2 - Discrete Morse theory

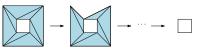
Clément Maria

clement.maria@inria.fr www-sop.inria.fr/members/Clement.Maria/

MPRI 2023–2024 / 2.14.1 Computational Geometry and Topology

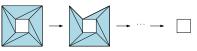
Elementary collapses

Simplification with elementary collapses:

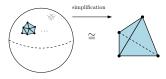


Elementary collapses

Simplification with elementary collapses:

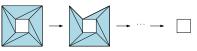


With Discrete Morse theory:

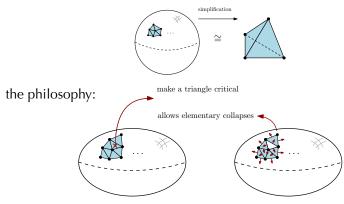


Elementary collapses

Simplification with elementary collapses:



With Discrete Morse theory:



Fix the coefficient field $\mathbb{Z}/2\mathbb{Z}$.

Definition

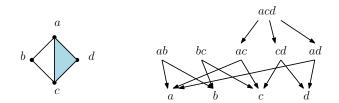
A simplicial complex **K** induces a *face partial ordering* < between simplices. It is the transitive closure of the relation \prec

$$\tau \prec \sigma$$
 iff $\tau \subset \sigma$ and $\dim \tau = \dim \sigma - 1$.

The *Hasse diagram* of a complex is the directed graph (V, E) with:

-
$$V = \mathbf{K}$$
,

$$(\sigma \to \tau) \in E \text{ iff } \tau \prec \sigma.$$

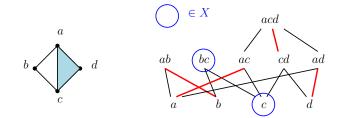


Definition

A *partial matching* of **K** is a partition $\mathbf{K} = X \sqcup T \sqcup S$ with a bijective pairing $\omega : T \to S$, where:

$$\tau \prec \omega(\tau)$$
, for all $\tau \in T$.

 \longrightarrow it is a graph matching in the Hasse diagram of **K**.

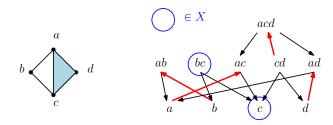


Definition

Let **K** be a simplicial complex, $\mathcal{H} = (\mathbf{K}, E)$ its Hasse diagram, and $(X \sqcup T \sqcup S, \omega)$ a partial matching. Define the directed graph $\overline{\mathcal{H}}$ as the graph (\mathbf{K}, E') :

- with same underlying undirected graph as $\mathcal{H}_{,}$
- where every edge $(\omega(\tau) \to \tau) \in E$ is reversed in E', i.e., $(\tau \to \omega(\tau)) \in E'$.

If $\overline{\mathcal{H}}$ is acyclic, we call the partial matching a Morse matching.

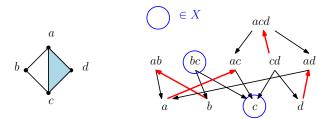


Definition

Let **K** be a simplicial complex, $\mathcal{H} = (\mathbf{K}, E)$ its Hasse diagram, and $(X \sqcup T \sqcup S, \omega)$ a partial matching. Define the directed graph $\overline{\mathcal{H}}$ as the graph (\mathbf{K}, E') :

- with same underlying undirected graph as $\mathcal{H}_{,}$
- where every edge $(\omega(\tau) \to \tau) \in E$ is reversed in E', i.e., $(\tau \to \omega(\tau)) \in E'$.

If $\overline{\mathcal{H}}$ is acyclic, we call the partial matching a Morse matching.

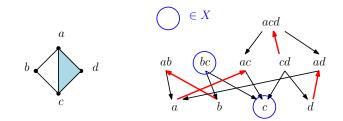


NB: a cycle can only alternate between two dim. *d* and d + 1 (ω bij.).

Definition

Let **K** be a simplicial complex, $\mathcal{H} = (\mathbf{K}, E)$ its Hasse diagram, and $(X \sqcup T \sqcup S, \omega)$ a Morse matching.

- Simplices in *X* are called critical.
- A Morse matching is optimal if it has the minimal number of critical simplices, over all possible Morse matchings of **K**.

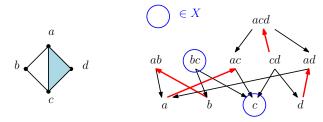


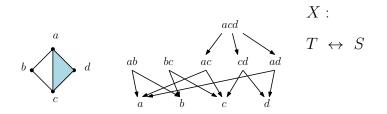
Definition

Let **K** be a simplicial complex, $\mathcal{H} = (\mathbf{K}, E)$ its Hasse diagram, and $(X \sqcup T \sqcup S, \omega)$ a Morse matching.

- Simplices in *X* are called critical.
- A Morse matching is optimal if it has the minimal number of critical simplices, over all possible Morse matchings of **K**.

It is **NP-hard** to decide whether a simplicial complex has a Morse matching with less than *k* critical simplices.

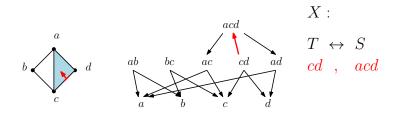




- A set of available simplices; $A \leftarrow \mathbf{K}, X, T, S \leftarrow \emptyset$
- While $A \neq \emptyset$:

• if there is a free pair (τ, σ) in *A*, match τ with σ :

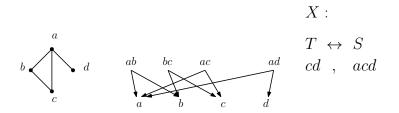
- $\blacktriangleright A \leftarrow A \setminus \{\tau, \sigma\}, \qquad perform elementary collapse$
- $\blacktriangleright T \leftrightarrow T \cup \{\tau\},$
- $\blacktriangleright \hspace{0.1cm} S \leftarrow S \cup \{\sigma\} \hspace{0.1cm} \Rightarrow \omega(\tau) = \sigma$
- else make any <u>available</u> <u>maximal</u> simplex $\zeta \in A$ critical:
 - set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$



- A set of available simplices; $A \leftarrow \mathbf{K}, X, T, S \leftarrow \emptyset$
- While $A \neq \emptyset$:

• if there is a free pair (τ, σ) in *A*, match τ with σ :

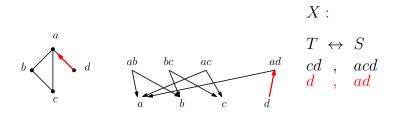
- $\blacktriangleright A \leftarrow A \setminus \{\tau, \sigma\}, \qquad perform elementary collapse$
- $\blacktriangleright T \leftrightarrow T \cup \{\tau\},$
- $\blacktriangleright \hspace{0.1cm} S \leftarrow S \cup \{\sigma\} \hspace{0.1cm} \Rightarrow \omega(\tau) = \sigma$
- else make any available *maximal* simplex $\zeta \in A$ critical:
 - set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$



- A set of available simplices; $A \leftarrow \mathbf{K}, X, T, S \leftarrow \emptyset$
- While $A \neq \emptyset$:

• if there is a free pair (τ, σ) in A, match τ with σ :

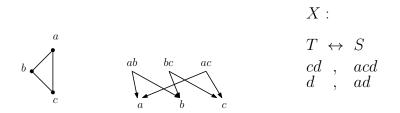
- $\blacktriangleright A \leftarrow A \setminus \{\tau, \sigma\}, \qquad perform elementary collapse$
- $\blacktriangleright T \leftrightarrow T \cup \{\tau\},$
- $\blacktriangleright S \leftrightarrow S \cup \{\sigma\} \quad \Rightarrow \omega(\tau) = \sigma$
- else make any available maximal simplex $\zeta \in A$ critical:
 - set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$



- A set of available simplices; $A \leftarrow \mathbf{K}, X, T, S \leftarrow \emptyset$
- While $A \neq \emptyset$:

• **if** there is a free pair (τ, σ) in *A*, match τ with σ :

- $\blacktriangleright A \leftarrow A \setminus \{\tau, \sigma\}, \qquad perform elementary collapse$
- $\succ T \leftrightarrow T \cup \{\tau\},$
- $\blacktriangleright \hspace{0.1cm} S \leftarrow S \cup \{\sigma\} \hspace{0.1cm} \Rightarrow \omega(\tau) = \sigma$
- else make any available *maximal* simplex $\zeta \in A$ critical:
 - set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$

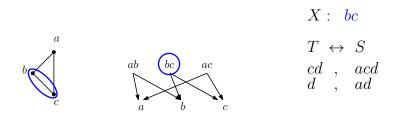


- A set of available simplices; $A \leftarrow \mathbf{K}, X, T, S \leftarrow \emptyset$
- While $A \neq \emptyset$:

if there is a free pair (τ, σ) in A, match τ with σ :

- $\blacktriangleright A \leftrightarrow A \setminus \{\tau, \sigma\},\$ perform elementary collapse
- $\blacktriangleright T \leftrightarrow T \cup \{\tau\},\$

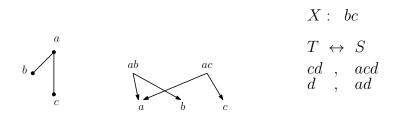
- $\blacktriangleright S \leftrightarrow S \cup \{\sigma\} \Rightarrow \omega(\tau) = \sigma$
- else make any available *maximal* simplex $\zeta \in A$ critical:
 - ▶ set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$



- A set of available simplices; $A \leftarrow \mathbf{K}, X, T, S \leftarrow \emptyset$
- While $A \neq \emptyset$:

• if there is a free pair (τ, σ) in A, match τ with σ :

- $\blacktriangleright A \leftarrow A \setminus \{\tau, \sigma\}, \qquad perform elementary collapse$
- $\blacktriangleright T \leftrightarrow T \cup \{\tau\},$
- $\blacktriangleright S \leftrightarrow S \cup \{\sigma\} \quad \Rightarrow \omega(\tau) = \sigma$
- else make any available *maximal* simplex $\zeta \in A$ critical:
 - set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$

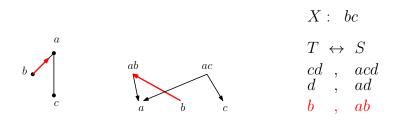


- A set of available simplices; $A \leftarrow \mathbf{K}, X, T, S \leftarrow \emptyset$
- While $A \neq \emptyset$:

if there is a free pair (τ, σ) in A, match τ with σ :

- $\blacktriangleright A \leftrightarrow A \setminus \{\tau, \sigma\},\$ perform elementary collapse
- $\blacktriangleright T \leftrightarrow T \cup \{\tau\},\$
- $\blacktriangleright S \leftrightarrow S \cup \{\sigma\} \Rightarrow \omega(\tau) = \sigma$

- else make any available *maximal* simplex $\zeta \in A$ critical:
 - ▶ set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$

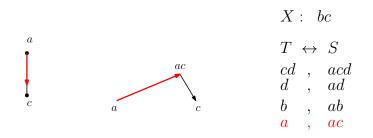


- A set of available simplices; $A \leftarrow \mathbf{K}, X, T, S \leftarrow \emptyset$
- While $A \neq \emptyset$:

if there is a free pair (τ, σ) in A, match τ with σ :

- $\blacktriangleright A \leftrightarrow A \setminus \{\tau, \sigma\},\$ perform elementary collapse
- $\blacktriangleright T \leftrightarrow T \cup \{\tau\},\$

- $\blacktriangleright S \leftrightarrow S \cup \{\sigma\} \Rightarrow \omega(\tau) = \sigma$
- else make any available *maximal* simplex $\zeta \in A$ critical:
 - ▶ set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$



- A set of available simplices; $A \leftrightarrow \mathbf{K}, X, T, S \leftarrow \emptyset$
- While $A \neq \emptyset$:

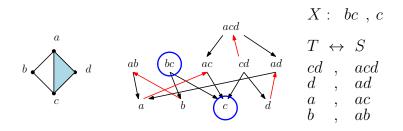
• if there is a free pair (τ, σ) in *A*, match τ with σ :

- $\blacktriangleright A \leftarrow A \setminus \{\tau, \sigma\}, \qquad perform elementary collapse$
- $T \leftrightarrow T \cup \{\tau\},$
- $\blacktriangleright \hspace{0.1in} S \leftrightarrow S \cup \{\sigma\} \hspace{0.1in} \Rightarrow \omega(\tau) = \sigma$
- else make any available *maximal* simplex $\zeta \in A$ critical:
 - set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$

- X: bc, c $T \leftrightarrow S$ $\begin{array}{c} cd &, \quad acd \\ d &, \quad ad \end{array}$ b , aba , ac
- A set of available simplices; $A \leftrightarrow \mathbf{K}, X, T, S \leftrightarrow \emptyset$
- While $A \neq \emptyset$:

if there is a free pair (τ, σ) in A, match τ with σ :

- $\blacktriangleright A \leftrightarrow A \setminus \{\tau, \sigma\},\$ perform elementary collapse
- $\blacktriangleright T \leftrightarrow T \cup \{\tau\},\$
- $\blacktriangleright S \leftrightarrow S \cup \{\sigma\} \Rightarrow \omega(\tau) = \sigma$
- else make any available *maximal* simplex $\zeta \in A$ critical:
 - ▶ set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$



- A set of available simplices; $A \leftrightarrow \mathbf{K}, X, T, S \leftrightarrow \emptyset$
- While $A \neq \emptyset$:

if there is a free pair (τ, σ) in A, match τ with σ :

- $\blacktriangleright A \leftrightarrow A \setminus \{\tau, \sigma\},\$ perform elementary collapse
- $\blacktriangleright T \leftrightarrow T \cup \{\tau\},\$

- $\blacktriangleright S \leftrightarrow S \cup \{\sigma\} \Rightarrow \omega(\tau) = \sigma$
- else make any available *maximal* simplex $\zeta \in A$ critical:
 - ▶ set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$

Lemma (Correction)

- A set of available simplices; $A \leftrightarrow \mathbf{K}, X, T, S \leftrightarrow \emptyset$
- While $A \neq \emptyset$:

if there is a free pair (τ, σ) in A, match τ with σ :

- $\blacktriangleright A \leftrightarrow A \setminus \{\tau, \sigma\},\$ perform elementary collapse $\blacktriangleright T \leftrightarrow T \cup \{\tau\},\$

- $\blacktriangleright S \leftrightarrow S \cup \{\sigma\} \Rightarrow \omega(\tau) = \sigma$
- else make any available *maximal* simplex $\zeta \in A$ critical:
 - set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$

Lemma (Correction)

- A always contains a simplicial complex: only perform elementary collapses and maximal simplex removals.

- A set of available simplices; $A \leftarrow \mathbf{K}, X, T, S \leftarrow \emptyset$
- While $A \neq \emptyset$:

• if there is a free pair (τ, σ) in *A*, match τ with σ :

- $A \leftrightarrow A \setminus \{\tau, \sigma\},$ perform elementary collapse $T \leftrightarrow T \cup \{\tau\},$
- $\blacktriangleright S \leftrightarrow S \cup \{\sigma\} \Rightarrow \omega(\tau) = \sigma$
- else make any <u>available maximal</u> simplex $\zeta \in A$ critical:
 - set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$

Lemma (Correction)

- A always contains a simplicial complex: only perform elementary collapses and maximal simplex removals.
- *T* × *S* always contains a matching: after being matched, a simplex is removed from the available simplices.

- A set of available simplices; $A \leftarrow \mathbf{K}, X, T, S \leftarrow \emptyset$
- While $A \neq \emptyset$:

• if there is a free pair (τ, σ) in *A*, match τ with σ :

- $A \leftarrow A \setminus \{\tau, \sigma\},$ perform elementary collapse $T \leftarrow T \cup \{\tau\},$
- $\blacktriangleright S \leftrightarrow S \cup \{\sigma\} \Rightarrow \omega(\tau) = \sigma$
- else make any <u>available</u> <u>maximal</u> simplex $\zeta \in A$ critical:
 - set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$

Lemma (Correction)

- A always contains a simplicial complex: only perform elementary collapses and maximal simplex removals.
- T × S always contains a matching: after being matched, a simplex is removed from the available simplices.
- The matching is always acyclic: ...
- A set of available simplices; $A \leftarrow \mathbf{K}, X, T, S \leftarrow \emptyset$
- While $A \neq \emptyset$:

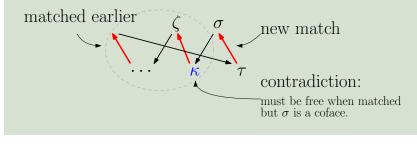
• if there is a free pair (τ, σ) in *A*, match τ with σ :

- $A \leftarrow A \setminus \{\tau, \sigma\},$ perform elementary collapse $T \leftarrow T \cup \{\tau\},$
- $\blacktriangleright S \leftrightarrow S \cup \{\sigma\} \Rightarrow \omega(\tau) = \sigma$
- else make any <u>available</u> <u>maximal</u> simplex $\zeta \in A$ critical:
 - set $X \leftrightarrow X \cup \{\zeta\}$,
 - $\blacktriangleright A \leftrightarrow A \setminus \{\zeta\}$

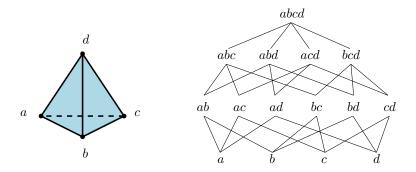
Lemma (Correction)

- A always contains a simplicial complex: only perform elementary collapses and maximal simplex removals.
- T × S always contains a matching: after being matched, a simplex is removed from the available simplices.
- The matching is always acyclic: ...

Suppose that, at some point, reverting an arrow creates a cycle. Pick the first such arrow (τ, σ) :



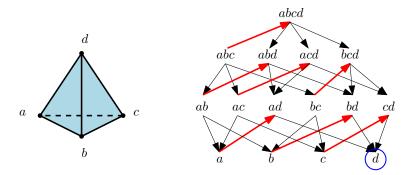
More interesting example



What is the number of critical simplices of an optimal Morse matching?

- **A** 0
- **B** 1
- **C** 2
- D 3

More interesting example



What is the number of critical simplices of an optimal Morse matching?

- **A** 0
- B 1
- **C** 2
- D 3

Fundamental Theorem of Discrete Morse Theory

Theorem

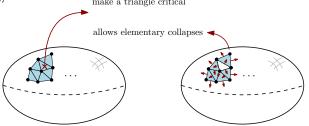
Let **K** be a simplicial complex, and $(X \sqcup T \sqcup S, \omega)$ a Morse matching. There exists a chain complex $(\mathbf{C}(X), \partial^X)$ with cells in X, called a Morse complex, whose homology groups are isomorphic to the ones of **K**.

More precisely,

- $\mathbf{C}_d(X)$ generated by the *d*-dimensional simplices of *X*,

-
$$\partial_d^X \colon \mathbf{C}_d(X) \to \mathbf{C}_{d-1}(X).$$

Application: reduce a complex drastically when computing its homology.



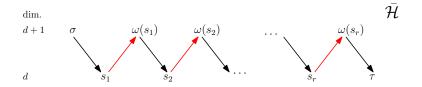
Boundary map ∂^{χ}

Definition

In a complex **K** with Morse matching $(X \sqcup T \sqcup S, \omega)$, let $\sigma, \tau \in X$ be critical simplices, with dim $\sigma = \dim \tau + 1$. A gradient path from σ to τ is a directed path from σ to τ :

$$\sigma \to s_1 \to \omega(s_1) \to s_2 \to \ldots \to s_r \to \omega(s_r) \to \tau$$

in $\overline{\mathcal{H}}$, alternating between simplices of dimension *d* and *d* - 1:



Boundary map ∂^{χ}

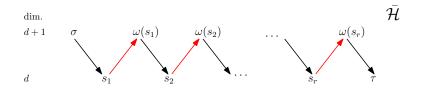
Definition

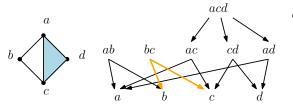
For $\sigma, \tau \in X$, with dim $\sigma = \dim \tau + 1$, define

$$[\sigma:\tau] := # \text{ distinct } (\sigma \to \tau) \text{-gradient path} \in \mathbb{Z}/2\mathbb{Z}.$$

Then the boundary map ∂^{χ} : $\mathbf{C}(\chi) \to \mathbf{C}(\chi)$ is defined such that:

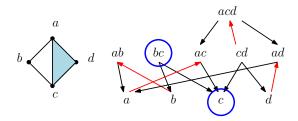
$$\partial^{X}(\sigma) = \sum_{\substack{\tau \in X \\ \dim \sigma = \dim \tau + 1}} [\sigma : \tau] \cdot \tau$$

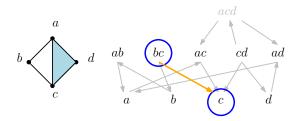


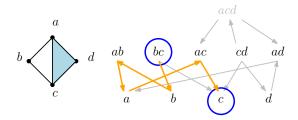


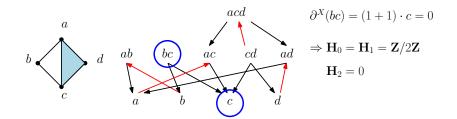
$$\partial(bc) = 1 \cdot b + 1 \cdot c$$

10









Example: Morse complex

We need to prove that

- $(\mathbf{C}(X), \partial^X)$ is a chain complex, i.e., $\partial^X \circ \partial^X = 0$,
- $(\mathbf{C}(X), \partial^X)$ and $(\mathbf{C}(\mathbf{K}), \partial)$ have same homology.

The Morse complex is a chain complexInductive Proof of: $\partial_d^X \circ \partial_{d+1}^X \sigma = 0 \quad \forall d, \text{ and } \forall \sigma \in X$

Inductive Proof of: $\partial_d^{\chi} \circ \partial_{d+1}^{\chi} \sigma = 0 \quad \forall d, \text{ and } \forall \sigma \in X$

For $X = \mathbf{K}$, and $T = S = \emptyset$, $\partial^X = \partial$ the usual boundary map, and $\partial \circ \partial = 0$.

 \checkmark

Inductive Proof of: $\partial_d^{\chi} \circ \partial_{d+1}^{\chi} \sigma = 0 \quad \forall d, \text{ and } \forall \sigma \in X$

For $X = \mathbf{K}$, and $T = S = \emptyset$, $\partial^X = \partial$ the usual boundary map, and $\partial \circ \partial = 0$.

Now, let $X \sqcup T \sqcup S$ be a Morse matching with $\partial^X \circ \partial^X = 0$, and denote by $X_d \subseteq X$ the *d*-dimensional simplices in *X*.

Inductive Proof of: $\partial_d^{\chi} \circ \partial_{d+1}^{\chi} \sigma = 0 \quad \forall d, \text{ and } \forall \sigma \in X$

For $X = \mathbf{K}$, and $T = S = \emptyset$, $\partial^X = \partial$ the usual boundary map, and $\partial \circ \partial = 0$.

Now, let $X \sqcup T \sqcup S$ be a Morse matching with $\partial^X \circ \partial^X = 0$, and denote by $X_d \subseteq X$ the *d*-dimensional simplices in *X*.

For any $a \in X_{d+1}$, we have:

$$\partial_d^{\chi} \circ \partial_{d+1}^{\chi}(a) = \partial_d^{\chi}(\sum_{b \in X_d} [a:b]b) = \sum_{b \in X_d} \sum_{c \in X_{d-1}} [a:b][b:c]c = 0.$$
(1)

Inductive Proof of: $\partial_d^{\chi} \circ \partial_{d+1}^{\chi} \sigma = 0 \quad \forall d, \text{ and } \forall \sigma \in X$

For $X = \mathbf{K}$, and $T = S = \emptyset$, $\partial^X = \partial$ the usual boundary map, and $\partial \circ \partial = 0$.

Now, let $X \sqcup T \sqcup S$ be a Morse matching with $\partial^X \circ \partial^X = 0$, and denote by $X_d \subseteq X$ the *d*-dimensional simplices in *X*.

For any $a \in X_{d+1}$, we have:

$$\partial_d^{\chi} \circ \partial_{d+1}^{\chi}(a) = \partial_d^{\chi}(\sum_{b \in X_d} [a:b]b) = \sum_{b \in X_d} \sum_{c \in X_{d-1}} [a:b][b:c]c = 0.$$
(1)

Consider $\sigma, \tau \in X$ being such that pairing σ and τ would lead to a valid Morse matching $(X \setminus {\sigma, \tau}) \sqcup (T \cup {\tau}) \sqcup (S \cup {\sigma})$.

Inductive Proof of: $\partial_d^{\chi} \circ \partial_{d+1}^{\chi} \sigma = 0 \quad \forall d, \text{ and } \forall \sigma \in X$

For $X = \mathbf{K}$, and $T = S = \emptyset$, $\partial^X = \partial$ the usual boundary map, and $\partial \circ \partial = 0$.

Now, let $X \sqcup T \sqcup S$ be a Morse matching with $\partial^X \circ \partial^X = 0$, and denote by $X_d \subseteq X$ the *d*-dimensional simplices in *X*.

For any $a \in X_{d+1}$, we have:

$$\partial_d^{\chi} \circ \partial_{d+1}^{\chi}(a) = \partial_d^{\chi}(\sum_{b \in X_d} [a:b]b) = \sum_{b \in X_d} \sum_{c \in X_{d-1}} [a:b][b:c]c = 0.$$
(1)

Consider $\sigma, \tau \in X$ being such that pairing σ and τ would lead to a valid Morse matching $(X \setminus {\sigma, \tau}) \sqcup (\tau \cup {\tau}) \sqcup (S \cup {\sigma})$.

In particular, for any $a \in X_{d+1}$, and $c \in X_{d-1}$, using (1):

$$\sum_{b \neq \tau} [a:b][b:c] + [a:\tau][\tau:c] = 0 \qquad \forall a \in X_{d+1}, c \in X_{d-1}.$$

$$\sum_{b \neq \tau} [a:b][b:c] + [a:\tau][\tau:c] = 0 \qquad \forall a \in X_{d+1}, c \in X_{d-1}.$$
 (2)

$$\sum_{b \neq \tau} [a:b][b:c] + [a:\tau][\tau:c] = 0 \qquad \forall a \in X_{d+1}, c \in X_{d-1}.$$
 (2)

$$\sum_{b \neq \tau} [a:b][b:c] + [a:\tau][\tau:c] = 0 \qquad \forall a \in X_{d+1}, c \in X_{d-1}.$$
 (2)

$$\partial_{d}^{\chi'} \circ \partial_{d+1}^{\chi'}(a) = \partial_{d}^{\chi'} \sum_{\substack{b \neq \tau \\ b \in X_{d}}} (\underbrace{[a:b]}_{\substack{paths not traversing \\ edge \ \tau \to \sigma}} + \underbrace{[a:\tau][\sigma:b]}_{\substack{paths traversing \\ edge \ \tau \to \sigma}}) \cdot b$$

$$\sum_{b \neq \tau} [a:b][b:c] + [a:\tau][\tau:c] = 0 \qquad \forall a \in X_{d+1}, c \in X_{d-1}.$$
 (2)

$$\partial_{d}^{X'} \circ \partial_{d+1}^{X'}(a) = \partial_{d}^{X'} \sum_{\substack{b \neq \tau \\ b \in X_{d}}} \left(\underbrace{[a:b]}_{\substack{\text{paths not traversing} \\ \text{edge } \tau \to \sigma}} + \underbrace{[a:\tau][\sigma:b]}_{\substack{\text{paths traversing} \\ \text{edge } \tau \to \sigma}} \right) \cdot b$$

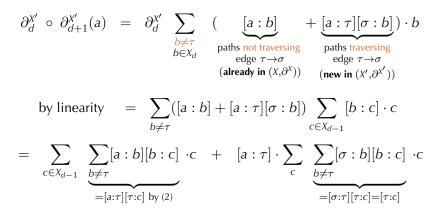
$$\sum_{b \neq \tau} [a:b][b:c] + [a:\tau][\tau:c] = 0 \qquad \forall a \in X_{d+1}, c \in X_{d-1}.$$
 (2)

$$\partial_{d}^{X'} \circ \partial_{d+1}^{X'}(a) = \partial_{d}^{X'} \sum_{\substack{b \neq \tau \\ b \in X_{d}}} \left(\underbrace{[a:b]}_{\substack{\text{paths not traversing} \\ \text{edge } \tau \to \sigma}} + \underbrace{[a:\tau][\sigma:b]}_{\substack{\text{paths traversing} \\ \text{edge } \tau \to \sigma}} \right) \cdot b$$

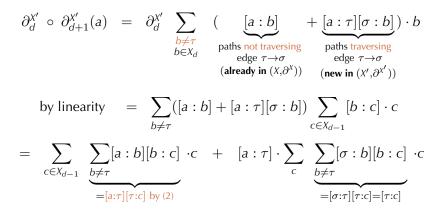
$$\sum_{b \neq \tau} [a:b][b:c] + [a:\tau][\tau:c] = 0 \qquad \forall a \in X_{d+1}, c \in X_{d-1}.$$
 (2)

$$\begin{aligned} \partial_{d}^{\chi'} \circ \partial_{d+1}^{\chi'}(a) &= \partial_{d}^{\chi'} \sum_{\substack{b \neq \tau \\ b \in X_{d}}} \left(\underbrace{[a:b]}_{\substack{\text{paths not traversing} \\ \text{edge } \tau \to \sigma \\ (already \text{ in } (X, \partial^{\chi}))} + \underbrace{[a:\tau][\sigma:b]}_{\substack{\text{paths traversing} \\ \text{edge } \tau \to \sigma \\ (new \text{ in } (X', \partial^{\chi'}))} \right) \cdot b \end{aligned}$$
by linearity
$$= \sum_{b \neq \tau} ([a:b] + [a:\tau][\sigma:b]) \sum_{c \in X_{d-1}} [b:c] \cdot c$$

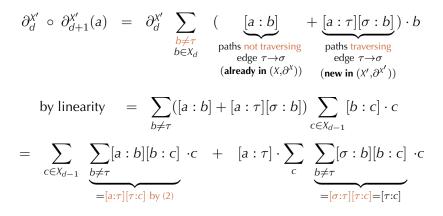
$$\sum_{b \neq \tau} [a:b][b:c] + [a:\tau][\tau:c] = 0 \qquad \forall a \in X_{d+1}, c \in X_{d-1}.$$
 (2)



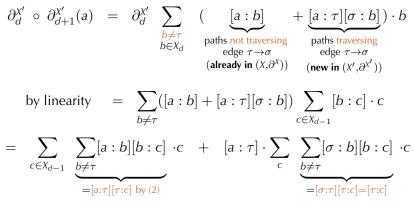
$$\sum_{b \neq \tau} [a:b][b:c] + [a:\tau][\tau:c] = 0 \qquad \forall a \in X_{d+1}, c \in X_{d-1}.$$
 (2)



$$\sum_{b \neq \tau} [a:b][b:c] + [a:\tau][\tau:c] = 0 \qquad \forall a \in X_{d+1}, c \in X_{d-1}.$$
 (2)

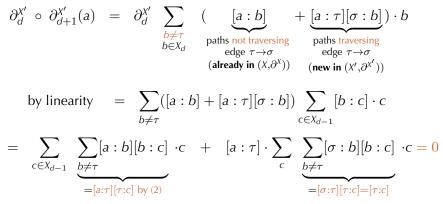


$$\sum_{b \neq \tau} [a:b][b:c] + [a:\tau][\tau:c] = 0 \qquad \forall a \in X_{d+1}, c \in X_{d-1}.$$
 (2)



NB: $[\sigma : \tau]$ is 1 as otherwise we get a cycle adding (σ, τ) to the matching.

$$\sum_{b \neq \tau} [a:b][b:c] + [a:\tau][\tau:c] = 0 \qquad \forall a \in X_{d+1}, c \in X_{d-1}.$$
 (2)



NB: $[\sigma : \tau]$ is 1 as otherwise we get a cycle adding (σ, τ) to the matching.

Proof of invariance by elem. collapse, with homotopy

K a simplicial complex, (σ, τ) a free pair:

$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

with:

 $\psi(x) = x$, i.e. the inclusion $\mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

with:

 $\psi(\mathbf{x}) = \mathbf{x}, \quad \text{i.e. the inclusion } \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial \sigma & \text{if } x = \tau, \text{ and} \\ x & \text{otherwise.} \end{cases}$$

$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

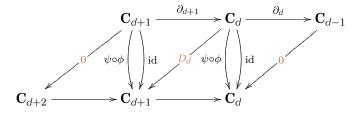
$$\psi(x) = x$$
, i.e. the inclusion $\mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial \sigma & \text{if } x = \tau, \text{ and} \\ x & \text{otherwise.} \end{cases} \quad D(x) = \begin{cases} \sigma & \text{if } x = \tau, \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

$$\psi(x) = x$$
, i.e. the inclusion $\mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

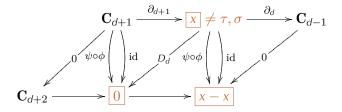
$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial \sigma & \text{if } x = \tau, \text{ and} \\ x & \text{otherwise.} \end{cases} \quad D(x) = \begin{cases} \sigma & \text{if } x = \tau, \\ 0 & \text{otherwise.} \end{cases}$$



$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

$$\psi(x) = x$$
, i.e. the inclusion $\mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

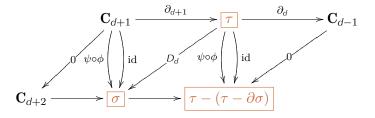
$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial \sigma & \text{if } x = \tau, \text{ and} \\ x & \text{otherwise.} \end{cases} \quad D(x) = \begin{cases} \sigma & \text{if } x = \tau, \\ 0 & \text{otherwise.} \end{cases}$$



$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

$$\psi(x) = x$$
, i.e. the inclusion $\mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

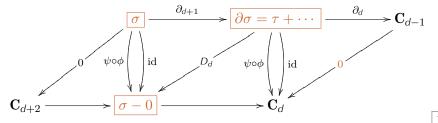
$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial \sigma & \text{if } x = \tau, \text{ and} \\ x & \text{otherwise.} \end{cases} \quad D(x) = \begin{cases} \sigma & \text{if } x = \tau, \\ 0 & \text{otherwise.} \end{cases}$$



$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

$$\psi(x) = x$$
, i.e. the inclusion $\mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial \sigma & \text{if } x = \tau, \text{ and} \\ x & \text{otherwise.} \end{cases} \quad D(x) = \begin{cases} \sigma & \text{if } x = \tau, \\ 0 & \text{otherwise.} \end{cases}$$



Inductively: Base case trivial. \checkmark

Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X),\partial^{X}) \xrightarrow{\phi} (\mathbf{C}(X'),\partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X),\partial^{X}) \text{ with}$$

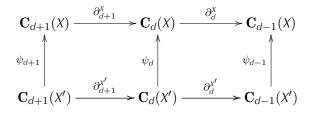
$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{X}\sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x:\tau]\sigma$$

Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X), \partial^X) \xrightarrow{\phi} (\mathbf{C}(X'), \partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X), \partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$



Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X), \partial^X) \xrightarrow{\phi} (\mathbf{C}(X'), \partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X), \partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

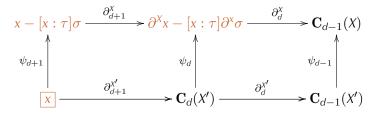


Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X),\partial^X) \xrightarrow{\phi} (\mathbf{C}(X'),\partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X),\partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$



Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X), \partial^X) \xrightarrow{\phi} (\mathbf{C}(X'), \partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X), \partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

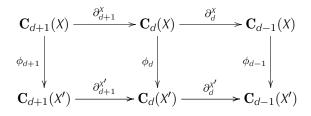
$$\begin{array}{c} x - [x:\tau]\sigma & \xrightarrow{\partial_{d+1}^{\chi}} & \partial^{\chi}x - [x:\tau]\partial^{\chi}\sigma & \xrightarrow{\partial_{d}^{\chi}} \\ \psi_{d+1} & & \psi_{d} \\ & & & & & \\ x & \xrightarrow{\partial_{d+1}^{\chi'}} & \sum_{b \neq \tau} [x:b]b + \sum_{b \neq \tau} [x:\tau][\sigma:b]b + 2[x:\tau]\tau & \xrightarrow{\partial_{d}^{\chi'}} \\ \hline \end{array}$$

Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X), \partial^X) \xrightarrow{\phi} (\mathbf{C}(X'), \partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X), \partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

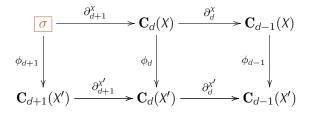


Inductively: Base case trivial.

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X),\partial^X) \xrightarrow{\phi} (\mathbf{C}(X'),\partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X),\partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

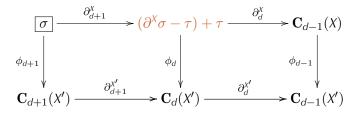


Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X),\partial^X) \xrightarrow{\phi} (\mathbf{C}(X'),\partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X),\partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

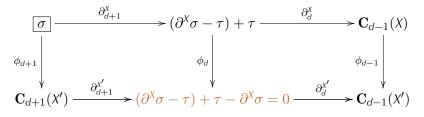


Inductively: Base case trivial.

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X),\partial^X) \xrightarrow{\phi} (\mathbf{C}(X'),\partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X),\partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

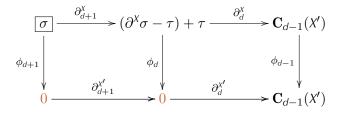


Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X),\partial^X) \xrightarrow{\phi} (\mathbf{C}(X'),\partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X),\partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

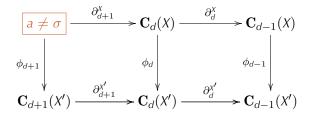


Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X), \partial^X) \xrightarrow{\phi} (\mathbf{C}(X'), \partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X), \partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

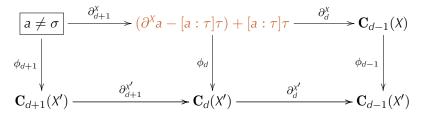


Inductively: Base case trivial.

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X),\partial^X) \xrightarrow{\phi} (\mathbf{C}(X'),\partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X),\partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{X} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$



Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X), \partial^X) \xrightarrow{\phi} (\mathbf{C}(X'), \partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X), \partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X), \partial^X) \xrightarrow{\phi} (\mathbf{C}(X'), \partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X), \partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

$$\begin{bmatrix} a \neq \sigma \\ \phi_{d+1} \\ \phi_{d+1} \\ \phi_{d+1} \\ \phi_{d+1} \\ C_{d+1}(X') \xrightarrow{\partial_{d+1}^{X'}} \sum_{b \neq \tau} [a:b]b + [a:\tau](\tau - \partial^{X}\sigma) \xrightarrow{\partial_{d}^{X'}} C_{d-1}(X') \xrightarrow{14}$$

Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X),\partial^X) \xrightarrow{\phi} (\mathbf{C}(X'),\partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X),\partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

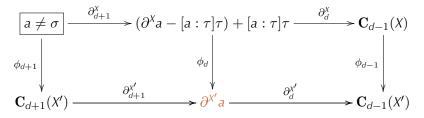
$$\begin{bmatrix} \overline{a \neq \sigma} & \xrightarrow{\partial_{d+1}^{\chi}} & (\partial^{\chi} a - [a:\tau]\tau) + [a:\tau]\tau & \xrightarrow{\partial_{d}^{\chi}} & \mathbf{C}_{d-1}(\chi) \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \mathbf{C}_{d+1}(\chi') & \xrightarrow{\partial_{d+1}^{\chi'}} & \sum_{b\neq\tau} [a:b]b + [a:\tau] \sum_{b\neq\tau} [\sigma:b]b & \xrightarrow{\partial_{d}^{\chi'}} & \mathbf{C}_{d-1}(\chi') \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \end{bmatrix}$$

Inductively: Base case trivial.

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X),\partial^X) \xrightarrow{\phi} (\mathbf{C}(X'),\partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X),\partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{X} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

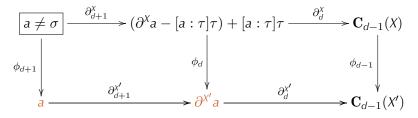


Inductively: Base case trivial.

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X),\partial^X) \xrightarrow{\phi} (\mathbf{C}(X'),\partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X),\partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{X} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

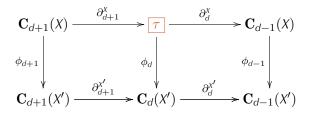


Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X), \partial^X) \xrightarrow{\phi} (\mathbf{C}(X'), \partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X), \partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

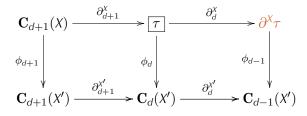


Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X), \partial^X) \xrightarrow{\phi} (\mathbf{C}(X'), \partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X), \partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

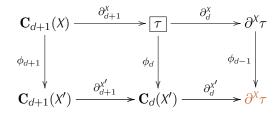


Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X), \partial^X) \xrightarrow{\phi} (\mathbf{C}(X'), \partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X), \partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

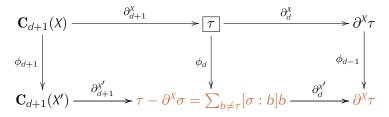


Inductively: Base case trivial.

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X),\partial^X) \xrightarrow{\phi} (\mathbf{C}(X'),\partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X),\partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$



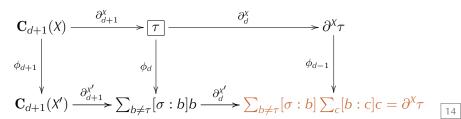
Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X),\partial^X) \xrightarrow{\phi} (\mathbf{C}(X'),\partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X),\partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

Commutativity: $\partial^{\chi} \partial^{\chi} \sigma = 0 = \partial^{\chi} (\sum_{b \neq \tau} [\sigma : b] b) + \partial^{\chi} \tau$



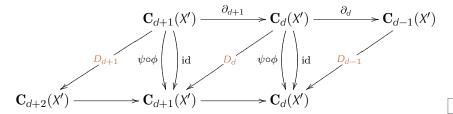
Inductively: Base case trivial. \checkmark

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X),\partial^X) \xrightarrow{\phi} (\mathbf{C}(X'),\partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X),\partial^X) \text{ with}$$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \text{ and } \\ x & \text{otherwise.} \end{cases} \quad \psi(x) = x - [x : \tau] \sigma$$

Chain equivalence: Easy side: $\phi \circ \psi = id$ $x \mapsto x - [x : \tau] \sigma \mapsto x$.



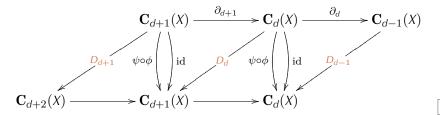
Inductively: Base case trivial.

X a Morse complex, $(\sigma, \tau) \in X \times X$ such that $X' := X \setminus \{\sigma, \tau\}$ a valid Morse complex. dim $\sigma = \dim \tau + 1 = d + 1$

$$(\mathbf{C}(X), \partial^X) \xrightarrow{\phi} (\mathbf{C}(X'), \partial^{X'}) \xrightarrow{\psi} (\mathbf{C}(X), \partial^X) \text{ with}$$

$$\psi \circ \phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial^{\chi} \sigma & \text{if } x = \tau, \\ x - [x : \tau] \sigma & \text{otherwise.} \end{cases} \quad D(x) = \begin{cases} \sigma & \text{if } x = \tau, \\ 0 & \text{otherwise.} \end{cases}$$

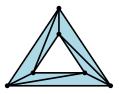
Chain equivalence:



Exercise from last time

Compute the homology of:

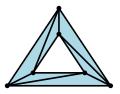
- a tetrahedron, and of an empty tetrahedron,
- a circle,
- an annulus.



Exercise from last time

Compute the homology of:

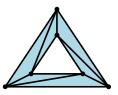
- a tetrahedron, and of an empty tetrahedron, \rightarrow diagonalise the matrix.
- a circle,
- an annulus.



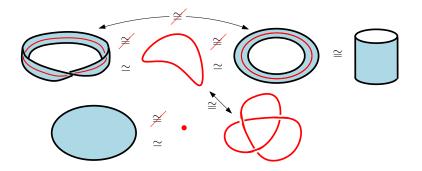
Exercise from last time

Compute the homology of:

- a tetrahedron, and of an empty tetrahedron, \rightarrow diagonalise the matrix.
- a circle, \rightarrow triangulate with 3 edges, diagonalise the matrix.
- an annulus.



Equivalence of spaces, intuition



Definition (Topological space "= Set + Continuity")

A *topological space* is a set X, called the *points*, together with a collection of subsets O of X, called the *open sets*, satisfying:

- (i) \mathbb{X} and the empty set \emptyset are open,
- (ii) every union of open sets is open,
- (iii) every intersection of finitely many open sets is open.

Definition (Topological space "= Set + Continuity")

A *topological space* is a set X, called the *points*, together with a collection of subsets O of X, called the *open sets*, satisfying:

(i) ${\mathbb X}$ and the empty set \emptyset are open,

(ii) every union of open sets is open,

(iii) every intersection of finitely many open sets is open.

Definition (Subspace topology)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of the topological space $(\mathbb{X}, \mathcal{O}_{\mathbb{X}})$. The *subspace topology* induced by $(\mathbb{X}, \mathcal{O})$ on \mathbb{A} is the family of open sets $\mathcal{O}_{\mathbb{A}}$:

 $\mathcal{O}_{\mathbb{A}} := \{ \tau \cap \mathbb{A} : \tau \in \mathcal{O}_{\mathbb{X}} \}.$

Definition (Metric space)

A *metric space* is a set of points X together with a *distance function* d : $X \times X \to \mathbb{R}$ satisfying, for every $x, y, z \in X$,

(i)
$$d(x, y) = 0$$
 iff $x = y$,
(ii) $d(x, y) = d(y, x)$,
(iii) $d(x, z) \le d(x, y) + d(y, z)$

Definition (Metric space)

A *metric space* is a set of points X together with a *distance function* d : $X \times X \to \mathbb{R}$ satisfying, for every $x, y, z \in X$,

(i) d(x, y) = 0 iff x = y, (ii) d(x, y) = d(y, x), (iii) $d(x, z) \le d(x, y) + d(y, z)$.

Theorem (Metric \Rightarrow topological)

Every metric space admits a natural topology, where the open sets are unions of open metric balls.

Theorem (Metric \Rightarrow topological)

Every metric space admits a natural topology, where the open sets are unions of open metric balls.



Let (\mathbb{X},\mathcal{O}) and $(\mathbb{Y},\mathcal{O}')$ be two topological spaces.

Definition (Continuous map)

A map $f : \mathbb{X} \to \mathbb{Y}$ is *continuous* if $f^{-1}(U) \in \mathcal{O}$ for any $U \in \mathcal{O}'$, *ie* if the inverse image of any open subset of \mathbb{Y} is open in \mathbb{X} .

Let (\mathbb{X},\mathcal{O}) and $(\mathbb{Y},\mathcal{O}')$ be two topological spaces.

Definition (Continuous map)

A map $f : \mathbb{X} \to \mathbb{Y}$ is *continuous* if $f^{-1}(U) \in \mathcal{O}$ for any $U \in \mathcal{O}'$, *ie* if the inverse image of any open subset of \mathbb{Y} is open in \mathbb{X} .

Definition (Homeomorphism "strong equivalence of top. spaces")

A map $f: \mathbb{X} \to \mathbb{Y}$ is a *homeomorphism* if f is:

- (i) continuous,
- (ii) bijective,
- (iii) with continuous inverse f^{-1} .

We say that X and Y are *homeomorphic* and write $X \cong Y$.

 \rightarrow equivalence relation for topological spaces.

Let (\mathbb{X},\mathcal{O}) and $(\mathbb{Y},\mathcal{O}')$ be two topological spaces.

Definition (Continuous map)

A map $f : \mathbb{X} \to \mathbb{Y}$ is *continuous* if $f^{-1}(U) \in \mathcal{O}$ for any $U \in \mathcal{O}'$, *ie* if the inverse image of any open subset of \mathbb{Y} is open in \mathbb{X} .

Definition (Homeomorphism "strong equivalence of top. spaces")

A map $f: \mathbb{X} \to \mathbb{Y}$ is a *homeomorphism* if f is:

- (i) continuous,
- (ii) bijective,
- (iii) with continuous inverse f^{-1} .

We say that X and Y are *homeomorphic* and write $X \cong Y$. \rightarrow equivalence relation for topological spaces.

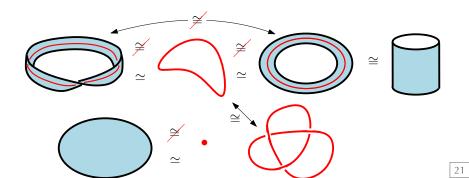
NB: continuous inverse is necessary, as [0; 1) and S^1 admits a map $f : [0; 1) \ni t \mapsto e^{2\pi i t} \in S^1$ satisfying (i) and (ii).

Let (\mathbb{X},\mathcal{O}) and $(\mathbb{Y},\mathcal{O}')$ be two topological spaces.

Definition (Homeomorphism "strong equivalence of top. spaces")

A map $f: \mathbb{X} \to \mathbb{Y}$ is a *homeomorphism* if f is continuous, bijective, with continuous inverse f^{-1} .

We say that \mathbb{X} and \mathbb{Y} are *homeomorphic* and write $\mathbb{X} \cong \mathbb{Y}$.



Definition (Homotopy "a weaker form of equality of functions")

A *homotopy* between two maps $f_1, f_2 : \mathbb{X} \to \mathbb{Y}$ is a continuous map $H : \mathbb{X} \times [0; 1] \to \mathbb{Y}$ such that

(i) $H(\cdot, 0) : \mathbb{X} \to \mathbb{Y}$ is equal to f_1 ,

(ii) $H(\cdot, 1) : \mathbb{X} \to \mathbb{Y}$ is equal to f_2 .

We write $f \simeq g$ and call f and g homotopic.

 \rightarrow equivalence relation of continuous functions.

Definition (Homotopy "a weaker form of equality of functions")

A *homotopy* between two maps $f_1, f_2 : \mathbb{X} \to \mathbb{Y}$ is a continuous map $H : \mathbb{X} \times [0; 1] \to \mathbb{Y}$ such that

(i) $H(\cdot, 0) : \mathbb{X} \to \mathbb{Y}$ is equal to f_1 ,

(ii) $H(\cdot, 1) : \mathbb{X} \to \mathbb{Y}$ is equal to f_2 .

We write $f \simeq g$ and call f and g homotopic.

 \rightarrow equivalence relation of continuous functions.

This is equality of functions up to continuous deformation.

Definition (Homotopy "a weaker form of equality of functions")

A *homotopy* between two maps $f_1, f_2 : \mathbb{X} \to \mathbb{Y}$ is a continuous map $H : \mathbb{X} \times [0; 1] \to \mathbb{Y}$ such that

(i) $H(\cdot, 0) : \mathbb{X} \to \mathbb{Y}$ is equal to f_1 ,

(ii) $H(\cdot, 1) : \mathbb{X} \to \mathbb{Y}$ is equal to f_2 .

We write $f \simeq g$ and call f and g homotopic.

 \rightarrow equivalence relation of continuous functions.

Definition (Homotopy equivalence "weaker equiv. of top. spaces")

Two topological spaces \mathbb{X} and \mathbb{Y} are *homotopy equivalent* if there are *continuous* maps $f : \mathbb{X} \to \mathbb{Y}$ and $g : \mathbb{Y} \to \mathbb{X}$ such that $g \circ f \simeq \operatorname{id}_{\mathbb{X}}$ and $f \circ g \simeq \operatorname{id}_{\mathbb{Y}}$. We write $\mathbb{X} \simeq \mathbb{Y}$. (equiv. rel.)

Definition (Homotopy "a weaker form of equality of functions")

A *homotopy* between two maps $f_1, f_2 : \mathbb{X} \to \mathbb{Y}$ is a continuous map $H : \mathbb{X} \times [0; 1] \to \mathbb{Y}$ such that

(i) $H(\cdot, 0) : \mathbb{X} \to \mathbb{Y}$ is equal to f_1 ,

(ii) $H(\cdot, 1) : \mathbb{X} \to \mathbb{Y}$ is equal to f_2 .

We write $f \simeq g$ and call f and g homotopic.

 \rightarrow equivalence relation of continuous functions.

Definition (Homotopy equivalence "weaker equiv. of top. spaces")

Two topological spaces \mathbb{X} and \mathbb{Y} are *homotopy equivalent* if there are *continuous* maps $f : \mathbb{X} \to \mathbb{Y}$ and $g : \mathbb{Y} \to \mathbb{X}$ such that $g \circ f \simeq \operatorname{id}_{\mathbb{X}}$ and $f \circ g \simeq \operatorname{id}_{\mathbb{Y}}$. We write $\mathbb{X} \simeq \mathbb{Y}$. (equiv. rel.)

 \rightarrow f and g are inverse of each other up to continuous deformation.

Definition (Homotopy "a weaker form of equality of functions")

A *homotopy* between two maps $f_1, f_2 : \mathbb{X} \to \mathbb{Y}$ is a continuous map $H : \mathbb{X} \times [0; 1] \to \mathbb{Y}$ such that

(i) $H(\cdot, 0) : \mathbb{X} \to \mathbb{Y}$ is equal to f_1 ,

(ii) $H(\cdot, 1) : \mathbb{X} \to \mathbb{Y}$ is equal to f_2 .

We write $f \simeq g$ and call f and g homotopic.

 \rightarrow equivalence relation of continuous functions.

Definition (Homotopy equivalence "weaker equiv. of top. spaces")

Two topological spaces \mathbb{X} and \mathbb{Y} are *homotopy equivalent* if there are *continuous* maps $f : \mathbb{X} \to \mathbb{Y}$ and $g : \mathbb{Y} \to \mathbb{X}$ such that $g \circ f \simeq \operatorname{id}_{\mathbb{X}}$ and $f \circ g \simeq \operatorname{id}_{\mathbb{Y}}$. We write $\mathbb{X} \simeq \mathbb{Y}$. (equiv. rel.)

→ f and g are inverse of each other up to continuous deformation. continuous \checkmark bijective NO

Deformation retraction

Definition (Homotopy "a weaker form of equality of functions")

A *homotopy* between two maps $f_1, f_2 : \mathbb{X} \to \mathbb{Y}$ is a continuous map $H : \mathbb{X} \times [0; 1] \to \mathbb{Y}$ such that

- $f_1 = H(\cdot, 0) : \mathbb{X} \to \mathbb{Y}$, and $f_2 = H(\cdot, 1) : \mathbb{X} \to \mathbb{Y}$.

Deformation retraction

Definition (Homotopy "a weaker form of equality of functions")

A *homotopy* between two maps $f_1, f_2 : \mathbb{X} \to \mathbb{Y}$ is a continuous map $H : \mathbb{X} \times [0; 1] \to \mathbb{Y}$ such that

- $f_1 = H(\cdot, 0) : \mathbb{X} \to \mathbb{Y}$, and $f_2 = H(\cdot, 1) : \mathbb{X} \to \mathbb{Y}$.

Definition (Deformation retraction, special case of hom. equiv.)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of \mathbb{X} . A deformation retraction of \mathbb{X} into \mathbb{A} is family of maps $f_t : \mathbb{X} \to \mathbb{X}$, $t \in [0; 1]$, such that:

Definition (Homotopy "a weaker form of equality of functions")

A *homotopy* between two maps $f_1, f_2 : \mathbb{X} \to \mathbb{Y}$ is a continuous map $H : \mathbb{X} \times [0; 1] \to \mathbb{Y}$ such that

- $f_1 = H(\cdot, 0) : \mathbb{X} \to \mathbb{Y}$, and $f_2 = H(\cdot, 1) : \mathbb{X} \to \mathbb{Y}$.

Definition (Deformation retraction, special case of hom. equiv.)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of \mathbb{X} . A deformation retraction of \mathbb{X} into \mathbb{A} is family of maps $f_t : \mathbb{X} \to \mathbb{X}$, $t \in [0; 1]$, such that:

-
$$f_0 = \operatorname{id}_{\mathbb{X}} : \mathbb{X} \to \mathbb{X}$$
,

Definition (Homotopy "a weaker form of equality of functions")

A *homotopy* between two maps $f_1, f_2 : \mathbb{X} \to \mathbb{Y}$ is a continuous map $H : \mathbb{X} \times [0; 1] \to \mathbb{Y}$ such that

- $f_1 = H(\cdot, 0) : \mathbb{X} \to \mathbb{Y}$, and $f_2 = H(\cdot, 1) : \mathbb{X} \to \mathbb{Y}$.

Definition (Deformation retraction, special case of hom. equiv.)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of \mathbb{X} . A deformation retraction of \mathbb{X} into \mathbb{A} is family of maps $f_t : \mathbb{X} \to \mathbb{X}$, $t \in [0, 1]$, such that:

-
$$f_0 = \mathrm{id}_{\mathbb{X}} : \mathbb{X} \to \mathbb{X}$$
,

-
$$f_1 : \mathbb{X} \to \mathbb{X}$$
 satisfies im $f = \mathbb{A}$,

 \rightarrow *retraction map*

Definition (Homotopy "a weaker form of equality of functions")

A *homotopy* between two maps $f_1, f_2 : \mathbb{X} \to \mathbb{Y}$ is a continuous map $H : \mathbb{X} \times [0; 1] \to \mathbb{Y}$ such that

- $f_1 = H(\cdot, 0) : \mathbb{X} \to \mathbb{Y}$, and $f_2 = H(\cdot, 1) : \mathbb{X} \to \mathbb{Y}$.

Definition (Deformation retraction, special case of hom. equiv.)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of \mathbb{X} . A deformation retraction of \mathbb{X} into \mathbb{A} is family of maps $f_t : \mathbb{X} \to \mathbb{X}$, $t \in [0, 1]$, such that:

- $f_0 = \operatorname{id}_{\mathbb{X}} : \mathbb{X} \to \mathbb{X}$,
- $f_1 : \mathbb{X} \to \mathbb{X}$ satisfies im $f = \mathbb{A}$,

 \rightarrow *retraction map*

- the map $(x, t) \rightarrow f_t(x)$ is continuous,

Definition (Homotopy "a weaker form of equality of functions")

A *homotopy* between two maps $f_1, f_2 : \mathbb{X} \to \mathbb{Y}$ is a continuous map $H : \mathbb{X} \times [0; 1] \to \mathbb{Y}$ such that

- $f_1 = H(\cdot, 0) : \mathbb{X} \to \mathbb{Y}$, and $f_2 = H(\cdot, 1) : \mathbb{X} \to \mathbb{Y}$.

Definition (Deformation retraction, special case of hom. equiv.)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of \mathbb{X} . A deformation retraction of \mathbb{X} into \mathbb{A} is family of maps $f_t : \mathbb{X} \to \mathbb{X}$, $t \in [0; 1]$, such that:

- $f_0 = \operatorname{id}_{\mathbb{X}} : \mathbb{X} \to \mathbb{X}$,
- $f_1 : \mathbb{X} \to \mathbb{X}$ satisfies im $f = \mathbb{A}$, \to *retraction map*
- the map $(x, t) \rightarrow f_t(x)$ is continuous,
- for any $t, f_t|_{\mathbb{A}} = id_{\mathbb{A}}.$ \rightarrow fixes subspace \mathbb{A}

Definition (Homotopy "a weaker form of equality of functions")

A *homotopy* between two maps $f_1, f_2 : \mathbb{X} \to \mathbb{Y}$ is a continuous map $H : \mathbb{X} \times [0; 1] \to \mathbb{Y}$ such that

- $f_1 = H(\cdot, 0) : \mathbb{X} \to \mathbb{Y}$, and $f_2 = H(\cdot, 1) : \mathbb{X} \to \mathbb{Y}$.

Definition (Deformation retraction, special case of hom. equiv.)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of \mathbb{X} . A deformation retraction of \mathbb{X} into \mathbb{A} is family of maps $f_t : \mathbb{X} \to \mathbb{X}$, $t \in [0; 1]$, such that:

- $f_0 = \operatorname{id}_{\mathbb{X}} : \mathbb{X} \to \mathbb{X}$,
- $f_1 : \mathbb{X} \to \mathbb{X}$ satisfies im $f = \mathbb{A}$, \to retraction map
- the map $(x, t) \rightarrow f_t(x)$ is continuous,
- for any $t, f_t|_{\mathbb{A}} = id_{\mathbb{A}}.$ \rightarrow fixes subspace \mathbb{A}

 \rightarrow homotopy fixing \mathbb{A} , from $f_0 = \mathrm{id}_{\mathbb{X}}$ to a retraction f_1 .

A deformation retraction from X into A implies *homotopy* equivalence $X \simeq A$.

Definition (Deformation retraction, special case of hom. equiv.)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of \mathbb{X} . A deformation retraction of \mathbb{X} into \mathbb{A} is family of maps $f_t : \mathbb{X} \to \mathbb{X}$, $t \in [0; 1]$, such that:

-
$$f_0 = \operatorname{id}_{\mathbb{X}} : \mathbb{X} \to \mathbb{X}$$
,

- for any $t, f_t|_{\mathbb{A}} = \mathrm{id}_{\mathbb{A}}$.

- $f_1 : \mathbb{X} \to \mathbb{X}$ satisfies im $f = \mathbb{A}$, \rightarrow retraction map
- the map $(x, t) \rightarrow f_t(x)$ is continuous,

- \rightarrow homotopy
- \rightarrow fixes subspace \mathbb{A}

 \rightarrow homotopy fixing \mathbb{A} , from $f_0 = \mathrm{id}_{\mathbb{X}}$ to a retraction f_1 .

A deformation retraction from X into A implies *homotopy* equivalence $X \simeq A$. Consider:

- the inclusion map: $\iota : \mathbb{A} \to \mathbb{X}$,

Definition (Deformation retraction, special case of hom. equiv.)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of \mathbb{X} . A deformation retraction of \mathbb{X} into \mathbb{A} is family of maps $f_t : \mathbb{X} \to \mathbb{X}$, $t \in [0; 1]$, such that:

-
$$f_0 = \operatorname{id}_{\mathbb{X}} : \mathbb{X} \to \mathbb{X}$$
,

- $f_1 : \mathbb{X} \to \mathbb{X}$ satisfies im $f = \mathbb{A}$, \rightarrow retraction map
- the map $(x, t) \rightarrow f_t(x)$ is continuous,

 \rightarrow homotopy

- for any t, $f_t|_{\mathbb{A}} = \mathrm{id}_{\mathbb{A}}$.

 \rightarrow fixes subspace \mathbb{A}

 \rightarrow homotopy fixing \mathbb{A} , from $f_0 = \mathrm{id}_{\mathbb{X}}$ to a retraction f_1 .

A deformation retraction from X into A implies *homotopy* equivalence $X \simeq A$. Consider:

- the inclusion map: $\iota : \mathbb{A} \to \mathbb{X}$,
- the map $r : \mathbb{X} \to \mathbb{A}$ induced by the retraction f_1 .

Definition (Deformation retraction, special case of hom. equiv.)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of \mathbb{X} . A deformation retraction of \mathbb{X} into \mathbb{A} is family of maps $f_t : \mathbb{X} \to \mathbb{X}$, $t \in [0; 1]$, such that:

-
$$f_0 = \operatorname{id}_{\mathbb{X}} : \mathbb{X} \to \mathbb{X}$$
,

- for any $t, f_t|_{\mathbb{A}} = \mathrm{id}_{\mathbb{A}}$.

- $f_1 : \mathbb{X} \to \mathbb{X}$ satisfies im $f = \mathbb{A}$, \rightarrow retraction map
- the map $(x, t) \rightarrow f_t(x)$ is continuous,
- \rightarrow homotopy \rightarrow fixes subspace A

 \rightarrow homotopy fixing \mathbb{A} , from $f_0 = \mathrm{id}_{\mathbb{X}}$ to a retraction f_1 .

A deformation retraction from X into A implies *homotopy* equivalence $X \simeq A$. Consider:

- the inclusion map: $\iota : \mathbb{A} \to \mathbb{X}$,
- the map $r : \mathbb{X} \to \mathbb{A}$ induced by the retraction f_1 .

We have:

- $r \circ \iota = id_{\mathbb{A}}$,

Definition (Deformation retraction, special case of hom. equiv.)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of \mathbb{X} . A deformation retraction of \mathbb{X} into \mathbb{A} is family of maps $f_t : \mathbb{X} \to \mathbb{X}$, $t \in [0; 1]$, such that:

- $f_0 = \operatorname{id}_{\mathbb{X}} : \mathbb{X} \to \mathbb{X}$,
- $f_1 : \mathbb{X} \to \mathbb{X}$ satisfies im $f = \mathbb{A}$, \rightarrow *retraction map*
- the map $(x, t) \rightarrow f_t(x)$ is continuous,
- for any $t, f_t|_{\mathbb{A}} = \mathrm{id}_{\mathbb{A}}.$ \rightarrow fixes subspace \mathbb{A}

 \rightarrow homotopy fixing \mathbb{A} , from $f_0 = \mathrm{id}_{\mathbb{X}}$ to a retraction f_1 .

A deformation retraction from X into A implies *homotopy* equivalence $X \simeq A$. Consider:

- the inclusion map: $\iota : \mathbb{A} \to \mathbb{X}$,
- the map $r : \mathbb{X} \to \mathbb{A}$ induced by the retraction f_1 .

We have:

- $r \circ \iota = id_{\mathbb{A}}$, and $\iota \circ r = f_1 \simeq id_{\mathbb{X}}$ via deformation retraction.

Definition (Deformation retraction, special case of hom. equiv.)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of \mathbb{X} . A deformation retraction of \mathbb{X} into \mathbb{A} is family of maps $f_t : \mathbb{X} \to \mathbb{X}$, $t \in [0; 1]$, such that:

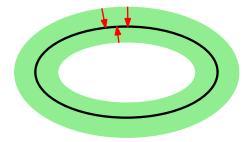
- $f_0 = \operatorname{id}_{\mathbb{X}} : \mathbb{X} \to \mathbb{X}$,
- $f_1 : \mathbb{X} \to \mathbb{X}$ satisfies im $f = \mathbb{A}$, \rightarrow *retraction map*
- the map $(x, t) \rightarrow f_t(x)$ is continuous,
- for any $t, f_t|_{\mathbb{A}} = \mathrm{id}_{\mathbb{A}}.$ \rightarrow fixes subspace \mathbb{A}

 \rightarrow homotopy fixing \mathbb{A} , from $f_0 = \mathrm{id}_{\mathbb{X}}$ to a retraction f_1 .

Definition (Deformation retraction, special case of hom. equiv.)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of \mathbb{X} . A deformation retraction of \mathbb{X} into \mathbb{A} is family of maps $f_t : \mathbb{X} \to \mathbb{X}$, $t \in [0; 1]$, such that:

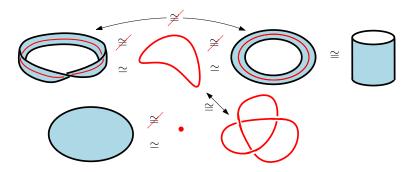
- $f_0 = \operatorname{id}_{\mathbb{X}}$ and f_1 satisfies im $f = \mathbb{A}$,
- the map $(x, t) \rightarrow f_t(x)$ is continuous, and $f_t|_{\mathbb{A}} = id_{\mathbb{A}} \ \forall t$.



Definition (Deformation retraction, special case of hom. equiv.)

Let $\mathbb{A} \subseteq \mathbb{X}$ be a subspace of \mathbb{X} . A deformation retraction of \mathbb{X} into \mathbb{A} is family of maps $f_t : \mathbb{X} \to \mathbb{X}$, $t \in [0; 1]$, such that:

- $f_0 = \operatorname{id}_{\mathbb{X}}$ and f_1 satisfies im $f = \mathbb{A}$,
- the map $(x, t) \rightarrow f_t(x)$ is continuous, and $f_t|_{\mathbb{A}} = id_{\mathbb{A}} \ \forall t$.



Abstract: Set of vertices:

$$V = \{1, \ldots, |V|\}$$

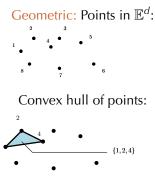
Geometric: Points in \mathbb{E}^d :

Abstract: Set of vertices:

$$V = \{1, \ldots, |V|\}$$

A *simplex* σ is a collection of vertices:

 $\sigma \subseteq V$



Abstract: Set of vertices:

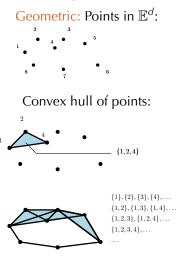
$$V = \{1, \ldots, |V|\}$$

A *simplex* σ is a collection of vertices:

 $\sigma \subseteq V$

An abstract simplicial complex **K** is a family of simplices: $\mathbf{K} = \{\sigma_i\}_{i \in I}$ s.t.:

 $\tau \subseteq \sigma \in \mathbf{K} \Rightarrow \tau \in \mathbf{K}$



Abstract: Set of vertices:

$$V = \{1, \ldots, |V|\}$$

A *simplex* σ is a collection of vertices:

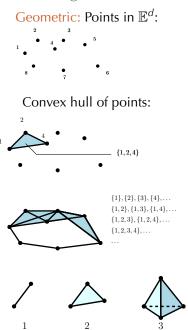
 $\sigma \subseteq V$

An abstract simplicial complex **K** is a family of simplices: $\mathbf{K} = \{\sigma_i\}_{i \in I}$ s.t.:

 $\tau \subseteq \sigma \in \mathbf{K} \Rightarrow \tau \in \mathbf{K}$

dim:

Dimension of a simplex = #vertices -1



25

Geometric simplicial complex

Let $P = \{p_1, \dots, p_n\}$ be a finite set of points in the Euclidean space \mathbb{R}^D .

Geometric simplicial complex

Let $P = \{p_1, \dots, p_n\}$ be a finite set of points in the Euclidean space \mathbb{R}^D .

Definition

Geometric simplex A geometric simplex of dimension d is the *convex* hull of d + 1 affinely independent points in Euclidean space.

Geometric simplicial complex

Let $P = \{p_1, \dots, p_n\}$ be a finite set of points in the Euclidean space \mathbb{R}^D .

Definition

Geometric simplex A geometric simplex of dimension d is the *convex* hull of d + 1 affinely independent points in Euclidean space.

Definition

Realization of an abstract simplex An *abstract d*-dimensional simplex σ admits a canonical realization as the convex hull of the unit points $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)^T$ of \mathbb{R}^{d+1} . We denote the image of the embedding $\sigma \to \mathbb{R}^{d+1}$ by $|\sigma|$.

 $\rightarrow |\sigma|$ is a topological space.

Simplicial complexes as topological spaces

Every abstract simplicial complex gives rise to a canonical topological space (up to homeomorphism):

Simplicial complexes as topological spaces

Every abstract simplicial complex gives rise to a canonical topological space (up to homeomorphism):

Definition

Geometric realization Let **K** be an abstract simplicial complex on *n* vertices. This is a sub-complex of the *n*-simplex Δ_n . The geometric realization of **K**, denoted by $|\mathbf{K}|$, is the image of the embedding $\Delta^n \to \mathbb{R}^n$ restricted to $\mathbf{K} \subseteq \Delta^n$.

 $\rightarrow |\mathbf{K}|$ is a topological space.

- $\Delta_d = \{x_0, \dots, x_d\} \subseteq \{1, \dots, n\}$ for an abstract *d* simplex.
- $|\Delta_d| \subset \mathbb{R}^{d+1}$ for the image of its canonical embedding as convex hull of the orthonormal basis of \mathbb{R}^{d+1} .

- $\Delta_d = \{x_0, \dots, x_d\} \subseteq \{1, \dots, n\}$ for an abstract *d* simplex.
- $|\Delta_d| \subset \mathbb{R}^{d+1}$ for the image of its canonical embedding as convex hull of the orthonormal basis of \mathbb{R}^{d+1} .

Definition (Singular simplex)

A singular *d*-simplex σ in a topological space \mathbb{X} is a continuous function $\sigma : |\Delta_d| \to \mathbb{X}$ from the canonical geometric simplex $|\Delta|$ in \mathbb{R}^{d+1} to \mathbb{X} .

- $\Delta_d = \{x_0, \dots, x_d\} \subseteq \{1, \dots, n\}$ for an abstract *d* simplex.
- $|\Delta_d| \subset \mathbb{R}^{d+1}$ for the image of its canonical embedding as convex hull of the orthonormal basis of \mathbb{R}^{d+1} .

Definition (Singular simplex)

A singular *d*-simplex σ in a topological space \mathbb{X} is a continuous function $\sigma : |\Delta_d| \to \mathbb{X}$ from the canonical geometric simplex $|\Delta|$ in \mathbb{R}^{d+1} to \mathbb{X} .

Definition (Singular chain group)

The singular chain group of X is the vector space of finite formal sums of singular simplices in X, with \mathbb{F} coefficients (e.g., $\mathbb{Z}/2\mathbb{Z}$). \rightarrow very much infinite dimensional, often uncountable basis.

- $\Delta_d = \{x_0, \dots, x_d\} \subseteq \{1, \dots, n\}$ for an abstract *d* simplex.
- $|\Delta_d| \subset \mathbb{R}^{d+1}$ for the image of its canonical embedding as convex hull of the orthonormal basis of \mathbb{R}^{d+1} .

Definition (Singular simplex)

A singular *d*-simplex σ in a topological space \mathbb{X} is a continuous function $\sigma : |\Delta_d| \to \mathbb{X}$ from the canonical geometric simplex $|\Delta|$ in \mathbb{R}^{d+1} to \mathbb{X} .

Definition (Singular chain group)

The singular chain group of X is the vector space of finite formal sums of singular simplices in X, with \mathbb{F} coefficients (e.g., $\mathbb{Z}/2\mathbb{Z}$).

 \rightarrow very much infinite dimensional, often uncountable basis.

Definition (Singular boundary)

A facet of a singular simplex $\sigma : |\Delta_d| \to \mathbb{X}$ is the restriction of σ (as a function) to a facet of Δ_d :

 $\tau := \sigma : \left| \Delta_d \right|_{\Delta_{d-1}} \right| \to \mathbb{X}.$

Definition (Singular homology)

Define the singular boundary operator on a singular simplex to be the formal sum of its singular facets:

Definition (Singular homology)

Define the singular boundary operator on a singular simplex to be the formal sum of its singular facets:

- linear map from singular chains to singular chains, (extended linearly)

Definition (Singular homology)

Define the singular boundary operator on a singular simplex to be the formal sum of its singular facets:

- linear map from singular chains to singular chains, (extended linearly)
- $\partial \circ \partial = 0$,

Definition (Singular homology)

Define the singular boundary operator on a singular simplex to be the formal sum of its singular facets:

- linear map from singular chains to singular chains, (extended linearly)
- $\partial \circ \partial = 0$,
- define cycles, boundaries, and singular homology groups as usual.

Definition (Singular homology)

Define the singular boundary operator on a singular simplex to be the formal sum of its singular facets:

- linear map from singular chains to singular chains, (extended linearly)
- $\partial \circ \partial = 0$,
- define cycles, boundaries, and singular homology groups as usual.

We have a homology theory for topological spaces !

Definition (Singular homology)

Define the singular boundary operator on a singular simplex to be the formal sum of its singular facets:

- linear map from singular chains to singular chains, (extended linearly)
- $\partial \circ \partial = 0$,
- define cycles, boundaries, and singular homology groups as usual.

We have a homology theory for topological spaces !

Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically equivalent, then their singular homology groups are isomorphic.

Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically equivalent, then their singular homology groups are isomorphic.

Proof.

Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically equivalent, then their singular homology groups are isomorphic.

Proof.

Sketch: A continuous map $f : \mathbb{X} \to \mathbb{Y}$ induces a map of singular chains $f_{\#} : C(\mathbb{X}) \to C(\mathbb{Y})$ by composition with the maps of singular simplices.

Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically equivalent, then their singular homology groups are isomorphic.

Proof.

Sketch: A continuous map $f : \mathbb{X} \to \mathbb{Y}$ induces a map of singular chains $f_{\#} : C(\mathbb{X}) \to C(\mathbb{Y})$ by composition with the maps of singular simplices.

It commutes with the singular boundary, i.e., $\partial^{\mathbb{Y}} \circ f_{\#} = f_{\#} \circ \partial^{\mathbb{X}}$, hence it descends to singular homology: $f_* : H_n(\mathbb{X}) \to H_n(\mathbb{Y})$.

Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically equivalent, then their singular homology groups are isomorphic.

Proof.

Sketch: A continuous map $f : \mathbb{X} \to \mathbb{Y}$ induces a map of singular chains $f_{\#} : C(\mathbb{X}) \to C(\mathbb{Y})$ by composition with the maps of singular simplices.

It commutes with the singular boundary, i.e., $\partial^{\mathbb{Y}} \circ f_{\#} = f_{\#} \circ \partial^{\mathbb{X}}$, hence it descends to singular homology: $f_* : H_n(\mathbb{X}) \to H_n(\mathbb{Y})$.

Indeed, $\partial^{\mathbb{Y}} \circ f_{\#} = f_{\#} \circ \partial^{\mathbb{X}}$ means that:

- cycles remains cycles, boundaries remain boundaries, hence homology classes are sent to homology classes coherently.

Theorem (Topological invariance)

Let X and Y be two topological spaces. If X and Y are homotopically equivalent, then their singular homology groups are isomorphic.

Proof.

Sketch: A continuous map $f : \mathbb{X} \to \mathbb{Y}$ induces a map of singular chains $f_{\#} : C(\mathbb{X}) \to C(\mathbb{Y})$ by composition with the maps of singular simplices.

It commutes with the singular boundary, i.e., $\partial^{\mathbb{Y}} \circ f_{\#} = f_{\#} \circ \partial^{\mathbb{X}}$, hence it descends to singular homology: $f_* : H_n(\mathbb{X}) \to H_n(\mathbb{Y})$.

Indeed, $\partial^{\mathbb{Y}} \circ f_{\#} = f_{\#} \circ \partial^{\mathbb{X}}$ means that:

- cycles remains cycles, boundaries remain boundaries, hence homology classes are sent to homology classes coherently.

Finally, show that if two maps f, g are connected by a homotopy, the induced maps f_*, g_* are equal at the level of homology.

Simplicial and singular homology

Theorem

Let **K** be a simplicial complex. The simplicial homology of **K** is isomorphic to the singular homology of its realization $|\mathbf{K}|$.

Simplicial and singular homology

Theorem

Let **K** be a simplicial complex. The simplicial homology of **K** is isomorphic to the singular homology of its realization $|\mathbf{K}|$.

Corollary

If a topological space X is homotopy equivalent to a simplicial complex K, then singular homology and simplicial homology are isomorphic.

Simplicial and singular homology

Theorem

Let **K** be a simplicial complex. The simplicial homology of **K** is isomorphic to the singular homology of its realization $|\mathbf{K}|$.

Corollary

If a topological space X is homotopy equivalent to a simplicial complex K, then singular homology and simplicial homology are isomorphic.

Connection between the combinatorial and continuous worlds!