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1 Introduction

Existential rules are a logical framework used to model constraints and knowledge on data.
An existential rule is a first-order formula of the form B → H, with B and H conjunctions
of atoms called the body and the head of the rule, respectively. In addition, the variables
appearing in the body are universally quantified, and the ones in the head but not in the
body are existentially quantified, making an existential rule a closed formula. For instance,
the formula ∀x. Manager(x) → ∃y. ∃z. ReportsTo(x, y)∧ReportsTo(z, x) is a rule, in which
Manager(x) is the body and ReportsTo(x, y) ∧ ReportsTo(z, x) the head. A fundamental
problem in this framework is query entailment, which consists of deciding if a logical formula
(representing a query) is entailed by a database added with existential rules. In this paper,
a database is also called a factbase, and a pair composed of a factbase and a set of rules is
called a knowledge base (also known as an ontology).

The problem of query entailment from a knowledge base is an undecidable problem.
Several methods have been developed to solve it, which terminate on some specific classes of
rules. The approach we will focus on is known as forward chaining [12], also called the chase
in this framework. The chase is an algorithm that, by applying the rules from the rule set to
the database, generates new elements to produce a universal model of the knowledge base.
Then, if the chase halts, it suffices to query the universal model to produce the answers to a
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conjunctive query. One point that makes the chase difficult is that applying blindly the rules
may produce redundancies, and then the chase may fail to terminate because of those, even
if a finite universal model of the knowledge base exists. As such, a few variants of the chase
have been developed, each one having a specific way of avoiding redundancies. The oblivious
chase [4] naively applies every rule in all possible ways, and the equivalent chase [11] applies
a rule only if it produces some non-redundant information, while the semi-oblivious [10] and
the restricted (or standard) chase [6] have conditions in between.

Some articles that consider reasoning based on forward or backward chaining use certain
properties on the rule sets they work with. For instance, [2] and [9] decompose rules into
so-called pieces (or use single-piece rules directly). Pieces are subsets of a rule head that
contain the minimal amount of information brought by the application of a rule: any rule
can be decomposed according to its pieces, and we cannot decompose pieces further while
conserving logical equivalence without introducing new predicates. In other works, such as
[4], [7] and [13], single-head existential rules, i.e., with heads composed of a single atom, are
used. As such, studying procedures that from any rule set produce a rule set with certain
syntactic properties is an interesting concern. We call them normalization procedures.

The main question we try to answer in this report is the characterization of the impact
of those normalization procedures on chase termination. Our first goal is to determine
if these normalization procedures preserve the termination of the chase. We say that a
normalization preserves the termination of the chase if, for a given chase variant, when
the chase terminates on a rule set (for any factbase), the chase terminates as well on the
rule set output by the normalization procedure. This is not obvious because deciding chase
termination is undecidable. Another interesting property would be to make a rule set gain
termination by going through a normalization procedure.

We are interested in three normalization procedures. First, the single-piece transforma-
tion transforms a rule set into a set of single-piece rules equivalent to the original set. For
instance, applying this transformation on the rule R yields the rule set:

{Manager(x) → ∃y. ReportsTo(x, y), Manager(x) → ∃z. ReportsTo(z, x)}

We will show that this translation preserves the termination of every chase variant except
the restricted chase. Then, we will see two decompositions that output a rule set with
single-head rules. The first one is named the one-way atomic decomposition. Applied on R,
it outputs the following rule set:

{Manager(x) → ∃y∃z. XR(x, y, z), XR(x, y, z) → ReportsTo(x, y),

XR(x, y, z) → ReportsTo(z, x)}

This first decomposition will only preserve the termination of the oblivious and the semi-
oblivious chase, which will motivate the definition of our last transformation, the two-
way atomic decomposition, which has the same goal but also preserves the termination
of the equivalent chase. Applying it on R yields the rule set obtained by the one-way
atomic decomposition, with the addition of the rule ReportsTo(x, y) ∧ ReportsTo(z, x) →
XR(x, y, z), which we call the backwards rule. In addition, since both atomic decompositions
introduce new rules without existential variables, called Datalog rules, it will motivate the
study of the Datalog-first restricted chase, which a variant of the restricted chase in which
Datalog rules are applied with higher priority. Whereas the termination of this chase variant
is not preserved by the one-way atomic decomposition, it is preserved by the two-way atomic
decomposition.
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The results obtained are compiled in Table 1. As four cases are possible, we use four
different symbols. The symbol=means the termination is strictly preserved by the transfor-
mation (i.e., the chase terminates for a rule set if and only if it terminates on its translation),
meanwhile a + means if the chase terminates for a rule set then it terminates on its trans-
lation, but the converse is false, and a − it is not preserved and never recovered. Finally, a
̸= means it can be gained or lost depending on the rule sets.

Table 1: Results

O SO R Df-R E

Single-piece
translation

= + ̸= ̸= =

One-way atomic
decomposition

= = − − −

Two-way atomic
decomposition

= = − = =

2 Preliminaries

2.1 Syntax

We will work in a first-order setting limited to predicates, constants, and variables. A term
is a variable or a constant. Each predicate is associated with a natural integer, called the
arity of the predicate.

Definition 2.1. An atom is of the form p(e1, . . . , en) with p a predicate of arity n and
e1, . . . , en some terms. A factbase is an existentially closed conjunction of atoms.

It is often convenient to see a factbase as a set of atoms. Henceforth, we identify a
factbase with the corresponding set of atoms. For instance, the factbase ∃x, y, z. A(x, y) ∧
B(x, z, y) is seen as the set {A(x, y), B(x, z, y)}.

Let F be a logical formula or a set of logical formulas. The set of variables, constants,
and terms appearing in F are denoted by var(F ), cnst(F ), and term(F ), respectively.

In the following, we may also group variables into tuples (which are seen as sets when
convenient): let x⃗1, . . . , x⃗n be pairwise disjoint tuples of variables. Then, X[x⃗1, . . . , x⃗n]
denotes a conjunction of atoms whose set of variables is exactly x⃗1 ∪ · · · ∪ x⃗n.

Definition 2.2. Let x⃗, y⃗ and z⃗ be pairwise disjoint tuples of variables, and B[x⃗, y⃗] and
H[x⃗, z⃗] be conjunctions of atoms. An (existential) rule R is a first-order formula of the
following form:

∀x⃗∀y⃗. B[x⃗, y⃗] → ∃z⃗. H[x⃗, z⃗]
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where B and H are called the body and the head of the rule, respectively. The set x⃗, which
is shared between the body and the head, is called the frontier of the rule and is denoted
by fr(R). The set z⃗ is called the existential variables of R.

For the sake of readability, existential rules will be denoted by B → H, with all variables
appearing in B implicitly universally quantified, and variables inH but not in B existentially
quantified. In addition, we assume atoms in the head to be pairwise distinct.

An existential rule without existential variables is called a Datalog rule.

Definition 2.3. A knowledge base is a tuple K = ⟨R, F ⟩ where R is a rule set and F is a
factbase.

