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* Logical diagrams do not explicitly represent how the output values evolve
in response to changes of input values.

 The whole behavior is described by the evaluation of the diagram for all
the 2! . 2Mpossibilities.

* Each evaluation of the outputs for a given set of input values my have to
go through many simulations of the Logical Diagram.

> Generation and selection of test sequences is not obvious.
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 Convergence property checking (and possible other properties).
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The Sequential Graph of State Transition (SGST)
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* N: set of nodes. They represent the possible states
of the logical diagram.
» E: set of edges. They represent all the theoratical
evolution possibilities. Each edge corresponds to
N4 one evolution of one status block M.
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(M2)
i3—»

(MD)iz 12 (m1)

M; 0 Mz 1

4—]4
(M2)

My 1 M; 0

SGST

M; 0 M2 0

w={M2,M1}

An arc represents an elementary evaluation

=

ip : My
Hp
= . —E M
Ig _
—‘t|j 1 He
i]
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Permanent state automaton (PSA)

(M2)
n, M1 M, 1 '3 > My 1 M; 0 n,
4—i4
| (M2)
(M1)iz 2 (m1)
nz My 0 M 1 M; 0 M, 0 ns W = { M2 ’ M’ }
SGST

An arc represents an elementary evaluation

‘_~D_L Trail2 : n1 — n3
i =T E M;
Hp
i E‘D I e Condition2 : i2.~i3.~i1
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Permanent state automaton (PSA)

My 1 M; 0

i3—»
My 1 M1
4—]4
M; 0 M 1
SGST

w={M2,M1}

M; 0 M2 0

An arc represents an elementary evaluation

=

Hp
iz—‘t|:>_/'

Hp
ﬁj =D -
Ig

Two possible trails from n1 to

n3:
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Permanent state automaton (PSA)

ny

My 1M1

4—i4

P

ip 2

l

n3

M; 0 Mz 1

SGST

\

MLl MLO nz

w={M2,MI1}

My 0 M, 0 Ny

An arc represents an elementary evaluation

i e BN

Two possible trails from n1 to
n3:

= R

Traill : n1 = n2 —nl1 = n3

Condition1 : i3.i4.i2.~i1

Trail2 : n1 — n3

Condition2 : i2.~i3.~il

14



Permanent state automaton (PSA)

ny M 1M1
4—i4
nz My 0 M 1
SGST

\

My 1 M, 0 nz

Trails calculation

w={M2,MI1}

My 0 M, 0 Ny

An arc represents an elementary evaluation

M;

Two possible trails from n1 to
n3:

Traill : n1 = n2 —nl1 = n3

Condition]1 : i3.i4.i2.~i1

Trail2 : n1 — n3

Condition2 : i2.~i3.~il

ns
M;_0, M_0 )True M;_0, M;_1

il&~i2 & ~i3

M1, M1

i3 & ~i4

i2&~il & (i4|~i3)t0

i2 & ~i3

4 & ~i2 & ~i3

M;_1, M;_0

n2

PSA

il & i3&~i4

i2& i4 & ~il

14



Permanent state automaton (PSA)

ny M 1M1
4—i4
nz My 0 M 1
SGST

\

My 1 M, 0 nz

Trails calculation

w={M2,MI1}

My 0 M, 0 Ny

An arc represents an elementary evaluation

M;

Two possible trails from n1 to
n3:

Traill : n1 = n2 —nl1 = n3

Condition1 : i3.i4.i2.~i1

Trail2 : n1 — n3

Condition2 : i2.~i3.~il

Ng
M;_0, M_0 ; YTrue M; 0, M 1

il & ~i2 & ~i3 i2&~il & (i4|~i3) t0
M;_1,M;_1 i2 & ~i3 il & i3 & ~i4 i2& i4 & ~il
i3 & ~i4 4 & ~i2 & ~i3
My_1, M_0
PSA

An arc (nj, nk) represents all the full simulations of the diagram
from nj to n_k

