
Enumeration
and Related Problems

in Query Answering
Nofar Carmeli

Inria, LIRMM, Univ Montpellier, CNRS

2

•Enumeration in query answering

•Enumeration-related tasks

•Enumeration-related tasks in query answering

Example

• Join query:

3

Name Role Address Period Salary Cost

Jack Junior dev Boston 11/2020 4000 50

Jill Senior dev Brookline 11/2020 4500 100

Joanna Senior dev Braintree 11/2020 4500 200

Jack Junior dev Boston 12/2020 7000 50

Jill Senior dev Brookline 12/2020 7100 100

Joanna Senior dev Braintree 12/2020 7100 200

Join Results

Name Role Address

Jack Junior dev Boston

Jill Senior dev Brookline

Joanna Senior dev Braintree

Employees

Period Role Salary

11/2020 Junior dev 4000

11/2020 Senior dev 4500

12/2020 Junior dev 7000

12/2020 Senior dev 7100

Remuneration

Address Cost

Boston 50

Brookline 100

Braintree 200

Travel

𝑸 𝑵,𝑹, 𝑨, 𝑷, 𝑺, 𝑪 ← 𝑬𝒎𝒑𝒍𝒐𝒚𝒆𝒆𝒔 𝑵,𝑹, 𝑺 , 𝑹𝒆𝒎𝒖𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝑷,𝑹, 𝑺 , 𝑻𝒓𝒂𝒗𝒆𝒍(𝑨, 𝑪)

Example

• Conjunctive query:

4

Name Cost

Jack 50

Jill 100

Joanna 200

Query Results

Name Role Address

Jack Junior dev Boston

Jill Senior dev Brookline

Joanna Senior dev Braintree

Employees

Period Role Salary

11/2020 Junior dev 4000

11/2020 Senior dev 4500

12/2020 Junior dev 7000

12/2020 Senior dev 7100

Remuneration

Address Cost

Boston 50

Brookline 100

Braintree 200

Travel

𝑸 𝑵, 𝑪 ← 𝑬𝒎𝒑𝒍𝒐𝒚𝒆𝒆𝒔 𝑵,𝑹, 𝑨 , 𝑻𝒓𝒂𝒗𝒆𝒍(𝑨, 𝑪)

Challenges

• Many answers

• Many intermediate answers

5

x y

a1 b1

a2 b1

a3 b1

y z

b1 c1

b1 c2

R S

x y z

a1 b1 c1

a1 b1 c2

a2 b1 c1

a2 b1 c2

a3 b1 c1

a3 b1 c2

𝑸𝟏(𝒙, 𝒚, 𝒛) ← 𝑹 𝒙, 𝒚 , 𝑺(𝒚, 𝒛)

x z

a2 c1

a4 c2

T

x y z

a2 b1 c1

𝑸𝟐 𝒙, 𝒚, 𝒛 ← 𝑹 𝒙, 𝒚 , 𝑺 𝒚, 𝒛 , 𝑻(𝒙, 𝒛)

Complexity Guarantees

• Data complexity
• input = database

• query size = constant

• Possibly: output ≫ input
(Polynomial number of answers)

• Minimal requirements:
• Linear time (to read input)

• Constant time per answer (to print output)

• RAM model

• We allow log factors

6

Complexity Measures
• Linear total time

• Total time 𝑂(𝑛 + 𝑚)

• Linear partial time
• Time before the 𝑖th answer is 𝑂(𝑛 + 𝑖)

• Linear preprocessing and constant delay
• Time before the first answer 𝑂(𝑛)
• Time between successive answers 𝑂(1)

7

time

time

time

equivalent
assuming

polynomial space
(Cheater’s Lemma)

𝑛 = input size, 𝑚 = output size

[C, Kröll; TODS 21]

/ Amortized constant delay

Type of Results

• Can we solve a task for a given query in a given time complexity?

Yes / No

8

conditional
lower
bound

algorithm

Conditional Lower Bounds

𝑄 𝑥, 𝑧 ← 𝑅1 𝑥, 𝑦 , 𝑅2 𝑦, 𝑧

Assumption: Boolean 𝑛 × 𝑛 matrices cannot be multiplied in time 𝑂(𝑛2)

[Bagan, Durand, Grandjean; CSL 07]

1 1
0 1

0 1
0 1

=
? ?
? ?

