4 - Homology Inference

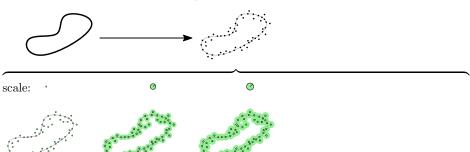
Clément Maria

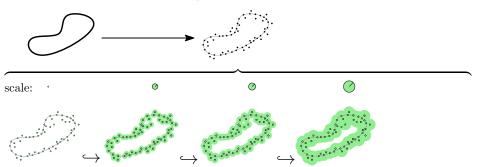
EMAp Summer Program 2023

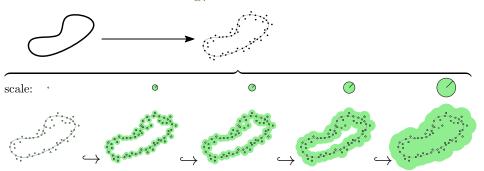
clement.maria@inria.fr
www-sop.inria.fr/members/Clement.Maria/

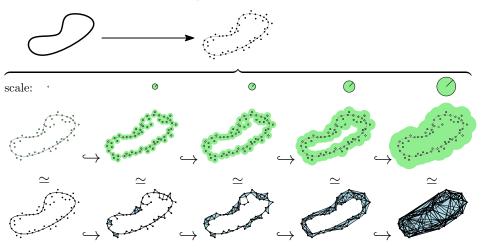
scale:

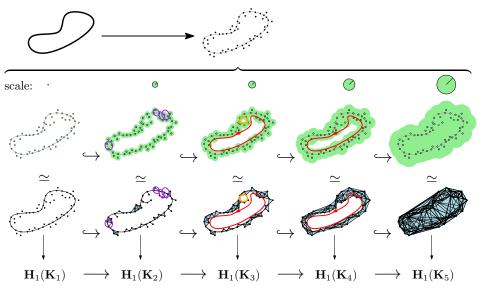
scale: •

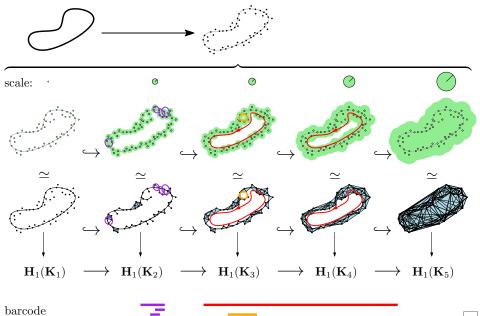












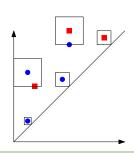
Stability Theorems

Let D = $\{(b_i, d_i)\}_{i \in I} \cup \{x = y\}$ and D' = $\{(b'_j, d'_j)\}_{j \in J} \cup \{x = y\}$ be two persistence diagrams, $b, d \in \mathbb{R}$.

The bottleneck distance $d_B(D, D')$ between D and D' is:

$$d_{\textit{B}}(\mathsf{D},\mathsf{D}') := \inf_{\substack{\Phi: \mathsf{D} \to \mathsf{D}' \\ \mathsf{bijection}}} \ \sup_{\rho \in \mathsf{D}} ||\rho - \Phi(\rho)||_{\infty}$$

Defined even when $|I| \neq |J|$ by sending points to the diagonal.



Theorem (Stability on a simplicial complex)

Let $f,g: \mathbf{K} \to \mathbb{R}$ be two functions on a same simplicial complex \mathbf{K} , inducing filtrations $\mathbf{K}_{\alpha} = f^{-1}((-\infty; \alpha])$ and $\mathbf{K}'_{\gamma} = g^{-1}((-\infty; \gamma])$. Then

$$d_B(D(f),D(g)) \leq ||f-g||_{\infty}.$$

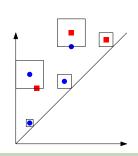
Stability Theorems

Let D = $\{(b_i, d_i)\}_{i \in I} \cup \{x = y\}$ and D' = $\{(b'_j, d'_j)\}_{j \in J} \cup \{x = y\}$ be two persistence diagrams, $b, d \in \mathbb{R}$.

The bottleneck distance $d_B(D, D')$ between D and D' is:

$$d_{\textit{B}}(\mathsf{D},\mathsf{D}') := \inf_{\substack{\Phi: \mathsf{D} \to \mathsf{D}' \\ \text{bijection}}} \ \sup_{p \in \mathsf{D}} ||p - \Phi(p)||_{\infty}$$

Defined even when $|I| \neq |J|$ by sending points to the diagonal.



Theorem (Stability on general space)

Let $f,g: M \to \mathbb{R}$ be two functions on a same metric space M, satisfying some "tameness" conditions. If $\exists \varepsilon \geq 0$ s.t. $\forall r \in \mathbb{R}$ $f^{-1}(-\infty; r] \subseteq g^{-1}(-\infty; r + \varepsilon]$ and $g^{-1}(-\infty; r] \subseteq f^{-1}(-\infty; r + \varepsilon]$, then $d_B(D(f), D(g)) < \varepsilon$.

Distance between spaces

Definition (Hausdorff distance)

The Hausdorff distance between two non-empty subsets X, Y of a metric space (M, d) is:

$$d_{H}(X,Y) := \max \left\{ \sup_{x \in X} d(x,Y), \sup_{y \in Y} d(X,y) \right\},\,$$

where, $d(x, Y) = \inf_{y \in Y} d(x, y)$ and $d(X, y) = \inf_{x \in X} d(x, y)$.

$$Y \begin{pmatrix} x \\ X \end{pmatrix}$$

Definition (ε -sample)

Let $K \subset \mathbb{R}^D$ be a compact set. An ε -sample of K, for some $\varepsilon \geq 0$, is a finite set of points P such that $d_H(P, K) \leq \varepsilon$.