14



Permanent state automaton (PSA)

\i

np M 1M1 My 1 M, 0 nz
<—i4
.T || . 0
a 12 Trails calculation
nz My 0 M 1 M; 0 M, 0 ns W= { M2 ’ M’ }
SGST

An arc represents an elementary evaluation

Two possible trails from n1 to
fE | n3:

i :
Hp
ki ) —E Ma
Ia
Hp —_
| =0

Traill : n1 = n2 —nl1 = n3

Condition1 : i3.i4.i2.~il

Trail2 : n1 — n3

Condition2 : i2.~i3.~il

ns
M;_0, M2_0 DTrue

n3
il & ~i2 & ~i3 i2&~il & (i4|~i3)t0

M 1, M;_1 i2 & ~i3

il & i3 & ~i4 2& i4 & ~il

n

i3& ~i4 4&~i2 & ~i3

M;_1, M,_0

n2

PSA

An arc (nj, nk) represents all the full simulations of the diagram
from nj to n_k

Transition : n1 — n3

Condition: Condition1 + Condition 2
=i2 & ~il & (i4 | ~i3)

14



Equivalent Mealy Machine

Na

M;_0, M,_0 YT'rue My 0, M,_1

n3

12 & ~il & (i4|~i3) t:0

il & ~i2 & ~i3

M;_1, M;_1 i2 & ~i3 il & i3 & ~i4 i2& i4 & ~il

i3 & ~i4 4& ~i2 & ~i3

in=0010/out=1

in=0110/out=1

15






KB Representation

—> GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY
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KB Representation

—> GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

in=01/out=00

in=11/out=01
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KB Representation

—> GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

in=01/out=00 o States: s1 and s2
* Inputs: il and i2; in=il 2

 Outputs: ol and 02; out=01 02

in=11/out=01

16



KB Representation

—> GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

in=01/out=00 A Scenario is a sequence of input/output values. That is
a succession of transitions in the Mealy Machine.

For example : <01/00> <11/01>< 01/ 00>

in=11/out=01

17



KB Representation

—> GOAL : AUTOMATICALLY GENERATE TEST SCENARIOS THE WAY EXPERTS ARE DOING MANUALLY

Let’s say that :

in=01/out=00

* il is an emergency stop hold button.

e ol is a water pump

We want to find a test sequence that
verifies that the pump is always
deactivated (o1=0) when the emergency
button is on (i1=1)

in=11/out=01

18
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We want to find a test sequence that
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i
Timeline
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Input sequence: in=11/out=01
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Visited states:

Generated

Q’rput sequence:

Y, y
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KB Representation

Fact Base: in=0 1/ out=0 0
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Input sequence:
Timeline
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Visited states:

Generated

Q’rput sequence:
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KB Representation

Fact Base: in=0 1/ out=0 0

-

Vo Vi
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Input sequence:
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Visited states:

Generated
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KB Representation
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KB Representation
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Input sequence:
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KB Representation

Fact Base: in=0 1 / out=0 0
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Input sequence:
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Timeline
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Visited states:
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KB Representation

Fact Base: in=0 1 / out=0 0

/ Vo Vi

i
Timeline

8
e

Input sequence: in=11/out=01

|2:

Visited states:

Generated

Q’rpu’r sequence:

Y, y



KB Representation

Fact Base:

~ vo

i

].
Input sequence:

l:

Vi

Visited states:

Timeline

(o) (o}
Generated
Q’rput sequence:

in=0 1/ out=00

in=11/out=01
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KB Representation

Fact Base:

~ vo

i

].
Input sequence:

l:

Vi

Visited states:

Timeline

(o) (o}
Generated
Q’rput sequence:

in=0 1/ out=00

in=11/out=01
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KB Representation

Fact Base: in=0 1 / out=0 0
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Input sequence: in=11/out=01

|2:
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Visited states:

Generated
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KB Representation

Fact Base: in=0 1/ out=0 0
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Input sequence: in=11/out=01
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Visited states:

Generated
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KB Representation

Fact Base: in=0 1 / out=0 0

- ‘. v ‘. ™

in=11/out=01

Input sequence:

|2:

Timeline

Visited states:

Generated

Q’rpu’r sequence:

. 19



KB Representation

in=01/out=00

in=11/out=01

Fact Base: input sequence

v0 Vi A\
iy input(v,) inputValue(v, ‘017) next(v, v,)
l,: input(v,) inputValue(v,, ‘017) next(v, v,)
>

input(v,) next(v, , v,)

Timeline

20



KB Representation

in=01/out=00

in=11/out=01

Fact Base: initial state

state(X,) done(X,)

state(X,) value(X,, ‘s,’)

next(X,, X,)

2]



KB Representation

in=01/out=00

in=11/out=01

Fact Base: initial output

output (O) done(O)
output(O,) value(O,, ‘NOT ACTIVE’)
next(O, O,)

22



KB Representation

in=01/out=00

in=11/out=01

Rules: transitions

Next state in the chain: Find next output in the chain:
Siqte(xnext)’ ne)dl(xcurrent’ Xnext) OUtpUt(onext)’ neXlll(ocurrent’ onext)
done(X_,,....), not done(X _ ) done(O not done(Onext)

),
current

:> Transition (s1 01 00 s2)
Transition (s, 01 00 s,):

inpu'(vnexf)’ neXt(vcurrent’ vnext) Vqlue(xcurrenf' ‘s] ,)

Find next input vector in the chain:

done(v not done(v__.,) Value(v ‘01’)

),
current next!



KB Representation

in=01/out=00

in=11/out=01

Rules: transitions

Next state in the chain:

state(X__.,), next(X X

current/ next)

done(X not done(X

curreni)’ nexi)

Find next input vector in the chain:

Find next output in the chain:

next(v

input(v current! vnext)

nexi) I

not done(v

done(v next)

curreni)’

o

next)

output(O__ .), next(O

current /

done(O not done(Onext)

curreni)’ [
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KB Representation

in=01/out=00

in=11/out=01

Rules: transitions

Next state in the chain: Find next output in the chain:
Siqte(xnext)’ ne)dl(xcurrent’ Xnext) OUtpUt(onext)’ neXlll(ocurrent’ onext)
done(X_,,....), not done(X _ ) done(O not done(Onext)

),
current

:> Transition (s, 11 01 s,)
Transition (s, 11 O1 s,):

e 7
Vqlue(xcurrent’ ) )

Find next input vector in the chain:

i n pu'(vnext) I neXlll(chrrent’ vnext)

done(v not done(v,_ ) Value(v__ ., ‘117)

curreni)’ next/



KB Representation

in=01/out=00

in=11/out=01

Rules: transitions

done(X__ )
value(X ., ‘s,")
done(O,_..)
value(O__ ., ‘00’)
Transition (s, 01 00 s,) ‘ done(v,,,)
3 Xfollowing r‘e)d.(xnext 4 Xfollowing)
3 oI’ollowing ne)dl(onext' ofollowing) 24




KB Representation

in=01/out=00

in=11/out=01

Rules: transitions

—)

done(X

next)

done(O

next)

done(v,_ )

31X next(X X

following next / following)

30 next(O (@

following next / following)

24



KB Representation

in=01/out=00

in=11/out=01

Rules: transitions

done(X__ )
value(X ., ‘s,")
done(O,_..)
value(O__ ., ‘01’)
Transition (s, 01 00 s,) ‘ done(v,,,)
3 Xfollowing r‘e)d.(xnext 4 Xfollowing)
3 oI’ollowing ne)dl(onext' ofollowing) 24




KB Representation

in=01/out=00

in=11/out=01

Queries:

Fact base:

Input sequence

Input sequence

Input sequence

We want to find a test sequence
that verifies that the pump is
always deactivated (o1=0) when
the emergency button is on (i1=1)

25



Thank you !




