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Elementary collapses

Simplification with elementary collapses:

· · ·

With Discrete Morse theory:

∼=

simplification

· · ·

the philosophy:

· · · · · ·

make a triangle critical

allows elementary collapses
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Morse matching

Fix the coefficient field Z/2Z.

Definition

A simplicial complex K induces a face partial ordering < between
simplices. It is the transitive closure of the relation ≺

τ ≺ σ iff τ ⊂ σ and dim τ = dimσ − 1.

The Hasse diagram of a complex is the directed graph (V, E) with:

- V = K,

- (σ → τ) ∈ E iff τ ≺ σ.

a

b

c

d ab acbc cd ad

a b c d

acd
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Morse matching

Definition

A partial matching of K is a partition K = X t T t S with a bijective
pairing ω : T→ S, where:

τ ≺ ω(τ), for all τ ∈ T.

−→ it is a graph matching in the Hasse diagram of K.

a

b

c

d ab acbc cd ad

a b c d

acd
∈ X
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Morse matching

Definition

Let K be a simplicial complex, H = (K, E) its Hasse diagram, and
(X t T t S, ω) a partial matching. Define the directed graph H̄ as the
graph (K, E′):

- with same underlying undirected graph as H,
- where every edge (ω(τ)→ τ) ∈ E is reversed in E′, i.e.,
(τ → ω(τ)) ∈ E′.

If H̄ is acyclic, we call the partial matching a Morse matching.

a

b

c

d ab acbc cd ad

a b c d

acd
∈ X

NB: a cycle can only alternate between two dim. d and d+ 1 (ω bij.).
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Morse matching

Definition

Let K be a simplicial complex, H = (K, E) its Hasse diagram, and
(X t T t S, ω) a Morse matching.

- Simplices in X are called critical.

- A Morse matching is optimal if it has the minimal number of
critical simplices, over all possible Morse matchings of K.

It is NP-hard to decide whether a simplicial complex has a Morse
matching with less than k critical simplices.
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Compute a (good) Morse matching: Heuristic

a

b

c

d ab acbc cd ad

a b c d

acd
X : bc c

T ↔
cd
d
a
b

S

acd
ad
ac
ab

,
,
,
,

,

- A set of available simplices; A←[ K, X, T, S←[ ∅
- While A 6= ∅:

▶ if there is a free pair (τ, σ) in A, match τ with σ:
▶ A←[ A \ {τ, σ}, perform elementary collapse
▶ T←[ T ∪ {τ},
▶ S←[ S ∪ {σ} ⇒ ω(τ) = σ

▶ else make any available maximal simplex ζ ∈ A critical:
▶ set X←[ X ∪ {ζ},
▶ A←[ A \ {ζ} remove maximal simplex
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Compute a (good) Morse matching: Heuristic

Lemma (Correction)

- A always contains a simplicial complex: only perform elementary
collapses and maximal simplex removals.

- T× S always contains a matching: after being matched, a
simplex is removed from the available simplices.
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Compute a (good) Morse matching: Heuristic
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- A always contains a simplicial complex: only perform elementary
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Suppose that, at some point, reverting an arrow creates a cycle. Pick
the first such arrow (τ, σ):

σ

τκ

ζ new match

· · ·

matched earlier

contradiction:
must be free when matched
but σ is a coface.
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More interesting example

a

b

d

c

a b c d

ab ad bc cd

abc abd acd bcd

abcd

ac bd

What is the number of critical simplices of an optimal Morse
matching?

A 0

B 1

C 2

D 3
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Fundamental Theorem of Discrete Morse Theory

Theorem

Let K be a simplicial complex, and (X t T t S, ω) a Morse matching.
There exists a chain complex (C(X), ∂X) with cells in X, called a Morse
complex, whose homology groups are isomorphic to the ones of K.

More precisely,
- Cd(X) generated by the d-dimensional simplices of X,
- ∂Xd : Cd(X)→ Cd−1(X).