Sampling compacts

Now consider compacts K in Euclidean space \mathbb{R}^D . Any compact K defines a function:

$$d_K \colon \mathbb{R}^D \to \mathbb{R}, \quad x \mapsto d_K(x) = d(x, K).$$

Sampling compacts

Now consider compacts K in Euclidean space \mathbb{R}^D . Any compact K defines a function:

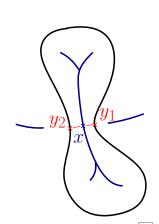
$$d_K \colon \mathbb{R}^D \to \mathbb{R}, \quad x \mapsto d_K(x) = d(x, K).$$

Definition (Critical point)

A point $x \in \mathbb{R}^D$ is a critical point for d_K if there exist distinct points $y_1, y_2 \in \mathbf{K}$ such that:

$$d(x, y_1) = d(x, y_2) = d(x, K).$$

The set of critical points is called the medial axis of *K*.



Sampling compacts

Now consider compacts K in Euclidean space \mathbb{R}^D . Any compact K defines a function:

$$d_K \colon \mathbb{R}^D \to \mathbb{R}, \quad x \mapsto d_K(x) = d(x, K).$$

Definition (Critical point)

A point $x \in \mathbb{R}^D$ is a critical point for d_K if there exist distinct points $y_1, y_2 \in \mathbf{K}$ such that:

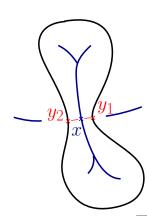
$$d(x, y_1) = d(x, y_2) = d(x, K).$$

The set of critical points is called the medial axis of *K*.

Definition (Reach of a compact)

The reach of a compact *K* is:

reach $\mathbf{K} := \inf\{d_K(x) : x \text{ critical point for } d_K\}.$



Lemma

Let P be an ε -sample of a compact K. Then,

$$||\mathbf{d}_K - \mathbf{d}_P||_{\infty} \leq \varepsilon.$$

Lemma

Let P be an ε -sample of a compact K. Then,

$$||\mathbf{d}_K - \mathbf{d}_P||_{\infty} \leq \varepsilon.$$

For any $x \in \mathbb{R}^D$, let $y_0 := \arg\min_{y \in K} d(x, y)$ be the nearest neighbor of x on K.

Lemma

Let P be an ε -sample of a compact K. Then,

$$||\mathbf{d}_K - \mathbf{d}_P||_{\infty} \leq \varepsilon.$$

For any $x \in \mathbb{R}^D$, let $y_0 := \arg\min_{y \in K} d(x, y)$ be the nearest neighbor of x on K.

Because P is an ε -sampling (and K is compact), there exists a $\exists p_0 \in P$ s.t. $d(p_0, y_0) \le \varepsilon$.

Lemma

Let P be an ε -sample of a compact K. Then,

$$||\mathbf{d}_K - \mathbf{d}_P||_{\infty} \leq \varepsilon.$$

For any $x \in \mathbb{R}^D$, let $y_0 := \arg\min_{y \in K} d(x, y)$ be the nearest neighbor of x on K.

Because P is an ε -sampling (and K is compact), there exists a $\exists p_0 \in P$ s.t. $d(p_0, y_0) \le \varepsilon$.

Consequently, by triangle inequality:

$$d_P(x) \le d(x, p_0) \le d(x, y_0) + d(y_0, p_0) \le d_K(x) + \varepsilon.$$

Lemma

Let P be an ε -sample of a compact K. Then,

$$||\mathbf{d}_K - \mathbf{d}_P||_{\infty} \leq \varepsilon.$$

For any $x \in \mathbb{R}^D$, let $y_0 := \arg\min_{y \in K} d(x, y)$ be the nearest neighbor of x on K.

Because P is an ε -sampling (and K is compact), there exists a $\exists p_0 \in P$ s.t. $d(p_0, y_0) \le \varepsilon$.

Consequently, by triangle inequality:

$$d_P(x) \le d(x, p_0) \le d(x, y_0) + d(y_0, p_0) \le d_K(x) + \varepsilon.$$

And vice versa, exchanging K and P.

Theorem (Reconstruction)

Let $K \subset \mathbb{R}^D$ be a compact set, and $\varepsilon > 0$ be such that:

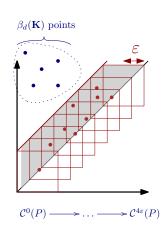
$$0 < 4\varepsilon < \operatorname{reach} \mathbf{K}$$
.

Let P be an ε -sample of K. Then,

 there is a one-to-one correspondence between the points of the persistence diagram of the Cech filtration:

$$\check{\mathcal{C}}^0(P) \longrightarrow \ldots \longrightarrow \check{\mathcal{C}}^{4\varepsilon}(P)$$

that are at least ε -away from the diagonal Δ in ∞ norm, and the homology features of K.



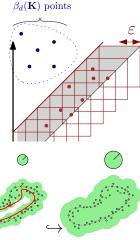
Theorem (Reconstruction)

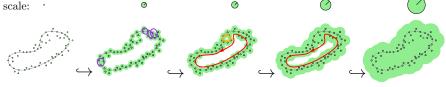
Let $K \subset \mathbb{R}^D$ be a compact set, and $\varepsilon > 0$ be such that:

$$0 < 4\varepsilon < \operatorname{reach} \mathbf{K}$$
.

