n2

Condition: i3 .14 . ~i2

12

Effective trails in the SGST and Convergence checking

n3

.3 »
M1_1 Mz_l Ml_l MZ_O
B 14
A
ip 12
y
M1 0 M2 1 M; 0 M, O

nz

Ny

= The infinite traversal of circuit n1-n2 is possible :

Inputs 00 1 1 and 1 O 1 1 cause a non-stable signal at

the output of M2

M1

HP

HP

M2

Effective trails in the SGST and Convergence checking

I3 -
N1 M1 M 1] My 1M, 0 N2
- 4
A il |
E M1
iq 1> " I_ HP | £2 -
- i4
H2
HP
Y 3 — S
n3 M0 M 1 M1_0 M?__O Ny

Loop structures cause this behavior.
The presence of loops doesn’t necessarily
mean that a non-convergent scenario exists.

= The infinite traversal of circuit n1-n2 is possible :

Inputs 00 1 1 and 1 O 1 1 cause a non-stable signal at
the output of M2

Effective trails in the SGST and Convergence checking

n3

I3 -
M1 M 1 My 1M, 0
g 4
A
I 12
Y
My 0 M2 1 M; 0 M, O

n2

Ny

= The infinite traversal of circuit n1-n2 is possible :

Inputs 00 1 1 and 1 O 1 1 cause a non-stable signal at

the output of M2

e M1
HP
—\] | — —E2| £ w2
_H2
i3 —

Loop structures cause this behavior.
The presence of loops doesn’t necessarily
mean that a non-convergent scenario exists.

This is verifiable on the graph by finding trails
that contain circuits.

Permanent state automaton (PSA)

My 1M1

(M2 changes)
i3—»

<—i4

i1 iz (M1 changes)

M; 0 Mz 1

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

14

Permanent state automaton (PSA)

(M2 changes)
i3—»

Ny MLl M271

<—i4

i1 iz (M1 changes)

nsz My 0 M2 1

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

Permanent state automaton (PSA)

My 1M1

(M2 changes)
i3—»

4—]4

i1 iz (M1 changes)

M; 0 Mz 1

SGST

My 1 M; 0

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

=T

DL
Hp
12 ! =T E M
Ia
—/iD 1 He
i3

14

Permanent state automaton (PSA)

My 1M1

(M2 changes)

»

4—i4

i1 iz (M1 changes)

M; 0 Mz 1

My 1 M; 0

SGST

w={M2,M1}

M; 0 M2 0

An arc represents an elementary evaluation

H

Traill : n1 = n2 —nl1 —n3

M.
. P
et ey e
Ia
Hp
is—/i|:>—/>

14

Permanent state automaton (PSA)

ny

n3

My 1M1

(M2 changes)
— ——

DO B

] I:l(Ml changes)

M; 0 Mz 1

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

Traill : n1 = n2 —nl1 —n3

14

Permanent state automaton (PSA)

ny

n3

My 1M1

(M2 changes)

I, B

i

] I:l(Ml changes)

M; 0 Mz 1

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

E TDjD;I'E—
~D/;'> e

Traill : n1 = n2 —nl1 —n3

14

Permanent state automaton (PSA)

ny

n3

My 1M1

(M2 changes)

I, B

i

] I:l(Ml changes)

M; 0 Mz 1

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

E TDjD;I'E—
~D/;'> e

Traill : n1 = n2 —nl1 —n3

14

Permanent state automaton (PSA)

My 1M1

(M2 changes)
— ——

DO B

] I:l(Ml changes)

M; 0 Mz 1

My 1 M; 0

SGST

w={M2,M1}

M; 0 M2 0

An arc represents an elementary evaluation

=

E

.
=t

Traill : n1 = n2 —nl1 —n3

My
D\iD*AE i

14

Permanent state automaton (PSA)

My 1M1

(M2 changes)
— ——

DO B

] I:l(Ml changes)

M; 0 Mz 1

My 1 M; 0

SGST

w={M2,M1}

M; 0 M2 0

An arc represents an elementary evaluation

=

E

.
=t

Traill : n1 = n2 —nl1 —n3

My
D\iD*AE i

14

Permanent state automaton (PSA)

ny

n3

My 1M1

(M2 changes)
— ——

— ——

] I:l(Ml changes)