Application: reduce a complex drastically when computing its
homology.

· · · · · ·

make a triangle critical

allows elementary collapses
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Boundary map ∂X

Definition

In a complex K with Morse matching (X t T t S, ω), let σ, τ ∈ X be
critical simplices, with dimσ = dim τ + 1.
A gradient path from σ to τ is a directed path from σ to τ :

σ → s1 → ω(s1)→ s2 → . . .→ sr → ω(sr)→ τ

in H̄, alternating between simplices of dimension d and d− 1:

s1 s2

σ ω(s1) ω(s2)

dim.

d+ 1

d sr τ

ω(sr)

H̄

· · ·

· · ·
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Boundary map ∂X

Definition

For σ, τ ∈ X, with dimσ = dim τ + 1, define

[σ : τ ] := # distinct (σ → τ)-gradient path ∈ Z/2Z.

Then the boundary map ∂X : C(X)→ C(X) is defined such that:

∂X(σ) =
∑
τ ∈ X

dimσ = dim τ + 1

[σ : τ ] · τ

s1 s2

σ ω(s1) ω(s2)

dim.

d+ 1

d sr τ

ω(sr)

H̄

· · ·

· · ·

9



Example: Morse complex

a

b

c

d ab acbc cd ad

a b c d

acd

⇒ H0 = H1 = Z/2Z

⇒ H2 = 0

∂X(bc) = (1 + 1) · c = 0∂(bc) = 1 · b + 1 · c

We need to prove that

- (C(X), ∂X) is a chain complex, i.e., ∂X ◦ ∂X = 0,

- (C(X), ∂X) and (C(K), ∂) have same homology.
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The Morse complex is a chain complex

Inductive Proof of: ∂Xd ◦ ∂Xd+1σ = 0 ∀d, and ∀σ ∈ X

For X = K, and T = S = ∅, ∂X = ∂ the usual boundary map, and
∂ ◦ ∂ = 0. ✓

Now, let X t T t S be a Morse matching with ∂X ◦ ∂X = 0, and denote
by Xd ⊆ X the d-dimensional simplices in X.

For any a ∈ Xd+1, we have:

∂Xd ◦ ∂Xd+1(a) = ∂Xd(
∑
b∈Xd

[a : b]b) =
∑
b∈Xd

∑
c∈Xd−1

[a : b][b : c]c = 0. (1)

Consider σ, τ ∈ X being such that pairing σ and τ would lead to a
valid Morse matching (X \ {σ, τ}) t (T ∪ {τ}) t (S ∪ {σ}).
In particular, for any a ∈ Xd+1, and c ∈ Xd−1, using (1):∑

b ̸=τ
[a : b][b : c] + [a : τ ][τ : c] = 0 ∀a ∈ Xd+1, c ∈ Xd−1.
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′

d
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b ̸=τ
b∈Xd

( [a : b]︸ ︷︷ ︸
paths not traversing

edge τ→σ
(already in (X,∂X))

+ [a : τ ][σ : b]︸ ︷︷ ︸
paths traversing
edge τ→σ

(new in (X′,∂X
′
))

) · b

by linearity =
∑
b ̸=τ

([a : b] + [a : τ ][σ : b])
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c∈Xd−1

[b : c] · c

=
∑

c∈Xd−1
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b ̸=τ

[a : b][b : c]︸ ︷︷ ︸
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·c + [a : τ ] ·
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∑
b ̸=τ

[σ : b][b : c]︸ ︷︷ ︸
=[σ:τ ][τ :c]=[τ :c]

·c

= 0

NB: [σ : τ ] is 1 as otherwise we get a cycle adding (σ, τ) to the matching.
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Proof of invariance by elem. collapse, with homotopy

K a simplicial complex, (σ, τ) a free pair:

C•(K)
ϕ // C•(K− {σ, τ})

ψ // C•(K)

with:

ψ(x) = x, i.e. the inclusion C•(K− {σ, τ}) ↪→ C•(K)

φ(x) =


0 if x = σ,

τ − ∂σ if x = τ, and
x otherwise.