Definition 2.4. Given sets of atoms F and F ′, a homomorphism from F to F ′ is a mapping
h : var(F ) → term(F ′) such that h(F ) ⊆ F ′.

A homomorphism is often denoted as a set of individual variable mappings. For example,
the homomorphism from {x, y, z} to {a, b} such that σ(x) = a, σ(y) = y and σ(z) = b can
be denoted by {x → a, z → b}.

Proposition 2.1. A factbase F logically entails a factbase F ′ if and only if there is a
homomorphism from F ′ to F .

The proof of this result, known as the homomorphism theorem, can be found in [1].

Definition 2.5. Let F and F ′ be two sets of atoms such that F ′ ⊆ F . A homomorphism
σ from F to F ′ is a retraction (from F to F ′) if σ|F ′ = idF ′ . If a retraction exists from F
to F ′, F ′ is called a retract of F .

Note that, as per this definition, each factbase is a retract of itself.

2.2 Semantics

We rely on logical entailment as defined by classical first-order logic semantics. Given a
formula f and an interpretation M, the notation M ⊨ f means that M is a model of f .
Given two formulas f1 and f2, the notation f1 ⊨ f2 means that f1 entails f2, i.e., if every
model of f1 is a model of f2. A knowledge base ⟨R, F ⟩ is implicitly seen as the logical theory
R∪{F}. We define below a few additional notions. In particular, it is convenient to see an
interpretation as a (possibly infinite) set of atoms.

Definition 2.6. We say that a factbase F satisfies a rule R = B → H if for every homo-
morphism π from B to F , there is an extension π̂ of π to the domain var(B ∪H) such that
π̂(H) ⊆ F .

Definition 2.7. A model M of a knowledge base ⟨R, F ⟩ is a set of atoms such that F ⊆ M
and every rule in R is satisfied by M. A model M of a knowledge base K is said to be
universal if for every model M′ of K there is a homomorphism from M to M′.

Universality is a useful notion, especially for the problem of Boolean conjunctive query
entailment, where a Boolean conjunctive query is an existentially closed conjunction of atoms
(hence has the same form as a factbase). This problem can be formulated the following way:
given a Boolean conjunctive query q and a knowledge base K, do we have K ⊨ q, i.e., M′ ⊨ q
for every model M′ of K? On the one hand, if we have M a universal model of K, and
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we establish that M ⊨ q, since for every model M′ of K, M′ ⊨ M, then we have M′ ⊨ q
for every M′ model of K, hence K ⊨ q. On the other hand, if M ̸⊨ q, this shows that
K ⊭ q. As such, we can reduce the problem of query entailment on every model of K to
query entailment on only one model of K which is substantially easier.

2.3 The chase

The chase is a family of algorithms mainly used to solve factbase (or Boolean conjunctive
query) entailment, that is to say to decide if an existentially closed formula is true for a
given knowledge base. It relies on forward chaining, which is a process that infers new
knowledge from already known facts and rules, until it finds what it looks for or it cannot
infer any new knowledge. In fact, if it halts, it produces a universal model of the knowledge
base (except in the case of the so-called equivalent chase, which produces a superset of a
universal model, however this is not an issue for our work). Since the problem of factbase
entailment is semi-decidable [3], a sound and complete procedure that does not terminate
is the best we can hope for, as there is no sound and complete procedure that terminates.
To define it properly, we first introduce the notion of a trigger.

Definition 2.8. Let F be a factbase and R = B → H be an existential rule. A trigger t
(for F ) is a pair (R, π) such that π is a homomorphism from B to F .

To define the applicability of a trigger, we first need to define a safe extension of its
homomorphism that maps every existential variable of the rule to a fresh one, i.e. that does
not occur in the current factbase nor in the rules.

Definition 2.9. Let t = (R, π) be a trigger. We define πR as the extension of π such that,
for all z existential variable in R, πR(z) = zt, with zt being a fresh variable, unique for z
and t.

Note that πR = π exactly when R is a Datalog rule.

Definition 2.10. Let t = (R, π) be a trigger with R = B → H, and F a factbase. We
say that t is applicable on F if π(B) ∈ F and πR(H) ⊈ F . We denote π(B) and πR(H) by
support(t) and output(t), and refer to them as the support and the output of t, respectively.

Now, that we have a basic notion of applicability, we can define derivations, before
refining the notion of applicability to exhibit different chase variants.

Definition 2.11. Let K = ⟨F,R⟩ be a knowledge base. A derivation from K is a (possibly
infinite) sequence D = (∅, F0), (t1, F1), (t2, F2), . . . where:

� F0 = F .

� for each i > 0,

– ti is a trigger for the factbase Fi−1.

– Fi = Fi−1 ∪ output(ti).

The set of all triggers appearing in D is denoted by triggers(D). The resulting factbase
is res(D) =

⋃
i Fi.

Note that res(D) is well defined for every derivation D = (∅, F0), (t1, F1), ... (finite or
not) because {Fi}i>0 is an increasing sequence for ⊂ for every derivation.
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The k-prefix of a derivation D is the subsequence of D that contains every element
up to the kth element, and is denoted by D|k (if D = (∅, F ), (t1, F1), ... then D|k =
(∅, F ), (t1, F1), ..., (tk, Fk). We consider the derivation (∅, F ) to be of length 0). We can
also say that D is an extension of D|k.

The chase variants we will study are the oblivious chase (O), the semi-oblivious chase
(SO), the restricted chase (R) and the equivalent chase (E). They differ from each other in
how they constrain trigger applicability, as specified in the next definition.

Definition 2.12. Let K = ⟨F,R⟩ be a knowledge base, D be a derivation from K, and
t = (R, π) a trigger. Let us assume t is applicable on res(D). Then t is:

� O-applicable on D if t /∈ triggers(D).

� SO-applicable on D if there is no trigger (R, π′) ∈ triggers(D) such that π|fr(R) =
π′
|fr(R).

� R-applicable on D if there is no retraction from res(D) ∪ output(t) to res(D).

� E-applicable on D if there is no homomorphism from res(D) ∪ output(t) to res(D).

Definition 2.13. Let X ∈ {O,SO,R,E}. A derivation D for which every trigger ti ∈
triggers(D) is X-applicable on D|i−1 is called an X-derivation.

An X-derivation D = (∅, F ), (t1, F1), . . . is called a Datalog-first X-derivation (in short
Df-X-derivation) if for each ti = (Ri, πi) such that Ri is not Datalog, there is no Datalog
rule X-applicable on Fi−1.

Definition 2.14. Let Y ∈ {O,SO,R,E} and X ∈ {Y,Df-Y}. The class of all X-
derivations is called the X-chase.

Note that we may sometimes omit theX before derivation or chase if the context makes it
clear, and we may also replace X by the full name of the variant. For instance, R-derivation
may be referred to as restricted derivation.

2.4 Chase termination classes

The notion of termination is reliant on the notion of fairness, which intuitively means that
no trigger application is indefinitely postponed.

Definition 2.15. An X-derivation D is fair if for each trigger t applicable on D|k, there
exists n > k such that t is not X-applicable on D|n. An X-derivation is terminating if it is
both fair and finite.