𝑹𝟏

R C

1 1

1 2

2 2

𝑹𝟐

R C

1 2

2 2

𝑸

R C

1 2

2 2

9

0 1
0 1

Indices of ones

𝑂 𝑛2 preprocessing + 𝑂 1 delay = 𝑂 𝑛2 total ⟹ no linear preprocessing constant delay

10

•Enumeration in query answering

•Enumeration-related tasks

•Enumeration-related tasks in query answering

Limitations of Enumeration

• Must produce all answers to get:
• The best answer

• The median answer

• A random answer

• Partial solution: ordered enumeration

11

answers answers

ranked
enumeration

random-order
enumeration

Enumeration-Related Problems

12

enumeration

ranked

enumeration

random-ordered

enumeration

sampling

top k

Enumeration as a data structure

• Enumeration provides:
• Initialize

• Get next answer

• An array of answers provides access to any index:
• Initialize

• Get answer number i

13

Direct Access Definition

• Given i, returns the ith answer or “out of bound”.

• No constraints on the ordering used

14

DA4

DA1

DA9 out of bound

answers

Counting via Direct Access

• Assumption: the number of answers is bounded by a polynomial

• Direct Access returns “out of bound” if needed
• Allows checking if 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 > 𝑘

• Binary search for 𝑎𝑛𝑠𝑤𝑒𝑟𝑠
• Requires 𝑂(log |𝑎𝑛𝑠𝑤𝑒𝑟𝑠|) calls for Direct Access

• If 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 is polynomial, log |𝑎𝑛𝑠𝑤𝑒𝑟𝑠| = 𝑂(log 𝑖𝑛𝑝𝑢𝑡)

• This takes 𝑂(log 𝑖𝑛𝑝𝑢𝑡 ⋅ 𝑐𝑜𝑠𝑡(𝑎𝑐𝑐𝑒𝑠𝑠)) time

15

Connection between problems

16

counting

sampling
enumeration

top k

ranked

enumeration

random-ordered

enumeration

direct access

* with log time per answer after linear preprocessing

Random-Ordered Enumeration via Direct Access

1) Find the number N of answers

2) Find a random permutation of 1,…,N

3) Direct access to answers

17

6

5 6 4 2 1 3
Modified Fisher-

Yates Shuffle

Direct Access

Direct Access
+

Binary Search

[C, Zeevi, Berkholz, Kimelfeld, Schweikardt; PODS 20]

answers

Fisher-Yates Shuffle

18

Place 1,… , 𝑛 in array
For 𝑖 in 1,… , 𝑛:

choose j randomly from {𝑖, … , 𝑛}
replace 𝑖 and 𝑗

𝑖 𝑗

1 2 3 4 513
𝑖 𝑗

25
𝑖 𝑖

42
𝑖

[Durstenfeld 1964]

Fisher-Yates Shuffle

19

Place 1,… , 𝑛 in array
For 𝑖 in 1,… , 𝑛:

choose j randomly from {𝑖, … , 𝑛}
replace 𝑖 and 𝑗

place 1,… , 𝑛 in array (lazy initialization)
for 𝑖 in 1,… , 𝑛:

choose j randomly from {𝑖, … , 𝑛}
replace 𝑖 and 𝑗
print 𝑎[𝑖]

Constant delay variant:

𝑖 𝑗

1 2 3 4 513
𝑖 𝑗

25
𝑖 𝑖

42
𝑖

Connection between problems

20

counting

sampling
enumeration

top k

ranked

enumeration

random-ordered

enumeration

direct access

* with log time per answer after linear preprocessing

Quantile Computation via Ranked Access

• What is the median monthly cost of an employee?