D(x) =

{
σ if x = τ,

0 otherwise.

Cd+1
∂d+1 //

ψ◦ϕ

��

id





0
xx
xx
xx
x

{{xx
xx
xx
x

Cd
∂d //

ψ◦ϕ

��

id





Dd
yy
yy
yy

||yy
yy
yy

Cd−1

0
yy
yy
yy
y

||yy
yy
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y

Cd+2
// Cd+1

// Cd

13
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0 otherwise.

Cd+1
∂d+1 //

ψ◦ϕ

��

id
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τ
∂d //

ψ◦ϕ
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id
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Cd+2
// σ // τ − (τ − ∂σ)
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Proof of invariance by elem. collapse, with homotopy

K a simplicial complex, (σ, τ) a free pair:

C•(K)
ϕ // C•(K− {σ, τ})

ψ // C•(K)

with:

ψ(x) = x, i.e. the inclusion C•(K− {σ, τ}) ↪→ C•(K)

φ(x) =


0 if x = σ,

τ − ∂σ if x = τ, and
x otherwise.

D(x) =

{
σ if x = τ,

0 otherwise.

σ
∂d+1 //

ψ◦ϕ

��

id

��

0
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xx
xx
xx

||xx
xx
xx
xx

∂σ = τ + · · · ∂d //

ψ◦ϕ

��

id
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yysss
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ss

Cd−1

0
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yyttt
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ttt

Cd+2
// σ − 0 // Cd
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Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓

X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

Cd+1(X)
∂Xd+1 //

OO

ψd+1

Cd(X)
∂Xd //

OO

ψd

Cd−1(X)OO

ψd−1

Cd+1(X′)
∂X

′
d+1 //// Cd(X′)

∂X
′

d //// Cd−1(X′)
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Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

Cd+1(X)
∂Xd+1 //

OO

ψd+1

Cd(X)
∂Xd //

OO

ψd

Cd−1(X)OO

ψd−1

Cd+1(X′)
∂X

′
d+1 //// Cd(X′)

∂X
′

d //// Cd−1(X′)

14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

Cd+1(X)
∂Xd+1 //

OO

ψd+1

Cd(X)
∂Xd //

OO

ψd

Cd−1(X)OO

ψd−1

Cd+1(X′)
∂X

′
d+1 // // Cd(X′)

∂X
′

d //// Cd−1(X′)
14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

Cd+1(X)
∂Xd+1 //

OO

ψd+1

Cd(X)
∂Xd //

OO

ψd

Cd−1(X)OO

ψd−1

x
∂X

′
d+1 //// Cd(X′)

∂X
′

d //// Cd−1(X′)
14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

x− [x : τ ]σ
∂Xd+1 //

OO

ψd+1

∂Xx− [x : τ ]∂xσ
∂Xd //

OO

ψd

Cd−1(X)OO

ψd−1

x
∂X

′
d+1 //// Cd(X′)

∂X
′

d // // Cd−1(X′)
14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

x− [x : τ ]σ
∂Xd+1 //

OO

ψd+1

∂Xx− [x : τ ]∂xσ
∂Xd //

OO

ψd

Cd−1(X)OO

ψd−1

x
∂X

′
d+1 ////

∑
b ̸=τ [x : b]b+

∑
b ̸=τ [x : τ ][σ : b]b+ 2[x : τ ]τ

∂X
′

d // // Cd−1(X′)
14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

Cd+1(X)
∂Xd+1 //

ϕd+1

��

Cd(X)
∂Xd //

ϕd

��

Cd−1(X)

ϕd−1

��
Cd+1(X′)

∂X
′

d+1 //// Cd(X′)
∂X

′
d //// Cd−1(X′)

