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Stability Theorems

Let D = {(bi, di)}i∈I ∪ {x = y} and D′ = {(b′j , d′j)}j∈J ∪ {x = y} be
two persistence diagrams, b, d ∈ R.

The bottleneck distance dB(D,D′)
between D and D′ is:

dB(D,D
′) := inf

Φ:D→D′
bijection

sup
p∈D

||p−Φ(p)||∞

Defined even when |I| ̸= |J| by
sending points to the diagonal.

Theorem (Stability on a simplicial complex)

Let f, g : K → R be two functions on a same simplicial complex K,
inducing filtrations Kα = f−1((−∞;α]) and K′

γ = g−1((−∞; γ]).
Then

dB(D(f),D(g)) ≤ ||f− g||∞.
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two persistence diagrams, b, d ∈ R.

The bottleneck distance dB(D,D′)
between D and D′ is:

dB(D,D
′) := inf

Φ:D→D′
bijection

sup
p∈D

||p−Φ(p)||∞

Defined even when |I| ̸= |J| by
sending points to the diagonal.

Theorem (Stability on general space)

Let f, g : M → R be two functions on a same metric space M, satisfying
some “tameness” conditions. If ∃ε ≥ 0 s.t. ∀r ∈ R
f−1(−∞; r] ⊆ g−1(−∞; r+ ε] and g−1(−∞; r] ⊆ f−1(−∞; r+ ε],

then dB(D(f),D(g)) ≤ ε.
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Distance between spaces

Definition (Hausdorff distance)

The Hausdorff distance between two non-empty subsets
X, Y of a metric space (M, d) is:

dH(X, Y) := max
{

sup
x∈X

d(x, Y), sup
y∈Y

d(X, y)

}
,

where,
d(x, Y) = infy∈Y d(x, y) and d(X, y) = infx∈X d(x, y).

x

y

Y
X

Definition (ε-sample)

Let K ⊂ RD be a compact set. An ε-sample of K, for some
ε ≥ 0, is a finite set of points P such that dH(P, K) ≤ ε.
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Sampling compacts

Now consider compacts K in Euclidean space RD. Any compact K
defines a function:

dK : RD → R, x 7→ dK(x) = d(x,K).

Definition (Critical point)

A point x ∈ RD is a critical point for dK if there
exist distinct points y1, y2 ∈ K such that:

d(x, y1) = d(x, y2) = d(x,K).

The set of critical points is called the medial axis
of K.

Definition (Reach of a compact)

The reach of a compact K is:

reach K := inf{dK(x) : x critical point for dK}.

y1y2
x
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Sampling, distance function approach

Lemma

Let P be an ε-sample of a compact K. Then,

||dK − dP||∞ ≤ ε.

For any x ∈ RD, let y0 := arg miny∈K d(x, y) be the nearest neighbor of
x on K.

Because P is an ε-sampling (and K is compact), there exists a ∃p0 ∈ P
s.t. d(p0, y0) ≤ ε.
Consequently, by triangle inequality:

dP(x) ≤ d(x, p0) ≤ d(x, y0) + d(y0, p0) ≤ dK(x) + ε.

And vice versa, exchanging K and P.
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Reconstruction theorem

Theorem (Reconstruction)

Let K ⊂ RD be a compact set, and ε > 0 be such
that:

0 < 4ε < reach K.

Let P be an ε-sample of K. Then,

- there is a one-to-one correspondence
between the points of the persistence
diagram of the Čech filtration:

Č0(P) // . . . // Č4ε(P)

that are at least ε-away from the diagonal ∆
in ∞ norm, and the homology features of K.

ε

βd(K) points

C0(P ) // . . . // C4ε(P )

↪→ ↪→ ↪→ ↪→

scale:

barecode

↪→ ↪→ ↪→ ↪→

scale:

barecode
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Reconstruction theorem
Sketch of proof:
(1) Consider the “persistent homology of d−1

K (−∞; r]” (assuming dK is
tame and its persistent homology well-defined).

For all r, such that 0 < r < reach(K), the space d−1
K (−∞; r]

deformation retracts into K, and they have same homology.

−→ by projecting each x ∈ d−1
K (−∞; r] \ K to its unique nearest

neighbor on K.

Consequently, for all 0 < r1 ≤ r2 < reach(K) we have

H(d−1
K (−∞; r1])

id // H(d−1
K (−∞; r2])

βd(K) points (0, r)
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Reconstruction theorem
Sketch of proof:
(2) Consider the persistent homology of

d−1
P (−∞; r] =

∪
p∈P

Br(p) ≃ |Čr(P)| (Nerve lemma).

Now, we have ||dK − dP||∞ ≤ ε by triangle inequality.

Apply the (continuous version of the) stability theorem:

dB(D(dk),D(Č(P))) ≤ ε.

For reach(K) > r > 4ε > 0, the radius r
|| · ||∞-ball in R2 around (0, r), and the
|| · ||∞-band of width ε around the
diagonal are disjoint.

