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make a triangle critical
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allows elementary collapses




Morse matching

Fix the coefficient field Z/27Z.

Definition

A simplicial complex K induces a face partial ordering < between
simplices. It is the transitive closure of the relation <

7 <0 iff 7TCoand dim7 =dimo — 1.

The Hasse diagram of a complex is the directed graph (V, E) with:
V=K,
- (0 —=71)€Eiffr <o.

acd

\ /\\



Morse matching

Definition
A partial matching of K is a partition K = XU T LI S with a bijective
pairingw : T — S, where:

T < w(T), forall T €T.

— it is a graph matching in the Hasse diagram of K.




Morse matching

Definition
Let K be a simplicial complex, H = (K, E) its Hasse diagram, and
(XU TUS,w) a partial matching. Define the directed graph H as the
graph (K, £'):
- with same underlying undirected graph as H,
- where every edge (w(7) — 7) € Eis reversed in £, i.e.,
(= w(r)) eF.

If H is acyclic, we call the partial matching a Morse matching.




Morse matching

Definition
Let K be a simplicial complex, H = (K, E) its Hasse diagram, and
(XU TUS,w) a partial matching. Define the directed graph H as the
graph (K, £'):
- with same underlying undirected graph as H,
- where every edge (w(7) — 7) € Eis reversed in £, i.e.,
(= w(r)) eF.

If H is acyclic, we call the partial matching a Morse matching.

NB: a cycle can only alternate between two dim. d and d + 1 (w bij.).



Morse matching

Definition
Let K be a simplicial complex, H = (K, E) its Hasse diagram, and
(XU TUS,w) a Morse matching.

- Simplices in X are called critical.

- A Morse matching is optimal if it has the minimal number of
critical simplices, over all possible Morse matchings of K.




Morse matching

Definition
Let K be a simplicial complex, H = (K, E) its Hasse diagram, and
(XU TUS,w) a Morse matching.

- Simplices in X are called critical.

- A Morse matching is optimal if it has the minimal number of
critical simplices, over all possible Morse matchings of K.

It is NP-hard to decide whether a simplicial complex has a Morse
matching with less than k critical simplices.




Compute a (good) Morse matching: Heuristic

X :
acd

/\\ T < S

bc

- A set of available simplices; A<+ K, X,T,S<+0

- While A = ():
> if there is a free pair (1,0) in A, match 7 with o:
> A A\{r, 0}, perform elementary collapse

> T« TU{r},
> S SU{o} =wlr)=o0o
> else make any available maximal simplex ¢ € A critical:

> set X <= XU {(},
> A A\{C} remove maximal simplex
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Lemma (Correction)

- A always contains a simplicial complex: only perform elementary
collapses and maximal simplex removals.

- T x S always contains a matching: after being matched, a
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- A set of available simplices; A<+ K, X,T,S<+0
- While A # ():

> if there is a free pair (7,0) in A, match 7 with o:
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Compute a (good) Morse matching: Heuristic

Lemma (Correction)

- A always contains a simplicial complex: only perform elementary
collapses and maximal simplex removals.

- T x S always contains a matching: after being matched, a
simplex is removed from the available simplices.

- The matching is always acyclic: ...

Suppose that, at some point, reverting an arrow creates a cycle. Pick
the first such arrow (7, 0):

matched earlier

&m/

¥contradiction:

must be free when matched
but o is a coface.

new match



More interesting example

abed

d /\
abc abd acd bed
a ‘ c ab ac ad be bd cd
b a b c d

What is the number of critical simplices of an optimal Morse
matching?
A0

O N w

1
2
3



More interesting example

abed

What is the number of critical simplices of an optimal Morse
matching?
A O

B 1
C 2
D 3



Fundamental Theorem of Discrete Morse Theory

Theorem

Let K be a simplicial complex, and (XU TU S, w) a Morse matching.
There exists a chain complex (C(X), 8") with cells in X, called a Morse
complex, whose homology groups are isomorphic to the ones of K.

More precisely,
- Cy4(X) generated by the d-dimensional simplices of X,
- 0%: Cy(X) = Cy_1(X).
Application: reduce a complex drastically when computing its
homology.

make a triangle critical

allows elementary collapses




Boundary map 9%

Definition

In a complex K with Morse matching (XU TU S,w), let o, 7 € X be
critical simplices, with dimo = dim 7 + 1.

A gradient path from o to 7 is a directed path from o to 7:

o—s1—=w(sy) >s2— ... s —w(s) =T

in #H, alternating between simplices of dimension d and d — 1:

dim.
d+1 o w(s1) w(s2) o /w(s,.)



