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Stability Theorems
Let D = {(bs, dj) }ie) U {x =y} and D" = {(b}, d}) };e) U {x = y} be
two persistence diagrams, b, d € R.

The bottleneck distance dg(D, D")
between D and D’ is: N .

$:D—D’ D
bijection Pe

ds(D, D) i= _inf  sup|lp—®(p)|[oc o]
[ ]

Defined even when |I| # |/| by 0
sending points to the diagonal. .

Theorem (Stability on a simplicial complex)

Letf,g: K — R be two functions on a same simplicial complex K,
inducing filtrations Ko, = f~*((—00; o) and K/, = g~ ((—00;7]).
Then

ds(D(f),D(g)) < [If = 8lloo-
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Let D = {(bs, dj) }ie) U {x =y} and D" = {(b}, d}) };e) U {x = y} be
two persistence diagrams, b, d € R.

The bottleneck distance dg(D, D")
between D and D’ is: N .

$:D—D’ D
bijection Pe

ds(D, D) i= _inf  sup|lp—®(p)|[oc o]
[ ]

Defined even when |I| # |/| by 0
sending points to the diagonal. .

Theorem (Stability on general space)

Letf,g: M — R be two functions on a same metric space M,
satisfying some “tameness” conditions. If 3¢ >0 s.t. Vre R
f1(—o0;r] C g~ (—o0;r+ €] and g1 (—o0;r] C F1(—o0;r +¢],

then  dg(D(f),D(g)) < e.



Distance between spaces

Definition (Hausdorff distance)

The Hausdorff distance between two non-empty subsets
X, Y of a metric space (M, d) is:

dy(X,Y) := max {sup d(x,Y),supd(X, y)} )
xeX yeY

where,
d(x,Y) = inf,ey d(x,y) and d(X, y) = infiexd(x, y).

Definition (e-sample)

Let K C RP be a compact set. An =-sample of K, for
some € > 0, is a finite set of points P such that
dH(P, K) <e.




Sampling compacts

Now consider compacts K in Euclidean space RP. Any compact K
defines a function:

di: RP 5 R, x = dg(x) := d(x, K).



Sampling compacts

Now consider compacts K in Euclidean space RP. Any compact K
defines a function:

di: RP 5 R, x = dg(x) := d(x, K).
Definition (Critical point)

A point x € RP is a critical point for d if there
exist distinct points y1, y2 € K such that:

d(x,y1) = d(x,y2) = d(x, K).

The set of critical points is called the medial axis
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Definition (Reach of a compact)

The reach of a compact K is:

reach K := inf{dk(x) : x critical point for dg}.
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Sampling, distance function approach

Lemma
Let P be an e-sample of a compact K. Then,

l|dk — dplloc < €.

For any x € R, let yg € arg min . d(x, y) be a nearest neighbor of x
on K.
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Consequently, by triangle inequality:

dp(x) < d(x, po) < d(x,y0) + d(yo,po) < dk(x) +e.



Sampling, distance function approach

Lemma

Let P be an e-sample of a compact K. Then,

l|dk — dplloc < €.

For any x € R, let yg € arg min . d(x, y) be a nearest neighbor of x
on K.
Because P is an e-sample (and K is compact), there exists a pg € P s.t.

d(p07 )’0) S e
Consequently, by triangle inequality:

dp(x) < d(x, po) < d(x,y0) + d(yo,po) < dk(x) +e.

And vice versa, exchanging K and P.



Reconstruction theorem

Theorem (Reconstruction)

Let K C RP be a compact set, and ¢ > 0 be
such that:
0 < 4e < reach K.

Let P be an e-sample of K. Then,

- there is a one-to-one correspondence
between the points of the persistence
diagram of the Cech filtration:

co(p) . C*(P)

that are at least c-away from the diagonal A
in oo norm, and the homology features of K.

Ba(K) points

»
>

CO(P) —_— .. *>C45(P)



Reconstruction theorem

Theorem (Reconstruction)

Llet K C RP be a compact set, and € > 0 be Ba(K) points
such that: S e
0 < 4e < reach K. AL ->
Let P be an e-sample of K. Then, e .
- there is a one-to-one correspondence * .
between the points of the persistence L
diagram of the Cech filtration: S
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Reconstruction theorem

Sketch of proof:
(1) Consider the “persistent homology of d,?l(—oo; r]” (assuming dg is
tame and its persistent homology well-defined).
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For all r, such that 0 < r < reach(K), the space dy *(—o0; ]
deformation retracts into K, and they have same homology.