There are a few cases to consider regarding the termination of the different chase variants.

Definition 2.16. Let K = ⟨R, F ⟩ be a a knowledge base. We say that the X-chase termi-
nates on K if every fair X-derivation from K is finite. We say that the X-chase is sometimes
terminating on K if there exists a terminating X-derivation from K.

Definition 2.17. Let R be a rule set. We say that the X-chase terminates (resp. is some-
times terminating) on R if for every factbase F , the X-chase terminates (resp. sometimes

terminating) on ⟨F,R⟩. We denote the class of all those rule sets by CTX
∀ (resp. CTX

∃ ).

Some of those classes of rule sets are overlapping for certain chase variants, as we will
see in the following proposition, which establishes most of the relations we consider.
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Proposition 2.2. The following equalities and inclusions hold:

1. CTO
∃ = CTO

∀

2. CTSO
∃ = CTSO

∀

3. CTE
∃ = CTE

∀

4. CTO
∀ ⊂ CTSO

∀ ⊂ CTR
∀ ⊂ CTDf-R

∀ ⊂ CTDf-R
∃ ⊆ CTR

∃ ⊂ CTE
∀

Proof. Most of those results can be found in [8]. For the specific references and the rest of
the proof, see section A.1.

Thus, the notion of sometimes termination is only relevant in the case of the (Datalog-
first) restricted chase. Points 1, 2 and 3 also show that the Datalog-first restricted chase is
the only Datalog-first variant we need to consider, since the others behave as in the general
case regarding termination.

Note that we only prove CTDf-R
∃ ⊆ CTR

∃ , because we did not find any example showing
the properness of the inclusion. We even think that the two sets may be equal, and thus set
the following conjecture:

Conjecture 2.1. CTDf-R
∃ = CTR

∃

3 Chase termination and normalization

In many applications of existential rules, one may want to ensure certain syntactic properties
on the rule set they are working with. For instance, one may want to restrict the head of
rules to the minimal amount of knowledge possible while keeping equivalence, as seen in [2]
where the notion of piece is introduced to formalize this notion, or in [9] where the same
notion is used in backward chaining mechanisms based on rewriting a query with the rules,
instead of expanding the factbase as in the chase. Another interesting property would be to
have rules with only one atom in the head, as it simplifies relevant notions and techniques.
Cal̀ı et al. introduce a decomposition that guaranties this property in [4] (Theorem 8.1).
In the following, we will refer to those decompositions as normalization procedures, that is
to say functions that take a rule set as input and output another rule set with the desired
properties.

The termination of the chase is an undecidable problem [8]. Therefore, we are interested
in knowing whether the above normalization procedures affect the termination of the dif-
ferent chase variants, and if they do, whether the sets of terminating rule sets w.r.t a chase
variant are comparable before and after the procedures.

Definition 3.1. Consider X ∈ {O,SO,R,Df-R,E} and f a function that takes a rule set
as an input and returns another rule set. We say that f preserves the termination of the
X-chase if, for every rule set R,

R ∈ CTX
∀ =⇒ f(R) ∈ CTX

∀

We say that f may lead the X-chase to gain termination if there is a rule set R such
that

R /∈ CTX
∀ ∧ f(R) ∈ CTX

∀

We will first study a translation that yields a logically equivalent rule set.
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3.1 Single-piece translation

The single-piece translation is a normalization procedure that, by grouping atoms that
(directly or indirectly) share an existential variable, splits a rule into rules containing the
minimal “unit” of knowledge brought by an application of the original rule in the chase,
while still producing an equivalent rule set (Proposition 3.1). It permits a simplification of
the rules involved without introducing fresh predicates. We will show that it preserves the
termination of all chase variants, except the (Datalog-first) restricted chase (Theorems 3.1,
3.2, 3.3 and 3.4), and it makes the semi-oblivious chase gain termination (Theorem 3.5).

Definition 3.2. The piece graph of a rule R = B → H is the graph whose vertices are
the atoms appearing in H, and with an edge between h1 and h2 if there is an existential
variable in var(h1)∩ var(h2). A (rule) piece of R is the conjunction of atoms corresponding
to a connected component of its piece graph.

Definition 3.3. The single-piece translation of a rule R = B → H is the set sp(R) =
{B → Hi | Hi is a rule piece of R}. The single-piece translation sp(R) of a rule set R is
the set

⋃
R∈R sp(R).

The single-piece transformation produces an equivalent rule set:

Proposition 3.1. A rule set R is equivalent to the set sp(R).

Proof. See section A.2.

Let us now see for each chase variant how the single-piece translation impacts its termi-
nation.

3.1.1 Oblivious and semi-oblivious chase

Let us first note that the oblivious and the semi-oblivious chase produce the same atoms
regardless of the derivation, that is to say all derivations from the same factbase produce
the same set of atoms. More specifically, for both chase variants, a trigger that is applicable
at some step can only become unapplicable at a later step due to an applied trigger that
has produced the same set of atoms, or an isomorphic set of atoms (i.e., which is the same
up to the name of fresh variables). As such, it leads to the following definition:

Definition 3.4. For X ∈ {O,SO}, and K a knowledge base, consider D an arbitrary fair
derivation from K. We define ChX(K) = res(D).

Theorem 3.1. The single-piece translation preserves the termination of the oblivious and
the semi-oblivious chases.

Proof idea. For X ∈ {O,SO}, F a factbase, and R a rule set, we will first show by induction
on some arbitrarily chosen chase sequence that there is an injective homomorphism from
ChX(⟨sp(R), F ⟩) to ChX(⟨R, F ⟩). Knowing this, if the X-chase terminates on ⟨R, F ⟩, the
set of atoms produced is finite, which means the same is true for ⟨sp(R), F ⟩, and implies
the result.

For the full proof, see section A.3.

8



3.1.2 Restricted chase

Theorem 3.2. The single-piece translation does not preserve the termination of the re-
stricted chase.

Proof. The rule set R = {A(x) → ∃y. P (x, y), P (x, y) → P (y, y) ∧A(y)} provides a counter
example, as the restricted chase terminates on R but not on sp(R). A full explanation of
the example can be found in section A.4.

3.1.3 Datalog-first restricted chase

Theorem 3.3. The single-piece translation does not preserve the termination of the Datalog-
first restricted chase.

Proof. We can add dummy existential variables to make the previous example work here.
Consider the following rule set R:

A(x, d1) → ∃y∃d2. P (x, y, d2) P (x, y, d1) → ∃d2∃d3. P (y, y, d2) ∧A(y, d3)

Then, the single-piece transformation will produce the following rule set sp(R):

A(x, d1) → ∃y∃d2. P (x, y, d2) P (x, y, d1) → ∃d2. P (y, y, d2)

P (x, y, d1) → ∃d3. A(y, d3)

This rule set will behave exactly like the on in the proof of Theorem 3.2, even with the
Datalog-first restricted chase, because it features no Datalog rule.

3.1.4 Equivalent chase

Theorem 3.4. The single-piece translation preserves the termination of the equivalent
chase.