Let P be an ε -sample of K. Then,

 there is a one-to-one correspondence between the points of the persistence diagram of the Cech filtration:





barecode

Sketch of proof:

(1) Consider the "persistent homology of $d_K^{-1}(-\infty; r]$ " (assuming d_K is tame and its persistent homology well-defined).

Sketch of proof:

(1) Consider the "persistent homology of $d_K^{-1}(-\infty; r]$ " (assuming d_K is tame and its persistent homology well-defined).

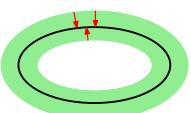
For all r, such that $0 < r < \operatorname{reach}(K)$, the space $\operatorname{d}_{K}^{-1}(-\infty; r]$ deformation retracts into K, and they have same homology.

Sketch of proof:

(1) Consider the "persistent homology of $d_K^{-1}(-\infty; r]$ " (assuming d_K is tame and its persistent homology well-defined).

For all r, such that $0 < r < \operatorname{reach}(K)$, the space $\operatorname{d}_K^{-1}(-\infty; r]$ deformation retracts into K, and they have same homology.

 \longrightarrow by projecting each $x \in d_K^{-1}(-\infty; r] \setminus K$ to its unique nearest neighbor on K.



Sketch of proof:

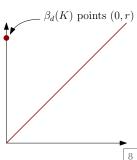
(1) Consider the "persistent homology of $d_{\kappa}^{-1}(-\infty; r]$ " (assuming d_{κ} is tame and its persistent homology well-defined).

For all r, such that $0 < r < \operatorname{reach}(K)$, the space $\operatorname{d}_{K}^{-1}(-\infty; r]$ deformation retracts into *K*, and they have same homology.

 \longrightarrow by projecting each $x \in d_{\kappa}^{-1}(-\infty; r] \setminus K$ to its unique nearest neighbor on K.

Consequently, for all $0 < r_1 \le r_2 < \operatorname{reach}(K)$ we have

$$\mathbf{H}(\mathsf{d}_{\kappa}^{-1}(-\infty;r_1]) \xrightarrow{\mathsf{id}} \mathbf{H}(\mathsf{d}_{\kappa}^{-1}(-\infty;r_2])$$



Sketch of proof:

(2) Consider the persistent homology of

$$\mathsf{d}_P^{-1}(-\infty;r] = \bigcup_{r \in P} \mathcal{B}_r(p) \simeq |\check{\mathcal{C}}^r(P)|$$
 (Nerve lemma).

Sketch of proof:

(2) Consider the persistent homology of

$$\mathrm{d}_{P}^{-1}(-\infty;r] = \bigcup_{p \in P} \mathcal{B}_{r}(p) \simeq |\check{\mathcal{C}}^{r}(P)|$$
 (Nerve lemma).

Now, we have $||\mathbf{d}_K - \mathbf{d}_P||_{\infty} \le \varepsilon$ by triangle inequality.

Sketch of proof:

(2) Consider the persistent homology of

$$\mathrm{d}_{P}^{-1}(-\infty;r] = \bigcup_{p \in P} \mathcal{B}_{r}(p) \simeq |\check{\mathcal{C}}^{r}(P)|$$
 (Nerve lemma).

Now, we have $||\mathbf{d}_K - \mathbf{d}_P||_{\infty} \le \varepsilon$ by triangle inequality.

Apply the (continuous version of the) stability theorem:

$$d_B(D(d_k), D(\check{C}(P))) \le \varepsilon.$$

Sketch of proof:

(2) Consider the persistent homology of

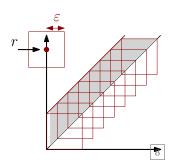
$$\mathrm{d}_{P}^{-1}(-\infty;r]=\bigcup_{p\in P}\mathcal{B}_{r}(p)\simeq |\check{\mathcal{C}}^{r}(P)|$$
 (Nerve lemma).

Now, we have $||\mathbf{d}_K - \mathbf{d}_P||_{\infty} \le \varepsilon$ by triangle inequality.

Apply the (continuous version of the) stability theorem:

$$d_B(D(d_k), D(\check{C}(P))) \leq \varepsilon.$$

For $\operatorname{reach}(K) > r > 4\varepsilon > 0$, the radius r $||\cdot||_{\infty}$ -ball in \mathbb{R}^2 around (0,r), and the $||\cdot||_{\infty}$ -band of width ε around the diagonal are disjoint.



Computing intersections of balls in \mathbb{R}^D is *expensive* (high arithmetic complexity): Approximate the Cech complex instead.

Computing intersections of balls in \mathbb{R}^D is *expensive* (high arithmetic complexity): Approximate the Cech complex instead.

Definition (Flag complex)

Let G = (V, E) be a graph. The flag complex induced by G is the abstract simplicial complex $\mathcal{F}(G)$ satisfying:

- the vertices of $\mathcal{F}(G)$ are V,
- $\sigma = \{v_0, \dots, v_d\} \in \mathcal{F}(G)$ iff v_0, \dots, v_d form a clique in G (i.e., an induced complete subgraph of G).

It is the maximal simplicial complex with *G* as 1-skeleton.

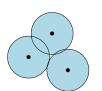
Computing intersections of balls in \mathbb{R}^D is *expensive* (high arithmetic complexity): Approximate the Cech complex instead.

