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Stability Theorems

Let D = {(bs, d;) }ies U {x = y} and D" = {(b], d}) };e; U {x = y} be
two persistence diagrams, b, d € R.

The bottleneck distance dg(D, D")

between D and D’ is: A -
|
ds(D, D) = _inf  sup||p—&(p)]luc B
®:D—D’ peD °
bijection °
Defined even when |I| # |J| by o
sending points to the diagonal. .

Theorem (Stability on a simplicial complex)

Letf,g: K — R be two functions on a same simplicial complex K,
inducing filtrations Ko = f~1((—00; o) and K/, = g7 ((—00;7]).
Then

ds(D(£), D(8)) < [If = glloo-



Stability Theorems

Let D = {(bs, d;) }ies U {x = y} and D" = {(b], d}) };e; U {x = y} be
two persistence diagrams, b, d € R.

The bottleneck distance dg(D, D")

between D and D’ is: A -
N |
ds(D, D) = _inf  sup||p—&(p)]luc B
®:D—D’ peD °
bijection °
Defined even when |I| # |J| by o
sending points to the diagonal. .

Theorem (Stability on general space)

Letf,g: M — R be two functions on a same metric space M, satisfying
some “tameness” conditions. If de > 0 s.t. Vr € R
f~1(—o0;r] C g7t (—o0;r +¢€] and g1 (—o0;r] C F 1 (—o0;r + €],

then  dg(D(),D(g)) < e.



Distance between spaces

Definition (Hausdorff distance)

The Hausdorff distance between two non-empty subsets
X, Y of a metric space (M, d) is:

dy(X,Y) := max {supd(x, Y), sup d(X, y)} ,
xeX yey

where,
d(X7 Y) = infyGYd(X7 y) and d(Xa )/) = inf)(GX d(Xa y)

Definition (e-sample)

Let K C RP be a compact set. An =-sample of K, for some
e > 0, is a finite set of points P such that diy (P, K) < e.




Sampling compacts

Now consider compacts K in Euclidean space RP. Any compact K
defines a function:

de: RP = R, x> dg(x) = d(x, K).
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A point x € RP is a critical point for dy if there
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The set of critical points is called the medial axis
of K. — Y2



Sampling compacts

Now consider compacts K in Euclidean space RP. Any compact K
defines a function:

di: RP = R, x> di(x) = d(x, K).
Definition (Critical point)

A point x € RP is a critical point for di if there
exist distinct points y1, y2 € K such that:

d(x,y1) = d(x, y2) = d(x, K).

The set of critical points is called the medial axis
of K. — Y2

Definition (Reach of a compact)

The reach of a compact K is:

reach K := inf{dk(x) : x critical point for d}.
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Sampling, distance function approach

Lemma

Let P be an e-sample of a compact K. Then,

|ldk — dplloc <&

For any x € RP, let yo := arg min, ¢, d(x, y) be the nearest neighbor of
xon K.
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Lemma

Let P be an e-sample of a compact K. Then,

||dK — dp||oo S €s

For any x € RP, let yy := arg min, ¢ d(x, y) be the nearest neighbor of
xon K.
Because P is an e-sampling (and K is compact), there exists a 3pg € P

s.t. d(po, yo) < €.
Consequently, by triangle inequality:

dp(x) < d(x,po) < d(x,y0) + d(yo,po) < dx(x) +&.



Sampling, distance function approach

Lemma

Let P be an e-sample of a compact K. Then,

||dK — dp||oo S €s

For any x € RP, let yy := arg min, ¢ d(x, y) be the nearest neighbor of
xon K.
Because P is an e-sampling (and K is compact), there exists a 3pg € P

s.t. d(po, yo) < €.
Consequently, by triangle inequality:

dp(x) < d(x,po) < d(x,y0) + d(yo,po) < dx(x) +&.

And vice versa, exchanging K and P.



Reconstruction theorem

Theorem (Reconstruction)
Let K C RP be a compact set, and € > 0 be such

that:
0 < 4e < reach K.

Let P be an e-sample of K. Then,

- there is a one-to-one correspondence
between the points of the persistence
diagram of the Cech filtration:

CO(p) . C*(pP)

that are at least =-away from the diagonal A
in o0 norm, and the homology features of K.