ε

r
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Rips complex

Computing intersections of balls in RD is expensive (high arithmetic
complexity): Approximate the Čech complex instead.

Definition (Flag complex)

Let G = (V, E) be a graph. The flag complex induced by G is the
abstract simplicial complex F(G) satisfying:

- the vertices of F(G) are V,

- σ = {v0, . . . , vd} ∈ F(G) iff v0, . . . , vd form a clique in G (i.e.,
an induced complete subgraph of G).

It is the maximal simplicial complex with G as 1-skeleton.

9
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Rips complex

Computing intersections of balls in RD is expensive (high arithmetic
complexity): Approximate the Čech complex instead.

Definition (Rips complex)

Let P = {x1, . . . , xn} be a set of points in RN. The neighbor graph of
threshold r of P is the graph Nr(P) with:

- vertices the points in P, and

- any two points xi, xj, i ̸= j are connected by an edge iff
||xi − xj|| ≤ r.

The Rips complex of threshold r, denoted by Rr(P), is the flag complex
F(N2r(P)).

Čech Rips

9



Rips complex

Computing intersections of balls in RD is expensive (high arithmetic
complexity): Approximate the Čech complex instead.

Definition (Rips complex)

Let P = {x1, . . . , xn} be a set of points in RN. The neighbor graph of
threshold r of P is the graph Nr(P) with:

- vertices the points in P, and

- any two points xi, xj, i ̸= j are connected by an edge iff
||xi − xj|| ≤ r.

The Rips complex of threshold r, denoted by Rr(P), is the flag complex
F(N2r(P)).

Computation: Simply compute pairwise distances (low arithmetic
complexity predicate), then expand the flag complex combinatorial

∼ O(#points2)+ linear in the number of cliques/size of the complex.
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Rips vs Čech

Lemma

For a point cloud P in Euclidean space, and any r > 0:

Čr(P) ⊆ Rr(P) ⊆ Č2r(P).

Čr(P) ⊆ Rr(P) . Let σ = {x0, . . . , xk} ∈ Čr(P), d ≥ 1, then for any

i ̸= j, 0 ≤ i, j ≤ k we have Br(xi) ∩ Br(xj) ̸= ∅ ⇒ ||xi − xj|| ≤ 2r.
Hence x0, . . . , xk form a clique in N2r(P) and σ ∈ Rr(P).

Rr(P) ⊆ Č2r(P) . Let σ = {x0, . . . , xk} ∈ Rr(P), then

||xi − xj|| ≤ 2r, ∀i, j. Let z be the barycenter of x0, . . . , xk : z belongs to
the convex hull of the points.

Consequently, for all i:

||z− xi|| ≤ diam(CH(x0, . . . , xk)) ≤ max
i,j

||xi − xj|| ≤ 2r.

In conclusion, z ∈
∩

i=0...k B2r(xi) ̸= ∅ and σ ∈ Č2r(P).
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Ranks in sequence of morphisms

Lemma

Consider the following sequence of vector spaces and morphisms:

A α // B
β // C

γ // D δ // E
η // F

such that rk ( A
η◦...◦α // F ) = rk ( C

γ // D ) = k, then:

rk ( B
δ◦γ◦β // E ) = k.

Note that in any U // V // W // X , rk ( U // X ) ≤ rk ( V // W ).
Consequently,

- A // B // E // F k = rk ( A // F ) ≤ rk ( B // E ),

- B // C // D // E rk ( B // E ) ≤ rk ( C // D ) = k.
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- B // C // D // E rk ( B // E ) ≤ rk ( C // D ) = k.
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Cech persistence, a closer look

Lemma

Let P be an ε-sample of a compact K of reach(K) > 0 in RN. Then, for
any ε0 > ε, and α, such that ε ≤ α < reach(K)− 2ε0, we have:

rk ( Hd(Čα(P)) // Hd(Čα+ε0(P)) ) = dim Hd(K)

rk ( Hd(Čα(P)) // Hd(Čα+ε0(P)) )
counts the number of points (x, y)
of the persistence diagram of the
filtration:

Č0(P) // . . . // Čreach(K)−ν(P)

with x ≤ α and y ≥ α+ ε0.

ε
ε

r

(
α

α + ε0

)
d−1K ((−∞; r])

Cr(P )
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Theorem

Let P be an ε-sample of a compact K s.t. 0 < ε < reach(K)
8 . The

homology of K can be read off the persistence diagram of Rr(P) for

r ≥ ε+ 2ε0, for any ε < ε0 <
reach(K)

8 .

Consider

Čε // Rε // Čε+ε0 // Čε+2ε0 // Rε+2ε0 // Č2ε+4ε0︸ ︷︷ ︸
ε+ε0>2ε

Now, with 2ε+ 4ε0 < reach(K),

rk
(
Hd(Čε) → Hd(Č2ε+4ε0)

)
= rk (Hd(Čε+ε0) → Hd(Čε+2ε0)

= dim Hd(K).