Definition (Rips complex)

Let $P = \{x_1, \dots, x_n\}$ be a set of points in \mathbb{R}^N . The neighbor graph of threshold r of P is the graph $N_r(P)$ with:

- vertices the points in P, and
- any two points $x_i, x_j, i \neq j$ are connected by an edge iff $||x_i x_j|| \leq r$.

The Rips complex of threshold r, denoted by $\mathcal{R}^r(P)$, is the flag complex $\mathcal{F}(N_{2r}(P))$.



Computing intersections of balls in \mathbb{R}^D is *expensive* (high arithmetic complexity): Approximate the Cech complex instead.

Definition (Rips complex)

Let $P = \{x_1, \dots, x_n\}$ be a set of points in \mathbb{R}^N . The neighbor graph of threshold r of P is the graph $N_r(P)$ with:

- vertices the points in P, and
- any two points $x_i, x_j, i \neq j$ are connected by an edge iff $||x_i x_i|| \leq r$.

The Rips complex of threshold r, denoted by $\mathcal{R}^r(P)$, is the flag complex $\mathcal{F}(N_{2r}(P))$.

Computation: Simply compute pairwise distances (low arithmetic complexity predicate), then expand the flag complex combinatorial

 $\sim O(\# points^2) + linear$ in the number of cliques/size of the complex.

Lemma

For a point cloud P in Euclidean space, and any r > 0:

$$\check{\mathcal{C}}^r(P) \subseteq \mathcal{R}^r(P) \subseteq \check{\mathcal{C}}^{2r}(P).$$

Lemma

For a point cloud P in Euclidean space, and any r > 0:

$$\check{\mathcal{C}}^r(P) \subseteq \mathcal{R}^r(P) \subseteq \check{\mathcal{C}}^{2r}(P).$$

$$\check{C}^r(P) \subseteq \mathcal{R}^r(P)$$
. Let $\sigma = \{x_0, \dots, x_k\} \in \check{C}^r(P), d \ge 1$, then for any $i \ne j, 0 \le i, j \le k$ we have $\mathcal{B}_r(x_i) \cap \mathcal{B}_r(x_j) \ne \emptyset \Rightarrow ||x_i - x_j|| \le 2r$. Hence x_0, \dots, x_k form a clique in $N_{2r}(P)$ and $\sigma \in \mathcal{R}^r(P)$.

Lemma

For a point cloud P in Euclidean space, and any r > 0:

$$\check{\mathcal{C}}^r(P) \subseteq \mathcal{R}^r(P) \subseteq \check{\mathcal{C}}^{2r}(P).$$

 $\begin{subarray}{l} \begin{subarray}{l} \beg$

$$\mathcal{R}^r(P) \subseteq \check{\mathcal{C}}^{2r}(P)$$
. Let $\sigma = \{x_0, \dots, x_k\} \in \mathcal{R}^r(P)$, then $||x_i - x_j|| \le 2r, \forall i, j$. Let z be the barycenter of $x_0, \dots, x_k : z$ belongs to the convex hull of the points.

Lemma

For a point cloud P in Euclidean space, and any r > 0:

$$\check{\mathcal{C}}^r(P) \subseteq \mathcal{R}^r(P) \subseteq \check{\mathcal{C}}^{2r}(P).$$

$$C^r(P) \subseteq \mathcal{R}^r(P)$$
. Let $\sigma = \{x_0, \dots, x_k\} \in \check{\mathcal{C}}^r(P), d \ge 1$, then for any $i \ne j, 0 \le i, j \le k$ we have $\mathcal{B}_r(x_i) \cap \mathcal{B}_r(x_j) \ne \emptyset \Rightarrow ||x_i - x_j|| \le 2r$. Hence x_0, \dots, x_k form a clique in $N_{2r}(P)$ and $\sigma \in \mathcal{R}^r(P)$.

$$\mathcal{R}^r(P) \subseteq \check{\mathcal{C}}^{2r}(P)$$
. Let $\sigma = \{x_0, \dots, x_k\} \in \mathcal{R}^r(P)$, then $||x_i - x_j|| \le 2r, \forall i, j$. Let z be the barycenter of $x_0, \dots, x_k : z$ belongs to the convex hull of the points.

Consequently, for all i:

$$||z-x_i|| \leq \operatorname{diam}(CH(x_0,\ldots,x_k)) \leq \max_{i:i} ||x_i-x_j|| \leq 2r.$$

In conclusion, $z \in \bigcap_{i=0,...k} \mathcal{B}_{2r}(x_i) \neq \emptyset$ and $\sigma \in \check{\mathcal{C}}^{2r}(P)$.

Lemma

Consider the following sequence of vector spaces and morphisms:

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} D \xrightarrow{\delta} E \xrightarrow{\eta} F$$
such that $\operatorname{rk} \left(A \xrightarrow{\eta \circ \dots \circ \alpha} F \right) = \operatorname{rk} \left(C \xrightarrow{\gamma} D \right) = k$, then:

$$\operatorname{rk}\left(B \xrightarrow{\delta \circ \gamma \circ \beta} E\right) = k.$$

Lemma

Consider the following sequence of vector spaces and morphisms:

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} D \xrightarrow{\delta} E \xrightarrow{\eta} F$$
such that $\operatorname{rk} (A \xrightarrow{\eta \circ \dots \circ \alpha} F) = \operatorname{rk} (C \xrightarrow{\gamma} D) = k$, then:
$$\operatorname{rk} (B \xrightarrow{\delta \circ \gamma \circ \beta} E) = k.$$

Note that in any $U \rightarrow V \rightarrow W \rightarrow X$, rk $(U \rightarrow X) \leq \text{rk} (V \rightarrow W)$.