Proof. According to [5] (Theorem 7), the equivalent chase terminates exactly when the
knowledge base admits a finite universal model (as the core chase, discussed in [5], terminates
exactly when the equivalent chase does). As stated in Proposition 3.1, the single-piece
transformation yields an equivalent rule set, thus the knowledge base resulting from the
single-piece transformation admits a finite universal model if and only if the original one
does, as if a theory admits a final universal model M , then M is also a universal model for
every equivalent theory. From this, we deduce that the single-piece transformation preserves
the termination of the equivalent chase.

3.1.5 Termination gain

Theorem 3.5. The single-piece translation may make the semi-oblivious, the restricted,
and the Datalog-first restricted chases gain termination.

Proof. The rule set {P (x, y) → ∃z. P (x, z) ∧Q(x, y)} provides an example of such a behav-
ior for the three chase variants considered. See section A.5 for a full explanation.

This phenomenon cannot be witnessed with the oblivious and the equivalent chase.

Theorem 3.6. For a rule set R and a factbase F , if the oblivious (resp. equivalent) chase
does not terminate on K = ⟨F,R⟩, it does not on ⟨F, sp(R)⟩ either.
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Proof. First, let us note that the argument used to prove Proposition 3.4 in the case of the
equivalent chase applies to prove this result too: we showed the equivalence.

For the oblivious chase, we only provide a sketch. One can adapt the proof of Theorem 3.1
to show that there is an injective homomorphism from ChX(⟨R, F ⟩) to ChX(⟨sp(R), F ⟩). It
is due to the fact that, contrarily to the semi-oblivious case, a trigger is applicable if and
only if its output is not in the database, and this condition is easy to preserve during the
induction, so the proof does not change much.

3.2 One-way atomic decomposition

The single-piece transformation works very well, but one may need to produce rules with a
single atom in the head. To do this, we consider a normalization that produces a conservative
extension of the initial rule set.

Definition 3.5. Let R = B → (H1 ∧ . . . ∧ Hn)[y⃗] be a rule, where, for every i, Hi is an
atom. The one-way atomic decomposition applied to R outputs the following rules, denoted
by 1ad(R):

� B → XR[y⃗]

� for each i ≤ n, XR[y⃗] → Hi

where XR is a fresh predicate of arity |y⃗|.
The decomposition extends naturally to rule sets. For a rule set R, we denote by 1ad(R)

the rule set produced by the one-way atomic decomposition.

The one-way atomic decomposition produces what is called a conservative extension.

Definition 3.6. Let R and R′ be two rule sets. We say that R′ is a conservative extension
of R if, for any factbase F that only contains predicates appearing in R,

1. The restriction of any model of ⟨R′, F ⟩ to the predicates appearing in R is a model of
⟨R, F ⟩.

2. Any model M of ⟨R, F ⟩ can be extended into a model of ⟨R′, F ⟩ that shares the same
domain and agrees with M on the predicates in R.

Hence, a conservative extension preserve query entailment (for queries expressed on the
initial set of predicates). We will prove later, in Proposition 3.2, that 1ad(R) is a conservative
extension of the rule set R.

3.2.1 Oblivious and semi-oblivious chase

Theorem 3.7. The one-way atomic decomposition preserves the termination of the oblivious
and the semi-oblivious chase.

Proof. A stronger result will be proven in Theorem 3.10.

3.2.2 Restricted and Datalog-first restricted chase

Theorem 3.8. The one-way atomic decomposition does not preserve the termination of the
restricted chase and the Datalog-first restricted chase.

Proof. The rule set {P (x, y) → ∃z. P (y, z) ∧ P (z, y)} provides a counter example. For a full
explanation, see section A.6.
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3.2.3 Equivalent chase

Theorem 3.9. The one-way atomic decomposition does not preserve the termination of the
equivalent chase.

Proof. The previous counter-example, in Theorem 3.8, also works for the equivalent chase.
The infinite fair derivation considered there is an E-derivation, as every trigger applied was
E-applicable.

3.3 Two-way atomic decomposition

As we just saw, even if the one-way atomic decomposition produces a conservative extension,
it does not preserve the termination of the equivalent chase. It is a consequence of the fact
that if the initial rule set admits a universal model, its extension to the fresh predicates
introduced by the one-way atomic decomposition is a model, but not necessarily a universal
model. The following example shows that.

Consider the rule set {P (x, y) → ∃z. P (y, z) ∧ P (z, y)} and the factbase
{P (a, b)}. This knowledge base admits a universal model, on which the equivalent chase
halts, which is the factbase {P (a, b), P (b, c), P (c, b)}, which can be illustrated like this:

a b c

But the one-way decomposition yields the following rule set:

P (x, y) → ∃z. XR(y, z) XR(x, y) → P (x, y) XR(x, y) → P (y, x)

If we try to transform our universal model for the initial rule set into a model for the
decomposed one, we get the following (with a dashed line for predicate XR):

a b c

Which is not a universal model, and as such the equivalent chase will not find it. In fact,
every universal model for this new rule set is infinite, and hence, the equivalent chase does
not halt on it.

Thus, it motivates new definitions, both for a new extension and for a new normalization
procedure.

Definition 3.7. Let R and R′ be two rule sets and F a factbase. We say that R′ is a
universal-conservative extension of R if, for any factbase F that only contains predicates
appearing in R,

1. The restriction of any universal model of ⟨R′, F ⟩ to the predicates appearing in R is
a model of ⟨R, F ⟩.

2. Any universal model M of ⟨R, F ⟩ can be extended into a universal model of ⟨R′, F ⟩
that shares the same domain and that agrees with M on the predicates in R.

From this notion, that will ensure the termination of the equivalent chase, we define a
normalization procedure that will produce a universal-conservative extension.
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Definition 3.8. Let R = B → (H1 ∧ . . . ∧Hn)[y⃗] be a rule, with Hi atoms for every i and
j.
The output of the two-way atomic decomposition applied to R, denoted by 2ad(R), is:

� B → XR[y⃗]

� for each i ≤ n, XR[y⃗] → Hi

� H1 ∧ . . . ∧Hn → XR[y⃗], called the backwards rule

. where XR is a fresh predicate of arity p.
The decomposition extends naturally to rule sets. For a rule set R we denote by

2ad(R)the rule set produced by the one-way atomic decomposition.

Let us now show that two-way atomic decomposition indeed produces a universal-
conservative extension.

Proposition 3.2. The rule sets 1ad(R) and 2ad(R) are conservative extensions of the rule
set R.

Proof. See section A.7.

Proposition 3.3. The rule set 2ad(R) is a universal-conservative extension of the rule set
R.

Proof. For the full proof, see A.8. An interesting intuition to note is that the first point
is true for any conservative extension, because extending a model (universal or not) then
restricting it yields the same model as the original one, so (1) is quite easy to show. The
issue for the second point is that restricting a model then extending it does not necessarily
yield the original model. It is the case for the two-way atomic decomposition, but not for
the one-way one, which explains the difference between the two procedures.

3.3.1 Oblivious and semi-oblivious chase

Theorem 3.10. Both atomic decompositions preserve the termination of the oblivious and
the semi-oblivious chase.

