
An Introduction to Reasoning
with Existential Rules

David Carral
LIRMM, Inria, University of Montpellier, CNRS
November 17, 2021

About to the Seminar

David Carral (Inria) 1 / 28

Program

1. Morning Session from 9:30 to 12:00 (more general/introductory):
I “Introduction to ∃-Rules” by D. Carral
I “Reasoning with Guarded ∃-Rules” by M. Thomazo
I Co�ee Break (outside of the seminar room)
I “Compressing Rule-based Reasoning” by J. Urbani

2. Lunch Break from 12:00 to 13:30 in Building 5 (did you register?)

3. Afternoon Session from 13:30 to 17:00 (more specific/technical):
I “Capturing Homomorphism-Closed Decidable Queries with ∃-Rules” by S.

Rudolph (winner of the Ray Reiter Best Paper Prize 2021)
I “Answering Counting Queries over Lightweight Ontologies” by M. Thomazo
I Co�ee Break (outside of the seminar room)
I “Derivation Graphs, Greediness, and Bounded-treewidth in the Context of

∃Rules” by T. Lyon
I “∃-rules: Intersecting FO-Rewritability and Core Termination” by P.

Ostropolski-Nalewaja

David Carral (Inria) 2 / 28

Program

1. Morning Session from 9:30 to 12:00
2. Lunch Break from 12:00 to 13:30
3. Afternoon Session from 13:30 to 17:00

Remark
Complete schedule available at:
https://www-sop.inria.fr/members/David.Carral/events/
2021-montpellier-existential-rules-seminar.html
I will also upload the slides by the end of the week!
Google “David Carral Sophia Inria” to find my personal webpage, then
look under the “Events” tab.

David Carral (Inria) 3 / 28

https://www-sop.inria.fr/members/David.Carral/events/2021-montpellier-existential-rules-seminar.html
https://www-sop.inria.fr/members/David.Carral/events/2021-montpellier-existential-rules-seminar.html

Program

1. Morning Session from 9:30 to 12:00
2. Lunch Break from 12:00 to 13:30
3. Afternoon Session from 13:30 to 17:00

Remark
Complete schedule available at:
https://www-sop.inria.fr/members/David.Carral/events/
2021-montpellier-existential-rules-seminar.html
I will also upload the slides by the end of the week!
Google “David Carral Sophia Inria” to find my personal webpage, then
look under the “Events” tab.

David Carral (Inria) 3 / 28

https://www-sop.inria.fr/members/David.Carral/events/2021-montpellier-existential-rules-seminar.html
https://www-sop.inria.fr/members/David.Carral/events/2021-montpellier-existential-rules-seminar.html

Acknowledgements

Organisators: Virginie Fèche, Mégane Miquel, and Christian Retoré

(also, Marie-Laure Mugnier and Federico Ulliana)

Speakers: Timothy Stephen Lyon, Piotr Ostropolski-Nalewaja,
Sebastian Rudolph, Michaël Thomazo x 2, and Jacopo Urbani

Funding provided by:
The LIRMM through the “Action Transverse Logique”
The GraphIK team
The Chair of Computational Logic at TU Dresden (that is,
Sebastian’s research group)

David Carral (Inria) 4 / 28

Acknowledgements

Organisators: Virginie Fèche, Mégane Miquel, and Christian Retoré
(also, Marie-Laure Mugnier and Federico Ulliana)

Speakers: Timothy Stephen Lyon, Piotr Ostropolski-Nalewaja,
Sebastian Rudolph, Michaël Thomazo x 2, and Jacopo Urbani

Funding provided by:
The LIRMM through the “Action Transverse Logique”
The GraphIK team
The Chair of Computational Logic at TU Dresden (that is,
Sebastian’s research group)

David Carral (Inria) 4 / 28

Acknowledgements

Organisators: Virginie Fèche, Mégane Miquel, and Christian Retoré
(also, Marie-Laure Mugnier and Federico Ulliana)

Speakers: Timothy Stephen Lyon, Piotr Ostropolski-Nalewaja,
Sebastian Rudolph, Michaël Thomazo x 2, and Jacopo Urbani

Funding provided by:
The LIRMM through the “Action Transverse Logique”
The GraphIK team
The Chair of Computational Logic at TU Dresden (that is,
Sebastian’s research group)

David Carral (Inria) 4 / 28

Acknowledgements

Organisators: Virginie Fèche, Mégane Miquel, and Christian Retoré
(also, Marie-Laure Mugnier and Federico Ulliana)

Speakers: Timothy Stephen Lyon, Piotr Ostropolski-Nalewaja,
Sebastian Rudolph, Michaël Thomazo x 2, and Jacopo Urbani

Funding provided by:
The LIRMM through the “Action Transverse Logique”
The GraphIK team
The Chair of Computational Logic at TU Dresden (that is,
Sebastian’s research group)

David Carral (Inria) 4 / 28

Intro to Existential Rules

David Carral (Inria) 5 / 28

Goals of this Presentation

What this talk is about:
General intro to ∃-rules
Provide context for the other talks
Research goals in this field

What is not:
Motivation for the research of ∃-rules
Deep technical content

Remark: Contact me for more info!
Email: david.carral@inria.fr
O�ce 3.129 at Building 5

David Carral (Inria) 6 / 28

david.carral@inria.fr

Goals of this Presentation

What this talk is about:
General intro to ∃-rules
Provide context for the other talks
Research goals in this field

What is not:
Motivation for the research of ∃-rules
Deep technical content

Remark: Contact me for more info!
Email: david.carral@inria.fr
O�ce 3.129 at Building 5

David Carral (Inria) 6 / 28

david.carral@inria.fr

Goals of this Presentation

What this talk is about:
General intro to ∃-rules
Provide context for the other talks
Research goals in this field

What is not:
Motivation for the research of ∃-rules
Deep technical content

Remark: Contact me for more info!
Email: david.carral@inria.fr
O�ce 3.129 at Building 5