Reconstruction theorem

Sketch of proof:
(1) Consider the “persistent homology of d,?l(—oo; r]” (assuming d is
tame and its persistent homology well-defined).

For all r, such that 0 < r < reach(K), the space dy *(—o0; ]
deformation retracts into K, and they have same homology.

— by projecting each x € d ' (—o0; 1] \ K to its unique nearest
neighbor on K.



Reconstruction theorem

Sketch of proof:
(1) Consider the “persistent homology of d,?l(—oo; r]” (assuming dg is
tame and its persistent homology well-defined).

For all r, such that 0 < r < reach(K), the space dy *(—o0; 7]
deformation retracts into K, and they have same homology.

— by projecting each x € d*(—o0; 1] \ K to its unique nearest
neighbor on K.
Ba(K) points (0,7)

—

Consequently, for all 0 < r; < rg < reach(K) we have

H(dg ! (—00; r1]) — %= H(dg ! (—00; r2])




Reconstruction theorem

Sketch of proof:
(2) Consider the persistent homology of

dp ! (—o0;r] = U B(p) =~ |C"(P)| (Nerve lemma).
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Reconstruction theorem

Sketch of proof:
(2) Consider the persistent homology of

dp ! (—o0;r] = U B(p) =~ |C"(P)| (Nerve lemma).

peP
Now, we have ||dx — dp||oc < € by triangle inequality.

Apply the (continuous version of the) stability theorem:

dg(D(dg),D(C(P))) < e.



Reconstruction theorem
Sketch of proof:
(2) Consider the persistent homology of
dyt(—o0;r] = U B(p) =~ |C"(P)| (Nerve lemma).
peP
Now, we have ||dx — dp||oc < € by triangle inequality.

Apply the (continuous version of the) stability theorem:

dg(D(dg),D(C(P))) < e.

For reach(K) > r > 4e > 0, the radius r r A
|| - ||oo-ball in R? around (0, r), and the
|| - ||oo-band of width € around the
diagonal are disjoint.

!




Rips complex

Computing intersections of balls in RP is expensive (high arithmetic
complexity): Approximate the Cech complex instead.



Rips complex

Computing intersections of balls in RP is expensive (high arithmetic
complexity): Approximate the Cech complex instead.

Definition (Flag complex)
Let G = (V, E) be a graph. The flag complex induced by G is the
abstract simplicial complex F(C) satisfying:

- the vertices of F(G) are V,

-0 =A{vo,...,vq} € F(G)iff vp,...,vq form a clique in G (i.e.,
an induced complete subgraph of G).

It is the maximal simplicial complex with G as 1-skeleton.



Rips complex

Computing intersections of balls in RP is expensive (high arithmetic
complexity): Approximate the Cech complex instead.

Definition (Rips complex)
Let P = {xi,...,X,} be a set of points in RN. The neighbor graph of
threshold r of P is the graph N,(P) with:

- vertices the points in P, and

- any two points x;, x;, i # j are connected by an edge iff
||X,' —X/|| S r.
The Rips complex of threshold r, denoted by R'(P), is the flag
complex F (N2, (P)).

Cech Rips



Rips complex

Computing intersections of balls in RP is expensive (high arithmetic
complexity): Approximate the Cech complex instead.

Definition (Rips complex)
Let P = {xi,...,X,} be a set of points in RN. The neighbor graph of
threshold r of P is the graph N,(P) with:

- vertices the points in P, and

- any two points x;, x;, i # j are connected by an edge iff
||X,' —X/|| S r.

The Rips complex of threshold r, denoted by R'(P), is the flag
complex F (N2, (P)).

Computation: Simply compute pairwise distances (low arithmetic
complexity predicate), then expand the flag complex combinatorial

~ O(#points?)+ linear in the number of cliques/size of the complex.



Rips vs Cech




Rips vs Cech

Lemma

For a point cloud P in Euclidean space, and any r > 0:

C'(P) C R'(P) C C¥(P).

C'(P) CR'(P) | Leto = {xg,...,x¢} € C'(P), d > 1, then for any
i#j,0<i,j<kwehave B/(x;) N B,(x;) # 0 = ||x; — x;|| < 2r.
Hence xo, . . . , X, form a clique in No,(P) and o € R'(P).
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Rips vs Cech

Lemma

For a point cloud P in Euclidean space, and any r > 0:

C'(P) C R'(P) C C¥(P).