21

• Solution 1:
join, sort, access the middle

• Solution 2:
count, ranked enumeration until the middle

• Solution 3:
count, ranked access to the middle

Name Role Address Period Salary Cost

Jack Junior dev Boston 11/2020 4000 50

Jill Senior dev Brookline 11/2020 4500 100

Joanna Senior dev Braintree 11/2020 4500 200

Jack Junior dev Boston 12/2020 7000 50

Jill Senior dev Brookline 12/2020 7100 100

Joanna Senior dev Braintree 12/2020 7100 200

Join Results

3rd

Count = 6

Name Role Address

Jack Junior dev Boston

Jill Senior dev Brookline

Joanna Senior dev Braintree

Employees

Period Role Salary

11/2020 Junior dev 4000

11/2020 Senior dev 4500

12/2020 Junior dev 7000

12/2020 Senior dev 7100

Remuneration

Address Cost

Boston 50

Brookline 100

Braintree 200

Travel

Direct Access Definition

• Given i, returns the ith answer or “out of bound”.

• No constraints on the ordering used

22

DA4

DA1

DA9 out of bound

answers

Ranked

User-specified order

Goal: efficient ranked access

23

problem: query + order

input: database instance

data structure

index

The 57th answer
is (𝑐1, 𝑐2, 𝑐3)

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅 𝑥, 𝑧 , 𝑆(𝑧, 𝑦)

Lexicographic 𝑥 > 𝑦 > 𝑧

57

answer

Overview of Tasks

24

ranked access

counting

sampling
enumeration

top k

ranked

enumeration

random-ordered

enumeration

direct access
quantile

computation

* with log time per answer after linear preprocessing

25

•Enumeration in query answering

•Enumeration-related tasks

•Enumeration-related tasks in query answering

Challenges

• Many answers

• Many intermediate answers

26

x y

a1 b1

a2 b1

a3 b1

y z

b1 c1

b1 c2

R S

x y z

a1 b1 c1

a1 b1 c2

a2 b1 c1

a2 b1 c2

a3 b1 c1

a3 b1 c2

𝑸𝟏(𝒙, 𝒚, 𝒛) ← 𝑹 𝒙, 𝒚 , 𝑺(𝒚, 𝒛)

x z

a2 c1

a4 c2

T

x y z

a2 b1 c1

𝑸𝟐 𝒙, 𝒚, 𝒛 ← 𝑹 𝒙, 𝒚 , 𝑺 𝒚, 𝒛 , 𝑻(𝒙, 𝒛)

dangling tuples

Definitions

1. a node for every atom 2. tree 3. for every variable X:
the nodes containing X form a subtree

27

4. a subtree with exactly the free variables

possibly also subsets

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅1 𝑥, 𝑦 , 𝑅2 𝑦, 𝑧 , 𝑅3(𝑧, 𝑤)
𝑧, 𝑤

𝑥, 𝑦

𝑦, 𝑧

An acyclic CQ has a graph with:

A free-connex CQ also requires:

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅1 𝑥, 𝑦 , 𝑅2 𝑦, 𝑧, 𝑤 , 𝑅3(𝑤, 𝑣)
𝑦, 𝑧, 𝑤

𝑥, 𝑦

𝑤, 𝑣

𝑦, 𝑧 𝑦, 𝑧, 𝑤

𝑥, 𝑦

𝑤, 𝑣

[BaganDurandGrandjean 2007]

Free-Connex CQs

Reduce to acyclic no projections
1. Find a join tree
2. Remove dangling tuples

[Yannakakis81]
3. Ignore existential variables

Then, join efficiently
1. Nested loops

28

x y

a1 b1

a1 b2

a2 b2

y z

b1 e1

b2 e2

b3 e3

w v

c2 d1

c2 d2

c3 d2

inside
out

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅1 𝑥, 𝑦 , 𝑅2 𝑦, 𝑧, 𝑤 , 𝑅3(𝑤, 𝑣)

y z w

b1 e1 c1

b2 e2 c2

b3 e3 c3

𝑦, 𝑧, 𝑤

𝑥, 𝑦

𝑤, 𝑣

𝑦, 𝑧

Lower Bound: acyclic non-free-connex

𝑄 𝑥, 𝑧 ← 𝑅1 𝑥, 𝑦 , 𝑅2 𝑦, 𝑧

Assumption: Boolean 𝑛 × 𝑛 matrices cannot be multiplied in time 𝑂(𝑛2)

[Bagan, Durand, Grandjean; CSL 07]

1 1
0 1

0 1
0 1

=
? ?
? ?