14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

σ
∂Xd+1 //

ϕd+1

��

Cd(X)
∂Xd //

ϕd

��

Cd−1(X)

ϕd−1

��
Cd+1(X′)

∂X
′

d+1 //// Cd(X′)
∂X

′
d //// Cd−1(X′)

14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

σ
∂Xd+1 //

ϕd+1

��

(∂Xσ − τ) + τ
∂Xd //

ϕd

��

Cd−1(X)

ϕd−1

��
Cd+1(X′)

∂X
′

d+1 //// Cd(X′)
∂X

′
d //// Cd−1(X′)

14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

σ
∂Xd+1 //

ϕd+1

��

(∂Xσ − τ) + τ
∂Xd //

ϕd

��

Cd−1(X)

ϕd−1

��
Cd+1(X′)

∂X
′

d+1 //// (∂Xσ − τ) + τ − ∂Xσ = 0
∂X

′
d //// Cd−1(X′)
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Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

σ
∂Xd+1 //

ϕd+1

��

(∂Xσ − τ) + τ
∂Xd //

ϕd

��

Cd−1(X′)

ϕd−1

��
0

∂X
′

d+1 // // 0
∂X

′
d // // Cd−1(X′)

14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

a 6= σ
∂Xd+1 //

ϕd+1

��

Cd(X)
∂Xd //

ϕd

��

Cd−1(X)

ϕd−1

��
Cd+1(X′)

∂X
′

d+1 //// Cd(X′)
∂X

′
d //// Cd−1(X′) 14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

a 6= σ
∂Xd+1 //

ϕd+1

��

(∂Xa− [a : τ ]τ) + [a : τ ]τ
∂Xd //

ϕd

��

Cd−1(X)

ϕd−1

��
Cd+1(X′)

∂X
′

d+1 //// Cd(X′)
∂X

′
d //// Cd−1(X′) 14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

a 6= σ
∂Xd+1 //

ϕd+1

��

(∂Xa− [a : τ ]τ) + [a : τ ]τ
∂Xd //

ϕd

��

Cd−1(X)

ϕd−1

��
Cd+1(X)

∂X
′

d+1 // // (∂Xa− [a : τ ]τ) + [a : τ ](τ − ∂Xσ)
∂X

′
d //// Cd−1(X′)14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

a 6= σ
∂Xd+1 //

ϕd+1

��

(∂Xa− [a : τ ]τ) + [a : τ ]τ
∂Xd //

ϕd

��

Cd−1(X)

ϕd−1

��
Cd+1(X′)

∂X
′

d+1 // //
∑

b ̸=τ [a : b]b+ [a : τ ](τ − ∂Xσ)
∂X

′
d // // Cd−1(X′) 14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

a 6= σ
∂Xd+1 //

ϕd+1

��

(∂Xa− [a : τ ]τ) + [a : τ ]τ
∂Xd //

ϕd

��

Cd−1(X)

ϕd−1

��
Cd+1(X′)

∂X
′

d+1 // //
∑

b ̸=τ [a : b]b+ [a : τ ]
∑

b ̸=τ [σ : b]b
∂X

′
d //// Cd−1(X′)14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

a 6= σ
∂Xd+1 //

ϕd+1

��

(∂Xa− [a : τ ]τ) + [a : τ ]τ
∂Xd //

ϕd

��

Cd−1(X)

ϕd−1

��
Cd+1(X′)

∂X
′

d+1 //// ∂X
′
a

∂X
′

d //// Cd−1(X′) 14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

a 6= σ
∂Xd+1 //

ϕd+1

��

(∂Xa− [a : τ ]τ) + [a : τ ]τ
∂Xd //

ϕd

��

Cd−1(X)

ϕd−1

��
a

∂X
′

d+1 //// ∂X
′
a

∂X
′

d //// Cd−1(X′) 14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

Cd+1(X)
∂Xd+1 //

ϕd+1

��

τ
∂Xd //

ϕd

��

Cd−1(X)