Proof idea. This proof, that you can read in section A.9, will work exactly like the proof of
Theorem 3.1. The only variation is that for this transformation we only consider original
predicates, and remove fresh predicates from ChX(⟨1ad(R), F ⟩).

3.3.2 Restricted chase

Theorem 3.11. The two-way atomic decomposition does not preserve the termination of
the restricted chase.

Proof. The counter-example we used in the proof of Proposition 3.8, that is to say the
rule set {P (x, y) → ∃z. P (y, z) ∧ P (z, y)}, will work again here. See section A.10 for a full
explanation.
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3.3.3 Datalog-first restricted chase

Theorem 3.12. The two-way atomic decomposition preserves the termination of the Datalog-
first restricted chase.

Proof idea. For this proof, we will write Datalog-first derivations as an alternation of a
trigger that introduces an existential variable, and a derivation closed under Datalog rules.
This way, we will start with a derivation from 2ad(R), and construct a derivation from R
that has the same number of existential triggers. We will then show that if the first one is
fair, the second one is too.

Let R be a rule set and F be a factbase that does not contain any predicate introduced
by the decomposition. We will discriminate the rules in R into the ones that introduce
at least one existential variable, R∃, and the Datalog ones, RD. In the following we will
use the fact that any Datalog-first derivation can be decomposed following this schema:
(∅, F ),D0, (t1, F1),D1, . . . , (tn, Fn),Dn, . . . where forall i, t is a trigger that introduces an
existential variable, and Dad

i is a derivation closed under Datalog (i.e. that applies only
Datalog rules) starting from the factbase Fi.

Lemma 3.1. Let Dad = (∅, F ad),Dad
0 , (tad1 , F ad

1 ),Dad
1 , . . . , (tadn , F ad

n ),Dad
n , . . . be a Datalog-

first restricted derivation from ⟨2ad(R), F ⟩. There is a Df-R-derivation D = (∅, F ),D0,
(t1, F1),D1, . . . , (tn, Fn),Dn, . . . from ⟨R, F ⟩ such that:

(1) There is an isomorphism h from γR(res(Dad)) to res(D).

(2) Forall i, if tadi = (B → XR, π), then ti = (B → H,h ◦ π), with (B → XR) ∈ 2ad(B →
H).

(3) Forall i, Di is h(Dad
i ) in which we remove every trigger using a rule in 2ad(R∃).

In addition, if Dad is fair, then D is too.

Proof idea. The first result will be proven by an induction over n, constructing the isomor-
phism along the induction. Having done that, we will prove that if Dad is fair, then D is by
using the fact that the chase produces a universal model, and since we have a isomorphism
between the results of the derivations, a trigger being applicable on one side means it is also
applicable on the other, concluding the proof by contradiction. The full proof (probably the
most interesting of this report) can be found in section A.11

Proof of the theorem. We can now conclude: If the Df-R-chase is not terminating on the
knowledge base ⟨2ad(R), F ⟩, let Dad be a fair infinite derivation from ⟨2ad(R), F ⟩. Applying
Lemma 3.1, we can construct an infinite yet fair derivation D from ⟨R, F ⟩, thus the Df-R-
chase is not terminating on ⟨R, F ⟩, which concludes the proof.

3.3.4 Equivalent chase

Theorem 3.13. The two-way atomic decomposition preserves the termination of the equiv-
alent chase.

Proof. As, according to Proposition 3.3, the two-way atomic decomposition is a universal-
conservative extension, it will ensure the preservation of the termination of the equivalent
chase. Indeed, if the equivalent chase terminates on the initial rule set, it admits a finite
universal model. Thus, the decomposed rule set will admit a universal model of the same
cardinality, and the equivalent chase will find it.
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3.4 Termination gain through atomic decompositions

As we studied termination gain through single-piece transformation, we are also interested
in termination gain through both atomic decompositions. Unfortunately, there is no way for
a non-terminating rule set to gain termination, as one can always replicate an infinite unfair
derivation from the initial rule set with the normalized rule set. Indeed, applying every rule
in 1ad(R) (or 2ad(R)) at once for each rule R applied in the original derivation yields an
infinite fair derivation. As such, neither the one-way nor the two-way atomic decomposition
can extend the termination of a chase variant.

4 Conclusion and future outlook

In this paper, we have shown that one can take rule sets with a single piece in the head
or even only one atom in the head while preserving the termination of every chase variant
except the restricted chase. One can even consider single-atomic headed rules in the case
of the restricted chase provided they only work with Datalog-first derivations. To do so,
we introduced the notion of universal-conservative extension, that is to say a conservative
extension which guaranties that if a finite universal model exists for the initial theory, one
also exists for the extended one. The main caveat in our work is that we did not find any
normalization procedure that would preserve the termination of the restricted chase. We
thus set the following conjecture:

Conjecture 4.1. There is no normalization procedure that preserves the termination of the
restricted chase.

Our intuition is that among rule sets on which the restricted chase terminates, those
restricted to atomic-head rules seem to be strictly less expressive, which remains to be
shown.
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Appendices

A Proofs

A.1 Proposition 2.2

Proof. Most of those results can be found in [8]. In the following we will refer to equalities
by their number, and to the 6 strict inclusions numbered from left to right. The proofs
of equalities 1 and 2, and inclusions 1 and 2 can be found in [8] as Proposition 4.4. and
Theorem 4.5 (where the restricted chase is referred to as the standard chase). Equality 3 is
Proposition 4.6 and inclusion 6 is Proposition 4.7 (with the knowledge that the equivalent
and the core chase terminate on exactly the same inputs).

The results that are left to prove are inclusions 3, 4 and 5.

Inclusion 3 CTR
∀ is indeed a subset of CTDf-R

∀ because on a rule set on which any R-
derivation is terminating, the class of Df-R-derivations being a subclass of the R-
derivations, every Df-R-derivation will be terminating. The rule set {P (x, y) → P (x, x), P (x, y) → ∃z. P (y, z)}
proves that the inclusion is proper, as always applying the second rule before the first
(with the same homomorphism) will yield an infinite yet fair derivation, but any
Datalog-first restricted derivation will apply the first rule for each atom in the initial
factbase then stop (the second rule will never be applied).

Inclusion 4 CTDf-R
∀ is a subset of CTDf-R

∃ because if every Df-R-derivation is terminating,
there is a terminating Df-R-derivation. Regarding the properness of the inclusion, the
rule set {P (x, y) → ∃z. P (y, z), P (x, y) → ∃w. P (y, w) ∧ P (w, y)} will work, because
there are no Datalog rules, hence the Datalog-first restricted and the restricted chases
are the same on this input, and applying the second rule first for every atom in the
factbase makes the chase terminate, but by applying successively the first then the
second rule (with the same homomorphism) does not.

Inclusion 5 CTDf-R
∃ is a subset of CTR

∃ because every Datalog-first restricted derivation
is a restricted derivation, so if there is a terminating Df-R-derivation, it is also a
terminating R-derivation.