𝑹𝟏

R C

1 1

1 2

2 2

𝑹𝟐

R C

1 2

2 2

𝑸

R C

1 2

2 2

29

Acyclic non-free-connex:

0 1
0 1

Indices of ones

𝑂 𝑛2 preprocessing + 𝑂 1 delay = 𝑂 𝑛2 total ⟹ no linear preprocessing constant delay

Works also for log delay

works for every
self-join-free

acyclic non-free-connex
conjunctive query

Enumeration Dichotomy

self-join-free
conjunctive queries

acyclic

free-connex

free-connex

30

[Brault-Baron 2013]

[BaganDurandGrandjean 2007]

* Assuming the hardness of Boolean matrix multiplication and hyperclique detection

enumerable in
linear preprocessing

and log delay
⇔

Overview of Tasks

31

ranked access

counting

sampling
enumeration

top k

ranked

enumeration

random-ordered

enumeration

direct access
quantile

computation

* with log time per answer after linear preprocessing

Can be solved efficiently* for all free-connex CQs?

32

Yes
* with log time per answer after linear preprocessing

ranked access

quantile
computation

counting

sampling
enumeration

top k

ranked

enumeration

random-ordered

enumeration

direct access

Direct Access Definition

• Given i, returns the ith answer or “out of bound”.

• No constraints on the ordering used

33

DA4

DA1

DA9 out of bound

answers

Direct Access

34

[Brault-Baron 2013]

Direct Access Algorithm

linear preprocessing + log access

Algorithm

35

𝒗𝟐 𝒗𝟒

b1 d1

b1 d2

b1 d3

b2 d4

𝒗𝟐

b1

b2

w

1

1

1

1

w

3

1
𝒗𝟏 𝒗𝟑

a1 c1

a1 c2

a2 c2

𝒗𝟏

a1

a2

w

8

4

w

1

1

1

6 = 1 ⋅ 4 + 2

Access 1

Access 2

Access 6

• Preprocessing:
• DP up the tree
• computes how many answers in a subtree use each tuple

• Access:
• recurse down the tree
• splits the desired index between the children

Σ𝑤=4

𝑣1, 𝑣3 𝑣2, 𝑣4𝑣2𝑣1

[C, Zeevi, Berkholz, Kimelfeld, Schweikardt; PODS 20]

Can be solved efficiently* for all free-connex CQs?

36

Yes
* with log time per answer after linear preprocessing

ranked access

quantile
computation

counting

sampling
enumeration

top k

ranked

enumeration

random-ordered

enumeration

direct access

Algorithm

37

𝒗𝟐 𝒗𝟒

b1 d1

b1 d2

b1 d3

b2 d4

𝒗𝟐

b1

b2

w

1

1

1

1

w

3

1
𝒗𝟏 𝒗𝟑

a1 c1

a1 c2

a2 c2

𝒗𝟏

a1

a2

w

8

4

w

1

1

1

Access 1

Access 2

Access 6

𝒗𝟏 𝒗𝟑 𝒗𝟐 𝒗𝟒

a1 c1 b1 d1

a1 c1 b1 d2

a1 c1 b1 d3

a1 c1 b2 d4

a1 c2 b1 d1

a1 c2 b1 d2

a1 c2 b1 d3

a1 c2 b2 d4

…

Resulting order:

• Preprocessing:
• DP up the tree
• computes how many answers in a subtree use each tuple

• Access:
• recurse down the tree
• splits the desired index between the children

[C, Zeevi, Berkholz, Kimelfeld, Schweikardt; PODS 20]

6 = 1 ⋅ 4 + 2

Σ𝑤=4

Algorithm

38

𝒗𝟐 𝒗𝟒

b1 d1

b1 d2

b1 d3

b2 d4

𝒗𝟐

b1

b2

w

1

1

1

1

w

3

1
𝒗𝟏 𝒗𝟑

a1 c1

a1 c2

a2 c2

𝒗𝟏

a1

a2

w

8

4

w

1

1

1

Orders the algorithm can achieve:
DFS of a join tree

• Preprocessing:
• DP up the tree
• computes how many answers in a subtree use each tuple

• Access:
• recurse down the tree
• splits the desired index between the children

[C, Zeevi, Berkholz, Kimelfeld, Schweikardt; PODS 20]

Example

• No disruptive trio

• Not a DFS of a join tree

• Can it be solved with ideal guarantees?

