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Toy Examples

Goal: Define a topological invariant of simplicial complex K 7→ H(K)
that captures the connectivity of the domain |K|, i.e., num. of
connected components, of holes, of voids, etc.

simp. cpx.

components:

num. holes:

1 1 1 1

2 1 5 5

num. connected

How many holes in the
1-skeleton of the cube?

A 4

B 5

C 6

How many holes in the planar
graph?

A 4

B 5

C 6

2
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Simplicial complexes, abstract and geometric
Abstract: Set of vertices:

V = {1, . . . , |V|}

A simplex σ is a collection of
vertices:

σ ⊆ V

An abstract simplicial complex K
is a family of simplices:
K = {σi}i∈I s.t.:

τ ⊆ σ ∈ K ⇒ τ ∈ K

Dimension of a simplex =
#vertices −1

Geometric: Points in Ed:

1

2 3

5

6
7

8

4

{1}, {2}, {3}, {4}, . . .
{1, 2}, {1, 3}, {1, 4}, . . .
{1, 2, 3}, {1, 2, 4}, . . .
{1, 2, 3, 4}, . . .

1

2 3

5

6
7

8

4

. . .

Convex hull of points:

1

2

4

{1, 2, 4}

{1}, {2}, {3}, {4}, . . .
{1, 2}, {1, 3}, {1, 4}, . . .
{1, 2, 3}, {1, 2, 4}, . . .
{1, 2, 3, 4}, . . .{1, 2, 4}

{1}, {2}, {3}, {4}, . . .
{1, 2}, {1, 3}, {1, 4}, . . .
{1, 2, 3}, {1, 2, 4}, . . .
{1, 2, 3, 4}, . . .
. . .

dim: 0 1 2 3
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Simplicial complexes, abstract

Definition (Abstract simplicial complex)

Let V = {v1, . . . , vn} 6= be a finite set of vertices.

- A simplex σ of dimension d ≥ 0 is a non-empty subset σ ⊆ V of
d+ 1 vertices,

- A simplicial complex K is a set of simplices satisfying:

τ ⊂ σ ∈ K ⇒ τ ∈ K,
- A subface τ of σ is a simplex such that τ ⊂ σ,

- A facet τ of σ is a subface of dimension d− 1,

- A coface ν of σ is a simplex such that σ ⊂ ν,

- A cofacet ν of σ is a coface of dimension d+ 1.

- A subcomplex K′ of a simplicial complex K is a simplicial
complex such that K′ ⊂ K,

- The d-skeleton of K is the subcomplex of K made of all
simplices of dimension at most d.Remark

- A dimension 1 simplicial complex (e.g., the 1-skeleton of a
simplicial complex) is combinatorially a graph (with no loop nor
multiple edges).

- The intersection τ ∩ σ of distinct simplices is a strict subface of
both τ and σ.

- The empty set is not a simplex.

4
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Homology Theory: Topology via linear algebra

F coefficient field (such as Z/2Z), and K a simplicial complex:

Chain group Cd(K) of formal sums of d-simplices with F coefficients:

Cd(K) =

{∑
i

γiσi : dimσi = d and γi ∈ F

}
ex: e1+. . .+e10 ∈ C1

−→ Cd(K) is isomorphic to Fnd the F-vector space of dimension
nd := the number of d-dimensional faces of K.

Boundary operator: linear map ∂d : Cd(K) → Cd−1(K) satisfying

∂d[v0, . . . , vd] =
d∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vd]

The kernel of ∂d, denoted by Zd(K), contains the cycles of K.
−→ captures the “blue loops”.
The image of ∂d+1, denoted by Bd(K), contains the boundaries of K.
−→ captures the “hashed surfaces” separating two equivalent cycles.

5
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Homology Theory: Topology via linear algebra

e1 e2

e3

e4
e5

e7

e8

e9

e10

e6
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Homology Theory: Topology via linear algebra

∂2 =

v0

v1 v2

[v0, v1, v2]

− +

[v0, v1] +− [v1, v2] [v2, v0]

F coefficient field (such as Z/2Z), and K a simplicial complex:

Chain group Cd(K) of formal sums of d-simplices with F coefficients:

Cd(K) =

{∑
i

γiσi : dimσi = d and γi ∈ F

}
ex: e1+. . .+e10 ∈ C1
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F coefficient field (such as Z/2Z), and K a simplicial complex:

Cycles Zd = ker ∂d Boundaries Bd = im ∂d+1

Homology group Hd = Zd/Bd

Theorem

For a simplicial complex K, ∂d ◦ ∂d+1 = 0 for all d ≥ 0.

For F = Z/2Z, and σ = [v0, . . . , vd] a d-dimensional simplex:

∂d−1 ◦ ∂d(σ) = ∂d−1

(
d∑

i=0

[v0, . . . , v̂i, . . . , vd]

)

=
d∑

i=0

∂d−1 ([v0, . . . , v̂i, . . . , vd])

=
d∑

i=0

∑
j<i

[v0, . . . , v̂j, . . . , v̂i, . . . , vd] +
∑
i<j

[v0, . . . , v̂i, . . . , v̂j, . . . , vd]


= 0 =⇒ ∀d ≥ 0, Bd ⊆ Zd.