B4(K) points

v

COP) —> ... —=C(P)



Reconstruction theorem

Theorem (Reconstruction)

Let K C RP be a compact set, and € > 0 be such Ba(K) points
0 < 4e < reach K. n' o <>
Let P be an e-sample of K. Then, | e - .
- there is a one-to-one correspondence A
between the points of the persistence ) ’
diagram of the Cech filtration: | o/
[
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Reconstruction theorem

Sketch of proof:
(1) Consider the “persistent homology of d,?l(—oo; r]” (assuming d is
tame and its persistent homology well-defined).
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deformation retracts into K, and they have same homology.
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neighbor on K.



Reconstruction theorem

Sketch of proof:
(1) Consider the “persistent homology of d,?l(—oo; r]” (assuming d is
tame and its persistent homology well-defined).

For all r, such that 0 < r < reach(K), the space di ' (—o0; 7]
deformation retracts into K, and they have same homology.

— by projecting each x € di* (—00; ] \ K to its unique nearest
neighbor on K.

Ba(K) points (0,7)

—

Consequently, for all 0 < r; < ry < reach(K) we have

H(d ! (—o00; r1]) — %= H(dg ' (—00; ra])




Reconstruction theorem

Sketch of proof:
(2) Consider the persistent homology of

—o0; 1] = U B,(p) ~ |C"(P)| (Nerve lemma).

peP
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Reconstruction theorem

Sketch of proof:
(2) Consider the persistent homology of
dyt(—o0;r] = U B,(p) ~ |C"(P)| (Nerve lemma).
peP
Now, we have ||dx — dp||s < € by triangle inequality.

Apply the (continuous version of the) stability theorem:

dg(D(dy),D(C(P))) < €.



Reconstruction theorem
Sketch of proof:
(2) Consider the persistent homology of
dyt(—o0;r] = U B,(p) ~ |C"(P)| (Nerve lemma).
peP
Now, we have ||dx — dp||sc < € by triangle inequality.

Apply the (continuous version of the) stability theorem:

dg(D(dy),D(C(P))) < €.

For reach(K) > r > 4e > 0, the radius r
|| - ||oo-ball in R? around (0, r), and the N
|| - ||co-band of width € around the
diagonal are disjoint.




Rips complex

Computing intersections of balls in R? is expensive (high arithmetic
complexity): Approximate the Cech complex instead.



Rips complex

Computing intersections of balls in R? is expensive (high arithmetic
complexity): Approximate the Cech complex instead.

Definition (Flag complex)
Let G = (V, E) be a graph. The flag complex induced by G is the
abstract simplicial complex F(G) satisfying:

- the vertices of F(G) are V,

- 0 =A{vo,...,vq} € F(G)iff vg,..., vy form a clique in G (i.e.,
an induced complete subgraph of C).

It is the maximal simplicial complex with G as 1-skeleton.



Rips complex
Computing intersections of balls in R? is expensive (high arithmetic
complexity): Approximate the Cech complex instead.
Definition (Rips complex)
Let P = {x1,...,x,} be a set of points in RN. The neighbor graph of
threshold r of P is the graph N,(P) with:
- vertices the points in P, and

- any two points x;, x;, i # j are connected by an edge iff
i = x| <r.

The Rips complex of threshold r, denoted by R"(P), is the flag complex
F (N2, (P)).

Cech Rips



Rips complex

Computing intersections of balls in R? is expensive (high arithmetic
complexity): Approximate the Cech complex instead.

Definition (Rips complex)
Let P = {x1,...,x,} be a set of points in RN. The neighbor graph of
threshold r of P is the graph N,(P) with:
- vertices the points in P, and
- any two points x;, x;, i # j are connected by an edge iff
i =l < r.

The Rips complex of threshold r, denoted by R"(P), is the flag complex
F (N2, (P)).

Computation: Simply compute pairwise distances (low arithmetic
complexity predicate), then expand the flag complex combinatorial

~ O(#points?)+ linear in the number of cliques/size of the complex.
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Rips vs Cech

Lemma

For a point cloud P in Euclidean space, and any r > 0:

C'(P) C R'(P) C C*(P).

C'(P) CR'(P)| Leto = {xg,...,xc} € C'(P), d > 1, then for any
i#j, 0 <i,j<kwehave B,(x;) N B,(x;) # 0 = ||xi — x;|| < 2r.
Hence xo, . . . , xx form a clique in Na,(P) and o € R'(P).

10



Rips vs Cech

Lemma

For a point cloud P in Euclidean space, and any r > 0:

C'(P) C R'(P) C C*(P).

C'(P) CR'(P)| Leto = {xg,...,xc} € C'(P), d > 1, then for any
i#j, 0 <i,j<kwehave B,(x;) N B,(x;) # 0 = ||xi — x;|| < 2r.
Hence xo, . . . , xx form a clique in Na,(P) and o € R'(P).