David Carral (Inria) 6 / 28

david.carral@inria.fr

Syntax: Existential Rules

Definition: Existential Rules
An (existential) rule is a first-order logic formula ∀~x,~z.β[~x,~z]→ ∃~y.η[~x,~y]
where β and η are conjunctions of atoms without function symbols.
In a nutshell: ∃-rules = Datalog rules + ∃-quantifiers in the head

David Carral (Inria) 7 / 28

Syntax: Existential Rules

Definition: Existential Rules
An (existential) rule is a first-order logic formula ∀~x,~z.β[~x,~z]→ ∃~y.η[~x,~y]
where β and η are conjunctions of atoms without function symbols.
In a nutshell: ∃-rules = Datalog rules + ∃-quantifiers in the head

Example: Existential Rules

∀x.PhDStudent(x)→ ∃y.MainSupervisor(x, y) ∧ Professor(y)
∀x, y, z.MainSupervisor(x, y) ∧ EmployedAt(y, z)→ StudiesAt(x, z)

∀x, y, z.MainSupervisor(x, y) ∧MainSupervisor(x, z)→ y ≈ z
∀x.Professor(x) ∧ PhDStudent(x)→ ⊥

David Carral (Inria) 7 / 28

Syntax: Existential Rules

Definition: Existential Rules
An (existential) rule is a first-order logic formula ∀~x,~z.β[~x,~z]→ ∃~y.η[~x,~y]
where β and η are conjunctions of atoms without function symbols.
In a nutshell: ∃-rules = Datalog rules + ∃-quantifiers in the head

Example: Existential Rules

PhDStudent(x)→ ∃y.MainSupervisor(x, y) ∧ Professor(y)
MainSupervisor(x, y) ∧ EmployedAt(y, z)→ StudiesAt(x, z)

MainSupervisor(x, y) ∧MainSupervisor(x, z)→ y ≈ z
Professor(x) ∧ PhDStudent(x)→ ⊥

We often omit universal quantifiers

David Carral (Inria) 7 / 28

Syntax: Existential Rules

Definition: Existential Rules
An (existential) rule is a first-order logic formula ∀~x,~z.β[~x,~z]→ ∃~y.η[~x,~y]
where β and η are conjunctions of atoms without function symbols.
In a nutshell: ∃-rules = Datalog rules + ∃-quantifiers in the head

Example: Existential Rules

PhDStudent(x)→ ∃y.MainSupervisor(x, y) ∧ Professor(y)
MainSupervisor(x, y) ∧ EmployedAt(y, z)→ StudiesAt(x, z)

MainSupervisor(x, y) ∧MainSupervisor(x, z)→ y ≈ z
Professor(x) ∧ PhDStudent(x)→ ⊥

We often omit universal quantifiers

Remark: Database Theory
Di�. notation: tuple/equality generating dependencies and constraints.

David Carral (Inria) 7 / 28

Syntax and Semantics

Definition
A fact is an atomic formula P(~c) where ~c are constants.

A Boolean conjunctive query (BCQ) is a (closed) formula ∃~y.β[~y]
where β is a conjunction of atoms without function symbols.
A knowledge base (KB) is a tuple 〈R,F〉 where R is a rule set and
F is a fact set.

All of the above: first-order logic formulas without function symbols!

Definition: BCQ Entailment
A KB K = 〈R,F〉 entails a BCQ γ, written K |= γ, if γ is a logical
consequence of R∪ F under standard first-order logic semantics.

Remark
Can we decide BCQ entailment?

David Carral (Inria) 8 / 28

Syntax and Semantics

Definition
A fact is an atomic formula P(~c) where ~c are constants.
A Boolean conjunctive query (BCQ) is a (closed) formula ∃~y.β[~y]
where β is a conjunction of atoms without function symbols.

A knowledge base (KB) is a tuple 〈R,F〉 where R is a rule set and
F is a fact set.

All of the above: first-order logic formulas without function symbols!

Definition: BCQ Entailment
A KB K = 〈R,F〉 entails a BCQ γ, written K |= γ, if γ is a logical
consequence of R∪ F under standard first-order logic semantics.

Remark
Can we decide BCQ entailment?

David Carral (Inria) 8 / 28

Syntax and Semantics

Definition
A fact is an atomic formula P(~c) where ~c are constants.
A Boolean conjunctive query (BCQ) is a (closed) formula ∃~y.β[~y]
where β is a conjunction of atoms without function symbols.
A knowledge base (KB) is a tuple 〈R,F〉 where R is a rule set and
F is a fact set.

All of the above: first-order logic formulas without function symbols!

Definition: BCQ Entailment
A KB K = 〈R,F〉 entails a BCQ γ, written K |= γ, if γ is a logical
consequence of R∪ F under standard first-order logic semantics.

Remark
Can we decide BCQ entailment?

David Carral (Inria) 8 / 28

Syntax and Semantics

Definition
A fact is an atomic formula P(~c) where ~c are constants.
A Boolean conjunctive query (BCQ) is a (closed) formula ∃~y.β[~y]
where β is a conjunction of atoms without function symbols.
A knowledge base (KB) is a tuple 〈R,F〉 where R is a rule set and
F is a fact set.

All of the above: first-order logic formulas without function symbols!

Definition: BCQ Entailment
A KB K = 〈R,F〉 entails a BCQ γ, written K |= γ, if γ is a logical
consequence of R∪ F under standard first-order logic semantics.

Remark
Can we decide BCQ entailment?

David Carral (Inria) 8 / 28

Syntax and Semantics

Definition
A fact is an atomic formula P(~c) where ~c are constants.
A Boolean conjunctive query (BCQ) is a (closed) formula ∃~y.β[~y]
where β is a conjunction of atoms without function symbols.
A knowledge base (KB) is a tuple 〈R,F〉 where R is a rule set and
F is a fact set.

All of the above: first-order logic formulas without function symbols!