M; 0 Mz 1

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

Traill : n1 = n2 —nl1 —n3

14

Permanent state automaton (PSA)

ny

n3

My 1M1

(M2 changes)
— ——

DO B

é T(Ml changes)

M; 0 Mz 1

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

Traill : n1 = n2 —nl1 —n3

14

Permanent state automaton (PSA)

ny

n3

My 1M1

(M2 changes)
— ——

DO B

é T(Ml changes)

M; 0 Mz 1

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

Traill : n1 = n2 —nl1 —n3

14

Permanent state automaton (PSA)

ny

My 1M1

(M2 changes)

M

n3

M; 0 Mz 1

DO B

My 1 M; 0

é T(Ml changes)

M; 0 M2 0

w={M2,M1}

Ny

SGST

An arc represents an elementary evaluation

i

Traill : n1 = n2 —nl1 = n3

Condition1 : i3.i4.i2.~i1

14

Permanent state automaton (PSA)

ny

My 1M1

(M2 changes)

»

4—i4

iz (M1 changes)

n3

M; 0 Mz 1

SG

My 1 M; 0

M; 0 M2 0

w={M2,M1}

Ny

ST

An arc represents an elementary evaluation

&

i

Traill : n1 = n2 —nl1 = n3

Condition1 : i3.i4.i2.~i1

14

Permanent state automaton (PSA)

My 1M1

(M2)
i3—»

(M1)iz i2(M1)

M; 0 Mz 1

4—]4
(M2)

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

=

ip : My
Hp
= . —E M
Ig _
—‘t|j 1 He
i]

14

Permanent state automaton (PSA)

My 1M1

(M2)
—[——»

(M1) (M1)

l

M; 0 Mz 1

-~
(M2)

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

=

rol g

14

Permanent state automaton (PSA)

My 1M1

(M2)

L

(M1) (M1)

l

M; 0 Mz 1

-

My 1 M; 0

(M2)

M; 0 M2 0

SGST

w={M2,M1}

An arc represents an elementary evaluation

=

ol

H

14

Permanent state automaton (PSA)

My 1M1

(M2)

L

(M1) (M1)

l

M; 0 Mz 1

-

My 1 M; 0

(M2)

M; 0 M2 0

SGST

w={M2,M1}

An arc represents an elementary evaluation

=

ol

H

14

Permanent state automaton (PSA)

My 1M1

(M2)
—[——»

(M1) ~(M1)

l

M; 0 Mz 1

-~
(M2)

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

ﬁ?j

1
\jD—* E ™
“i|j 1 He

Permanent state automaton (PSA)

My 1M1

(M2)
—[——»

(M1) ~(M1)

l

M; 0 Mz 1

-~
(M2)

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

ﬁ?j

1
\jD—* E ™
“i|j 1 He

Permanent state automaton (PSA)

My 1M1

(M2)
i3—»

(MD)iz 12 (m1)

M; 0 Mz 1

4—]4
(M2)

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

=

ip : My
Hp
= . —E M
Ig _
—‘t|j 1 He
i]

14

Permanent state automaton (PSA)

(M2)
n, M1 M, 1 '3 > My 1 M; 0 n,
4—i4
| (M2)
(M1)iz 2 (m1)
nz My 0 M 1 M; 0 M, 0 ns W = { M2 ’ M’ }
SGST

An arc represents an elementary evaluation

‘_~D_L Trail2 : n1 — n3
i =T E M;
Hp
i E‘D I e Condition2 : i2.~i3.~i1

14

Permanent state automaton (PSA)

My 1 M; 0

i3—»
My 1 M1
4—]4
M; 0 M 1
SGST

w={M2,M1}

M; 0 M2 0

An arc represents an elementary evaluation

=

Hp
iz—‘t|:>_/'

Hp
ﬁj =D -
Ig

Two possible trails from n1 to

n3:

14

Permanent state automaton (PSA)

ny

My 1M1

4—i4

P

ip 2

l

n3

M; 0 Mz 1

SGST

\

MLl MLO nz

w={M2,MI1}

My 0 M, 0 Ny

An arc represents an elementary evaluation

i e BN

Two possible trails from n1 to
n3:

= R

Traill : n1 = n2 —nl1 = n3

Condition1 : i3.i4.i2.~i1

Trail2 : n1 — n3

Condition2 : i2.~i3.~il

14

Permanent state automaton (PSA)

ny M 1M1
4—i4
nz My 0 M 1
SGST

\

My 1 M, 0 nz

Trails calculation

w={M2,MI1}

My 0 M, 0 Ny

An arc represents an elementary evaluation

M;

Two possible trails from n1 to
n3:

Traill : n1 = n2 —nl1 = n3

Condition]1 : i3.i4.i2.~i1

Trail2 : n1 — n3

Condition2 : i2.~i3.~il

ns
M;_0, M_0)True M;_0, M;_1

il&~i2 & ~i3

M1, M1

i3 & ~i4

i2&~il & (i4|~i3)t0

i2 & ~i3

4 & ~i2 & ~i3

M;_1, M;_0

n2

PSA

il & i3&~i4

i2& i4 & ~il

14

Permanent state automaton (PSA)

ny M 1M1
4—i4
nz My 0 M 1
SGST

\

My 1 M, 0 nz

Trails calculation

w={M2,MI1}

My 0 M, 0 Ny

An arc represents an elementary evaluation

M;

Two possible trails from n1 to
n3:

Traill : n1 = n2 —nl1 = n3

Condition1 : i3.i4.i2.~i1

Trail2 : n1 — n3

Condition2 : i2.~i3.~il

Ng
M;_0, M_0 ; YTrue M; 0, M 1

il & ~i2 & ~i3 i2&~il & (i4|~i3) t0
M;_1,M;_1 i2 & ~i3 il & i3 & ~i4 i2& i4 & ~il
i3 & ~i4 4 & ~i2 & ~i3
My_1, M_0
PSA

An arc (nj, nk) represents all the full simulations of the diagram
from nj to n_k

14

Permanent state automaton (PSA)

\i

np M 1M1 My 1 M, 0 nz
<—i4
.T || . 0
a 12 Trails calculation
nz My 0 M 1 M; 0 M, 0 ns W= { M2 ’ M’ }
SGST

An arc represents an elementary evaluation

Two possible trails from n1 to
fE | n3:

i :
Hp
ki) —E Ma
Ia
Hp —_
| =0

Traill : n1 = n2 —nl1 = n3

Condition1 : i3.i4.i2.~il

Trail2 : n1 — n3

Condition2 : i2.~i3.~il

ns
M;_0, M2_0 DTrue

n3
il & ~i2 & ~i3 i2&~il & (i4|~i3)t0

M 1, M;_1 i2 & ~i3

il & i3 & ~i4 2& i4 & ~il

n

i3& ~i4 4&~i2 & ~i3

M;_1, M,_0

n2

PSA

An arc (nj, nk) represents all the full simulations of the diagram
from nj to n_k

Transition : n1 — n3

Condition: Condition1 + Condition 2
=i2 & ~il & (i4 | ~i3)

14

Equivalent Mealy Machine

Na

M;_0, M,_0 YT'rue My 0, M,_1

n3

12 & ~il & (i4|~i3) t:0

il & ~i2 & ~i3

M;_1, M;_1 i2 & ~i3 il & i3 & ~i4 i2& i4 & ~il

i3 & ~i4 4& ~i2 & ~i3

in=0010/out=1

in=0110/out=1

15

KB Representation

—> GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

16

KB Representation

—> GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

in=01/out=00

in=11/out=01

16

KB Representation

—> GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

in=01/out=00 o States: s1 and s2
* Inputs: il and i2; in=il 2

 Outputs: ol and 02; out=01 02

in=11/out=01

16

KB Representation

—> GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

in=01/out=00 A Scenario is a sequence of input/output values. That is
a succession of transitions in the Mealy Machine.