R'(P) C C*(P) | Leto = {x,...,x} € R'(P), then
lIxi = x;|| < 2r,Vi,j. Let z be the barycenter of xg, . .., xi : z belongs to
the convex hull of the points.
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Rips vs Cech

Lemma

For a point cloud P in Euclidean space, and any r > 0:

C'(P) C R'(P) C C*(P).

C'(P) CR'(P)| Leto = {xg,...,xc} € C'(P), d > 1, then for any
i#j,0<i,j<kwehave B,(x;) N B,(x)) # 0 = ||x — x;|| < 2r.
Hence xo, . . . , xx form a clique in Na,(P) and o € R'(P).

R'(P) C C*(P) | Leto = {x,...,x} € R'(P), then
lIxi = x;|| < 2r,Vi,j. Let z be the barycenter of xg, . .., xi : z belongs to
the convex hull of the points.

Consequently, for all i:

||z — xi|| < diam(CH(xo,...,x)) < max [[xi = xj|| < 2r.

P

In conclusion, z € ﬂi:O...k Ba(x;) # 0 and o € ézr(P)~

10



Ranks in sequence of morphisms

Lemma

Consider the following sequence of vector spaces and morphisms:

A—2 g P c T .p & g T f

Mo...0x ol

such that tk (A F)=rk(C———=D) =k then:

doyof
—_—

rk (B E) =k



Ranks in sequence of morphisms

Lemma

Consider the following sequence of vector spaces and morphisms:

A—2 g P c T .p & g T f

Mo...0x ol

such that tk (A F)=rk(C———=D) =k then:
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Ranks in sequence of morphisms

Lemma

Consider the following sequence of vector spaces and morphisms:

A—2.p-P.c T.p S, p "
suchthat tk (A LS Fy=rk(C—L>D)=k then:
doyo

k(828 )=k

Note thatinany U=~V =W =X, tk (U—=X) <tk (V—=W).
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-|A—B—FE—F | k=1k(A—F)<rk(B—E),




Ranks in sequence of morphisms

Lemma

Consider the following sequence of vector spaces and morphisms:

A—2.p-P.c T.p S, p "
such that rk(Ano"'an):rk(C T >D)=k then:
doyo

k(828 )=k

Note thatinany U=~V =W =X, tk (U—=X) <tk (V—=W).
Consequently,

-|A—B—FE—F | k=1k(A—F)<rk(B—E),

-|B—>C—>D—F | 1tk(B—E)<rtk(C—D)=k.



Cech persistence, a closer look

Lemma

Let P be an e-sample of a compact K of reach(K) > 0 in RN. Then, for
any g9 > ¢, and «, such that ¢ < o < reach(K) — 2g9, we have:

rk ( Hy(C*(P)) —— Hy(C**t0(P)) ) = dim Hy(K)
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Consider
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Theorem

Let P be an e-sample of a compact Ks.t. 0 < e < %. The

homology of K can be read off the persistence diagram of R"(P) for
r> e+ 2eq, forany e < gg < w.

Consider

e € Se+te Fe+2e e+2e 52e+4e
C*F ——= R —=C"0 — = (C 0 —=TR o —=(C 0
eteo>2¢e
Now, with 2¢ + 4¢p < reach(K),
rk (Hy(C?) — Hy(C2H4e0)) = rk (Hy(CoH20) — Hy(CoH20)
= dim Hd(K).

= 1k (Hg(R®) — Hy(R*"%)) = dim Hy(K).

In conclusion, dim Hy(K) is exactly the number of points in the
persistence diagram of the Rips filtration (up to r = € 4 2¢9) in the
upper left quadrant based at (g, & + 2¢9).



Morse filtration

Definition
Let K be a complex, equipped with a filtration,

61 62

S Sn
K, K, LA

0:=Ky K,=K

where G; contains at least one simplex.
A Morse filtration for the filtration of K is a collection of Morse

matchings (X; U T; U Sj,w;: T, — S;) for each K;, i = 0. .. m, satisfying:

Xi € Xit1, Ti € Tiy1,  SiCSiya,

w,-+1\Ti:w,~, 8Xf+1|xi:8X", Vi=0...m—1.



Morse filtration

Theorem

Let K be a complex, equipped with a filtration,

(S} So S3 S,

@ = KO K1 KQ Km =K
and a Morse filtration (X; U T; U Sjwi: T; — S;), i=0...m:

Xi € Xit1, Ti €Ty, S5 C Sy,

w,'_|_1|Tl_:w,‘, 8X"+1|X.:8X", Vi=0...m-—1.
Then the following persistence modules:
H(Ko, ) —> H(K1,9) —> H(K»,8) —> ... —= H(K,,, )
H(Xo, 90) —== H(X1, %) —=> H(Xa, 82) —=> ... —== H(Xy, &)

are /5()/77()/'/)/7 IC.