Definition: BCQ Entailment
A KB K = 〈R,F〉 entails a BCQ γ, written K |= γ, if γ is a logical
consequence of R∪ F under standard first-order logic semantics.

Remark
Can we decide BCQ entailment?

David Carral (Inria) 8 / 28

Syntax and Semantics

Definition
A fact is an atomic formula P(~c) where ~c are constants.
A Boolean conjunctive query (BCQ) is a (closed) formula ∃~y.β[~y]
where β is a conjunction of atoms without function symbols.
A knowledge base (KB) is a tuple 〈R,F〉 where R is a rule set and
F is a fact set.

All of the above: first-order logic formulas without function symbols!

Definition: BCQ Entailment
A KB K = 〈R,F〉 entails a BCQ γ, written K |= γ, if γ is a logical
consequence of R∪ F under standard first-order logic semantics.

Remark
Can we decide BCQ entailment?

David Carral (Inria) 8 / 28

Solving BCQ Entailment: Universal Models

Determine if K entails γ: determine if infinitely many models (which
may be infinite!) satisfy γ

 2 dimensions of infinity!

Definition
A universal model of a KB K is a model that can be homomorphically
embedded into every other model of K.

Theorem
A KB K entails a BCQ i� it is satisfied by some universal model of K.

Proof Intuition: universal models are the logically weakest models

David Carral (Inria) 9 / 28

Solving BCQ Entailment: Universal Models

Determine if K entails γ: determine if infinitely many models (which
may be infinite!) satisfy γ
 2 dimensions of infinity!

Definition
A universal model of a KB K is a model that can be homomorphically
embedded into every other model of K.

Theorem
A KB K entails a BCQ i� it is satisfied by some universal model of K.

Proof Intuition: universal models are the logically weakest models

David Carral (Inria) 9 / 28

Solving BCQ Entailment: Universal Models

Determine if K entails γ: determine if infinitely many models (which
may be infinite!) satisfy γ
 2 dimensions of infinity!

Definition
A universal model of a KB K is a model that can be homomorphically
embedded into every other model of K.

Theorem
A KB K entails a BCQ i� it is satisfied by some universal model of K.

Proof Intuition: universal models are the logically weakest models

David Carral (Inria) 9 / 28

Solving BCQ Entailment: Universal Models

Determine if K entails γ: determine if infinitely many models (which
may be infinite!) satisfy γ
 2 dimensions of infinity!

Definition
A universal model of a KB K is a model that can be homomorphically
embedded into every other model of K.

Theorem
A KB K entails a BCQ i� it is satisfied by some universal model of K.

Proof Intuition: universal models are the logically weakest models

David Carral (Inria) 9 / 28

Solving BCQ Entailment: Universal Models

Determine if K entails γ: determine if infinitely many models (which
may be infinite!) satisfy γ
 2 dimensions of infinity!

Definition
A universal model of a KB K is a model that can be homomorphically
embedded into every other model of K.

Theorem
A KB K entails a BCQ i� it is satisfied by some universal model of K.

Proof Intuition: universal models are the logically weakest models

David Carral (Inria) 9 / 28

Solving BCQ Entailment with Universal Models

Example
Consider the KB K = 〈{R(x, y)→ ∃z.R(y, z)}, {R(a,b)}〉; the BCQs

q = ∃x, y, z.R(x, y) ∧ R(y, z) ∧ R(z, x) and q′ = ∃x, y, z.R(x, y) ∧ R(y, z);

and the following models of K:
M = {R(a,b),R(b,u),R(u, v),R(v,b)}
U = {R(a,b),R(b,u1),R(u1,u2),R(u2,u3), . . .}

Graphical representation:

M :

a

b

U :

a

b

David Carral (Inria) 10 / 28

Solving BCQ Entailment with Universal Models

Example
Consider the KB K = 〈{R(x, y)→ ∃z.R(y, z)}, {R(a,b)}〉; the BCQs

q = ∃x, y, z.R(x, y) ∧ R(y, z) ∧ R(z, x) and q′ = ∃x, y, z.R(x, y) ∧ R(y, z);

and the following models of K:
M = {R(a,b),R(b,u),R(u, v),R(v,b)}
U = {R(a,b),R(b,u1),R(u1,u2),R(u2,u3), . . .}

Graphical representation:

M :

a

b

U :

a

b

David Carral (Inria) 10 / 28

Solving BCQ Entailment with Universal Models

Example
Consider the KB K = 〈{R(x, y)→ ∃z.R(y, z)}, {R(a,b)}〉; the BCQs

q = ∃x, y, z.R(x, y) ∧ R(y, z) ∧ R(z, x) and q′ = ∃x, y, z.R(x, y) ∧ R(y, z);

and the following models of K:

M :

a
b

U :

a
b

q :

David Carral (Inria) 11 / 28

Solving BCQ Entailment with Universal Models

Example
Consider the KB K = 〈{R(x, y)→ ∃z.R(y, z)}, {R(a,b)}〉; the BCQs

q = ∃x, y, z.R(x, y) ∧ R(y, z) ∧ R(z, x) and q′ = ∃x, y, z.R(x, y) ∧ R(y, z);

and the following models of K:

M :

a
b

U :

a
b

q :

David Carral (Inria) 11 / 28

Solving BCQ Entailment with Universal Models

Example
Consider the KB K = 〈{R(x, y)→ ∃z.R(y, z)}, {R(a,b)}〉; the BCQs

q = ∃x, y, z.R(x, y) ∧ R(y, z) ∧ R(z, x) and q′ = ∃x, y, z.R(x, y) ∧ R(y, z);

and the following models of K:

M :

a
b

U :

a
b

q :

David Carral (Inria) 11 / 28

Solving BCQ Entailment with Universal Models

Example
Consider the KB K = 〈{R(x, y)→ ∃z.R(y, z)}, {R(a,b)}〉; the BCQs

q = ∃x, y, z.R(x, y) ∧ R(y, z) ∧ R(z, x) and q′ = ∃x, y, z.R(x, y) ∧ R(y, z);

and the following models of K:

M :

a
b

U :

a
b

q :

David Carral (Inria) 11 / 28

Solving BCQ Entailment with Universal Models

Example
Consider the KB K = 〈{R(x, y)→ ∃z.R(y, z)}, {R(a,b)}〉; the BCQs

q = ∃x, y, z.R(x, y) ∧ R(y, z) ∧ R(z, x) and q′ = ∃x, y, z.R(x, y) ∧ R(y, z);

and the following models of K:

M :

a
b

U :

a
b

q :

b

Theorem
A KB K entails a BCQ i� it is satisfied by some universal model of K.