C'(P) CR'(P) | Leto = {xg,...,x¢} € C'(P), d > 1, then for any
i#j,0<i,j<kwehave B/(x;) N B,(x;) # 0 = ||x; — x;|| < 2r.
Hence xo, . . . , X, form a clique in No,(P) and o € R'(P).

R'(P) CC¥(P)| Leto = {x0,...,x} € R'(P), then
||xi — xj|| < 2r,Vi,j. Let z be the barycenter of xo, . .., X, : z belongs to
the convex hull of the points.

Consequently, for all i:

||z — xi|| < diam(CH(xo,...,xk)) < IT%E}XHX:‘ —xj|| < 2r.

In conclusion, z € ni:O...k Boi(x)) # 0 and o € ézr(P)~
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Ranks in sequence of morphisms

Lemma

Consider the following sequence of vector spaces and morphisms:

A a B B C Y 6 n

D E F

such that 1tk (A% F)=1k(C——=D)=k then:

rk(BM,E}:k.



Ranks in sequence of morphisms

Lemma

Consider the following sequence of vector spaces and morphisms:
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Ranks in sequence of morphisms

Lemma

Consider the following sequence of vector spaces and morphisms:

AaBBCW 5 n

D E F

70...0x ¥

suchthat tk (A——F) =1k (C——=D )=k, then:

rk(BM,E}:k.

Note thatinany U—=~V—->W =X, tk(U—=X)<rk(V-=W).
Consequently,

-|A—B—F—F | k=1tk (A—F)<rk(B—E),

- |B—>C—>D—E| tk(B—E)<rk(C—D)=k

i



Cech persistence, a closer look

Lemma

Let P be an e-sample of a compact K of reach(K) > 0 in RN. Then,

for any €g > €, and «, such that e < o < reach(K) — 2¢g, we have:

rk ( Hg(C*(P)) — Hy(C*t=0(P)) ) = dim Hy(K)
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Cech persistence, a closer look

Lemma

Let P be an e-sample of a compact K of reach(K) > 0 in RN. Then,
for any €g > €, and «, such that e < o < reach(K) — 2¢g, we have:

rk ( Hg(C*(P)) — Hy(C*t=0(P)) ) = dim Hy(K)

rk (Hy(C*(P)) ——Hqy(C*+(P)) )
counts the number of points (x, y)

of the persistence diagram of the N S
filtration: Lo e
oop) — éreach(K)—l/ p P4 o S
(P) (P) —
withx < aandy > a + €p. 0 o dii((—o0;7))
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Theorem

Let P be an e-sample of a compact Ks.t. 0 < € < %. The
homology of K can be read off the persistence diagram of R'(P) for

r> e+ 2ep, forany e < gg < w.

Consider

€L RE___, (Ceteo (et e+2e o (2e+4e
C R Ceteo C 0 =R 0 I 0
e+eg>2e
Now, with 2¢ 4 4¢¢ < reach(K),
rk (Hd(c’a) N Hd(c'25+4ao)) =rk (Hd(c'a+ao) N Hd(éa+2€0)
= dim Hd(K)

= 1k (Hy(R?) — Hy(R*T0)) = dim Hy(K).

In conclusion, dim Hy(K) is exactly the number of points in the
persistence diagram of the Rips filtration (up to r = € + 2¢¢) in the
upper left quadrant based at (g, € 4 2¢9).



Morse filtration

Definition
Let K be a complex, equipped with a filtration,

Sq Sa

S (G
K, K, LA

0 =K, K, =K

where &; contains at least one simplex.
A Morse filtration for the filtration of K is a collection of Morse
matchings (X;UT;US;,w;: T; — S;) foreach K;, i = 0. .. m, satisfying:

Xi € Xiq1, Ti € Tiv1, S CSiqq,

_ X —_ AXi R
wi+1\Ti—w,, (9"*‘1‘)(’_—8’, Vi=0...m-—1.



Morse filtration

Theorem

Let K be a complex, equipped with a filtration,

&1 (GP) S3 Gm

0:=Kp K, K>

and a Morse filtration (X; U T; U Sjwi: T, — S;), i=0...m

Xi € Xix1, T; € Tiyq, Si C Sit1,

— Xii — AXi 9
w,+1]7i—w;, 8'+1\Xl_—8', Vi=0...m—

Then the following persistence modules:

K,=K

1.