ϕd−1

��
Cd+1(X′)

∂X
′

d+1 //// Cd(X′)
∂X

′
d //// Cd−1(X′)

14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

Cd+1(X)
∂Xd+1 //

ϕd+1

��

τ
∂Xd //

ϕd

��

∂Xτ

ϕd−1

��
Cd+1(X′)

∂X
′

d+1 //// Cd(X′)
∂X

′
d //// Cd−1(X′)

14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

Cd+1(X)
∂Xd+1 //

ϕd+1
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τ
∂Xd //

ϕd

��

∂Xτ

ϕd−1
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Cd+1(X′)

∂X
′

d+1 //// Cd(X′)
∂X

′
d //// ∂Xτ

14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity:

Cd+1(X)
∂Xd+1 //

ϕd+1

��

τ
∂Xd //

ϕd

��

∂Xτ

ϕd−1
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Cd+1(X′)
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d+1 //// τ − ∂Xσ =
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b ̸=τ [σ : b]b
∂X

′
d //// ∂Xτ
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Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Commutativity: ∂X∂Xσ = 0 = ∂X(
∑

b ̸=τ [σ : b]b) + ∂Xτ

Cd+1(X)
∂Xd+1 //

ϕd+1

��

τ
∂Xd //

ϕd

��

∂Xτ

ϕd−1

��
Cd+1(X′)

∂X
′

d+1 / // /
∑

b ̸=τ [σ : b]b
∂X

′
d // //

∑
b ̸=τ [σ : b]

∑
c[b : c]c = ∂Xτ
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Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ, and ψ(x) = x− [x : τ ]σ
x otherwise.

Chain equivalence: Easy side: φ ◦ ψ = id x 7→ x− [x : τ ]σ 7→ x.
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id
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Cd+2(X′) // Cd+1(X′) // Cd(X′) 14



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. ✓
X a Morse complex, (σ, τ) ∈ X× X such that X′ := X \ {σ, τ} a valid
Morse complex. dimσ = dim τ + 1 = d+ 1

(C(X), ∂X)
ϕ // (C(X′), ∂X

′
)

ψ // (C(X), ∂X) with

ψ ◦ φ(x) =


0 if x = σ,

τ − ∂Xσ if x = τ,

x− [x : τ ]σ otherwise.

D(x) =

{
σ if x = τ,

0 otherwise.

Chain equivalence:

Cd+1(X)
∂d+1 //

ψ◦ϕ

��

id
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Exercise from last time

Compute the homology of:

- a tetrahedron, and of an empty tetrahedron,

→ diagonalise the
matrix.

- a circle,

→ triangulate with 3 edges, diagonalise the matrix.

- an annulus.
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Equivalence of spaces, intuition

∼=
''

∼=∼=

∼=

'

∼=
∼=

18



Topological and metric spaces

Definition (Topological space “= Set + Continuity”)

A topological space is a set X, called the points, together with a
collection of subsets O of X, called the open sets, satisfying:

(i) X and the empty set ∅ are open,
(ii) every union of open sets is open,

(iii) every intersection of finitely many open sets is open.

Definition (Subspace topology)

Let A ⊆ X be a subspace of the topological space (X,OX). The
subspace topology induced by (X,O) on A is the family of open sets
OA :

OA := {τ ∩ A : τ ∈ OX}.
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Topological and metric spaces

Definition (Metric space)

A metric space is a set of points X together with a distance function
d : X× X→ R satisfying, for every x, y, z ∈ X,
(i) d(x, y) = 0 iff x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, z) ≤ d(x, y) + d(y, z).

Theorem (Metric⇒ topological)

Every metric space admits a natural topology, where the open sets are
unions of open metric balls.

E3
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Topological equivalence(s)

Let (X,O) and (Y,O′) be two topological spaces.