David Carral (Inria) 12 / 28

Solving BCQ Entailment with Universal Models

Example
Consider the KB K = 〈{R(x, y)→ ∃z.R(y, z)}, {R(a,b)}〉; the BCQs

q = ∃x, y, z.R(x, y) ∧ R(y, z) ∧ R(z, x) and q′ = ∃x, y, z.R(x, y) ∧ R(y, z);

and the following models of K:

U :

a
b

V :

a
b

David Carral (Inria) 13 / 28

Solving BCQ Entailment with Universal Models

Example
Consider the KB K = 〈{R(x, y)→ ∃z.R(y, z)}, {R(a,b)}〉; the BCQs

q = ∃x, y, z.R(x, y) ∧ R(y, z) ∧ R(z, x) and q′ = ∃x, y, z.R(x, y) ∧ R(y, z);

and the following models of K:

U :

a
b

V :

a
b

David Carral (Inria) 13 / 28

Universal Models: Skolem Chase

David Carral (Inria) 14 / 28

Universal Models: Skolem Chase

David Carral (Inria) 14 / 28

Universal Models: Skolem Chase

David Carral (Inria) 14 / 28

Universal Models: Skolem Chase

David Carral (Inria) 14 / 28

Universal Models: Skolem Chase

David Carral (Inria) 14 / 28

Universal Models: Skolem Chase

David Carral (Inria) 14 / 28

Universal Models: Skolem Chase

David Carral (Inria) 14 / 28

Universal Models: Skolem Chase

David Carral (Inria) 14 / 28

Universal Models: Skolem Chase

David Carral (Inria) 14 / 28

Universal Models: Skolem Chase

David Carral (Inria) 14 / 28

Universal Models: Skolem Chase

David Carral (Inria) 15 / 28

Universal Models: Skolem Chase

David Carral (Inria) 15 / 28

Universal Models: Skolem Chase

David Carral (Inria) 15 / 28

Universal Models: Skolem Chase

David Carral (Inria) 15 / 28

Universal Models: Skolem Chase

David Carral (Inria) 15 / 28

Universal Models: Skolem Chase

David Carral (Inria) 15 / 28

Universal Models: Skolem Chase

David Carral (Inria) 15 / 28

Universal Models: Skolem Chase

David Carral (Inria) 15 / 28

Universal Models: Skolem Chase

David Carral (Inria) 15 / 28

Universal Models: Skolem Chase

David Carral (Inria) 15 / 28

Universal Models: Skolem Chase

David Carral (Inria) 15 / 28

Universal Models: Skolem Chase

David Carral (Inria) 15 / 28

Universal Models: Skolem Chase

David Carral (Inria) 15 / 28

Universal Models: Skolem Chase

Seminar Talk
Jacopo will discuss an implementation of the chase algorithm that uses
compression to improve performance.

Also, see [Mar09] for a formal definition!

David Carral (Inria) 15 / 28

Is BCQ Entailment Decidable?
Universal models and the chase: we only need one model!

 However, the problem is still undecidable...
Reduction from:

Theorem
Consider two context-free grammars G1 and G2. The problem of
checking if L(G1) ∩ L(G2) = ∅ is undecidable.

Definition
A context-free grammar (CFG) G consists of a start non-terminal S and a
set of production rules of the form

A→ B1 · . . . · Bn A→ ε

where A is a non-terminal and each Bi is a terminal or a non-terminal.
Moreover, there is some production rule of the form S→ B1 · . . . ·Bn in G.

Wlog assumptions: all CFGs are defined over the binary alphabet {0, 1};
non-terminals do not reoccur across di�erent grammars

David Carral (Inria) 16 / 28

Is BCQ Entailment Decidable?
Universal models and the chase: we only need one model!
 However, the problem is still undecidable...

Reduction from:

Theorem
Consider two context-free grammars G1 and G2. The problem of
checking if L(G1) ∩ L(G2) = ∅ is undecidable.

Definition
A context-free grammar (CFG) G consists of a start non-terminal S and a
set of production rules of the form

A→ B1 · . . . · Bn A→ ε

where A is a non-terminal and each Bi is a terminal or a non-terminal.
Moreover, there is some production rule of the form S→ B1 · . . . ·Bn in G.

Wlog assumptions: all CFGs are defined over the binary alphabet {0, 1};
non-terminals do not reoccur across di�erent grammars

David Carral (Inria) 16 / 28

Is BCQ Entailment Decidable?
Universal models and the chase: we only need one model!
 However, the problem is still undecidable...

Reduction from:

Theorem
Consider two context-free grammars G1 and G2. The problem of
checking if L(G1) ∩ L(G2) = ∅ is undecidable.

Definition
A context-free grammar (CFG) G consists of a start non-terminal S and a
set of production rules of the form

A→ B1 · . . . · Bn A→ ε

where A is a non-terminal and each Bi is a terminal or a non-terminal.
Moreover, there is some production rule of the form S→ B1 · . . . ·Bn in G.

Wlog assumptions: all CFGs are defined over the binary alphabet {0, 1};
non-terminals do not reoccur across di�erent grammars

David Carral (Inria) 16 / 28

Is BCQ Entailment Decidable?
Universal models and the chase: we only need one model!
 However, the problem is still undecidable...