A.2 Proposition 3.1

Proof. Let R = B → H be a rule in R, H1, . . . ,Hm its pieces, and R′
1, . . . , R

′
m the rules

in sp(R). Existential variables appearing in a piece are disjoint from those appearing in
another piece (otherwise they would not be in different connected components in the piece
graph of R). Thus, we can rewrite R in the following equivalent form:

R = ∀x⃗∀y⃗. B[x⃗, y⃗] → (∃z⃗1. H1[x⃗, z⃗1]) ∧ . . . ∧ (∃z⃗m. Hm[x⃗, z⃗m])

For all formulas A, B and C, (A → B) ∧ (A → C) is equivalent to A → B ∧ C, hence
R′

1 ∧ . . . ∧R′
m is equivalent to R. Every rule in sp(R) being extracted from a rule in R, we

have the equivalence.
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A.3 Theorem 3.1

Proof. Let X ∈ {O,SO}, R be a rule set, and F be a factbase. Let us show by induc-
tion that for any derivation D = (∅, F ), (t1, F1), . . . from ⟨sp(R), F ⟩, there is an injective
homomorphism h from res(D) to ChX(⟨R, F ⟩).

Step 0: We have F ⊆ ChX(⟨R, F ⟩).

Step n: Assume that the result is true up to step n − 1. By induction hypothesis, there
is an injective homomorphism h′ from Fn−1 to ChX(⟨R, F ⟩). The trigger tn is X-
applicable on Fn−1, so h′(support(tn)) ⊆ ChX(⟨R, F ⟩). Consider a fair derivation
D′ from ⟨R, F ⟩. By definition of ChX(⟨R, F ⟩), res(D′) = ChX(⟨R, F ⟩). Assume
tn = (R, π), and consider the trigger t = (R,φ), with φ = h′ ◦ π. We want to
show that there is an injective homomorphism h that is an extension of h′ such that
h(output(tn)) ⊆ ChX(⟨R, F ⟩). The argument will depend on the chase variant:

If X = O, as h′(support(tn)) ⊆ ChX(⟨R, F ⟩) and D′ is fair, t has its output in res(D′)
(otherwise t would be O-applicable, which would contradict the fairness of D′).
As such, we define h as the extension of h′ such that, for every existential variable
z in R, h(πR(z)) = φR(z). h is indeed injective because h′ was, and we injectively
extend it. With this definition, h(output(tn)) = output(t), so we have the result
we were looking for.

If X = SO, either t ∈ triggers(D′), and we can apply the same argument as in the
previous case, or it is not. In this second case, since t is not SO-applicable on
D′ (because it is fair), there is a trigger t′ = (R,φ′) in triggers(D′) such that
φ′
|fr(R) = φ|fr(R). As such, we define h as the extension of h′ such that, for every

existential variable z in R, h(πR(z)) = φ′R(z). h is injective as in the previous
point.

Since h is an extension of h′, we still have h(Fn−1) ⊆ ChX(⟨R, F ⟩), and we just proved
that h(output(tn)) ⊆ ChX(⟨R, F ⟩). As such, h(res(D)) ⊆ ChX(⟨R, F ⟩).

Since the result of any derivation from ⟨sp(R), F ⟩ is injectively embedded in ChX(⟨R, F ⟩),
we have that |ChX(⟨sp(R), F ⟩)| ≤ |ChX(⟨R, F ⟩)|. As such, if the X-chase terminates on
⟨R, F ⟩, ChX(⟨sp(R), F ⟩) is finite, which means that every derivation from ⟨sp(R), F ⟩ is
finite, and the chase variant we consider terminates on ⟨sp(R), F ⟩.

A.4 Theorem 3.2

Proof. Consider a rule set R = {A(x) → ∃y. P (x, y), P (x, y) → P (y, y) ∧A(y)}. The re-
stricted chase terminates on this rule set: the first rule will never fire on the output of the
second because it would be redundant, and none of those two rules can be applied on its
own output, so the maximum length of any derivation from a factbase is twice the number
of atoms in the factbase, which is finite.

The rule set sp(R) contains the following rules:

R1 = A(x) → ∃y. P (x, y) R2 = P (x, y) → P (y, y)

R3 = P (x, y) → A(y)

Consider the factbase A(a) and the following derivation (we denote the fresh variable created
by R1 at step i by zi):
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0. (∅, {A(a)})

1. ((R1, {x → a}), {A(a), P (a, z1)})

2. ((R3, {x → a, y → z1}), {A(a), P (a, z1), A(z1)})

3. ((R1, {x → z1}), {A(a), P (a, z1), A(z1), P (z1, z3)})

4. ((R2, {x → a, y → z1}), {A(a), P (a, z1), P (z1, z1), A(z1), P (z1, z3)})

and so on. The next illustration is the state of the factbase after step 4. An arrow numbered
i between x and y means the atom P (x, y) is in the factbase since step i, and x : Ai means
A(x) is in the factbase since step i.

a : A0 z1 : A2 z3
1 3

4

From this we can repeat steps 2-3-4 indefinitely to produce an infinite yet fair derivation.
Thus, the restricted chase is not terminating on this rule set, which concludes the proof.

A.5 Theorem 3.5

Proof. Let us consider the rule set {P (x, y) → ∃z. P (x, z) ∧Q(x, y)}. Neither the (Datalog-
first) restricted nor the semi-oblivious chase terminates on this knowledge base, but they
both do after a single-piece transformation.

The single-piece transformation yields:

P (x, y) → ∃z. P (x, z) P (x, y) → Q(x, y)

With regard to the restricted chase, the first rule is not applicable, because the homomor-
phism that maps the new variable to y is a retraction. The second rule is Datalog, so it
is only applicable a finite number of times. One can note that the Datalog-first restricted
chase behaves exactly the same way.

With regard to the semi-oblivious chase, the first rule is only applicable once per atom
using the P predicate, because its frontier is mapped is the same way when its body is
mapped to its support and to its output. The Datalog rule does not matter for termination.

A.6 Theorem 3.8

Proof. Consider the rule set {P (x, y) → ∃z. P (y, z) ∧ P (z, y)}. The restricted chase is al-
ways terminating on this rule set, because if the rule fires, it cannot fire on its output. Thus,
any derivation has a length that is at most the number of atoms in the initial factbase, so
the chase always terminates. On this rule set, the one-way atomic decomposition yields the
following rule set:

R1 = P (x, y) → ∃z. XR(y, z) R2 = XR(x, y) → P (x, y)

R3 = XR(x, y) → P (y, x)
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Consider the following derivation (we denote by zi the fresh variable introduced by R1 at
step i):

0. (∅, {P (a, b)})

1. ((R1, {x → a, y → b}), {P (a, b), XR(b, z1)})

2. ((R2, {x → b, y → z1}), {P (a, b), XR(b, z1), P (b, z1)})

3. ((R3, {x → b, y → z1}), {P (a, b), XR(b, z1), P (b, z1), P (z1, b)})

4. ((R1, {x → b, y → z1}), {P (a, b), XR(b, z1), P (b, z1), P (z1, b), XR(z1, z3)})

and so on. The next illustration is the state of the factbase after step 4. An arrow numbered
i between x and y means the atom P (x, y) is in the factbase since step i. A dashed arrow
means the same but for the predicate XR.

a b z1 z3
0 1

2

3

4

By repeating steps 2-3-4 one can construct a factbase that, at step 3i+1, is a chain of i+3
terms, and the i+ 1 in the middle are pairwise in the same relationship as b and z1 are at
step 4. The last term in this construction is, like z3 here, only linked to the others through
XR, which lets us repeat steps 2-3-4 on it to extend the chain.