Lemma

Consider the following sequence of vector spaces and morphisms:

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} D \xrightarrow{\delta} E \xrightarrow{\eta} F$$
such that $\operatorname{rk} (A \xrightarrow{\eta \circ ... \circ \alpha} F) = \operatorname{rk} (C \xrightarrow{\gamma} D) = k$, then:
$$\operatorname{rk} (B \xrightarrow{\delta \circ \gamma \circ \beta} E) = k.$$

Note that in any $U \to V \to W \to X$, rk ($U \to X$) \leq rk ($V \to W$). Consequently,

$$- \mid A \longrightarrow B \longrightarrow E \longrightarrow F \mid k = \operatorname{rk} (A \longrightarrow F) \le \operatorname{rk} (B \longrightarrow E),$$

Lemma

Consider the following sequence of vector spaces and morphisms:

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} D \xrightarrow{\delta} E \xrightarrow{\eta} F$$
such that $\operatorname{rk} (A \xrightarrow{\eta \circ \dots \circ \alpha} F) = \operatorname{rk} (C \xrightarrow{\gamma} D) = k$, then:
$$\operatorname{rk} (B \xrightarrow{\delta \circ \gamma \circ \beta} E) = k.$$

Note that in any $U \to V \to W \to X$, rk ($U \to X$) \leq rk ($V \to W$). Consequently,

Cech persistence, a closer look

Lemma

Let P be an ε -sample of a compact K of $\operatorname{reach}(K) > 0$ in \mathbb{R}^N . Then, for any $\varepsilon_0 > \varepsilon$, and α , such that $\varepsilon \le \alpha < \operatorname{reach}(K) - 2\varepsilon_0$, we have:

$$\operatorname{rk} (\mathbf{H}_d(\check{\mathcal{C}}^{\alpha}(P)) \longrightarrow \mathbf{H}_d(\check{\mathcal{C}}^{\alpha+\varepsilon_0}(P))) = \dim \mathbf{H}_d(K)$$

Cech persistence, a closer look

Lemma

Let P be an ε -sample of a compact K of $\operatorname{reach}(K) > 0$ in \mathbb{R}^N . Then, for any $\varepsilon_0 > \varepsilon$, and α , such that $\varepsilon \leq \alpha < \operatorname{reach}(K) - 2\varepsilon_0$, we have:

$$\operatorname{rk} \; (\; \mathbf{H}_d(\check{\mathcal{C}}^\alpha(P)) \longrightarrow \mathbf{H}_d(\check{\mathcal{C}}^{\alpha+\varepsilon_0}(P)) \;) = \dim \mathbf{H}_d(K)$$

rk (
$$\mathbf{H}_d(\check{\mathcal{C}}^{\alpha}(P)) \longrightarrow \mathbf{H}_d(\check{\mathcal{C}}^{\alpha+\varepsilon_0}(P))$$
) counts the number of points (x, y) of the persistence diagram of the filtration:

$$\check{\mathcal{C}}^0(P) \longrightarrow \ldots \longrightarrow \check{\mathcal{C}}^{\operatorname{reach}(K)-\nu}(P)$$

with $x \le \alpha$ and $y \ge \alpha + \varepsilon_0$.

Cech persistence, a closer look

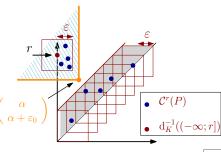
Lemma

Let P be an ε -sample of a compact K of $\operatorname{reach}(K) > 0$ in \mathbb{R}^N . Then, for any $\varepsilon_0 > \varepsilon$, and α , such that $\varepsilon \leq \alpha < \operatorname{reach}(K) - 2\varepsilon_0$, we have:

rk ($\mathbf{H}_d(\check{\mathcal{C}}^{\alpha}(P)) \longrightarrow \mathbf{H}_d(\check{\mathcal{C}}^{\alpha+\varepsilon_0}(P))$) counts the number of points (x,y) of the persistence diagram of the filtration:

$$\check{C}^0(P) \longrightarrow \ldots \longrightarrow \check{C}^{\operatorname{reach}(K)-\nu}(P)$$

with $x \le \alpha$ and $y \ge \alpha + \varepsilon_0$.



Let P be an ε -sample of a compact K s.t. $0 < \varepsilon < \frac{\operatorname{reach}(K)}{8}$. The homology of K can be read off the persistence diagram of $\mathcal{R}^r(P)$ for $r \geq \varepsilon + 2\varepsilon_0$, for any $\varepsilon < \varepsilon_0 < \frac{\operatorname{reach}(K)}{8}$.

Let P be an ε -sample of a compact K s.t. $0 < \varepsilon < \frac{\operatorname{reach}(K)}{8}$. The homology of K can be read off the persistence diagram of $\mathcal{R}^r(P)$ for $r \ge \varepsilon + 2\varepsilon_0$, for any $\varepsilon < \varepsilon_0 < \frac{\operatorname{reach}(K)}{8}$.

Consider

$$\check{\mathcal{C}}^{\varepsilon} \longrightarrow \mathcal{R}^{\varepsilon} \longrightarrow \check{\mathcal{C}}^{\varepsilon+\varepsilon_0} \longrightarrow \check{\mathcal{C}}^{\varepsilon+2\varepsilon_0} \longrightarrow \mathcal{R}^{\varepsilon+2\varepsilon_0} \longrightarrow \check{\mathcal{C}}^{2\varepsilon+4\varepsilon_0}$$

Let P be an ε -sample of a compact K s.t. $0 < \varepsilon < \frac{\operatorname{reach}(K)}{8}$. The homology of K can be read off the persistence diagram of $\mathcal{R}^r(P)$ for $r \ge \varepsilon + 2\varepsilon_0$, for any $\varepsilon < \varepsilon_0 < \frac{\operatorname{reach}(K)}{8}$.

Consider

$$\check{\mathcal{C}}^{\varepsilon} \longrightarrow \mathcal{R}^{\varepsilon} \longrightarrow \check{\mathcal{C}}^{\varepsilon+\varepsilon_0} \longrightarrow \check{\mathcal{C}}^{\varepsilon+2\varepsilon_0} \longrightarrow \mathcal{R}^{\varepsilon+2\varepsilon_0} \longrightarrow \check{\mathcal{C}}^{2\varepsilon+4\varepsilon_0}$$

Now, with $2\varepsilon + 4\varepsilon_0 < \operatorname{reach}(K)$,

$$\operatorname{rk} \left(\mathbf{H}_{d}(\check{\mathcal{C}}^{\varepsilon}) \to \mathbf{H}_{d}(\check{\mathcal{C}}^{2\varepsilon+4\varepsilon_{0}}) \right) = \operatorname{rk} \left(\mathbf{H}_{d}(\check{\mathcal{C}}^{\varepsilon+\varepsilon_{0}}) \to \mathbf{H}_{d}(\check{\mathcal{C}}^{\varepsilon+2\varepsilon_{0}}) \right) = \dim \mathbf{H}_{d}(\mathbf{K}).$$

Let P be an ε -sample of a compact K s.t. $0 < \varepsilon < \frac{\operatorname{reach}(K)}{8}$. The homology of K can be read off the persistence diagram of $\mathcal{R}^r(P)$ for $r \ge \varepsilon + 2\varepsilon_0$, for any $\varepsilon < \varepsilon_0 < \frac{\operatorname{reach}(K)}{8}$.

Consider

$$\check{\mathcal{C}}^{\varepsilon} \longrightarrow \mathcal{R}^{\varepsilon} \longrightarrow \underbrace{\check{\mathcal{C}}^{\varepsilon+\varepsilon_0}}_{\varepsilon+\varepsilon_0>2\varepsilon} \longrightarrow \check{\mathcal{C}}^{\varepsilon+2\varepsilon_0} \longrightarrow \mathcal{R}^{\varepsilon+2\varepsilon_0} \longrightarrow \check{\mathcal{C}}^{2\varepsilon+4\varepsilon_0}$$

Now, with $2\varepsilon + 4\varepsilon_0 < \operatorname{reach}(K)$,

$$\operatorname{rk} \left(\mathbf{H}_{d}(\check{\mathcal{C}}^{\varepsilon}) \to \mathbf{H}_{d}(\check{\mathcal{C}}^{2\varepsilon+4\varepsilon_{0}}) \right) = \operatorname{rk} \left(\mathbf{H}_{d}(\check{\mathcal{C}}^{\varepsilon+\varepsilon_{0}}) \to \mathbf{H}_{d}(\check{\mathcal{C}}^{\varepsilon+2\varepsilon_{0}}) \right) = \dim \mathbf{H}_{d}(\mathbf{K}).$$

$$\Longrightarrow \operatorname{rk} \left(\mathbf{H}_d(\mathcal{R}^{\varepsilon}) \to \mathbf{H}_d(\mathcal{R}^{\varepsilon+2\varepsilon_0}) \right) = \dim \mathbf{H}_d(\mathbf{K}).$$

Let P be an ε -sample of a compact K s.t. $0 < \varepsilon < \frac{\operatorname{reach}(K)}{8}$. The homology of K can be read off the persistence diagram of $\mathcal{R}^r(P)$ for $r \ge \varepsilon + 2\varepsilon_0$, for any $\varepsilon < \varepsilon_0 < \frac{\operatorname{reach}(K)}{8}$.

Consider

$$\check{\mathcal{C}}^{\varepsilon} \longrightarrow \mathcal{R}^{\varepsilon} \longrightarrow \check{\mathcal{C}}^{\varepsilon+\varepsilon_0} \longrightarrow \check{\mathcal{C}}^{\varepsilon+2\varepsilon_0} \longrightarrow \mathcal{R}^{\varepsilon+2\varepsilon_0} \longrightarrow \check{\mathcal{C}}^{2\varepsilon+4\varepsilon_0}$$

Now, with $2\varepsilon + 4\varepsilon_0 < \operatorname{reach}(K)$,

$$\operatorname{rk} \left(\mathbf{H}_{d}(\check{\mathcal{C}}^{\varepsilon}) \to \mathbf{H}_{d}(\check{\mathcal{C}}^{2\varepsilon+4\varepsilon_{0}}) \right) = \operatorname{rk} \left(\mathbf{H}_{d}(\check{\mathcal{C}}^{\varepsilon+\varepsilon_{0}}) \to \mathbf{H}_{d}(\check{\mathcal{C}}^{\varepsilon+2\varepsilon_{0}}) \right) = \dim \mathbf{H}_{d}(\mathbf{K}).$$

$$\Longrightarrow \operatorname{rk} \ \left(\mathbf{H}_d(\mathcal{R}^{\varepsilon}) \to \mathbf{H}_d(\mathcal{R}^{\varepsilon+2\varepsilon_0}) \right) = \dim \mathbf{H}_d(\mathbf{K}).$$

In conclusion, dim $\mathbf{H}_d(K)$ is exactly the number of points in the persistence diagram of the Rips filtration (up to $r = \varepsilon + 2\varepsilon_0$) in the upper left quadrant based at $(\varepsilon, \varepsilon + 2\varepsilon_0)$.