Reduction from:

Theorem
Consider two context-free grammars G1 and G2. The problem of
checking if L(G1) ∩ L(G2) = ∅ is undecidable.

Definition
A context-free grammar (CFG) G consists of a start non-terminal S and a
set of production rules of the form

A→ B1 · . . . · Bn A→ ε

where A is a non-terminal and each Bi is a terminal or a non-terminal.
Moreover, there is some production rule of the form S→ B1 · . . . ·Bn in G.

Wlog assumptions: all CFGs are defined over the binary alphabet {0, 1};
non-terminals do not reoccur across di�erent grammars

David Carral (Inria) 16 / 28

BCQ Entailment is Undecidable (1)

How to encode a CFG with an existential rule KB:

Definition
For a CFG G, let KG = 〈RG, {V(c)}〉 wherRG is the rule set that contains:

V(x)→ ∃y.R0(x, y) ∧ V(y)
V(x)→ ∃y.R1(x, y) ∧ V(y)

RB1(x0, x1) ∧ . . . ∧ RBn(xn−1, xn)→ RA(x0, xn) for all A→ B1 · . . . · Bn ∈ G
→ RA(x, x) for all A→ ε ∈ G

In the above, each Rs is a fresh binary predicate unique for the
non-terminal/terminal symbol s.

David Carral (Inria) 17 / 28

BCQ Entailment is Undecidable (2)

Example
Consider the CFG G with start symbol S (left) and the rule setRG (right):

V(x)→ ∃y.R0(x, y) ∧ V(y) V(x)→ ∃y.R1(x, z) ∧ V(z)
S→ 0S1 R0(x, y) ∧ RS(y, z) ∧ R1(z,w)→ RS(x,w)

S→ ε → RS(x, x)

Note that L(G) = 0n1n.

Output of the Skolem chase on input KG = 〈RG, {V(c)}〉:

c : V

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

David Carral (Inria) 18 / 28

BCQ Entailment is Undecidable (2)

Example
Consider the CFG G with start symbol S (left) and the rule setRG (right):

V(x)→ ∃y.R0(x, y) ∧ V(y) V(x)→ ∃y.R1(x, z) ∧ V(z)
S→ 0S1 R0(x, y) ∧ RS(y, z) ∧ R1(z,w)→ RS(x,w)

S→ ε → RS(x, x)

Note that L(G) = 0n1n.
Output of the Skolem chase on input KG = 〈RG, {V(c)}〉:

c : V

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

David Carral (Inria) 18 / 28

BCQ Entailment is Undecidable (2)

Example
Consider the CFG G with start symbol S (left) and the rule setRG (right):

V(x)→ ∃y.R0(x, y) ∧ V(y) V(x)→ ∃y.R1(x, z) ∧ V(z)
S→ 0S1 R0(x, y) ∧ RS(y, z) ∧ R1(z,w)→ RS(x,w)

S→ ε → RS(x, x)

Note that L(G) = 0n1n.
Output of the Skolem chase on input KG = 〈RG, {V(c)}〉:

c : V

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

David Carral (Inria) 18 / 28

BCQ Entailment is Undecidable (2)

Example
Consider the CFG G with start symbol S (left) and the rule setRG (right):

V(x)→ ∃y.R0(x, y) ∧ V(y) V(x)→ ∃y.R1(x, z) ∧ V(z)
S→ 0S1 R0(x, y) ∧ RS(y, z) ∧ R1(z,w)→ RS(x,w)

S→ ε → RS(x, x)

Note that L(G) = 0n1n.
Output of the Skolem chase on input KG = 〈RG, {V(c)}〉:

c : V

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

David Carral (Inria) 18 / 28

BCQ Entailment is Undecidable (2)

Example
Consider the CFG G with start symbol S (left) and the rule setRG (right):

V(x)→ ∃y.R0(x, y) ∧ V(y) V(x)→ ∃y.R1(x, z) ∧ V(z)
S→ 0S1 R0(x, y) ∧ RS(y, z) ∧ R1(z,w)→ RS(x,w)

S→ ε → RS(x, x)

Note that L(G) = 0n1n.
Output of the Skolem chase on input KG = 〈RG, {V(c)}〉:

c : V

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

David Carral (Inria) 18 / 28

BCQ Entailment is Undecidable (2)

Example
Consider the CFG G with start symbol S (left) and the rule setRG (right):

V(x)→ ∃y.R0(x, y) ∧ V(y) V(x)→ ∃y.R1(x, z) ∧ V(z)
S→ 0S1 R0(x, y) ∧ RS(y, z) ∧ R1(z,w)→ RS(x,w)

S→ ε → RS(x, x)

Note that L(G) = 0n1n.
Output of the Skolem chase on input KG = 〈RG, {V(c)}〉:

c : V

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

V

R0

V

R1

David Carral (Inria) 18 / 28

BCQ Entailment is Undecidable (2)

Example
Consider the CFG G with start symbol S (left) and the rule setRG (right):

V(x)→ ∃y.R0(x, y) ∧ V(y) V(x)→ ∃y.R1(x, z) ∧ V(z)
S→ 0S1 R0(x, y) ∧ RS(y, z) ∧ R1(z,w)→ RS(x,w)

S→ ε → RS(x, x)

Note that L(G) = 0n1n.
Output of the Skolem chase on input KG = 〈RG, {V(c)}〉:

c0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

RS

RS

RS RS

RS

David Carral (Inria) 18 / 28

BCQ Entailment is Undecidable (2)

Example
Consider the CFG G with start symbol S (left) and the rule setRG (right):

V(x)→ ∃y.R0(x, y) ∧ V(y) V(x)→ ∃y.R1(x, z) ∧ V(z)
S→ 0S1 R0(x, y) ∧ RS(y, z) ∧ R1(z,w)→ RS(x,w)

S→ ε → RS(x, x)

Note that L(G) = 0n1n.
Output of the Skolem chase on input KG = 〈RG, {V(c)}〉:

c0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

RS

RS

RS RS

RS

David Carral (Inria) 18 / 28

BCQ Entailment is Undecidable (2)