Iterating the pattern infinitely, the last term disappears to let a fair and infinite deriva-
tion: although it is sometimes terminating, the restricted chase is not terminating on this
input in some cases. One can also note that this derivation is Datalog-first, so the same
result can be deduced for the Datalog-first chase.

A.7 Proposition 3.2

Proof. Let us first notice that for a knowledge base ⟨R, F ⟩, every model of ⟨2ad(R), F ⟩ is
a model of ⟨1ad(R), F ⟩, because 1ad(R) ⊆ 2ad(R). As such, we only need to show that
2ad(R) is a conservative extension of R to have the result.

Let ⟨R, F ⟩ be a knowledge base. For (1), let N be a model of ⟨2ad(R), F ⟩. We denote
its restriction to the predicates appearing in R by M. We want to show that M is a
model of ⟨R, F ⟩. First, F ⊆ M, because F does not contain any fresh predicate. Let
R = B →

∧
i Hi be a rule and π a homomorphism from B to M. Since M is a restriction

of N , π is a homomorphism from B to N . Thus, since every rule in 2ad(R) is satisfied in
N , the rule B → XR(x⃗) is too, so the atom πR(XR(x⃗)) is in N . Thus, since for every i, the
rule XR → Hi is satisfied, π

R(Hi) is also in the database. As such, the homomorphism πR

is an extension of π such that for all i, π̂(Hi) ∈ M. Since no Hi features a fresh predicate,
they are all in M too. Thus, every rule in R is satisfied in M. As such, M is a model of
⟨R, F ⟩.

For (2), let M be a model of ⟨R, F ⟩. We extend M to N using the following method:
for every rule R = B → H ∈ R, for every homomorphism π from H to M, we add the atom
π(XR(x⃗)) to M. With this definition, M and N share the same domain and agree on the
predicates in R. In addition, N contains F . Then, let R be a rule. Let us show that R is
satisfied by case analysis on the form of R:

19



If R = B → XR(x⃗): If there is a homomorphism π from B to N , then it is a homomor-
phism from B to M. As such, there is an extension π̂ of π such that π̂(H) ∈ M
because M is a model. Thus, π̂(XR(x⃗)) ∈ M, so R is satisfied.

If R = XR(x⃗) → Hi: If there is a homomorphism π from XR(x⃗) to N , then π is a homo-
morphism from H to M (else we would not have added π(XR(x⃗)) to construct N ), so
every atom in π(H) is in N , which means in particular π(Hi) ∈ N , so R is satisfied.

If R = H → XR(x⃗): If there is a homomorphism π from H to M, we added the atom
π(XR(x⃗)) to construct N , so R is satisfied.

Thus, N is a model of ⟨2ad(R), F ⟩.

A.8 Proposition 3.3

Proof. Let ⟨R, F ⟩ be a knowledge base. For (1), let V be a universal model of ⟨2ad(R), F ⟩.
We want to show that U , the restriction of V to the predicates appearing in R, is a universal
model of ⟨R, F ⟩. First, since ⟨2ad(R), F ⟩ is a conservative extension of ⟨R, F ⟩, U is a model.
To show its universality, we will show that it can be homomorphically embedded in any other
model of ⟨R, F ⟩. Let M be another model of ⟨R, F ⟩. We can extend M into a model N
of ⟨2ad(R), F ⟩. Then, since V is a universal model, there is a homomorphism h from V to
N . Since M and N (resp. U and V) share the same domain, h is a mapping from U to
M. Let P (x⃗) be an atom in U . As such, P is a predicate in R, and is also in V. Since
h is a homomorphism, h(P (x⃗)) ∈ N . Since our restriction only removes atoms featuring
predicates not in R, h(P (x⃗)) ∈ M, proving U is a universal model.

For (2), let U be a universal model of ⟨R, F ⟩. Consider the extension V of U defined in
the context of 2ad(R) being a conservative extension of R. It is a model of ⟨2ad(R), F ⟩.
We want to show that it is a universal model. Let N be a model of ⟨2ad(R), F ⟩ and
M the restriction of N that is a model of ⟨R, F ⟩. Since U is a universal model, there
is a homomorphism h from U to M. We show that h is also a homomorphism from V
to N . It is a mapping from V to N , and for any atom P (x⃗) in V that features no fresh
predicate, h(P (x⃗)) ∈ N . Let XR(y⃗) be an atom in V that features a fresh predicate, with
R = B →

∧
i Hi the rule such that (B → XR) ∈ 2ad(R). Since V is a model, it features

every Hi(y⃗i) with y⃗i the restriction of y⃗ to the variables of Hi (because the rules XR → Hi

are all satisfied). As such, N also features those atoms. Since it is a model of ⟨2ad(R), F ⟩,
it satisfies the rule

∧
i Hi → XR, so XR(y⃗) ∈ N . Thus, V is a universal model.

A.9 Theorem 3.10

For a set of rules R and a set of atoms A, let γR(A) be the maximal subset of A such that
Preds(A) ⊆ Preds(R). For instance, ifR = {P (a) → Q(a)} andA = {P (a), Q(b), Q(c), R(b, c, d), S(a, b)},
then γR(A) = {P (a), Q(b), Q(c)}.

Proof. First note that in the oblivious and the semi-oblivious, firing a rule cannot prevent
another one from firing. As such, since 1ad(R) ⊆ 2ad(R), if the oblivious (resp. semi-
oblivious) chase terminates on 2ad(R), it will also terminate on 1ad(R). We can thus prove
the result only for the two-way atomic decomposition.

Let X ∈ {O,SO}, R be a rule set and F a factbase. Let us show by induction that for
a derivations D = (∅, F ), (t1, F1), . . . from ⟨1ad(R), F ⟩, there is an injective homomorphism
h such that h(γR(res(D))) ⊆ ChX(⟨R, F ⟩).
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Step 0: F ⊆ ChX(⟨R, F ⟩).

Step n: Assume the result up to step n − 1. Thus, there is a homomorphism h′ such
that h′(γR(Fn−1)) ⊆ ChX(⟨R, F ⟩). Depending on the trigger tn = (Rad, π), with
R = B →

∧
i Hi, we distinguish three cases:

If Rad = B → XR(x⃗), γR(Fn−1) = γR(Fn) so we have the result.