Morse filtration

Theorem

The following persistence modules are isomorphic:

H(Ko,d) —> H(K1,8) —> H(K3,8) —> ... —> H(K, )

H(Xo, 90) —== H(X1,0%) —=> H(Xa, 82) —=> ... = H(X, &)
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Morse filtration

Theorem

The following persistence modules are isomorphic:

H(Ko,d) —> H(K1,8) —> H(K3,8) —> ... —> H(K, )

H(Xo, 90) —== H(X1,0%) —=> H(Xa, 82) —=> ... = H(X, &)

Sketch of proof:

Xi —_ AaXi
Xi € Xiv1, TiCTip1, SiCSip1, wittly, =wi, 0 H‘X,- =07,
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Morse filtration

Theorem

The following persistence modules are isomorphic:

H(Ko,d) —> H(K1,8) —> H(K3,8) —> ... —> H(K, )

H(Xo, 90) —== H(X1,0%) —=> H(Xa, 82) —=> ... = H(X, &)

Sketch of proof:
Xi € Xip1, TiC T, S C S, witly, =w, o ‘X,- =Y,
implies that:

(C(X0),0%) == (C(x1),8) == (C(Xe),0?) == ... == (C(X), ")

is well-defined filtration of complexes

16



Morse filtration

Theorem

The following persistence modules are isomorphic:

H(Ko,d) — > H(K1,8) —> H(K3,8) —> ...

H(Xo, 0) —=> H(X;,0") —> H(Xp, 0) —> ...

Sketch of proof:

_g) H(KITH 8)

S H(X,, 8)

Xi —_ AaXi
Xi € Xiv1, TiCTiv1, S CSiv1, wivily, = wi 3“‘)(1_—57

implies that:

(C(X0),0%) = (C(x1),8") = (C(Xa), 0%) =

S (C(X), D)

is well-defined filtration of complexes inducing the persist. module:

H(Xo, 00) —== H(x;,0%) —== H(Xy, 9) —=> ..

S H(X,, 97

16



Morse filtration

Theorem

The following persistence modules are isomorphic:

H(Ko,d) —> H(K1,8) —> H(K3,8) —> ..

H(Xo, 00) —== H(Xy, 0%) —=> H(Xy, 92) —=> ..

Sketch of proof:
For each i there is a chain equivalence:

@i i

(C(K;),9) (C(X)),0%)

S H(K, )

S H(X,y, 97)

(C(K),0%)
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Morse filtration

Theorem

The following persistence modules are isomorphic:

H(Ko,d) —> H(K1,8) —> H(K3,8) —> ... —> H(K, )

H(Xo, 90) —== H(X1,0%) —=> H(Xa, 82) —=> ... = H(X, &)

Sketch of proof:
For each i there is a chain equivalence:

(C(K)),d) —2— (C(X),0") — 2 (C(K), 9)

where each chain map commutes with inclusion:

C -

C(Kj) — C(Kit1) C(K) — C(Kit1)
d)i\L c i/d)fﬂ wiq\ c T",Z)Hrl
C(Xi) — C(Xi+1) C(X;)) — C(Xi11)



Morse filtration

Theorem

The following persistence modules are isomorphic:

H(Ko, ) —> H(K;,9) —> H(K»,8) —> ... —> H(K,,, )

H(Xo, 9%) —== H(X1, 9%) —== H(Xp, 82) —== ... —== H(X,», &")

Sketch of proof:
For each i there is a chain equivalence:
@i : i :
(C(K)),9) (C(x),0%) (C(K)),0")
— enough prove commutativity for addition of a Morse pair (7, 0):
(C(). 0 —"— (C(X), 0") —— (C(1).8")

with X' = X — {0, 7} as used previously (same chain maps).

16



Topology Inference Problem

compact K in Euclidean space

. P e-sample with

reach(K)
O<e< —5—

scale: - ) O(|P|?) + O(n)
. . R31e
Rips filtration 3 e ’ & n simplices
- - - - 6(71)
Morse filtration  (X;,0%1) (Xo,0%2)

m cells

| | d l > )

Persistent homology H; (K;) —— H;(K:) — Hi(K;) — Hi(Ky) — Hi(Ks)

|
barecode - ;
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|
|
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