Example
Consider the CFG G with start symbol S (left) and the rule setRG (right):

V(x)→ ∃y.R0(x, y) ∧ V(y) V(x)→ ∃y.R1(x, z) ∧ V(z)
S→ 0S1 R0(x, y) ∧ RS(y, z) ∧ R1(z,w)→ RS(x,w)

S→ ε → RS(x, x)

Note that L(G) = 0n1n.
Output of the Skolem chase on input KG = 〈RG, {V(c)}〉:

c0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

RS

RS

RS RS

RS

David Carral (Inria) 18 / 28

BCQ Entailment is Undecidable (2)

Example
Consider the CFG G with start symbol S (left) and the rule setRG (right):

V(x)→ ∃y.R0(x, y) ∧ V(y) V(x)→ ∃y.R1(x, z) ∧ V(z)
S→ 0S1 R0(x, y) ∧ RS(y, z) ∧ R1(z,w)→ RS(x,w)

S→ ε → RS(x, x)

Note that L(G) = 0n1n.
Output of the Skolem chase on input KG = 〈RG, {V(c)}〉:

c0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

RS

RS

RS

RS

RS

David Carral (Inria) 18 / 28

BCQ Entailment is Undecidable (2)

Example
Consider the CFG G with start symbol S (left) and the rule setRG (right):

V(x)→ ∃y.R0(x, y) ∧ V(y) V(x)→ ∃y.R1(x, z) ∧ V(z)
S→ 0S1 R0(x, y) ∧ RS(y, z) ∧ R1(z,w)→ RS(x,w)

S→ ε → RS(x, x)

Note that L(G) = 0n1n.
Output of the Skolem chase on input KG = 〈RG, {V(c)}〉:

c0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

RS

RS

RS RS

RS

David Carral (Inria) 18 / 28

BCQ Entailment is Undecidable (2)

Example
Consider the CFG G with start symbol S (left) and the rule setRG (right):

V(x)→ ∃y.R0(x, y) ∧ V(y) V(x)→ ∃y.R1(x, z) ∧ V(z)
S→ 0S1 R0(x, y) ∧ RS(y, z) ∧ R1(z,w)→ RS(x,w)

S→ ε → RS(x, x)

Note that L(G) = 0n1n.
Output of the Skolem chase on input KG = 〈RG, {V(c)}〉:

c0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

RS

RS

RS RS

RS

David Carral (Inria) 18 / 28

BCQ Entailment is Undecidable (3)

Definition: Reduction
Consider some CFGs G1 and G2 with start symbols S1 and S2,
respectively. Then, let KG2

G1
be the KB:

〈RG1 ∪RG2 ∪ {RS1(x, y) ∧ RS2(x, y)→ Int}, {V(c)}〉

Lemma
Given some CFGs G1 and G2,

L(G1) ∩ L(G2) = ∅ ⇐⇒ KG2
G1
6|= Int

Theorem
The problem of checking if a KB entails a BCQ is undecidable.

See [BV81] for an alternative proof of the above result.

David Carral (Inria) 19 / 28

BCQ Entailment is Undecidable (3)

Definition: Reduction
Consider some CFGs G1 and G2 with start symbols S1 and S2,
respectively. Then, let KG2

G1
be the KB:

〈RG1 ∪RG2 ∪ {RS1(x, y) ∧ RS2(x, y)→ Int}, {V(c)}〉

Lemma
Given some CFGs G1 and G2,

L(G1) ∩ L(G2) = ∅ ⇐⇒ KG2
G1
6|= Int

Theorem
The problem of checking if a KB entails a BCQ is undecidable.

See [BV81] for an alternative proof of the above result.

David Carral (Inria) 19 / 28

BCQ Entailment is Undecidable (3)

Definition: Reduction
Consider some CFGs G1 and G2 with start symbols S1 and S2,
respectively. Then, let KG2

G1
be the KB:

〈RG1 ∪RG2 ∪ {RS1(x, y) ∧ RS2(x, y)→ Int}, {V(c)}〉

Lemma
Given some CFGs G1 and G2,

L(G1) ∩ L(G2) = ∅ ⇐⇒ KG2
G1
6|= Int

Theorem
The problem of checking if a KB entails a BCQ is undecidable.

See [BV81] for an alternative proof of the above result.

David Carral (Inria) 19 / 28

BCQ Entailment is Undecidable (3)

Definition: Reduction
Consider some CFGs G1 and G2 with start symbols S1 and S2,
respectively. Then, let KG2

G1
be the KB:

〈RG1 ∪RG2 ∪ {RS1(x, y) ∧ RS2(x, y)→ Int}, {V(c)}〉

Lemma
Given some CFGs G1 and G2,

L(G1) ∩ L(G2) = ∅ ⇐⇒ KG2
G1
6|= Int

Theorem
The problem of checking if a KB entails a BCQ is undecidable.

See [BV81] for an alternative proof of the above result.

David Carral (Inria) 19 / 28

Retrieving Decidability (in Some Cases)

In order to decide if a KB K = 〈R,F〉 entails a BCQ γ:

1. Check if the Skolem chase terminates on R
2. Apply this algorithm to K and check if its result entails γ

Theorem from [GM14]
The problem of checking if the Skolem chase terminates for a rule set
or knowledge base is undecidable.

Remark: Universal Termination
Note that we consider a check that verifies if the chase of R terminates
with respect to any fact set.

David Carral (Inria) 20 / 28

Retrieving Decidability (in Some Cases)

In order to decide if a KB K = 〈R,F〉 entails a BCQ γ:
1. Check if the Skolem chase terminates on R

2. Apply this algorithm to K and check if its result entails γ

Theorem from [GM14]
The problem of checking if the Skolem chase terminates for a rule set
or knowledge base is undecidable.

Remark: Universal Termination
Note that we consider a check that verifies if the chase of R terminates
with respect to any fact set.