Definition (Continuous map)

A map f : X→ Y is continuous if f−1(U) ∈ O for any U ∈ O′, ie if
the inverse image of any open subset of Y is open in X.

Definition (Homeomorphism “strong equivalence of top.
spaces”)

A map f : X→ Y is a homeomorphism if f is:

(i) continuous,

(ii) bijective,

(iii) with continuous inverse f−1.

We say that X and Y are homeomorphic and write X ∼= Y.
→ equivalence relation for topological spaces.

NB: continuous inverse is necessary, as [0; 1) and S1 admits a map
f : [0; 1) 3 t 7→ e2πit ∈ S1 satisfying (i) and (ii).
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Topological equivalence(s)

Let (X,O) and (Y,O′) be two topological spaces.

Definition (Homeomorphism “strong equivalence of top.
spaces”)
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Topological equivalence(s)

Definition (Homotopy “a weaker form of equality of functions”)

A homotopy between two maps f1, f2 : X→ Y is a continuous map
H : X× [0; 1]→ Y such that

(i) H(·, 0) : X→ Y is equal to f1,

(ii) H(·, 1) : X→ Y is equal to f2.

We write f ' g and call f and g homotopic.
→ equivalence relation of continuous functions.

This is equality of functions up to continuous deformation.Definition (Homotopy equivalence “weaker equiv. of top.
spaces”)

Two topological spaces X and Y are homotopy equivalent if there are
continuous maps f : X→ Y and g : Y→ X such that g ◦ f ' idX and
f ◦ g ' idY. We write X ' Y. (equiv. rel.)

→ f and g are inverse of each other up to continuous deformation.
continuous ✓ bijective NO
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Deformation retraction

Definition (Homotopy “a weaker form of equality of functions”)

A homotopy between two maps f1, f2 : X→ Y is a continuous map
H : X× [0; 1]→ Y such that

- f1 = H(·, 0) : X→ Y, and f2 = H(·, 1) : X→ Y.

Definition (Deformation retraction, special case of hom. equiv.)

Let A ⊆ X be a subspace of X. A deformation retraction of X into A is
family of maps ft : X→ X, t ∈ [0; 1], such that:

- f0 = idX : X→ X,
- f1 : X→ X satisfies im f = A, → retraction map

- the map (x, t)→ ft(x) is continuous, → homotopy

- for any t, ft|A = idA. → fixes subspace A

→ homotopy fixing A, from f0 = idX to a retraction f1.
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Deformation retraction
A deformation retraction from X into A implies homotopy
equivalence X ' A.

Consider:
- the inclusion map: ι : A→ X,
- the map r : X→ A induced by the retraction f1.

We have:
- r ◦ ι = idA,

and ι ◦ r = f1 ' idX via deformation retraction.
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Let A ⊆ X be a subspace of X. A deformation retraction of X into A is
family of maps ft : X→ X, t ∈ [0; 1], such that:

- f0 = idX : X→ X,
- f1 : X→ X satisfies im f = A, → retraction map

- the map (x, t)→ ft(x) is continuous, → homotopy

- for any t, ft|A = idA. → fixes subspace A

→ homotopy fixing A, from f0 = idX to a retraction f1.
23



Deformation retraction
A deformation retraction from X into A implies homotopy
equivalence X ' A. Consider:

- the inclusion map: ι : A→ X,

- the map r : X→ A induced by the retraction f1.
We have:

- r ◦ ι = idA,

and ι ◦ r = f1 ' idX via deformation retraction.

Definition (Deformation retraction, special case of hom. equiv.)

Let A ⊆ X be a subspace of X. A deformation retraction of X into A is
family of maps ft : X→ X, t ∈ [0; 1], such that:

- f0 = idX : X→ X,
- f1 : X→ X satisfies im f = A, → retraction map

- the map (x, t)→ ft(x) is continuous, → homotopy

- for any t, ft|A = idA. → fixes subspace A

→ homotopy fixing A, from f0 = idX to a retraction f1.
23



Deformation retraction
A deformation retraction from X into A implies homotopy
equivalence X ' A. Consider:

- the inclusion map: ι : A→ X,
- the map r : X→ A induced by the retraction f1.