=⇒ rk
(
Hd(Rε) → Hd(Rε+2ε0)

)
= dim Hd(K).

In conclusion, dim Hd(K) is exactly the number of points in the
persistence diagram of the Rips filtration (up to r = ε+ 2ε0) in the
upper left quadrant based at (ε, ε+ 2ε0).
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ε+ε0>2ε

Now, with 2ε+ 4ε0 < reach(K),

rk
(
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ε+ε0>2ε

Now, with 2ε+ 4ε0 < reach(K),

rk
(
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Morse filtration

Definition

Let K be a complex, equipped with a filtration,

∅ := K0
S1 // K1

S2 // K2
S3 // . . .

Sm // Km = K

where Si contains at least one simplex.
A Morse filtration for the filtration of K is a collection of Morse
matchings (Xi ⊔ Ti ⊔ Si, ωi : Ti → Si) for each Ki, i = 0 . . .m, satisfying:

Xi ⊆ Xi+1, Ti ⊆ Ti+1, Si ⊆ Si+1,

ωi+1|Ti = ωi, ∂Xi+1
∣∣
Xi
= ∂Xi , ∀i = 0 . . .m− 1.
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Morse filtration

Theorem

Let K be a complex, equipped with a filtration,

∅ := K0
S1 // K1

S2 // K2
S3 // . . .

Sm // Km = K

and a Morse filtration (Xi ⊔ Ti ⊔ Si, ωi : Ti → Si), i = 0 . . .m:

Xi ⊆ Xi+1, Ti ⊆ Ti+1, Si ⊆ Si+1,

ωi+1|Ti = ωi, ∂Xi+1
∣∣
Xi
= ∂Xi , ∀i = 0 . . .m− 1.

Then the following persistence modules:

H(K0, ∂)
⊆ // H(K1, ∂)

⊆ // H(K2, ∂)
⊆ // . . .

⊆ // H(Km, ∂)

H(X0, ∂X0)
⊆ // H(X1, ∂X1)

⊆ // H(X2, ∂X2)
⊆ // . . .

⊆ // H(Xm, ∂Xm)

are isomorphic.
15



Morse filtration

Theorem

The following persistence modules are isomorphic:

H(K0, ∂)
⊆ // H(K1, ∂)

⊆ // H(K2, ∂)
⊆ // . . .

⊆ // H(Km, ∂)

H(X0, ∂X0)
⊆ // H(X1, ∂X1)

⊆ // H(X2, ∂X2)
⊆ // . . .

⊆ // H(Xm, ∂Xm)

Sketch of proof:

Xi ⊆ Xi+1, Ti ⊆ Ti+1, Si ⊆ Si+1, ωi+1|Ti = ωi, ∂Xi+1
∣∣
Xi
= ∂Xi ,

implies that:

(C(X0), ∂X0)
⊆ // (C(X1), ∂X1)

⊆ // (C(X2), ∂X2)
⊆ // . . .

⊆ // (C(Xm), ∂Xm)

is well-defined filtration of complexes inducing the persist. module:

H(X0, ∂X0)
⊆ // H(X1, ∂X1)

⊆ // H(X2, ∂X2)
⊆ // . . .

⊆ // H(Xm, ∂Xm)
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Sketch of proof:
For each i there is a chain equivalence:

(C(Ki), ∂)
ϕi // (C(Xi), ∂Xi)

ψi // (C(Ki), ∂
Xi)

where each chain map commutes with inclusion:

C(Ki)
⊆ //

ϕi ��

C(Ki+1)

ϕi+1��
C(Xi)

⊆ // C(Xi+1)

C(Ki)
⊆ //

OO
ψi

C(Ki+1)OO
ψi+1

C(Xi)
⊆ // C(Xi+1)
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Sketch of proof:
For each i there is a chain equivalence:

(C(Ki), ∂)
ϕi // (C(Xi), ∂Xi)

ψi // (C(Ki), ∂
Xi)

−→ enough prove commutativity for addition of a Morse pair (τ, σ):

(C(X), ∂X)
ϕ // (C(X′), ∂X′)

ψ // (C(X), ∂X)

with X′ = X− {σ, τ} as used previously (same chain maps).
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Topology Inference Problem

︷ ︸︸ ︷
scale:

↪→ ↪→ ↪→ ↪→
Rips filtration

Morse filtration

H1(K1) H1(K5)H1(K2) H1(K3) H1(K4)−→ −→ −→ −→

barecode

(X1, ∂
X1) (X2, ∂

X2) (X3, ∂
X3) (X4, ∂

X4) (X5, ∂
X5) m cells

' ' ' ' '
Õ(n)

O(m3)

Persistent homology

compact K in Euclidean space ε-sample with

0 < ε < reach(K)
8

ε 3ε

n simplices
R3.1ε

P

O(|P |2) + Õ(n)
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