H(Ko,d) —— H(Ky,0) ——= H(K3,8) —> ... — H(Kn, )

H(Xo, 80) —S> H(X;, ) —=> H(Xp, 82) —=> ... == H(X,n, &)

are isomorphic.



Morse filtration

Theorem

The following persistence modules are isomorphic:
H(Ko,9) — H(Ky,d) —> H(K»,8) —=> ...

H(Xo, 9%) & H(Xxq,0) . H(X,, 0*2) &

— S H(K,,, 0)

S H(X,, 07
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Morse filtration

Theorem

The following persistence modules are isomorphic:
H(K,0) —> H(K1,0) —=> H(K3,0) —> ... —> H(K, )
H(Xo, ') —> H(X;, 9M) —> H(Xp, "2) —> ... —=> H(X,n, ")

Sketch of proof:

Xi € Xiy1, TiCTip1, S CSiy1, wirtly, =w, 0% ‘x,» = 0%,
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Morse filtration

Theorem

The following persistence modules are isomorphic:

H(Ko,d) —> H(Ky,d) ——> H(K»,8) —=> ... == H(K, )
H(Xo, 90) —==H(X;, 01) —== H(Xa, 8*2) —=> ... —== H(X, &)
Sketch of proof:

Xi € Xiy1, TiCTip1, S CSiy1, wirtly, =w, 0% ‘x,» = 0%,

implies that:

\Llﬁ

(C(X0), ) = (C(X1), ) = (C(X2),8?) ...

is well-defined filtration of complexes

(C(Xm), 0*)

16



Morse filtration

Theorem

The following persistence modules are isomorphic:
H(Ko,d) —> H(Ky,d) ——> H(K»,8) —=> ... == H(K, )

H(Xo, 90) —==H(X;, 01) —== H(Xa, 8*2) —=> ... —== H(X, &)

Sketch of proof:
Xi € Xiy1, TiCTip1, S CSiy1, wirtly, =w, 0% ‘x,» = 0%,
implies that:

(CXo), ) = (C(X1), ) == (C(Xa), 0?) = ... = (C(Xp), &*")

is well-defined filtration of complexes inducing the persist. module:

H(Xo, 00) —== H(X;, 01) —=> H(Xp, 02) —=> ... —=> H(X,y, &™)
16



Morse filtration

Theorem

The following persistence modules are isomorphic:
H(Ko,d) —> H(Ky,d) ——> H(K»,8) —=> ... == H(K, )

H(Xo, 90) —==H(X;, 01) —== H(Xa, 8*2) —=> ... —== H(X, &)

Sketch of proof:
For each i there is a chain equivalence:
@i , i
(C(K;),0) (C(x:),0") (C(K)),9)
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Morse filtration

Theorem

The following persistence modules are isomorphic:
H(Ko,d) —> H(Ky,d) ——> H(K»,8) —=> ... == H(K, )

H(Xo, 90) —==H(X;, 01) —== H(Xa, 8*2) —=> ... —== H(X, &)

Sketch of proof:
For each i there is a chain equivalence:
@i , i
(C(KI)76> (C(XI)78XI) (C(Kl)va)
where each chain map commutes with inclusion:
C c
C(K;) — C(Ki+1) C(K;) —= C(Kiy1)

¢i¢ ‘L¢i+1 w,’f ?@Z)Hl
C(X;) —=> C(Xi1) C(X) —=> C(Xi11)



Morse filtration

Theorem

The following persistence modules are isomorphic:

H(Ko,d) —> H(Ky,d) ——> H(K»,8) —=> ... == H(K, )

H(Xo, 90) —==H(X;, 01) —== H(Xs, 8*2) —=> ... —== H(X,, ')

Sketch of proof:
For each i there is a chain equivalence:
bi . i
(C(K;),0) (C(x)),0%) (C(K;),9)
— enough prove commutativity for addition of a Morse pair (7, 0):

(C(x),0) —2— (C(¥),8") —L— (C(X), ")

with X' = X — {o, 7} as used previously (same chain maps).

16



Topology Inference Problem

compact K in Euclidean space

D

. P e-sample with

reach(K
0 <& < )
scale: - ) €] 1©) @ O(|P|2) + O(n)
) 3. R
Rips filtration - ~ ’ & n simplices
~ ~ (n’)
Morse filtration (X3, 9%1) (Xq,0%2) (X3,0%3) (X4, 0%1) (X5,0%) m cells

| | | o

Persistent homology H; (K;) — H;(K.) — Hi(K;) — Hi(Ky) — Hi(K;)
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