• Yes!

39

𝑄2 𝑣1, 𝑣2, 𝑣3, 𝑣4 ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣2, 𝑣4)

Algorithm

40

𝒗𝟐 𝒗𝟒

b1 d1

b1 d2

b1 d3

b2 d4

𝒗𝟐

b1

b2

w

1

1

1

1

w

3

1
𝒗𝟏 𝒗𝟑

a1 c1

a1 c2

a2 c2

𝒗𝟏

a1

a2

w

8

4

w

1

1

1

Factor 2 to the weights

Access 6

Access 6

• Preprocessing:
• DP up the tree

• computes how many answers in a subtree use each tuple

• Access:
[C, Zeevi, Berkholz, Kimelfeld, Schweikardt; PODS 20]

• recurse down the tree

• splits the desired index between the children

• Modified Access:
[C, Tziavelis, Gatterbauer, Kimelfeld, Riedewald; PODS 21]

• Move children on the fly Σ𝑤=2

--6

--2

Orders the algorithm can achieve:
Orders matching a layered join tree

Layered Trees

• Layered tree for a CQ and a variable ordering:
• Join-tree for an inclusive extension

• Layer 𝑖 = one node with last variable 𝑣𝑖
• The induced graph by the first k layers is a tree, for all k

41

𝑣1, 𝑣3 𝑣2, 𝑣4𝑣2𝑣1 𝑣1, 𝑣3 𝑣2, 𝑣4𝑣2𝑣1

𝑄2 𝑣1, 𝑣2, 𝑣3, 𝑣4 ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣2, 𝑣4)

Enumeration with Projections via Ranked Access

• Reduction:

Log number of direct-access calls between answers

42

𝑄2 𝑣1, 𝑣2, 𝑣3 ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣3, 𝑣2)

𝑄1 𝑣1, 𝑣2 ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣3, 𝑣2)

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒂𝟏 𝒃𝟏 𝒄𝟏

𝒂𝟏 𝒃𝟏 𝒄𝟐

𝒂𝟏 𝒃𝟏 𝒄𝟑

𝒂𝟏 𝒃𝟏 𝒄𝟒

𝒂𝟏 𝒃𝟏 𝒄𝟓

𝒂𝟏 𝒃𝟐 𝒄𝟏

𝒂𝟏 𝒃𝟐 𝒄𝟐

𝒂𝟐 𝒃𝟏 𝒄𝟏

Enumerate

Lexicographic access

using
binary search

for next

different 𝒗𝟏,

𝒗𝟐 values

⇒
𝑄1 has no enumeration

with polylog delay
𝑄2 has no lexicographic access

with polylog access time

[C, Tziavelis, Gatterbauer, Kimelfeld, Riedewald; PODS 21]

Hardness Result

• Can be extended whenever there is a disruptive trio

• Example: 𝑄2(𝑣1, 𝑣2, 𝑣3) ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣3, 𝑣2)

43

Def: disruptive trio

𝑣3

𝑣1 𝑣2x

last out of the three

share an atom

∃ Layered join tree ⇔ ¬∃ disruptive trio

[C, Tziavelis, Gatterbauer, Kimelfeld, Riedewald; PODS 21]

Ranked Access

44

Ranked Access Dichotomy

linear preprocessing + log access
⇕

no disruptive trio in order

* Assuming the hardness of Boolean matrix multiplication and hyperclique detection

[C, Tziavelis, Gatterbauer, Kimelfeld, Riedewald; PODS 21]

Can be solved efficiently* for all free-connex CQs?