Definition

Let K be a complex, equipped with a filtration,

$$\emptyset := \mathbf{K}_0 \xrightarrow{\mathfrak{S}_1} \mathbf{K}_1 \xrightarrow{\mathfrak{S}_2} \mathbf{K}_2 \xrightarrow{\mathfrak{S}_3} \dots \xrightarrow{\mathfrak{S}_m} \mathbf{K}_m = \mathbf{K}$$

where \mathfrak{S}_i contains at least one simplex.

A Morse filtration for the filtration of **K** is a collection of Morse matchings $(X_i \sqcup T_i \sqcup S_i, \omega_i \colon T_i \to S_i)$ for each **K**_i, $i = 0 \dots m$, satisfying:

$$X_i \subseteq X_{i+1}, \quad T_i \subseteq T_{i+1}, \quad S_i \subseteq S_{i+1},$$

$$\omega_{i+1}|_{T_i} = \omega_i, \quad \partial^{X_{i+1}}|_{X_i} = \partial^{X_i}, \quad \forall i = 0 \dots m-1.$$

Theorem

Let K be a complex, equipped with a filtration,

$$\emptyset := \mathbf{K}_0 \xrightarrow{\mathfrak{S}_1} \mathbf{K}_1 \xrightarrow{\mathfrak{S}_2} \mathbf{K}_2 \xrightarrow{\mathfrak{S}_3} \dots \xrightarrow{\mathfrak{S}_m} \mathbf{K}_m = \mathbf{K}$$

and a Morse filtration $(X_i \sqcup T_i \sqcup S_i, \omega_i : T_i \to S_i)$, $i = 0 \dots m$:

$$X_i \subseteq X_{i+1}, \quad T_i \subseteq T_{i+1}, \quad S_i \subseteq S_{i+1},$$

 $\omega_{i+1}|_{T_i} = \omega_i, \quad \partial^{X_{i+1}}|_{X_i} = \partial^{X_i}, \quad \forall i = 0 \dots m-1.$

Then the following persistence modules:

$$\mathbf{H}(\mathbf{K}_0,\partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_1,\partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_2,\partial) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_m,\partial)$$

$$\mathbf{H}(X_0, \partial^{X_0}) \xrightarrow{\subseteq} \mathbf{H}(X_1, \partial^{X_1}) \xrightarrow{\subseteq} \mathbf{H}(X_2, \partial^{X_2}) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(X_m, \partial^{X_m})$$

are isomorphic.

Theorem

The following persistence modules are isomorphic:

$$\mathbf{H}(\mathbf{K}_0, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_1, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_2, \partial) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_m, \partial)$$

$$\mathbf{H}(X_0,\partial^{X_0}) \xrightarrow{\subseteq} \mathbf{H}(X_1,\partial^{X_1}) \xrightarrow{\subseteq} \mathbf{H}(X_2,\partial^{X_2}) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(X_m,\partial^{X_m})$$

Theorem

The following persistence modules are isomorphic:

$$\mathbf{H}(\mathbf{K}_{0}, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{1}, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{2}, \partial) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{m}, \partial)$$

$$\mathbf{H}(X_{0}, \partial^{X_{0}}) \xrightarrow{\subseteq} \mathbf{H}(X_{1}, \partial^{X_{1}}) \xrightarrow{\subseteq} \mathbf{H}(X_{2}, \partial^{X_{2}}) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(X_{m}, \partial^{X_{m}})$$

Sketch of proof:

$$X_i \subseteq X_{i+1}, \quad T_i \subseteq T_{i+1}, \quad S_i \subseteq S_{i+1}, \quad \omega_{i+1}|_{T_i} = \omega_i, \quad \partial^{X_{i+1}}|_{X_i} = \partial^{X_i},$$

Theorem

The following persistence modules are isomorphic:

$$\mathbf{H}(\mathbf{K}_{0}, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{1}, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{2}, \partial) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{m}, \partial)$$

$$\mathbf{H}(X_{0}, \partial^{X_{0}}) \xrightarrow{\subseteq} \mathbf{H}(X_{1}, \partial^{X_{1}}) \xrightarrow{\subseteq} \mathbf{H}(X_{2}, \partial^{X_{2}}) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(X_{m}, \partial^{X_{m}})$$

Sketch of proof:

$$X_i \subseteq X_{i+1}, \quad T_i \subseteq T_{i+1}, \quad S_i \subseteq S_{i+1}, \quad \omega_{i+1}|_{T_i} = \omega_i, \quad \partial^{X_{i+1}}|_{X_i} = \partial^{X_i},$$
 implies that:

$$(\mathbf{C}(X_0), \partial^{X_0}) \stackrel{\subseteq}{\longrightarrow} (\mathbf{C}(X_1), \partial^{X_1}) \stackrel{\subseteq}{\longrightarrow} (\mathbf{C}(X_2), \partial^{X_2}) \stackrel{\subseteq}{\longrightarrow} \dots \stackrel{\subseteq}{\longrightarrow} (\mathbf{C}(X_m), \partial^{X_m})$$

is well-defined filtration of complexes

Theorem

The following persistence modules are isomorphic:

$$\mathbf{H}(\mathbf{K}_{0}, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{1}, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{2}, \partial) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{m}, \partial)$$

$$\mathbf{H}(X_{0}, \partial^{X_{0}}) \xrightarrow{\subseteq} \mathbf{H}(X_{1}, \partial^{X_{1}}) \xrightarrow{\subseteq} \mathbf{H}(X_{2}, \partial^{X_{2}}) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(X_{m}, \partial^{X_{m}})$$