For example : <01/00> <11/01>< 01/ 00>

in=11/out=01

17

KB Representation

—> GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

Let’s say that :

in=01/out=00

* il is an emergency stop hold button.

e ol is a water pump

We want to find a test sequence that
verifies that the pump is always
deactivated (o1=0) when the emergency
button is on (i1=1)

in=11/out=01

18

KB Representation

—> GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

in=01/out=00

in=11/out=01

Let’s say that :

* il is an emergency stop hold button.
e ol is a water pump

We want to find a test sequence that
verifies that the pump is always

deactivated (o1=0) when the emergency
button is on (i1=1)

> <01/00><11/01> 18

KB Representation

—> GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

in=01/out=00

in=11/out=01

Let’s say that :

* il is an emergency stop hold button.
e ol is a water pump

We want to find a test sequence that
verifies that the pump is always

deactivated (o1=0) when the emergency
button is on (i1=1)

> <01/00><11/01> 18

KB Representation

Fact Base: in=0 1/ out=0 0

/ Vo Vi

i
Timeline

4)"

Input sequence: in=11/out=01

|2:

Visited states:

Generated

Q’rput sequence:

Y, y

KB Representation

Fact Base: in=0 1/ out=0 0

K Vo Vi

i
Timeline

4)"

Input sequence: in=11/out=01

|2:

Visited states:

Generated

Q’rput sequence:

Y, y

KB Representation

Fact Base: in=0 1/ out=0 0

K Vo Vv,

Input sequence:
Timeline

4)"

in=11/out=01

Visited states:

Generated

Q’rput sequence:

Y, s

KB Representation

Fact Base: in=0 1/ out=0 0

-

Vo Vi
i
Input sequence:
l:

Timeline

in=11/out=01

X,

Visited states:

Generated

Q’rpu’r sequence:

Y, s

KB Representation

Fact Base: in=0 1/ out=0 0

-

Vo Vi
i
Input sequence:
l:

Timeline

in=11/out=01

X,

Visited states:

Generated

Q’rput sequence:

Y, s

KB Representation

Fact Base: in=0 1/ out=0 0

-

Vo Vi
i
Input sequence:
l:

Timeline

in=11/out=01

X,

Visited states:

Generated

Q’rput sequence:

Y, s

KB Representation

Fact Base: in=0 1/ out=0 0

-

Vo Vi
i
Input sequence:
l:

Timeline

in=11/out=01

X,

Visited states:

Generated

Q’rput sequence:

Y, 19

KB Representation

Fact Base: in=0 1 / out=0 0

-

Vo My
i
Input sequence:
l:

Timeline

in=11/out=01

X,

Visited states:

Generated

Q’rput sequence:

Y, 19

KB Representation

Fact Base: in=0 1 / out=0 0

-

Vo My
i
Input sequence:
l:

Timeline

in=11/out=01

X,

Visited states:

Generated

Q’rput sequence:

Y, 19

KB Representation

Fact Base: in=0 1 / out=0 0

- ‘. v ‘. ™

i

].
Input sequence:

l:

Timeline

in=11/out=01

Visited states:

Generated
ou'rpu'r sequence:

Y, 19

KB Representation

Fact Base: in=0 1 / out=0 0

/ Vo Vi

i
Timeline

8
e

Input sequence: in=11/out=01

|2:

Visited states:

Generated

Q’rpu’r sequence:

Y, y

KB Representation

Fact Base:

~ vo

i

].
Input sequence:

l:

Vi

Visited states:

Timeline

(o) (o}
Generated
Q’rput sequence:

in=0 1/ out=00

in=11/out=01

19

KB Representation

Fact Base:

~ vo

i

].
Input sequence:

l:

Vi

Visited states:

Timeline

(o) (o}
Generated
Q’rput sequence:

in=0 1/ out=00

in=11/out=01

19

KB Representation

Fact Base: in=0 1 / out=0 0

- v . . ~

Input sequence: in=11/out=01

|2:

>

Timeline

0 |
B

Visited states:

Generated

Q’rpu’r sequence:

Y, y

KB Representation

Fact Base: in=0 1/ out=0 0

/ v . . ~

Input sequence: in=11/out=01

|2:

>

Timeline

0 |
R

Visited states:

Generated

Q’rpu’r sequence:

Y, y

KB Representation

Fact Base: in=0 1 / out=0 0

- ‘. v ‘. ™

in=11/out=01

Input sequence:

|2:

Timeline

Visited states:

Generated

Q’rpu’r sequence:

. 19

KB Representation

in=01/out=00

in=11/out=01

Fact Base: input sequence

v0 Vi A\
iy input(v,) inputValue(v, ‘017) next(v, v,)
l,: input(v,) inputValue(v,, ‘017) next(v, v,)
>

input(v,) next(v, , v,)

Timeline

20

KB Representation

in=01/out=00

in=11/out=01

Fact Base: initial state

state(X,) done(X,)

state(X,) value(X,, ‘s,’)

next(X,, X,)

2]

KB Representation

in=01/out=00

in=11/out=01

Fact Base: initial output

output (O) done(O)
output(O,) value(O,, ‘NOT ACTIVE’)
next(O, O,)

22

KB Representation

in=01/out=00

in=11/out=01

Rules: transitions

Next state in the chain: Find next output in the chain:
Siqte(xnext)’ ne)dl(xcurrent’ Xnext) OUtpUt(onext)’ neXlll(ocurrent’ onext)
done(X_,,....), not done(X _) done(O not done(Onext)

),
current

:> Transition (s1 01 00 s2)
Transition (s, 01 00 s,):

inpu'(vnexf)’ neXt(vcurrent’ vnext) Vqlue(xcurrenf' ‘s] ,)

Find next input vector in the chain:

done(v not done(v__.,) Value(v ‘01’)

),
current next!

KB Representation

in=01/out=00

in=11/out=01

Rules: transitions

Next state in the chain:

state(X__.,), next(X X

current/ next)

done(X not done(X

curreni)’ nexi)

Find next input vector in the chain:

Find next output in the chain:

next(v

input(v current! vnext)

nexi) I

not done(v

done(v next)

curreni)’

o

next)

output(O__ .), next(O

current /

done(O not done(Onext)

curreni)’ [

23

KB Representation

in=01/out=00

in=11/out=01

Rules: transitions

Next state in the chain: Find next output in the chain:
Siqte(xnext)’ ne)dl(xcurrent’ Xnext) OUtpUt(onext)’ neXlll(ocurrent’ onext)
done(X_,,....), not done(X _) done(O not done(Onext)

),
current

:> Transition (s, 11 01 s,)
Transition (s, 11 O1 s,):

e 7
Vqlue(xcurrent’))

Find next input vector in the chain:

i n pu'(vnext) I neXlll(chrrent’ vnext)

done(v not done(v,_) Value(v__ ., ‘117)

curreni)’ next/

KB Representation

in=01/out=00

in=11/out=01

Rules: transitions

done(X__)
value(X ., ‘s,")
done(O,_..)
value(O__ ., ‘00’)
Transition (s, 01 00 s,) ‘ done(v,,,)
3 Xfollowing r‘e)d.(xnext 4 Xfollowing)
3 oI’ollowing ne)dl(onext' ofollowing) 24

KB Representation

in=01/out=00

in=11/out=01

Rules: transitions

—)

done(X

next)

done(O

next)

done(v,_)

31X next(X X

following next / following)

30 next(O (@

following next / following)

24

KB Representation

in=01/out=00

in=11/out=01

Rules: transitions

done(X__)
value(X ., ‘s,")
done(O,_..)
value(O__ ., ‘01’)
Transition (s, 01 00 s,) ‘ done(v,,,)
3 Xfollowing r‘e)d.(xnext 4 Xfollowing)
3 oI’ollowing ne)dl(onext' ofollowing) 24

KB Representation

in=01/out=00

in=11/out=01

Queries:

Fact base:

Input sequence

Input sequence

Input sequence

We want to find a test sequence
that verifies that the pump is
always deactivated (o1=0) when
the emergency button is on (i1=1)

25

Thank you !