We have:
- r ◦ ι = idA,

and ι ◦ r = f1 ' idX via deformation retraction.

Definition (Deformation retraction, special case of hom. equiv.)

Let A ⊆ X be a subspace of X. A deformation retraction of X into A is
family of maps ft : X→ X, t ∈ [0; 1], such that:

- f0 = idX : X→ X,
- f1 : X→ X satisfies im f = A, → retraction map

- the map (x, t)→ ft(x) is continuous, → homotopy

- for any t, ft|A = idA. → fixes subspace A

→ homotopy fixing A, from f0 = idX to a retraction f1.
23



Deformation retraction
A deformation retraction from X into A implies homotopy
equivalence X ' A. Consider:

- the inclusion map: ι : A→ X,
- the map r : X→ A induced by the retraction f1.

We have:
- r ◦ ι = idA,

and ι ◦ r = f1 ' idX via deformation retraction.

Definition (Deformation retraction, special case of hom. equiv.)

Let A ⊆ X be a subspace of X. A deformation retraction of X into A is
family of maps ft : X→ X, t ∈ [0; 1], such that:

- f0 = idX : X→ X,
- f1 : X→ X satisfies im f = A, → retraction map

- the map (x, t)→ ft(x) is continuous, → homotopy

- for any t, ft|A = idA. → fixes subspace A

→ homotopy fixing A, from f0 = idX to a retraction f1.
23



Deformation retraction
A deformation retraction from X into A implies homotopy
equivalence X ' A. Consider:

- the inclusion map: ι : A→ X,
- the map r : X→ A induced by the retraction f1.

We have:
- r ◦ ι = idA, and ι ◦ r = f1 ' idX via deformation retraction.

Definition (Deformation retraction, special case of hom. equiv.)

Let A ⊆ X be a subspace of X. A deformation retraction of X into A is
family of maps ft : X→ X, t ∈ [0; 1], such that:

- f0 = idX : X→ X,
- f1 : X→ X satisfies im f = A, → retraction map

- the map (x, t)→ ft(x) is continuous, → homotopy

- for any t, ft|A = idA. → fixes subspace A

→ homotopy fixing A, from f0 = idX to a retraction f1.
23



Deformation retraction

Definition (Deformation retraction, special case of hom. equiv.)

Let A ⊆ X be a subspace of X. A deformation retraction of X into A is
family of maps ft : X→ X, t ∈ [0; 1], such that:

- f0 = idX and f1 satisfies im f = A,
- the map (x, t)→ ft(x) is continuous, and ft|A = idA ∀t.

24



Deformation retraction

Definition (Deformation retraction, special case of hom. equiv.)

Let A ⊆ X be a subspace of X. A deformation retraction of X into A is
family of maps ft : X→ X, t ∈ [0; 1], such that:

- f0 = idX and f1 satisfies im f = A,
- the map (x, t)→ ft(x) is continuous, and ft|A = idA ∀t.
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Simplicial complexes, abstract and geometric
Abstract: Set of vertices:

V = {1, . . . , |V|}

A simplex σ is a collection of
vertices:

σ ⊆ V

An abstract simplicial complex K
is a family of simplices:
K = {σi}i∈I s.t.:

τ ⊆ σ ∈ K⇒ τ ∈ K

Dimension of a simplex =
#vertices −1

Geometric: Points in Ed:

1

2 3

5

6
7

8

4

{1}, {2}, {3}, {4}, . . .
{1, 2}, {1, 3}, {1, 4}, . . .
{1, 2, 3}, {1, 2, 4}, . . .
{1, 2, 3, 4}, . . .