Boundary map 9%

Definition

For o,7 € X, with dim o = dim 7 + 1, define
[0 : 7] := # distinct (0 — 7)-gradient path € Z/27Z.
Then the boundary map 9" : C(X) — C(X) is defined such that:
(o) = Z [o:7]-T

TEX
dimo=dim7 +1

dim
d+1 o w(s1) w(sa) w(sy)
ANV AVANERVAN
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Example: Morse complex

acd

/o

ab be

dbe)=1-b+1-c¢
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Example: Morse complex

acd OX(be)=(1+1)-c=0

’/ R\ = H,=H, = Z/2Z

ad

H,=0

10



Example: Morse complex

We need to prove that
- (C(X),d") is a chain complex, i.e., 9" 0 0¥ =0,
- (C(X),0") and (C(K), ) have same homology.

10



The Morse complex is a chain complex

Inductive Proof of: &yody ,0=0 Vd, andVo € X
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Inductive Proof of: dyody 0=0 Vd, andVo € X

For X=K, and T = S = (), &* = 9 the usual boundary map, and
000 =0. v

Now, let X LI T U S be a Morse matching with 9 0 ¥ = 0, and denote
by Xy C X the d-dimensional simplices in X.
For any a € X441, we have:
odi(a)=a4(> a:blb)y=> " Y [a c=0. (1)
beXy beXy ceXg—1

Consider o, 7 € X being such that pairing o and 7 would lead to a
valid Morse matching (X\ {o,7}) L (TU{7}) U (SU{o}).

In particular, for any a € Xg41, and ¢ € X4_1, using (1):

dla:blb:c+[a:7][r:c]=0 Va€Xgy,c€ X,
b#T



1c]=0
s
tcl+a:

b:

a b

2

Xg_1.
€ Xd+1,C €
Va

)



dla:blb:cl+]a:7]r:c=0
b#T

Va € Xd41,€C € Xg—1.  (2)

Add (o, 7) to the Morse matching, denote by (X', &) the new Morse

complex, X' := X\ {o,7}. Forany a € X"

counting [x : y] in (X, 0")
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with:
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/ e e
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¢(X) = T—00 ifx= T, and D(X) _ o 1nx= 7?7
; 0 otherwise.
X otherwise.
o P
Cd“ = . Cy-1




Proof of invariance by elem. collapse, with homotopy

K a simplicial complex, (o, 7) a free pair:

with:

P(x)

v

Cors ———[7 1]

CoK) — 2~ Co(K - {o,7}) — ¥~ Cu(K)

= x, i.e. theinclusion C¢(K — {0,7}) — C4(K)

0 if x = o, iy —
= T—00 ifx=7, and D(x):{a =T

) 0 otherwise.
X otherwise.
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Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo = dim7+1=d+1

(C(X),0) ——= (C(X),8") — = (C(X),8) with
0 if x =0,
o(x) = 7—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(C(X),0%) —"—= (C(X),0") — = (C(X),8") with
0 if x = o,
o(x) = T—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.
Commutativity:
91 oy

Cot1(X) ———=Cy(X) ——— Cy-1(X)

Ydr1 Y Ya-1

! 82’(;'1 ! Zl !
Cot1(X) ——— Cy(X') ———— Cy_1(X)



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(C(X),0%) —"—= (C(X),0") — = (C(X),8") with
0 if x = o,
o(x) = T—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.
Commutativity:
01 oy

Cot1(X) ———= Cy(X) ——— Cy-1(X)

Ydy1 Ya Ya-1

G o
d+1 Cd(X/) —d>Cd_1(X/)




Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo = dim7+1=d+1

(C(X), ) —— (C(x),0") ——= (C(X),8)  with
0 if x =0,
o(x) = T— 9% ifx=r, and Y(x) =x—[x:7]o
X otherwise.
Commutativity:
% oy - g
X —[x:7lo ————= 0 — [x: 7]0'0c ———— Cy_1(X)
Yay1 P Ya—1
o, | ) o ,
Co(X) —————Cy-1(X)



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo = dim7+1=d+1

(C(X),0%) —"—= (C(X),0") — = (C(X),8") with
0 if x = o,
o(x) = T—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.
Commutativity:
AT 9

x — [x: 7]0%0

Yd+1 P

dobrr X bbb+ X T][o blb+ 2[x: T]T




Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(C(X),0%) —"—= (C(X),0") — = (C(X),8") with
0 if x = o,
o(x) = T—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.
Commutativity:
01 oy

Cot1(X) ———=Cy(X) ——— Cy-1(X)

Pd+1 $d Pd—1

! 821(;'1 ! Zl !
Cos1(X) ——— Cy(X') ——— Cy_1(X)



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(CX),8) —2— (C(x), o) — L~ (C(X),8)  with
0 if x = o,
o(x) = T—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.
Commutativity:
1 oy
Ca(X) ———Cg-1(X)
Pdr1 @d bd—1



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(CX),8) —2— (C(x), o) — L~ (C(X),8)  with
0 if x = o,
o(x) = T—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.
Commutativity:
o% oX
@L (()X(T —T)+T d Cd_l(X)
Pd+1 bd bd—1



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo = dim7+1=d+1

(C(X), ) —— (C(x),0") ——= (C(X),8)  with
0 if x =0,
o(x) = T— 9% ifx=r, and Y(x) =x—[x:7]o
X otherwise.
Commutativity:
i1 0y
[o] (o —71)+71 Cy_1(X)
Pd+1 $d Pd—1
A1 3y
Cop(X) ——— (0o — 1) +7— 00 =0 —L— Cy_1(X)



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(C(X),0) ——= (C(X),8") — = (C(X),8) with
0 if x =0,
o(x) = 7—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.

Commutativity:
6§+1 X 81)1( /!
[o] —— (0" —7)+ 7 ——Cy_1(X)

Pd+1 @d Pd—1

0

0 < Cy_1(X)



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(C(X),0) ——= (C(X),8") — = (C(X),8) with
0 if x =0,
o(x) = 7—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.

Commutativity:
oy %
+1 d
7o G0 — e
Pdt1 bd Gd—1

Cat1(X)



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo = dim7+1=d+1

(600, 0%) —— (C(X), &) —— (C(), ") with
0 if x = o,
o(x) = T— 9% ifx=r, and Y(x) =x—[x:7]o
X otherwise.
Commutativity:
a[);l(-!—l X aé(
(0'a—la:7|1)+a: 7)1 ——— Cy_1(X)
Pd-+1 bd Pd—1
Y oy
Ca1(X) = Cq(X') - Cy-1(X)



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo = dim7+1=d+1

(C(X),0%) —"—= (C(X),0") — = (C(X),8") with
0 if x = o,
o(x) = T—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.
Commutativity:
AT oy
—> (a—la:7|]7)+]a:7]T ————Cy_1(X)
d+1 ¢d $d—1

i 9%
Cop1(X) —————=(0*a—a:7]7)+]a:7|(r — 0'0) —— Cd,l(Xlﬁm



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(CX),8) —2— (C(x), o) — L~ (C(X),8)  with

0 if x =0,
o(x) = T— 9% ifx=r, and Y(x) =x—[x:7]o
X otherwise.
Commutativity:
8§+1 a()j(
—> (a—la:7)T)+a: 7] ————Cy_1(X)
Bd+1 Pd Bd—1
! 31(;‘1 X 83(,
Cot1(X) > opzrlablb+a:T)(r = 0%0) ——— Cy_1(X) M




Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(CX),8) —2— (C(x), o) — L~ (C(X),8)  with
0 if x = o,
o(x) = T—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.
Commutativity:
AT oy
a7 o] — (0% lairn) + a7 —— = Cua(Y)
Pd+1 o¥ Pd—1
A oy

Cos1(X) ——= 2y lasblb+a: 7] >, [0 blb ——— Cdfl(fﬁ



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(C(X),0) ——= (C(X),8") — = (C(X),8) with
0 if x =0,
o(x) = 7—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.

Commutativity:

O (a—la:7T)+a:7)T L Cy_1(X)

Pdt1 ¢d bd—1

Cor1(X)



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(C(X),0) ——= (C(X),8") — = (C(X),8) with
0 if x =0,
o(x) = 7—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.

Commutativity:

o (Fa—[a:7|]r)+[a: 7|7 L Cy_1(X)

Pd+1

a i OX/a Cd—l(X/) m



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(CX),8) —2— (C(x), o) — L~ (C(X),8)  with
0 if x = o,
o(x) = T—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.
Commutativity:
AT 9
Ca+1(X) Ca-1(X)
Dd41 1oy bd—1

oY oY
Cas1(X) — > Cy(X') ——> Cy_1(X)



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(C(X),0%) —"—= (C(X),0") — = (C(X),8") with
0 if x = o,
o(x) = T—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.
Commutativity:
oX X ,
Cyir(X) — d r
a1 Pd $d—1
¥ oy
Cay1(X') —— Cy(X') —— Cy_1(X)



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/

X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(CX),8) —2— (C(x), o) — L~ (C(X),8)  with

0 if x = o,
o(x) = T—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.
Commutativity:
X o
Cyy1(X) — T -9
$d+1 ¢d Pd—1

X/ 6)(’
Cus (X) —2 o gy) — 2 s



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo = dim7+1=d+1

(C(X),0%) —"—= (C(X),0") — = (C(X),8") with

0 if x = o,
o(x) = T—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.
Commutativity:
% X
Cas1(X) - o't
bd1 by $d—1

X/ o

Car1(X) — 2 9= > btrlo 1 bb —2 =9



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo = dim7+1=d+1

(C(X),0) —— (C(X),0") —"— (C(x),8")  with
0 if x =0,
o(x) = T— 9% ifx=r, and Y(x) =x—[x:7]o
X otherwise.
Commutativity: 0o =0= 5’)X<Z/)7£T[J : blb) + 0¥
O 0y
Cyr1(X) ot
d+1 o $d—1
X/ X/

d+1

Ca1(X) — Zb;ﬁ—r[a : blb —— 2137,57.[0 :b] > [b:clc=0d"r M



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

(C(X),0) ——= (C(X),8") — = (C(X),8) with
0 if x =0,
o(x) = 7—0% ifx=r, and Y(x)=x—[x:7]o
X otherwise.

Chain equivalence: Easy side: potp =id x— x—[x:7]o — x.

0,
Cap1 (X) — s CyX) — s €y (X)

7

D1 apog id Dy oo id Dg-1

/

Cd+2 (X/) - Cd+1(X/) - Cd(X/)



Proof of invariance by adding a Morse pair

Inductively: Base case trivial. v/
X a Morse complex, (o, 7) € X x X such that X' := X'\ {0, 7} a valid
Morse complex. dimo =dim7+1=d+1

¥

(C(x),8) —2~ (C(x), ) (C(X),8)  with

o ifx=m,
0 otherwise.

0 if x = o,
Yo p(x) = r—9o ifx=r, D(x):{
X —[x:7]o otherwise.
Chain equivalence:

P 9
Co1(X) — = Cy(X) ——— Cy_1(X)

e

Dyy1 tpogp id Dy pog id Dy_1

Cyr2(X) ———— Cyy1(X) ———— Cy(X)



Exercise from last time

Compute the homology of:

- atetrahedron, and of an empty tetrahedron,

- acircle,

- an annulus.
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Exercise from last time

Compute the homology of:
- atetrahedron, and of an empty tetrahedron, — diagonalise the
matrix.
- acircle,

- an annulus.

16



Exercise from last time

Compute the homology of:

- atetrahedron, and of an empty tetrahedron, — diagonalise the
matrix.

- acircle, — triangulate with 3 edges, diagonalise the matrix.

- an annulus.

16



Topology



Equivalence of spaces, intuition
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Topological and metric spaces

Definition (Topological space “= Set + Continuity”)
A topological space is a set X, called the points, together with a
collection of subsets O of X, called the open sets, satisfying:

(i) X and the empty set () are open,

(ii) every union of open sets is open,

(iii) every intersection of finitely many open sets is open.



Topological and metric spaces

Definition (Topological space “= Set + Continuity”)
A topological space is a set X, called the points, together with a
collection of subsets O of X, called the open sets, satisfying:

(i) X and the empty set () are open,

(ii) every union of open sets is open,

(iii) every intersection of finitely many open sets is open.

Definition (Subspace topology)

Let A C X be a subspace of the topological space (X, Ox). The
subspace topology induced by (X, O) on A is the family of open sets
Oy :

Op:={rNA:7e 0k}



Topological and metric spaces

Definition (Metric space)
A metric space is a set of points X together with a distance function
d: X x X — R satisfying, for every x,y,z € X,
(i) d(x,y) =0iffx =y,
(i) d(x,y) = d(y, x),
(iii) d(x,z) < d(x,y) +d(y, z).



Topological and metric spaces

Definition (Metric space)

A metric space is a set of points X together with a distance function
d: X x X — R satisfying, for every x,y,z € X,

(i) d(x,y) =0iffx =y,

(i) d(x,y) = d(y, x),

(iii) d(x,z) < d(x,y) +d(y, z).

Theorem (Metric = topological)

Every metric space admits a natural topology, where the open sets are
unions of open metric balls.



Topological and metric spaces

Theorem (Metric = topological)

Every metric space admits a natural topology, where the open sets are

unions of open metric balls.
[ ]
E3



Topological equivalence(s)
Let (X, O) and (Y, @) be two topological spaces.
Definition (Continuous map)

Amap f: X — Y is continuous if f1(U) € O forany U € O, ie if
the inverse image of any open subset of Y is open in X.

20



Topological equivalence(s)
Let (X, O) and (Y, @) be two topological spaces.
Definition (Continuous map)

Amap f: X — Y is continuous if f1(U) € O forany U € O, ie if
the inverse image of any open subset of Y is open in X.

Definition (Homeomorphism “strong equivalence of top.
spaces”)
Amap f: X — Y is a homeomorphism if f is:
(i) continuous,
(i) bijective,
(iii) with continuous inverse 1.

We say that X and Y are homeomorphic and write X 2 Y.
— equivalence relation for topological spaces.

20



Topological equivalence(s)
Let (X, O) and (Y, @) be two topological spaces.
Definition (Continuous map)

Amap f: X = Y is continuous if F-1(U) € O forany U € O, ie i
the inverse image of any open subset of Y is open in X.

Definition (Homeomorphism “strong equivalence of top.
spaces”)
Amap f: X — Y is a homeomorphism if f is:
(i) continuous,
(i) bijective,
(iii) with continuous inverse 1.

We say that X and Y are homeomorphic and write X 2 Y.
— equivalence relation for topological spaces.

NB: continuous inverse is necessary, as [0; 1) and S admits a map
f:[0;1) 3t — e*™ e S' satisfying (i) and (ii). 0



Topological equivalence(s)
Let (X, O) and (Y, @) be two topological spaces.
Definition (Homeomorphism “strong equivalence of top.
spaces”)
Amap f: X — Y is a homeomorphism if f is continuous, bijective,

with continuous inverse f~1.
We say that X and Y are homeomorphic and write X 2 Y.

Il
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Topological equivalence(s)

Definition (Homotopy “a weaker form of equality of functions”)
A homotopy between two maps f,fz : X = Y is a continuous map
H : X x [0;1] — Y such that

(i) H(-,0) : X — Yis equal to f1,

(i) H(-,1) : X — Y is equal to f5.

We write f ~ g and call f and g homotopic.
— equivalence relation of continuous functions.



Topological equivalence(s)

Definition (Homotopy “a weaker form of equality of functions”)
A homotopy between two maps f,fz : X = Y is a continuous map
H : X x [0;1] — Y such that

(i) H(-,0) : X — Yis equal to f1,

(i) H(-,1) : X — Y is equal to f5.

We write f ~ g and call f and g homotopic.
— equivalence relation of continuous functions.

This is equality of functions up to continuous deformation.



Topological equivalence(s)

Definition (Homotopy “a weaker form of equality of functions”)
A homotopy between two maps f,fz : X = Y is a continuous map
H : X x [0;1] — Y such that

(i) H(-,0) : X — Y is equal to f1,

(i) H(-,1) : X — Y is equal to f5.
We write f ~ g and call fand g homotopic.

— equivalence relation of continuous functions.

Definition (Homotopy equivalence “weaker equiv. of top.
spaces”)

Two topological spaces X and Y are homotopy equivalent if there are
continuous maps f : X — Y and g : Y — X such that g o f ~ idx and
fo g~ idy. We write X ~ Y. (equiv. rel.)



Topological equivalence(s)

Definition (Homotopy “a weaker form of equality of functions”)
A homotopy between two maps f,fz : X = Y is a continuous map
H : X x [0;1] — Y such that

(i) H(-,0) : X — Y is equal to f1,

(i) H(-,1) : X — Y is equal to f5.
We write f ~ g and call f and g homotopic.

— equivalence relation of continuous functions.

Definition (Homotopy equivalence “weaker equiv. of top.
spaces”)

Two topological spaces X and Y are homotopy equivalent if there are
continuous maps f : X — Y and g : Y — X such that g o f ~ idx and
fo g~ idy. We write X ~ Y. (equiv. rel.)

— fand g are inverse of each other up to continuous deformation.



Topological equivalence(s)

Definition (Homotopy “a weaker form of equality of functions”)
A homotopy between two maps f,fz : X = Y is a continuous map
H : X x [0;1] — Y such that

(i) H(-,0) : X — Y is equal to f1,

(i) H(-,1) : X — Y is equal to f5.
We write f ~ g and call f and g homotopic.

— equivalence relation of continuous functions.

Definition (Homotopy equivalence “weaker equiv. of top.
spaces”)

Two topological spaces X and Y are homotopy equivalent if there are
continuous maps f : X — Y and g : Y — X such that g o f ~ idx and
fo g~ idy. We write X ~ Y. (equiv. rel.)

— fand g are inverse of each other up to continuous deformation.

continuous v bijective NO



Deformation retraction

Definition (Homotopy “a weaker form of equality of functions”)

A homotopy between two maps f,fz : X = Y is a continuous map
H : X x [0;1] = Y such that

- =H(-0):X > Y, andf, = H(-,1) : X = Y.



Deformation retraction

Definition (Homotopy “a weaker form of equality of functions”)

A homotopy between two maps f,fz : X = Y is a continuous map
H : X x [0; 1] — Y such that

- =H(-0):X > Y, andf, = H(-,1) : X = Y.

Definition (Deformation retraction, special case of hom. equiv.)

Let A C X be a subspace of X. A deformation retraction of X into A is
family of maps f; : X — X, t € [0; 1], such that:



Deformation retraction

Definition (Homotopy “a weaker form of equality of functions”)

A homotopy between two maps f,fz : X = Y is a continuous map
H : X x [0; 1] — Y such that

- =H(-0):X > Y, andf, = H(-,1) : X = Y.

Definition (Deformation retraction, special case of hom. equiv.)

Let A C X be a subspace of X. A deformation retraction of X into A is
family of maps f; : X — X, t € [0; 1], such that:
- foZidxiX%X,



Deformation retraction

Definition (Homotopy “a weaker form of equality of functions”)
A homotopy between two maps f,fz : X = Y is a continuous map
H : X x [0; 1] — Y such that

-fi=H(0):X—=Y, andfo =H(-,1) : X > Y.

Definition (Deformation retraction, special case of hom. equiv.)
Let A C X be a subspace of X. A deformation retraction of X into A is
family of maps f; : X — X, t € [0; 1], such that:

- foZidxiX%X,

- f1 : X = X satisfies im f = A, — retraction map



Deformation retraction

Definition (Homotopy “a weaker form of equality of functions”)
A homotopy between two maps f,fz : X = Y is a continuous map
H : X x [0; 1] — Y such that

-fi=H(0):X—=Y, andfo =H(-,1) : X > Y.

Definition (Deformation retraction, special case of hom. equiv.)
Let A C X be a subspace of X. A deformation retraction of X into A is
family of maps f; : X — X, t € [0; 1], such that:

- fo=1dx: X=X,

- f1 : X = X satisfies im f = A, —+ retraction map

- the map (x,t) — f(x) is continuous, — homotopy



Deformation retraction

Definition (Homotopy “a weaker form of equality of functions”)

A homotopy between two maps f,fz : X = Y is a continuous map
H : X x [0; 1] — Y such that

- =H(-0):X > Y, andf, = H(-,1) : X = Y.

Definition (Deformation retraction, special case of hom. equiv.)

Let A C X be a subspace of X. A deformation retraction of X into A is
family of maps f; : X — X, t € [0; 1], such that:
- foZidxiX—)X,

- f1 : X = X satisfies im f= A, — retraction map
- the map (x,t) — f(x) is continuous, — homotopy
- forany t, fy|a = ida. — fixes subspace A



Deformation retraction

Definition (Homotopy “a weaker form of equality of functions”)

A homotopy between two maps f,fz : X = Y is a continuous map
H : X x [0; 1] — Y such that

- =H(0):X =Y, andfp =H(-,1) : X > Y.

Definition (Deformation retraction, special case of hom. equiv.)

Let A C X be a subspace of X. A deformation retraction of X into A is
family of maps f; : X — X, t € [0; 1], such that:
- foZidxiX—)X,

- f1 : X = X satisfies im f= A, — retraction map
- the map (x,t) — f(x) is continuous, — homotopy
- forany t, fy|a = ida. — fixes subspace A

— homotopy fixing A, from fy = idx to a retraction f;.



Deformation retraction

A deformation retraction from X into A implies homotopy
equivalence X ~ A.

Definition (Deformation retraction, special case of hom. equiv.)

Let A C X be a subspace of X. A deformation retraction of X into A is
family of maps f; : X — X, t € [0; 1], such that:

- fo=idx:X—)X,

- f1 : X = X satisfies im f = A, — retraction map
- the map (x,t) — f(x) is continuous, — homotopy
- forany t, f|a = ida. — fixes subspace A

— homotopy fixing A, from fo = idx to a retraction fi.



Deformation retraction

A deformation retraction from X into A implies homotopy
equivalence X ~ A. Consider:
- the inclusion map: ¢ : A =+ X,

Definition (Deformation retraction, special case of hom. equiv.)

Let A C X be a subspace of X. A deformation retraction of X into A is
family of maps f; : X — X, t € [0; 1], such that:

- f():idxtx—)X,

- f1 : X = X satisfies im f = A, — retraction map
- the map (x,t) — f(x) is continuous, — homotopy
- forany t, f|a = ida. — fixes subspace A

— homotopy fixing A, from fo = idx to a retraction fi.



Deformation retraction

A deformation retraction from X into A implies homotopy
equivalence X ~ A. Consider:

- the inclusion map: ¢ : A =+ X,

- the map r : X — A induced by the retraction f;.

Definition (Deformation retraction, special case of hom. equiv.)

Let A C X be a subspace of X. A deformation retraction of X into A is
family of maps f; : X — X, t € [0; 1], such that:

- f():idxtx—)X,

- f1 : X = X satisfies im f = A, — retraction map
- the map (x,t) — f(x) is continuous, — homotopy
- forany t, f|a = ida. — fixes subspace A

— homotopy fixing A, from fo = idx to a retraction fi.



Deformation retraction

A deformation retraction from X into A implies homotopy
equivalence X ~ A. Consider:

- the inclusion map: ¢ : A =+ X,

- the map r : X — A induced by the retraction f;.
We have:

- ror=1id,

Definition (Deformation retraction, special case of hom. equiv.)

Let A C X be a subspace of X. A deformation retraction of X into A is
family of maps f; : X — X, t € [0; 1], such that:

- f():idxtx—)X,

- f1 : X = X satisfies im f = A, — retraction map
- the map (x,t) — f(x) is continuous, — homotopy
- forany t, f|a = ida. — fixes subspace A

— homotopy fixing A, from fo = idx to a retraction fi.



Deformation retraction

A deformation retraction from X into A implies homotopy
equivalence X ~ A. Consider:

- the inclusion map: ¢ : A =+ X,

- the map r : X — A induced by the retraction f;.
We have:

-rov=1dy, and tor=f; ~ idx via deformation retraction.
Definition (Deformation retraction, special case of hom. equiv.)

Let A C X be a subspace of X. A deformation retraction of X into A is
family of maps f; : X — X, t € [0; 1], such that:

- f():idxix—)X,

- f1 : X = X satisfies im f = A, — retraction map
- the map (x,t) — f(x) is continuous, — homotopy
- forany t, f|a = ida. — fixes subspace A

— homotopy fixing A, from fo = idx to a retraction fi.



Deformation retraction

Definition (Deformation retraction, special case of hom. equiv.)
Let A C X be a subspace of X. A deformation retraction of X into A is
family of maps f; : X — X, t € [0; 1], such that:

- fo = idx and f; satisfies im f = A,

- the map (x,t) — f(x) is continuous, and fi|4 = ida Vt.



Deformation retraction

Definition (Deformation retraction, special case of hom. equiv.)

Let A C X be a subspace of X. A deformation retraction of X into A is
family of maps f; : X — X, t € [0; 1], such that:

- fp = idx and f; satisfies im f= A,
- the map (x,t) — fi(x) is continuous, and f|4 = idy Vt.
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Simplicial complexes, abstract and geometric

Abstract: Set of vertices: Geometric: Points in E:
2 3
V=1{1,..., |V} LT
8 * ’7 * 6
A simplex o is a collection of Convex hull of points:
vertices: 2
ocCV : L.
- 1,2,4}
L ] [ ]
[ ]
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Simplicial complexes, abstract and geometric

Abstract: Set of vertices:

V={1,...,|V]}

A simplex o is a collection of
vertices:
ocCV

An abstract simplicial complex K
is a family of simplices:
K= {O’,‘},’e/ s.t.:

TCoeK=71€K
Dimension of a simplex =

F£vertices —1

dim:

0

Geometric: Points in E:

S
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(13,2}, {3}, {4},
{1,2},{1,3},{1,4},...
{1,2,3},{1,2,4},...
{1,2,3,4},...
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Geometric simplicial complex

Let P = {p1,...,pn} be afinite set of points in the Euclidean space
RP.
Definition

Geometric simplex A geometric simplex of dimension d is the convex
hull of d + 1 affinely independent points in Euclidean space.



Geometric simplicial complex

Let P = {p1,...,pn} be afinite set of points in the Euclidean space
RP.
Definition

Geometric simplex A geometric simplex of dimension d is the convex
hull of d + 1 affinely independent points in Euclidean space.

Definition

Realization of an abstract simplex An abstract d-dimensional simplex
o admits a canonical realization as the convex hull of the unit points
ei=(0,...,0,1,0...,0)" of R We denote the image of the
embedding o — R+ by |o]|.

— |o| is a topological space.

26



Simplicial complexes as topological spaces

Every abstract simplicial complex gives rise to a canonical topological
space (up to homeomorphism):



Simplicial complexes as topological spaces

Every abstract simplicial complex gives rise to a canonical topological
space (up to homeomorphism):

Definition
Geometric realization Let K be an abstract simplicial complex on n
vertices. This is a sub-complex of the n-simplex A,,. The geometric
realization of K, denoted by |K]|, is the image of the embedding
A" — R” restricted to K C A”.

— |K] is a topological space.



Singular homology

- Ay ={x0,...,xq} €{1,...,n} for an abstract d simplex.
- |Ay| € RY*L for the image of its canonical embedding as
convex hull of the orthonormal basis of R4+,
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Singular homology

- Ay ={x0,...,xq} €{1,...,n} for an abstract d simplex.
- |Ay| € RY*L for the image of its canonical embedding as
convex hull of the orthonormal basis of R4+,

Definition (Singular simplex)

A singular d-simplex ¢ in a topological space X is a continuous
function o : |Ay| — X from the canonical geometric simplex |A| in
R to X.

28



Singular homology
- Ay ={x0,...,xq} €{1,...,n} for an abstract d simplex.
- |Ay| € RY*L for the image of its canonical embedding as
convex hull of the orthonormal basis of R*!,
Definition (Singular simplex)

A singular d-simplex ¢ in a topological space X is a continuous
function o : |Ay4| — X from the canonical geometric simplex |A| in
RI*! to X.

Definition (Singular chain group)

The singular chain group of X is the vector space of finite formal sums
of singular simplices in X, with F coefficients (e.g., Z/27Z).
— very much infinite dimensional, often uncountable basis.
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Singular homology
- Ay ={x0,...,xq} €{1,...,n} for an abstract d simplex.
- |Ag| € R for the image of its canonical embedding as
convex hull of the orthonormal basis of RY*1,

Definition (Singular simplex)

A singular d-simplex ¢ in a topological space X is a continuous
function o : |Ay| — X from the canonical geometric simplex |A| in
RI*! to X.

Definition (Singular chain group)
The singular chain group of X is the vector space of finite formal sums

of singular simplices in X, with F coefficients (e.g., Z/27Z).
— very much infinite dimensional, often uncountable basis.

Definition (Singular boundary)

A facet of a singular simplex o : |Ay| — X is the restriction of o (as a

function) to a facet of Ay:

Ti=0: ’Ad]A&J%X. -
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Singular homology

Definition (Singular homology)
Define the singular boundary operator on a singular simplex to be the
formal sum of its singular facets:

- linear map from singular chains to singular chains, (extended
linearly)
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linearly)
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Singular homology

Definition (Singular homology)

Define the singular boundary operator on a singular simplex to be the
formal sum of its singular facets:
- linear map from singular chains to singular chains, (extended
linearly)
- 000=0,
- define cycles, boundaries, and singular homology groups as
usual.



Singular homology

Definition (Singular homology)
Define the singular boundary operator on a singular simplex to be the
formal sum of its singular facets:

- linear map from singular chains to singular chains, (extended
linearly)

- 000=0,
- define cycles, boundaries, and singular homology groups as
usual.

We have a homology theory for topological spaces !



Singular homology

Definition (Singular homology)
Define the singular boundary operator on a singular simplex to be the
formal sum of its singular facets:

- linear map from singular chains to singular chains, (extended
linearly)

- 000=0,
- define cycles, boundaries, and singular homology groups as
usual.

We have a homology theory for topological spaces !

Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically
equivalent, then their singular homology groups are isomorphic.
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Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically
equivalent, then their singular homology groups are isomorphic.

Proof.
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Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically
equivalent, then their singular homology groups are isomorphic.

Proof.

Sketch: A continuous map f: X — Y induces a map of singular
chains fy : C(X) — C(Y) by composition with the maps of singular
simplices.



Singular homology

Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically
equivalent, then their singular homology groups are isomorphic.

Proof.

Sketch: A continuous map f: X — Y induces a map of singular
chains fy : C(X) — C(Y) by composition with the maps of singular
simplices.

It commutes with the singular boundary, i.e., ¥ o fu = fy 0 0%,
hence it descends to singular homology: £, : Hy(X) — H,(Y).
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Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically
equivalent, then their singular homology groups are isomorphic.

Proof.

Sketch: A continuous map f: X — Y induces a map of singular
chains fy : C(X) — C(Y) by composition with the maps of singular
simplices.

It commutes with the singular boundary, i.e., ¥ o fu = fy 0 0%,
hence it descends to singular homology: £, : H,(X) — H,(Y).

Indeed, &Y o fu="fuo 9% means that:

- cycles remains cycles, boundaries remain boundaries, hence
homology classes are sent to homology classes coherently.



Singular homology

Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically
equivalent, then their singular homology groups are isomorphic.

Proof.

Sketch: A continuous map f: X — Y induces a map of singular
chains fy : C(X) — C(Y) by composition with the maps of singular
simplices.

It commutes with the singular boundary, i.e., ¥ o fu = fy 0 0%,
hence it descends to singular homology: £, : H,(X) — H,(Y).

Indeed, &Y o fu="fuo 9% means that:

- cycles remains cycles, boundaries remain boundaries, hence
homology classes are sent to homology classes coherently.

Finally, show that if two maps f, g are connected by a homotopy, the
induced maps f,, g« are equal at the level of homology. O



Simplicial and singular homology

Theorem

Let K be a simplicial complex. The simplicial homology of K is
isomorphic to the singular homology of its realization |K]|.
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Theorem

Let K be a simplicial complex. The simplicial homology of K is
isomorphic to the singular homology of its realization |K]|.

Corollary

If a topological space X is homotopy equivalent to a simplicial
complex K, then singular homology and simplicial homology are
isomorphic.



Simplicial and singular homology

Theorem

Let K be a simplicial complex. The simplicial homology of K is
isomorphic to the singular homology of its realization |K]|.
Corollary

If a topological space X is homotopy equivalent to a simplicial
complex K, then singular homology and simplicial homology are
isomorphic.

Connection between the combinatorial and continuous worlds!



