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Program

1. Morning Session from 9:30 to 12:00 (more general/introductory):
I “Introduction to ∃-Rules” by D. Carral
I “Reasoning with Guarded ∃-Rules” by M. Thomazo
I Co�ee Break (outside of the seminar room)
I “Compressing Rule-based Reasoning” by J. Urbani

2. Lunch Break from 12:00 to 13:30 in Building 5 (did you register?)

3. Afternoon Session from 13:30 to 17:00 (more specific/technical):
I “Capturing Homomorphism-Closed Decidable Queries with ∃-Rules” by S.

Rudolph (winner of the Ray Reiter Best Paper Prize 2021)
I “Answering Counting Queries over Lightweight Ontologies” by M. Thomazo
I Co�ee Break (outside of the seminar room)
I “Derivation Graphs, Greediness, and Bounded-treewidth in the Context of

∃Rules” by T. Lyon
I “∃-rules: Intersecting FO-Rewritability and Core Termination” by P.

Ostropolski-Nalewaja
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Program

1. Morning Session from 9:30 to 12:00
2. Lunch Break from 12:00 to 13:30
3. Afternoon Session from 13:30 to 17:00

Remark
Complete schedule available at:
https://www-sop.inria.fr/members/David.Carral/events/
2021-montpellier-existential-rules-seminar.html
I will also upload the slides by the end of the week!
Google “David Carral Sophia Inria” to find my personal webpage, then
look under the “Events” tab.
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Intro to Existential Rules
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Goals of this Presentation

What this talk is about:
General intro to ∃-rules
Provide context for the other talks
Research goals in this field

What is not:
Motivation for the research of ∃-rules
Deep technical content

Remark: Contact me for more info!
Email: david.carral@inria.fr
O�ce 3.129 at Building 5
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Syntax: Existential Rules

Definition: Existential Rules
An (existential) rule is a first-order logic formula ∀~x,~z.β[~x,~z]→ ∃~y.η[~x,~y]
where β and η are conjunctions of atoms without function symbols.
In a nutshell: ∃-rules = Datalog rules + ∃-quantifiers in the head
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where β and η are conjunctions of atoms without function symbols.
In a nutshell: ∃-rules = Datalog rules + ∃-quantifiers in the head

Example: Existential Rules

∀x.PhDStudent(x)→ ∃y.MainSupervisor(x, y) ∧ Professor(y)
∀x, y, z.MainSupervisor(x, y) ∧ EmployedAt(y, z)→ StudiesAt(x, z)

∀x, y, z.MainSupervisor(x, y) ∧MainSupervisor(x, z)→ y ≈ z
∀x.Professor(x) ∧ PhDStudent(x)→ ⊥
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MainSupervisor(x, y) ∧MainSupervisor(x, z)→ y ≈ z
Professor(x) ∧ PhDStudent(x)→ ⊥

We often omit universal quantifiers

Remark: Database Theory
Di�. notation: tuple/equality generating dependencies and constraints.
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Syntax and Semantics

Definition
A fact is an atomic formula P(~c) where ~c are constants.

A Boolean conjunctive query (BCQ) is a (closed) formula ∃~y.β[~y]
where β is a conjunction of atoms without function symbols.
A knowledge base (KB) is a tuple 〈R,F〉 where R is a rule set and
F is a fact set.

All of the above: first-order logic formulas without function symbols!

Definition: BCQ Entailment
A KB K = 〈R,F〉 entails a BCQ γ, written K |= γ, if γ is a logical
consequence of R∪ F under standard first-order logic semantics.

Remark
Can we decide BCQ entailment?
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Solving BCQ Entailment: Universal Models

Determine if K entails γ: determine if infinitely many models (which
may be infinite!) satisfy γ

 2 dimensions of infinity!

Definition
A universal model of a KB K is a model that can be homomorphically
embedded into every other model of K.

Theorem
A KB K entails a BCQ i� it is satisfied by some universal model of K.

Proof Intuition: universal models are the logically weakest models
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Solving BCQ Entailment with Universal Models

Example
Consider the KB K = 〈{R(x, y)→ ∃z.R(y, z)}, {R(a,b)}〉; the BCQs

q = ∃x, y, z.R(x, y) ∧ R(y, z) ∧ R(z, x) and q′ = ∃x, y, z.R(x, y) ∧ R(y, z);

and the following models of K:
M = {R(a,b),R(b,u),R(u, v),R(v,b)}
U = {R(a,b),R(b,u1),R(u1,u2),R(u2,u3), . . .}

Graphical representation:

M :

a

b

U :

a

b
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Universal Models: Skolem Chase
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Universal Models: Skolem Chase

Seminar Talk
Jacopo will discuss an implementation of the chase algorithm that uses
compression to improve performance.