1

2 3

5

6
7

8

4

. . .

Convex hull of points:

1

2

4

{1, 2, 4}

{1}, {2}, {3}, {4}, . . .
{1, 2}, {1, 3}, {1, 4}, . . .
{1, 2, 3}, {1, 2, 4}, . . .
{1, 2, 3, 4}, . . .{1, 2, 4}

{1}, {2}, {3}, {4}, . . .
{1, 2}, {1, 3}, {1, 4}, . . .
{1, 2, 3}, {1, 2, 4}, . . .
{1, 2, 3, 4}, . . .
. . .

dim: 0 1 2 3
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Geometric simplicial complex

Let P = {p1, . . . , pn} be a finite set of points in the Euclidean space
RD.

Definition

Geometric simplex A geometric simplex of dimension d is the convex
hull of d+ 1 affinely independent points in Euclidean space.

Definition

Realization of an abstract simplex An abstract d-dimensional simplex
σ admits a canonical realization as the convex hull of the unit points
ei = (0, . . . , 0, 1, 0 . . . , 0)T of Rd+1. We denote the image of the
embedding σ → Rd+1 by |σ|.
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Simplicial complexes as topological spaces

Every abstract simplicial complex gives rise to a canonical topological
space (up to homeomorphism):

Definition

Geometric realization Let K be an abstract simplicial complex on n
vertices. This is a sub-complex of the n-simplex ∆n. The geometric
realization of K, denoted by |K|, is the image of the embedding
∆n → Rn restricted to K ⊆ ∆n.

→ |K| is a topological space.
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Singular homology
- ∆d = {x0, . . . , xd} ⊆ {1, . . . , n} for an abstract d simplex.
- |∆d| ⊂ Rd+1 for the image of its canonical embedding as
convex hull of the orthonormal basis of Rd+1.

Definition (Singular simplex)

A singular d-simplex σ in a topological space X is a continuous
function σ : |∆d| → X from the canonical geometric simplex |∆| in
Rd+1 to X.
Definition (Singular chain group)

The singular chain group of X is the vector space of finite formal sums
of singular simplices in X, with F coefficients (e.g., Z/2Z).

→ very much infinite dimensional, often uncountable basis.

Definition (Singular boundary)

A facet of a singular simplex σ : |∆d| → X is the restriction of σ (as a
function) to a facet of ∆d:

τ := σ :
∣∣∆d|∆d−1

∣∣→ X.
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Singular homology

Definition (Singular homology)

Define the singular boundary operator on a singular simplex to be the
formal sum of its singular facets:

- linear map from singular chains to singular chains, (extended
linearly)

- ∂ ◦ ∂ = 0,

- define cycles, boundaries, and singular homology groups as
usual.

We have a homology theory for topological spaces !

Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically
equivalent, then their singular homology groups are isomorphic.
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Singular homology

Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically
equivalent, then their singular homology groups are isomorphic.

Proof.

Sketch: A continuous map f : X→ Y induces a map of singular
chains f# : C(X)→ C(Y) by composition with the maps of singular
simplices.

It commutes with the singular boundary, i.e., ∂Y ◦ f# = f# ◦ ∂X,
hence it descends to singular homology: f∗ : Hn(X)→ Hn(Y).

Indeed, ∂Y ◦ f# = f# ◦ ∂X means that:

- cycles remains cycles, boundaries remain boundaries, hence
homology classes are sent to homology classes coherently.

Finally, show that if two maps f, g are connected by a homotopy, the
induced maps f∗, g∗ are equal at the level of homology.
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Simplicial and singular homology

Theorem

Let K be a simplicial complex. The simplicial homology of K is
isomorphic to the singular homology of its realization |K|.

Corollary

If a topological space X is homotopy equivalent to a simplicial
complex K, then singular homology and simplicial homology are
isomorphic.

Connection between the combinatorial and continuous worlds!
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