45

No

Yes
* with log time per answer after linear preprocessing

ranked access

quantile
computation

counting

sampling
enumeration

top k

ranked

enumeration

random-ordered

enumeration

direct access

For lexicographic orders:

Ranked Enumeration

46

[Tziavelis, Gatterbauer, Riedewald; VLDB 21]

Ranked Enumeration Algorithm

for any lexicographic user-specified order

linear preprocessing + log delay

Can be solved efficiently* for all free-connex CQs?

47

No

Yes
* with log time per answer after linear preprocessing

ranked access

quantile
computation

counting

sampling
enumeration

top k

ranked

enumeration

random-ordered

enumeration

direct access

For lexicographic orders:

Ranked Access Problem

48

problem: query + order

input: database instance

data structure

index

The 57th answer
is (𝑐1, 𝑐2, 𝑐3)

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅 𝑥, 𝑧 , 𝑆(𝑧, 𝑦)

Lexicographic 𝑥 > 𝑦 > 𝑧

57

answer

Selection Problem

49

Problem: query + order

Input: database instance

factorized database

index

The 57th answer
is (𝑐1, 𝑐2, 𝑐3)

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅 𝑥, 𝑧 , 𝑆(𝑧, 𝑦)

Lexicographic 𝑥 > 𝑦 > 𝑧

57

answer

(supports a single access call)

Selection

50

Selection Algorithm

for any lexicographic order

linear time

[C, Tziavelis, Gatterbauer, Kimelfeld, Riedewald; PODS 21]

More tractable <query,order> pairs (than ranked access)
Example: 𝑄2 𝑣1, 𝑣2, 𝑣3 ← 𝑅 𝑣1, 𝑣3 , 𝑆 𝑣3, 𝑣2

Can be solved efficiently* for all free-connex CQs?

51

No

Yes
* with log time per answer after linear preprocessing

ranked access

quantile
computation

counting

sampling
enumeration

top k

ranked

enumeration

random-ordered

enumeration

direct access

For lexicographic orders:

52

•Enumeration in query answering

•Enumeration-related tasks

•Enumeration-related tasks in query answering

Conclusion

• Change of approach for answering queries:
materializing answers → structure for accessing answers

• Defined relevant tasks, studied their connections

• Sometimes, can solve more elaborate tasks without higher complexity

53

Enumeration-Related Problems

54

ranked access

quantile
computation

counting

sampling
enumeration

top k

ranked

enumeration

random-ordered

enumeration

direct access

Can be solved efficiently* for all free-connex CQs?

55

No

Yes
* with log time per answer after linear preprocessing

ranked access

quantile
computation

counting

sampling
enumeration

top k

ranked

enumeration

random-ordered

enumeration

direct access

For lexicographic orders:

Outlook

• Handle hard cases (next talk)

• Consider other orders and queries

56

57

No

Yes
* with log time per answer after linear preprocessing

ranked access

quantile
computation

counting

sampling
enumeration

top k

ranked

enumeration

random-ordered

enumeration

direct access

Can be solved efficiently* for all free-connex CQs?
For sum of weights orders:

Outlook

• Handle hard cases (next talk)

• Consider other orders and queries

• Enumeration-related tasks in other domains

58

Extra Slides

59

Self-Joins
• Lower bounds do not apply with self-joins

• Can they be easier?
• Yes! [Berkholz, Gerhardt, Schweikardt; SIGLOG News 20]

• A simpler example:

60

𝑄1 𝑥, 𝑦, 𝑧, 𝑤 ← 𝑅1 𝑥, 𝑦 , 𝑅2 𝑦, 𝑧 , 𝑅3(𝑥, 𝑤) 𝑅4(𝑤, 𝑧)

𝑄2 𝑥, 𝑦, 𝑧, 𝑤 ← 𝑅1 𝑥, 𝑦 , 𝑅2 𝑦, 𝑧 , 𝑅1(𝑥, 𝑤) 𝑅2(𝑧, 𝑤)

𝑥

𝑦

𝑧

𝑤

𝑅1 𝑅3

𝑅2 𝑅4

𝑄1: 𝑥

𝑦

𝑧

𝑤

𝑅1 𝑅1

𝑅2 𝑅2

𝑄2:

