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Datalog: The Scalability Problem

A key reasoning task with Datalog rules is materialization

Definition (informal)

Given as input a set of facts F and a set of Datalog rules P, the materialization is a
process that computes the smallest set of facts MF ,P ⊇ F that satisfies all the rules
in P. Sometimes, we call MF ,P a model of F and P.

Datalog engines perform materialization prior query answering OR perform
materialization during query answering (magic sets)
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Datalog: The Scalability Problem

In practice, materialization is a task applied in many large-scale scenarios

Some examples

• (Some) reasoning with ontologies can be expressed with rules (OWL RL)

• Rules can be used for data wrangling or recursive graph queries

• LinkedIn uses a Datalog engine in production

• Google has developed its own Datalog engine (Yedalog)

• Samsung proposed its usage on mobile devices

• ...

Problem: We must find ways to materialize very large inputs
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Datalog: The Scalability Problem

Terminology

Database: Set of facts F Rule: p1(x1) ∧ . . . ∧ pn(xn︸ ︷︷ ︸
body

)→ q(y)︸︷︷︸
headProgram: Set of rules P

For convenience, we view MF ,P as ∆0 ∪∆1 ∪∆2 ∪ . . . ∪∆n where ∆0 = F and
∆i , i > 0 contains all the facts obtained by applying a rule in P on ∪j<i∆j

Problems

1. F can be too large to be stored on one machine

2. MF ,P can be too large to be stored on one machine

3. Computing ∆i can be time consuming

4. n can be very large

5. The problem is PTIME-complete
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Techniques for Scalable Materialization

Parallelization and/or distribution is the mainstream approach to improve scalability

Rule parallelism
(e.g., RDFOx) apply r1 on F apply r2 on F apply r3 on F apply r4 on F

where r1, r2, r3, r4 ∈ P

Data parallelism
(e.g., WebPIE) apply r on F1 apply r on F2 apply r on F3 apply r on F4

where r ∈ P and F1 ∪ F2F3 ∪ F4 = F

Advantages

• Data parallelism addresses Problem (1) (F can be too large)

• Data parallelism can also address Problem (3) (∆i can be time-consuming)

• Both rule and data parallelism address Problem (2) (MF ,P can be too large)

• Rule parallelism can lead to good load balancing

Disadvantages

• Parallelize and/or distribute a computation has a substantial engineering cost

• Clusters can be expensive

• It may not be possible to share data (privacy)

• May be not efficient due to Problem (5) (PTIME-completeness)
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Compressing Materialization

Compression is an alternative, possibly complementary, way to improve the scalability
of rule-based reasoning.

Advantages

• We can reduce the input size, hence addressing Problems (1) and (2)

• Compression addresses also Problem (3)

• In contrast to parallelism, we do not suffer from Problem (5)

• It can be combined with parallelism to further improve the performance

Example (Dictionary Encoding (DE))

Build a bijective mapping φ that maps every symbol in F to a unique integer. Then,
replace every symbol s with φ(s) in F .
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Dictionary Encoding
DE is a popular form of compression that is often done in a suboptimal way

KOGNAC: The choice of numbers matters! [Urbani et al. (2016a)]
• Popular symbols should get smaller numbers
• “Similar” symbols should get consequent numbers

Improvement up to 10x!

skewness in term frequency distribution with a approxima-
tion streaming technique, and subsequently encodes frequent
terms differently in order to facilitate high down-stream com-
pression. To improve data locality for join access patterns,
KOGNAC computes semantic relatedness between terms by
hierarchically grouping them into ontological classes, and
mapping terms in the same group to consecutive IDs.
KOGNAC has the advantage that it is independent from

RDF application details, since its output is a plain mapping
from strings to IDs. To evaluate its efficiency, we integrated
it with four RDF systems – RDF-3X [Neumann and Weikum,
2008], TripleBit [Yuan et al., 2013], MonetDB [Sidirour-
gos et al., 2008], and TriAD [Gurajada et al., 2014] – and
observed significant improvements in query performance on
metrics like runtime, RAM usage, and disk I/O.

A longer version of this paper, with more details and ex-
periments, is available online at [Urbani et al., 2016].

2 Encoding KGs: State Of The Art
Typically, applications query KGs using SPARQL [Harris et
al., 2013] – a W3C declarative language. The core execution
of SPARQL queries corresponds to finding all graph isomor-
phisms between the KG and the graphs defined in the queries.
RDF Encoding. SPARQL engines, e.g., TripleBit [Yuan et
al., 2013], TriAD [Gurajada et al., 2014], Virtuoso [Erling
and Mikhailov, 2009], etc., use dictionary encoding to assign
numeric IDs to terms based on their appearance ordering,
i.e., simply using consecutive or pseudo-random numbers for
incoming triples. The 4Store engine [Harris et al., 2009] uses
a string-hashing based ID assignment that disregards any pos-
sible co-relation among terms. Both approaches do not con-
sider term frequencies leading to sub-optimal encoding with
frequent terms possibly assigned to larger IDs. Further, so-
phisticated partitioning methods in TriAD renders such en-
coding prohibitively compute expensive [Harbi et al., 2015].

RDF-3X [Neumann and Weikum, 2008], one of the fastest
single-machine RDF storage engines, pre-sorts the SPO
triples lexicographically and then assigns consecutive inte-
ger IDs. A similar approach is also followed by [Urbani
et al., 2013], while [Cheng et al., 2014] proposes a combi-
nation of appearance order with hashing to improve parti-
tioning. In contrast to our work, these approaches strongly
leverage the string similarity heuristics to cluster the ele-
ments. These heuristics break when the semantic similarity
does not follow the lexicographic ordering. Such dissim-
ilarity occurs frequently via subdomain usage in URIs, or
may even be imposed explicitly by political decisions (e.g.,
Wikidata [Vrandečić and Krötzsch, 2014] uses meaningless
strings to avoid an English bias).

Some relational engines (e.g., MonetDB [Sidirourgos et
al., 2008]) can optionally use dedicated data structures for
the storage of strings (mainly using variants of Tries). In this
context, a particular variant of Trie with term prefix overlap
was proposed in [Gallego et al., 2013] to capture syntactic
similarity. In these cases, the coordinates to the data structure
(e.g., memory addresses) are used as numerical IDs. These
IDs are typically long, and the induced locality reflects the
physical storage of the strings rather than the semantics in the
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Figure 1: High level overview of KOGNAC.

KG. Older versions of MonetDB followed this approach, but
it was later abandoned.
Semantic Relateness. There is a rich literature on
semantic relatedness based on the lexicographic fea-
tures [Zhang et al., 2013], or on domain-dependant data
like Wikipedia [Gabrilovich and Markovitch, 2007], Word-
net [Budanitsky and Hirst, 2006], biomedical data [Pedersen
et al., 2007], and spatial [Hecht et al., 2012]. In our case,
we cannot make assumptions about the domain of the input
and the strings may be completely random, so lexicographic
features are not applicable.

In general, semantic relatedness functions cannot be di-
rectly applied to our problem of graph encoding. For in-
stance, [Leal, 2013] defines semantic relatedness among two
nodes as a function of combining the path length and the num-
ber of different paths between two nodes. In our context, it
would be too expensive to compute relatedness for many (or
even any possible) pairs of nodes. Furthermore, the high spar-
sity in the graph results in very low relatedness coefficients
in almost all cases. [Curé et al., 2015] describes how onto-
logical taxonomies can be exploited to speed up reasoning
via intelligent ID encoding. In spirit, this approach is simi-
lar to our approach for encoding infrequent terms. However,
[Curé et al., 2015] focuses on improving reasoning efficiency
rather than the semantic relatedness. Furthermore, [Curé et
al., 2015] does not consider data skewness, as we do.

Finally, clustering methods based on the graph structure
(e.g., METIS [Karypis and Kumar, 1998], or graph-coloring
approach of [Bornea et al., 2013]) are infeasible at our
scale [Gurajada et al., 2014], and often require a conversion
to an undirected single-label graph disregarding entirely the
semantics in the KG. In contrast, the goal of KOGNAC is to
leverage precisely this semantics to improve the encoding.

3 The KOGNAC Algorithm
The efficiency of KOGNAC hinges on two important features
of modern KGs:

a. The distribution of the term frequencies is highly skewed
and resembles a power-law [Kotoulas et al., 2010].

b. Terms are connected via semantic relations. This seman-
tics is formally defined and can be interpreted without
domain knowledge.

Use frequent set mining algos
to find popular symbols. They
receive small numbers

Classes are grouped in a taxon-
omy. Symbols in the same class
get consecutive IDs

J. Urbani 6 / 25



References

VLog
VLog is a reasoner that exploits columnar storage and compression to improve the
scalability of materialization [Urbani et al. (2016b)]

Main features
• Supports materialization with Datalog and existential rules (skolem and restricted

chase)
• Supports negation via stratification
• Implements several acyclicity conditions
• Supports equality reasoning via standard axiomatization, singularization, and

replacement
• The core engine is written in C++ and has very few dependencies. It works on

Windows, Linux, MacOS, Android
• VLog is publicly available https://github.com/karmaresearch/vlog
• There is also a Java library called Rulewerk to facilitate its usage in Java
https://github.com/knowsys/rulewerk
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VLog

We introduce a short example to describe the main idea behind VLog

Example

Consider the application of rule

P(x , y) ∧ R(x)→ S(x) (1)

and F = {P(ai , bi/2) | 1 ≤ i ≤ 2n} ∪ {R(bj) | 1 ≤ j ≤ n}. Note that such execution
creates n S-facts of the form S(bj)
If we store the facts row-by-row, then the P-, R-, and S-facts are stored as:

P(a1, b0),P(a1, b1),P(a2, b1),P(a3, b2), . . . ,R(b1),R(b2), . . . ,S(b1),R(b2), . . .

which leads to a total storage of 2 ∗ n + n + n = 4n symbols

J. Urbani 8 / 25



References

VLog

Example (cont.d)

Suppose we store the P- and R-facts as follows

P(〈a1, . . . , a2n〉, 〈b0, . . . , bn〉),R(〈b1, . . . , bn〉)

. Then, we can execute P(x , y) ∧ R(x)→ S(x) more efficiently.

• We can ignore 〈a1, . . . , a2n〉 when joining P- and R-facts. If we do so, the join
considers 2n symbols instead of 3n.

• No need to store 〈b1, . . . , bn〉 again for S-facts. Total storage is 3n instead of 4n.

J. Urbani 9 / 25



References

VLog

The main idea behind VLog is to store the data using columns instead of rows.

P(x , y) R(x) S(x)

〈a1, b0〉
〈a2, b1〉

. . .
〈a2n, bn〉

〈b1〉
〈b2〉
. . .
〈bn〉

〈b1〉
〈b2〉
. . .
〈bn〉

P(x , y) R(x) S(x)

〈a1,
a2,
. . .
a2n〉

〈b0,
b1,
. . .
bn〉

〈b1,
b2,
. . .
bn〉

Problem

How to deal with updates? Work in append-only mode
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Three main advantanges

Advantage 1: Structure sharing

Instead of copying columns, we can store pointers (ok due append-only mode)

Advantage 2: Better compression

〈b, b, ..., b︸ ︷︷ ︸
n

〉 → 〈b × n〉 (from O(n) to O(1) storage)

〈b1, b2, . . . , bn〉 → 〈bi | 1 ≤ i ≤ n〉 same as above

Advantage 3: Avoid duplicate derivations

Consider rules r1 : P(x , y)→ Q(y , x) and r2 : Q(x , y)→ P(y , x).
If the database contains P(c1, c2) and r1 inferred Q(pc2 , pc1), where pci is a pointer to
ci , then skip r2 on Q(pc2 , pc1) V avoided inference of |c1| duplicates
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About the derivation of duplicates (GLog)
Avoiding the derivation of duplicates is the problem that motivated the development of
GLog – a spinoff of VLog
(https://www.github.com/karmaresearch/glog) [Tsamoura et al. (2021)].

GLog proposes a new data structure, called Trigger Graphs, to perform materialization
without generating (most) duplicates.

Example

Consider the rules

mother(X ,Y )→ daughter(Y ,X ) (r1)

daughter(X ,Y )→ mother(Y ,X ) (r2)

and F = {Mother(Anna,Carla),Mother(Rose,Elena)}.

Trigger Graph
mother(An,Ca)
mother(Ro,El)

daughter(Ca,An)
daughter(El ,Ro)

∅

mother(An,Ca)
mother(Ro,El)

r1

r2

r2
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VLog: Evaluation

Competitors:

• RDFOx (ontogic. reasoning)

• SociaLite (graph analysis)

VLog outperforms the other
systems, often significantly.
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VLog: Evaluation

Best case: VLog uses 14X less RAM

Worst case: VLog uses 2X less RAM
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VLog: Existential Rules
We extended VLog to support rules with existentially quantified variables

Two challenges

• Termination

• Runtime

Termination

We implemented several well-known acyclicity conditions, namely weak acyclicity,
MFA, MSA, JA, etc. [Urbani et al. (2018)] We also designed a novel condition that
considers EGDs [Carral and Urbani (2020)].

Runtime

We extended the columnar storage to include also null values; we also implement the
checks necessary to execute the restricted and skolem chase.
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VLog: Evaluation

VLog outperforms the competitors also with the restricted (standard) chase

Fig. 1. Memory usage (left) and materialisation time (right) for VLog and RDFox

only a single thread, whereas RDFox used maximal parallelism and often achieved above
700% CPU utilisation. Comparing the chase variants, VLog used significantly less time
and memory for the restricted chase, except on deep-100, deep-200, and Ontology-256.
RDFox shows similar behaviour, though the additional cost on deep is more pronounced.
Nevertheless, the restricted chase seems to be the more e�cient algorithm in general.

6 Conclusions

VLog is a fast and memory-e�cient system for constructing models for Horn Logic.
We extended its set-at-a-time and columnar approach to handle existential rules and
discussed our implementation of the chase, which exhibits excellent performance.

The system is free and open source,5 with only few dependencies for optional
database connectors. Pre-compiled Docker images enable quick installation on major
platforms (Docker repository karmaresearch/vlog). Users can control VLog through a
command-line tool, a web interface (useful for demonstrating the system), and though
the Java bindings of the companion project VLog4j.6 The latter is available as a Maven
package that includes the necessary binaries for major operating systems. In the future,
we plan to add further expressive features, such as equality, negation, or aggregation.
This can make VLog useful in even more scenarios, and thereby further advance our
understanding of the potential of this architecture for automated reasoning in general.

5 C++ source code and documentation: https://github.com/karmaresearch/vlog
6 Java source code and documentation: https://github.com/mkroetzsch/vlog4j
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VLog: Web Interface and Docker

Web Interface [Carral et al.
(2019)]

• Good for debugging

• Server mode

• Support querying

• Educational tool

docker pull karmaresearch/vlog

docker run -ti karmaresearch/vlog
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Compression: Moving Forward

We can view columns as first-class citizen symbols [Hu, Urbani, Motik, and Horrocks
(2019)].

Definition

A meta-constant c is a symbol with a mapping µ(c) that points either to a vector of
non-decreasing constants 〈a1, a2, . . . , an〉 or a to a vector of meta-constants.
Meta-facts are facts with meta-constants.

Differences with VLog:
• all sequences of constants are sorted
• meta-constants are hierarchical objects
• mappings are not immutable

Our goal

Reason efficiently on meta-facts trying to introduce as few meta-constants as possible.
J. Urbani 18 / 25
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Semi joins

Rules that require semi joins are easy to handle.

Example

Consider the rule P(x) ∧ Q(x)→ S(x) and the meta-facts P(a) and Q(b) where
µ(a) = 〈a1, a2, . . . , a2n〉 and µ(b) = 〈a2, a4, . . . , a2n〉.

1. Unfold a, b.

2. Introduce two fresh meta-constants c1 and c2 setting µ(c1) = 〈a1, a3, . . . , a2n−1〉
and µ(c2) = 〈a2, a4, . . . , a2n〉.

3. Replace µ(a) with 〈c1, c2〉
4. Return S(c2)

Our approach increased database size by O(1) instead of by O(n) done by a
conventional approach.
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Cross joins

Let us look at a more complicated type of rule.

Example

Consider the rule R(x , y) ∧ S(y , z)→ T (x , z) and facts R(ai , b) and S(b, cj) where
1 ≤ i , j ≤ n.

1. Translate the S-facts into a meta-facts S(b, c) where µ(b) = 〈b × n〉 and
µ(c) = 〈c1, . . . , cn〉.

2. For each R(ai , b), output a meta-fact T (ai, c) where µ(ai) = 〈a1 × n〉.

Our approach infers O(n) new (meta-)facts instead of O(n2) new facts inferred by a
conventional approach.
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Evaluation
||I || is the representation size of I , i.e., the number of symbols needed to store the
facts in I

(numbers in millions)
||F|| ||MF ,P || ||〈F , µ〉|| ||〈MF ,P , µ〉||

LUBM-1k 241.3 314.4 195.2 195.7
Reactome 22.7 32.3 20.2 25.1

ClarosL 32.2 105.5 28.1 31.2
ClarosLE 32.2 1065.8 28.1 413.9

Conv. approaches Ours

Observations
• With our approach, the representation size is much smaller

• With our approach, the representation size grows much less
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Evaluation
Runtime comparison (in seconds)

RDFOx VLog Ours
LUBM-1k 488.3 300.1 266.8
Reactome 53.0 27.5 47.3

ClarosL 135.9 538.4 59.1
ClarosLE 3492.1 3302.3 10.2 k

Observations
• The best case is when the database is very regular

• The worst case is when the rules produces meta-constants with short vectors

Avg. length µ Max. length µ Max. depth µ
LUBM-1k 7993 11.2M 3
ClarosLE 127 699k 2268
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Conclusion

Main message

Compression is an effective way to improve the performance of materialization

Future work
• Explore more adaptive forms of compressions

• Interleave meta-constants with dictionary encoding

• Interleave compression with parallel reasoning

• ...

Thanks!
J. Urbani 23 / 25
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