If Rad = XR(x⃗) → Hi, since tn is X-applicable on Fn−1, its support is in Fn−1. In
addition, since F does not contain any fresh predicate, there is a k < n such that

tk = (B → XR(x⃗), φ) and π = (φRad

)|var(R) (if tn’s support was introduced by
the backwards rule, it would not be applicable). Therefore, h′(γR(support(tk))) ⊆
ChX(⟨R, F ⟩). Since the support of tk is the body of the initial rule, γR(support(tk)) =
support(tk), which implies that, if we set t = (R, h◦φ), support(t) ⊆ ChX(⟨R, F ⟩).
Similarly to the proof of Theorem 3.1, we can show that we can extend h′ to a
h such that h(output(tn)) ⊆ ChX(⟨R, F ⟩) (because in the O-chase, t was ap-
plied, and in the SO-chase we can find a trigger that shared t’s frontier that was
applied). We thus have the result.

If Rad =
∧

i Hi → XR(x⃗), as in the case of a rule of the formB → XR(x⃗), γR(Fn−1) =
γR(Fn) so we have the result by induction hypothesis.

We conclude with the same argument of cardinality as in Theorem 3.1.

A.10 Theorem 3.11

Proof. Let us consider the counter-example in the proof of Proposition 3.8, the rule set
{P (x, y) → ∃z. P (y, z) ∧ P (z, y)}. The restricted chase is again terminating on this knowl-
edge base.

On this rule set, the two-way atomic decomposition will yield the following rule set:

R1 = P (x, y) → ∃z. XR(y, z) R3 = XR(x, y) → P (y, x)

R2 = XR(x, y) → P (x, y) R4 = P (x, y) ∧ P (y, x) → XR(x, y)

Consider the following derivation (we denote the variable x created at step i by xi):

0. (∅, {P (a, b)})

1. ((R1, {x → a, y → b}), {P (a, b), XR(b, z1)})

2. ((R2, {x → b, y → z1}), {P (a, b), XR(b, z1), P (b, z1)})

3. ((R1, {x → b, y → z1}), {P (a, b), XR(b, z1), P (b, z1), XR(z1, z3)})

4. ((R3, {x → b, y → z1}), {P (a, b), XR(b, z1), P (b, z1), P (z1, b), XR(z1, z3)})

5. ((R4, {x → z1, y → b}),
{P (a, b), XR(b, z1), XR(z1, b), P (b, z1), P (z1, b), XR(z1, z3)})

and so on. The next illustration is the state of the factbase after step 5. An arrow numbered
i between x and y means the atom P (x, y) was in the factbase since step i. A dashed arrow
means the same but for the predicate XR.
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In this case, we will repeat steps 2-3-4-5 to construct a factbase that, at step 4i+ 1, is the
same kind of chain of i+3 terms as in Proposition 3.8, with a last term enabling the pattern
to continue.

Following the same line of reasoning as previously, we can construct an infinite yet fair
R-derivation.

A.11 Lemma 3.1

Proof. We will prove the first result by induction over n.

n = 0 If Dad = (∅, F ), then we can take D = Dad to have the result.

n > 0 If the result is true for n−1, andDad = (∅, F ),Dad
0 , (tad1 , F ad

1 ),Dad
1 , . . . , (tadn , F ad

n ),Dad
n ,

by induction hypothesis, there is a derivationD′ = (∅, F ),D0, (t1, F1),D1, . . . , (tn−1, Fn−1),Dn−1

and an isomorphism h′ such that (1), (2) and (3) hold for Dad
|n−1 with D′.

Assume tadn = (B → XR, π) (note that this is the only possible form for any tadi , as
they are the only existential triggers possible). Let us define tn = (B → H,ϕ), with
ϕ = h′ ◦ π, as in (2) and Dn as in (3), and denote by D the derivation composed of
the combination of D′, (tn, Fn) and Dn.

We need to check that the trigger tn is R-applicable on Dn−1. First, support(tn) =
h′(support(tadn )), and since tadn is applicable on Dad

n−1, it follows that support(tadn ) ∈
res(Dad

n−1). As such, support(tn) ∈ res(Dn−1). We then need to check the condition
specific to the restricted chase, but to do so we need to first extend h′.

We define h as the extension of h′ defined by, for every existential variable z appearing
in R, h(πR(z)) = ϕR(z). It is thus still bijective, but we still need to prove that it is
a homomorphism.

� From D to Dad: Each new atom A created by tn was not in res(Dn−1), and
since we have an isomorphism, there is no atom Aad in res(Dad

n−1) such that
h(Aad) = A. Thus, the rule XR → Aad is applicable after the application of tadn ,
and since the derivation is Datalog-first this application will happen in Dad

n .

If Dn creates an atom, it means it is from a Datalog rule R, and the rules in
2ad(R) will fire in Dad

n since they are Datalog (and we have an isomorphism, so
any applicable rule in one factbase is in the other).

� From Dad to D: Since tadn will only create a XR predicate, it is not important for
our isomorphism.

If Dad
n creates an atom Aad, we distinguish two cases:

– Either the rule introducing Aad is in 2ad(R∃), and in this case the rule
introducing Aad is in 2ad(B → H), because every Datalog rule in 2ad(R′)
(with R′ ∈ R∃) is applicable only if B′ → XR′ was applied first (with
R′ = B′ → H ′). One could argue that H ′ → XR′ also produces an XR′

atom which could lead to new atoms, but none of the XR′ → H ′
i would be
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applicable since they are in the premises of H ′ → XR′ . As such, h(Aad) is
created by tn in D.

– Or the rule introducing Aad is in 2ad(RD), and in this case the original rule
is in Dn, and it will produce h(Aad).

As such, (1) is preserved. We can now settle the R-applicability of tn. If there was
a retraction σ from res(Dn−1) ∪ output(tn) to res(Dn−1), then σad = h−1 ◦ σ ◦ h
would be a retraction from res(Dad

n−1) ∪ output(tadn ) to res(Dad
n−1). Indeed, forall u ∈

term(res(Dad
n−1)), h(u) ∈ term(res(Dn−1)) so σ(h(u)) = h(u), and σad(u) = u.

We now want to prove that σad(πR(XR[x⃗])) ∈ res(Dad
n−1), as it is the only new atom

introduced by tadn . Assume the contrary. Then, since Dad
n−1 is closed under Datalog

and the rule
∧

i Hi → XR is in the rule set, then there is a i such that σad(πR(Hi[y⃗])) /∈
Dad

n−1. Thus, σ◦h◦π(Hi[y⃗]) = σ(ϕ(Hi[y⃗])) /∈ Dn−1. Since ϕ(Hi[y⃗]) is an atom produced
by tn, it contradicts the fact that σ is a retraction. As such, tn is R-applicable on
Dn−1.

Since we defined everything to preserve (2) and (3), they are also true, and D is indeed
a derivation.

We still have to prove that if Dad is fair then D is too. Assume that Dad is fair. As
such, res(Dad) is a universal model of 2ad(R). Let D be the result of the previous lemma.
According to (1), there is a isomorphism between res(Dad) in which we remove the new
predicates and res(D). Thus, according to Proposition 3.3, res(D) is a universal model of
R.

If res(D) is a universal model of R, then no rule is R-applicable on D, because if there
was an applicable trigger (R, π), then π(R) would not be satisfied in the model, which would
contradict that it is a model. Thus, D is fair.
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