David Carral (Inria) 20 / 28

Retrieving Decidability (in Some Cases)

In order to decide if a KB K = 〈R,F〉 entails a BCQ γ:
1. Check if the Skolem chase terminates on R
2. Apply this algorithm to K and check if its result entails γ

Theorem from [GM14]
The problem of checking if the Skolem chase terminates for a rule set
or knowledge base is undecidable.

Remark: Universal Termination
Note that we consider a check that verifies if the chase of R terminates
with respect to any fact set.

David Carral (Inria) 20 / 28

Retrieving Decidability (in Some Cases)

In order to decide if a KB K = 〈R,F〉 entails a BCQ γ:
1. Check if the Skolem chase terminates on R
2. Apply this algorithm to K and check if its result entails γ

Theorem from [GM14]
The problem of checking if the Skolem chase terminates for a rule set
or knowledge base is undecidable.

Remark: Universal Termination
Note that we consider a check that verifies if the chase of R terminates
with respect to any fact set.

David Carral (Inria) 20 / 28

Retrieving Decidability (in Some Cases)

In order to decide if a KB K = 〈R,F〉 entails a BCQ γ:
1. Check if the Skolem chase terminates on R
2. Apply this algorithm to K and check if its result entails γ

Theorem from [GM14]
The problem of checking if the Skolem chase terminates for a rule set
or knowledge base is undecidable.

Remark: Universal Termination
Note that we consider a check that verifies if the chase of R terminates
with respect to any fact set.

David Carral (Inria) 20 / 28

Retrieving Decidability (in Some Cases) (2)

In order to decide if a KB K = 〈R,F〉 entails a BCQ γ:

1. Check if R is weakly acyclic (the Skolem chase terminates on R)
2. Compute the Skolem chase of K and check if its result entails γ

Remark
Weak acyclicity [FKMP05] is a su�cient condition that guarantees
universal Skolem chase termination.

David Carral (Inria) 20 / 28

Retrieving Decidability (in Some Cases) (2)

In order to decide if a KB K = 〈R,F〉 entails a BCQ γ:
1. Check if R is weakly acyclic (the Skolem chase terminates on R)

2. Compute the Skolem chase of K and check if its result entails γ

Remark
Weak acyclicity [FKMP05] is a su�cient condition that guarantees
universal Skolem chase termination.

David Carral (Inria) 20 / 28

Retrieving Decidability (in Some Cases) (2)

In order to decide if a KB K = 〈R,F〉 entails a BCQ γ:
1. Check if R is weakly acyclic (the Skolem chase terminates on R)
2. Compute the Skolem chase of K and check if its result entails γ

Remark
Weak acyclicity [FKMP05] is a su�cient condition that guarantees
universal Skolem chase termination.

David Carral (Inria) 20 / 28

Retrieving Decidability (in Some Cases) (2)

In order to decide if a KB K = 〈R,F〉 entails a BCQ γ:
1. Check if R is weakly acyclic (the Skolem chase terminates on R)
2. Compute the Skolem chase of K and check if its result entails γ

Remark
Weak acyclicity [FKMP05] is a su�cient condition that guarantees
universal Skolem chase termination.

David Carral (Inria) 20 / 28

Weak Acyclicity (1)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ A(x)

and its weakly acyclic graph

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Fails the test: true negative!

David Carral (Inria) 21 / 28

Weak Acyclicity (1)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ A(x)

and its weakly acyclic graph

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Fails the test: true negative!

David Carral (Inria) 21 / 28

Weak Acyclicity (1)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ A(x)

and its weakly acyclic graph

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Fails the test: true negative!

David Carral (Inria) 21 / 28

Weak Acyclicity (1)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ A(x)

and its weakly acyclic graph

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Fails the test: true negative!

David Carral (Inria) 21 / 28

Weak Acyclicity (1)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ A(x)

and its weakly acyclic graph

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Fails the test: true negative!

David Carral (Inria) 21 / 28

Weak Acyclicity (1)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ A(x)

and its weakly acyclic graph

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Fails the test: true negative!

David Carral (Inria) 21 / 28

Weak Acyclicity (2)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ E(x)

and its weakly acyclic graph

E|1

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Passes the test: (true) positive!

David Carral (Inria) 22 / 28

Weak Acyclicity (2)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ E(x)

and its weakly acyclic graph

E|1

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Passes the test: (true) positive!

David Carral (Inria) 22 / 28

Weak Acyclicity (2)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ E(x)

and its weakly acyclic graph

E|1

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Passes the test: (true) positive!

David Carral (Inria) 22 / 28

Weak Acyclicity (2)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ E(x)

and its weakly acyclic graph

E|1

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Passes the test: (true) positive!

David Carral (Inria) 22 / 28

Weak Acyclicity (2)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ E(x)

and its weakly acyclic graph

E|1

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Passes the test: (true) positive!

David Carral (Inria) 22 / 28

Weak Acyclicity (2)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ E(x)

and its weakly acyclic graph

E|1

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Passes the test: (true) positive!

David Carral (Inria) 22 / 28

Weak Acyclicity (3)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x) ∧ E(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ A(x)

and its weakly acyclic graph

E|1

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Fails the test: false negative!

David Carral (Inria) 23 / 28

Weak Acyclicity (3)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x) ∧ E(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ A(x)

and its weakly acyclic graph

E|1

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Fails the test: false negative!

David Carral (Inria) 23 / 28

Weak Acyclicity (3)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x) ∧ E(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ A(x)

and its weakly acyclic graph

E|1

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Fails the test: false negative!

David Carral (Inria) 23 / 28

Weak Acyclicity (3)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x) ∧ E(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ A(x)

and its weakly acyclic graph

E|1

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Fails the test: false negative!

David Carral (Inria) 23 / 28

Weak Acyclicity (3)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x) ∧ E(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ A(x)

and its weakly acyclic graph

E|1

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Fails the test: false negative!

David Carral (Inria) 23 / 28

Weak Acyclicity (3)

Example
Consider the rule set R

A(x)→ ∃y.R(x, y) ∧ B(y) B(x)→ C(x)
C(x) ∧ E(x)→ ∃y.S(x, y) ∧ D(y) D(x)→ A(x)

and its weakly acyclic graph

E|1

A|1 R|1 R|2 B|1

D|1 S|2 S|1 C|1

Fails the test: false negative!

David Carral (Inria) 23 / 28

A Recipe for Decidability

To decide if a KB K = 〈R,F〉 entails a query γ:
1. Decidability property: the Skolem chase terminates on R
2. Su�cient condition: check if R is weakly acyclicity
3. Algorithm: compute the chase of K and check if it entails γ

Seminar Talk: Michaël Thomazo (morning)
1. Decidability property: bounded tree-width model property
2. Decidable language: guarded existential rules
3. Algorithm: compute a finite rep. of a (possibly) infinite model

David Carral (Inria) 24 / 28

A Recipe for Decidability

To decide if a KB K = 〈R,F〉 entails a query γ:
1. Decidability property: the Skolem chase terminates on R
2. Su�cient condition: check if R is weakly acyclicity
3. Algorithm: compute the chase of K and check if it entails γ

Seminar Talk: Michaël Thomazo (morning)
1. Decidability property: bounded tree-width model property
2. Decidable language: guarded existential rules
3. Algorithm: compute a finite rep. of a (possibly) infinite model

David Carral (Inria) 24 / 28

Research Goals

The recipe:
1. Choose a property that guarantees decidability
2. Choose a (decidable) su�cient condition for or a language that

has this property
3. Apply the algorithm if the input satisfies the su�cient condition

Research goals:
Develop general su�cient conditions and languages that
guarantee decidability (Tim’s talk).
Study the complexity of reasoning for theories that satisfy some
decidability property or some su�cient condition (Piotr’s talk;
Michaël’s afternoon talk).
E�cient algorithm implementation (Jacopo’s talk).
Study the expressivity of decidable classes of rule sets
(Sebastian’s talk).

David Carral (Inria) 25 / 28

Research Goals

The recipe:
1. Choose a property that guarantees decidability
2. Choose a (decidable) su�cient condition for or a language that

has this property
3. Apply the algorithm if the input satisfies the su�cient condition

Research goals:
Develop general su�cient conditions and languages that
guarantee decidability (Tim’s talk).

Study the complexity of reasoning for theories that satisfy some
decidability property or some su�cient condition (Piotr’s talk;
Michaël’s afternoon talk).
E�cient algorithm implementation (Jacopo’s talk).
Study the expressivity of decidable classes of rule sets
(Sebastian’s talk).

David Carral (Inria) 25 / 28

Research Goals

The recipe:
1. Choose a property that guarantees decidability
2. Choose a (decidable) su�cient condition for or a language that

has this property
3. Apply the algorithm if the input satisfies the su�cient condition

Research goals:
Develop general su�cient conditions and languages that
guarantee decidability (Tim’s talk).
Study the complexity of reasoning for theories that satisfy some
decidability property or some su�cient condition (Piotr’s talk;
Michaël’s afternoon talk).

E�cient algorithm implementation (Jacopo’s talk).
Study the expressivity of decidable classes of rule sets
(Sebastian’s talk).

David Carral (Inria) 25 / 28

Research Goals

The recipe:
1. Choose a property that guarantees decidability
2. Choose a (decidable) su�cient condition for or a language that

has this property
3. Apply the algorithm if the input satisfies the su�cient condition

Research goals:
Develop general su�cient conditions and languages that
guarantee decidability (Tim’s talk).
Study the complexity of reasoning for theories that satisfy some
decidability property or some su�cient condition (Piotr’s talk;
Michaël’s afternoon talk).
E�cient algorithm implementation (Jacopo’s talk).

Study the expressivity of decidable classes of rule sets
(Sebastian’s talk).

David Carral (Inria) 25 / 28

Research Goals

The recipe:
1. Choose a property that guarantees decidability
2. Choose a (decidable) su�cient condition for or a language that

has this property
3. Apply the algorithm if the input satisfies the su�cient condition

Research goals:
Develop general su�cient conditions and languages that
guarantee decidability (Tim’s talk).
Study the complexity of reasoning for theories that satisfy some
decidability property or some su�cient condition (Piotr’s talk;
Michaël’s afternoon talk).
E�cient algorithm implementation (Jacopo’s talk).
Study the expressivity of decidable classes of rule sets
(Sebastian’s talk).

David Carral (Inria) 25 / 28

Thanks for your attention!

David Carral (Inria) 26 / 28

References I

Catriel Beeri and Moshe Y. Vardi, The implication problem for
data dependencies, Automata, Languages and Programming, 8th
Colloquium, Proceedings (Shimon Even and Oded Kariv, eds.),
Lecture Notes in Computer Science, vol. 115, Springer, 1981,
pp. 73–85.
Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian
Popa, Data exchange: semantics and query answering, Theor.
Comput. Sci. 336 (2005), no. 1, 89–124.

Tomasz Gogacz and Jerzy Marcinkowski, All-instances
termination of chase is undecidable, Automata, Languages, and
Programming - 41st International Colloquium, ICALP 2014,
Proceedings, Part II (Javier Esparza, Pierre Fraigniaud, Thore
Husfeldt, and Elias Koutsoupias, eds.), Lecture Notes in
Computer Science, vol. 8573, Springer, 2014, pp. 293–304.

David Carral (Inria) 27 / 28

References II

Bruno Marnette, Generalized schema-mappings: from
termination to tractability, Proceedings of the Twenty-Eigth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2009 (Jan Paredaens and Jianwen Su, eds.), ACM,
2009, pp. 13–22.

David Carral (Inria) 28 / 28

	About to the Seminar
	Intro to Existential Rules
	Thanks for your attention!