Sketch of proof:

$$X_i \subseteq X_{i+1}, \quad T_i \subseteq T_{i+1}, \quad S_i \subseteq S_{i+1}, \quad \omega_{i+1}|_{T_i} = \omega_i, \quad \partial^{X_{i+1}}|_{X_i} = \partial^{X_i},$$
 implies that:

is well-defined filtration of complexes inducing the persist. module:

 $\mathbf{H}(X_0, \partial^{X_0}) \xrightarrow{\subseteq} \mathbf{H}(X_1, \partial^{X_1}) \xrightarrow{\subseteq} \mathbf{H}(X_2, \partial^{X_2}) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(X_m, \partial^{X_m})$

 $(\mathbf{C}(X_0), \partial^{X_0}) \xrightarrow{\subseteq} (\mathbf{C}(X_1), \partial^{X_1}) \xrightarrow{\subseteq} (\mathbf{C}(X_2), \partial^{X_2}) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} (\mathbf{C}(X_m), \partial^{X_m})$

Theorem

The following persistence modules are isomorphic:

$$\mathbf{H}(\mathbf{K}_{0}, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{1}, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{2}, \partial) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{m}, \partial)$$

$$\mathbf{H}(X_{0}, \partial^{X_{0}}) \xrightarrow{\subseteq} \mathbf{H}(X_{1}, \partial^{X_{1}}) \xrightarrow{\subseteq} \mathbf{H}(X_{2}, \partial^{X_{2}}) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(X_{m}, \partial^{X_{m}})$$

Sketch of proof:

For each *i* there is a chain equivalence:

$$(\mathbf{C}(\mathbf{K}_i), \partial) \xrightarrow{\phi_i} (\mathbf{C}(X_i), \partial^{X_i}) \xrightarrow{\psi_i} (\mathbf{C}(\mathbf{K}_i), \partial^{X_i})$$

Theorem

The following persistence modules are isomorphic:

$$\mathbf{H}(\mathbf{K}_{0}, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{1}, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{2}, \partial) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{m}, \partial)$$

$$\mathbf{H}(X_{0}, \partial^{X_{0}}) \xrightarrow{\subseteq} \mathbf{H}(X_{1}, \partial^{X_{1}}) \xrightarrow{\subseteq} \mathbf{H}(X_{2}, \partial^{X_{2}}) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(X_{m}, \partial^{X_{m}})$$

Sketch of proof:

For each *i* there is a chain equivalence:

$$(\mathbf{C}(\mathbf{K}_i), \partial) \xrightarrow{\phi_i} (\mathbf{C}(X_i), \partial^{X_i}) \xrightarrow{\psi_i} (\mathbf{C}(\mathbf{K}_i), \partial^{X_i})$$

where each chain map commutes with inclusion:

$$\mathbf{C}(\mathbf{K}_{i}) \stackrel{\subseteq}{\longrightarrow} \mathbf{C}(\mathbf{K}_{i+1}) \qquad \qquad \mathbf{C}(\mathbf{K}_{i}) \stackrel{\subseteq}{\longrightarrow} \mathbf{C}(\mathbf{K}_{i+1}) \\
\downarrow^{\phi_{i}} \qquad \qquad \downarrow^{\phi_{i+1}} \qquad \qquad \downarrow^{\psi_{i}} \qquad \qquad \uparrow^{\psi_{i+1}} \\
\mathbf{C}(X_{i}) \stackrel{\subseteq}{\longrightarrow} \mathbf{C}(X_{i+1}) \qquad \qquad \mathbf{C}(X_{i}) \stackrel{\subseteq}{\longrightarrow} \mathbf{C}(X_{i+1})$$

Theorem

The following persistence modules are isomorphic:

$$\mathbf{H}(\mathbf{K}_{0}, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{1}, \partial) \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{2}, \partial) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(\mathbf{K}_{m}, \partial)$$

$$\mathbf{H}(X_{0}, \partial^{X_{0}}) \xrightarrow{\subseteq} \mathbf{H}(X_{1}, \partial^{X_{1}}) \xrightarrow{\subseteq} \mathbf{H}(X_{2}, \partial^{X_{2}}) \xrightarrow{\subseteq} \dots \xrightarrow{\subseteq} \mathbf{H}(X_{m}, \partial^{X_{m}})$$

Sketch of proof:

For each *i* there is a chain equivalence:

$$(\mathbf{C}(\mathbf{K}_i), \partial) \xrightarrow{\phi_i} (\mathbf{C}(X_i), \partial^{X_i}) \xrightarrow{\psi_i} (\mathbf{C}(\mathbf{K}_i), \partial^{X_i})$$

 \longrightarrow enough prove commutativity for addition of a Morse pair (τ, σ) :

$$(\mathbf{C}(X), \partial^X) \xrightarrow{\phi} (\mathbf{C}(X'), \partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X), \partial^X)$$

with $X' = X - \{\sigma, \tau\}$ as used previously (same chain maps).

Topology Inference Problem