Also, see [Mar09] for a formal definition!
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Is BCQ Entailment Decidable?
Universal models and the chase: we only need one model!

 However, the problem is still undecidable...
Reduction from:

Theorem
Consider two context-free grammars G1 and G2. The problem of
checking if L(G1) ∩ L(G2) = ∅ is undecidable.

Definition
A context-free grammar (CFG) G consists of a start non-terminal S and a
set of production rules of the form

A→ B1 · . . . · Bn A→ ε

where A is a non-terminal and each Bi is a terminal or a non-terminal.
Moreover, there is some production rule of the form S→ B1 · . . . ·Bn in G.

Wlog assumptions: all CFGs are defined over the binary alphabet {0, 1};
non-terminals do not reoccur across di�erent grammars
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BCQ Entailment is Undecidable (1)

How to encode a CFG with an existential rule KB:

Definition
For a CFG G, let KG = 〈RG, {V(c)}〉 wherRG is the rule set that contains:

V(x)→ ∃y.R0(x, y) ∧ V(y)
V(x)→ ∃y.R1(x, y) ∧ V(y)

RB1(x0, x1) ∧ . . . ∧ RBn(xn−1, xn)→ RA(x0, xn) for all A→ B1 · . . . · Bn ∈ G
→ RA(x, x) for all A→ ε ∈ G

In the above, each Rs is a fresh binary predicate unique for the
non-terminal/terminal symbol s.

David Carral (Inria) 17 / 28



BCQ Entailment is Undecidable (2)

Example
Consider the CFG G with start symbol S (left) and the rule setRG (right):

V(x)→ ∃y.R0(x, y) ∧ V(y) V(x)→ ∃y.R1(x, z) ∧ V(z)
S→ 0S1 R0(x, y) ∧ RS(y, z) ∧ R1(z,w)→ RS(x,w)

S→ ε → RS(x, x)

Note that L(G) = 0n1n.

Output of the Skolem chase on input KG = 〈RG, {V(c)}〉:

c : V

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1
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BCQ Entailment is Undecidable (3)

Definition: Reduction
Consider some CFGs G1 and G2 with start symbols S1 and S2,
respectively. Then, let KG2

G1
be the KB:

〈RG1 ∪RG2 ∪ {RS1(x, y) ∧ RS2(x, y)→ Int}, {V(c)}〉

Lemma
Given some CFGs G1 and G2,

L(G1) ∩ L(G2) = ∅ ⇐⇒ KG2
G1
6|= Int

Theorem
The problem of checking if a KB entails a BCQ is undecidable.

See [BV81] for an alternative proof of the above result.
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Retrieving Decidability (in Some Cases)

In order to decide if a KB K = 〈R,F〉 entails a BCQ γ:

1. Check if the Skolem chase terminates on R
2. Apply this algorithm to K and check if its result entails γ

Theorem from [GM14]
The problem of checking if the Skolem chase terminates for a rule set
or knowledge base is undecidable.

Remark: Universal Termination
Note that we consider a check that verifies if the chase of R terminates
with respect to any fact set.
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Retrieving Decidability (in Some Cases) (2)

In order to decide if a KB K = 〈R,F〉 entails a BCQ γ:

1. Check if R is weakly acyclic (the Skolem chase terminates on R )
2. Compute the Skolem chase of K and check if its result entails γ

Remark
Weak acyclicity [FKMP05] is a su�cient condition that guarantees
universal Skolem chase termination.
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Weak Acyclicity (1)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ A(x)

and its weakly acyclic graph

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Fails the test: true negative!

David Carral (Inria) 21 / 28
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Weak Acyclicity (2)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ E(x)

and its weakly acyclic graph

E|1

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Passes the test: (true) positive!
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A Recipe for Decidability

To decide if a KB K = 〈R,F〉 entails a query γ:
1. Decidability property: the Skolem chase terminates on R
2. Su�cient condition: check if R is weakly acyclicity
3. Algorithm: compute the chase of K and check if it entails γ

Seminar Talk: Michaël Thomazo (morning)
1. Decidability property: bounded tree-width model property
2. Decidable language: guarded existential rules
3. Algorithm: compute a finite rep. of a (possibly) infinite model
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Research Goals

The recipe:
1. Choose a property that guarantees decidability
2. Choose a (decidable) su�cient condition for or a language that

has this property
3. Apply the algorithm if the input satisfies the su�cient condition

Research goals:
Develop general su�cient conditions and languages that
guarantee decidability (Tim’s talk).
Study the complexity of reasoning for theories that satisfy some
decidability property or some su�cient condition (Piotr’s talk;
Michaël’s afternoon talk).
E�cient algorithm implementation (Jacopo’s talk).
Study the expressivity of decidable classes of rule sets
(Sebastian’s talk).
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Thanks for your attention!
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