The dimension dim Hd(K) = dim Zd − dim Bd is the dth Betti
number βd of K (with F coefficients).

c

H1 = 〈 [c] 〉
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Euler characteristic and Betti numbers

Lemma

Let K be simplicial complex with nd d-dimensional simplices, and dth
Betti number βd. Then its Euler characteristic χ(K) satisfies:

χ(K) =
∑
d

(−1)dnd =
∑
d

(−1)dβd

∑
d

(−1)dβd =
∑
d

(−1)d [dim Zd − dim Bd]

=
∑
d

(−1)d dim Zd +
∑
d

(−1)d+1 dim Bd

=
∑
d

(−1)d dim ker ∂d +
∑
d+1

(−1)d dim im ∂d

=
∑
d

(−1)d dim Cd =
∑
d

(−1)dnd

.
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A graph theory exercise:

Prove that β0 (with Z/2Z coefficients) is equal to the number of
connected components of the complex.

- ∂0 = 0 ⇒ C0 = Z0 and all vertices are cycles.
- if vertices u and v are in the same connected component, there
exists a path u = v0, v1, . . . , vk = v in the 1-skeleton connecting
u and v. Hence: u+ ∂1([v0v1] + [v1v2] + . . . [vd−1vd]) = v, and
u and v belong to the same homology class (they differ by an
element of B0).

β0 ≤ num. of connected components.

- if [u] = [v] in H0 then there exists c ∈ C1 such that u+ v = ∂1c.
Considering c as a graph (it is a collection of edges), u and v are
the only odd degree vertices in c. Because the sum of degrees of
a graph is even, u and v must belong to the same connected
component.

β0 ≥ num. of connected components.
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Topological invariance

The fundamental property of homology is its topological invariance:

Theorem (Topological invariance)

Let K and K′ be simplicial complexes such that their domains |K| and
|K′| are homotopy equivalent as topological spaces, then

Hd(K) ∼= Hd(K′), ∀d.

We prove something simpler, and purely combinatorial.

10



Elementary collapses

Definition

Let K be a simplicial complex. A free pair (τ, σ) is a pair of simplices
such that τ has a unique coface σ.
An elementary collapse K → K − {τ, σ} is the removal of a free pair.

−→ an elementary collapse is a combinatorial version of a “local
deformation retract” in topology.

Lemma (Invariance)

For a free pair (τ, σ) in K, Hd(K) ∼= Hd(K − {σ, τ}), ∀d.

· · ·
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Proof of invariance by elem. collapse, with matrices

Lemma (Invariance)

For a free pair (τ, σ) in K, Hd(K) ∼= Hd(K − {σ, τ}), ∀d.

A matrix proof: write dim τ = d and dimσ = d+ 1.

0 0· · ·
σ has no coface

τσ 0 0· · · 1

τ has one coface
add row

∂d τ
∂d ◦ ∂d+1(σ) = 0 = ∂d(τ1 + . . .+ τd) + ∂dτ

τ1 τd. . .

. . .

dimBd(K
′) = dimBd(K)− 1

dimZd(K
′) = dimZd(K)− 1

∂d+2 ∂d+1 σ
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Chain maps and their homotopy

Definition (Chain map)

A chain map φ : (C, ∂) → (C′, ∂′) between two chain complexes is a
family of homomorphisms:

φp : Cp → C′
p

that commutes with boundary maps.

· · ·
∂d+2 //

⟲

Cd+1
∂d+1 //

ϕd+1

��
⟲

Cd
∂d //

ϕd

��
⟲

Cd−1
∂d−1 / /

ϕd−1

��
⟲

· · ·

· · ·
∂′d+2

// C′
d+1 ∂′d+1

// C′
d ∂′d

// C′
d−1 ∂′d−1

// · · ·
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Chain maps and their homotopy

Definition (Chain homotopy)

If φ, ψ : (C, ∂) → (C′, ∂′) are chain maps, a chain homotopy of φ to
ψ is a family of homomorphisms

Dp : Cp → C′
p+1

such that ∂′p+1 ◦ Dp + Dp−1 ◦ ∂p = ψp − φp

· · ·
∂d+2 // Cd+1

∂d+1 //

ϕd+1

��

ψd+1





Cd
∂d //

ϕd

��

ψd





Dd
zz
zz
zz

||zz
zz
zz

Cd−1
∂d−1 //

ϕd−1

��

ψd−1





Dd−1
zz
zz
zz

||zz
zz
zz

· · ·

· · ·
∂′d+2

// C′
d+1 ∂′d+1

// C′
d ∂′d

// C′
d−1 ∂′d−1

// · · ·
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Chain maps and their homotopy

Definition (Chain homotopy)

A chain map φ : (C, ∂) → (C′, ∂′) is a chain equivalence if there is a
chain map φ′ : (C′, ∂′) → (C, ∂) such that φ ◦ φ′ and φ′ ◦ φ are chain
homotopic to the identity (of their respective domains).

−→ the algebraic version of an homotopy of continuous functions.

Theorem

If there exists a chain equivalence between two chain complexes,
they have same homology.
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Proof of invariance by elem. collapse, with homotopy

K a simplicial complex, (σ, τ) a free pair:

C•(K)
ϕ // C•(K − {σ, τ}) ψ // C•(K)

with:

ψ(x) = x, i.e. the inclusion C•(K − {σ, τ}) ↪→ C•(K)

φ(x) =


0 if x = σ,

τ − ∂σ if x = τ, and
x otherwise.

D(x) =

{
σ if x = τ,

0 otherwise.

Cd+1
∂d+1 //

ψ◦ϕ

��

id





0
xx
xx
xx
x

{{xx
xx
xx
x

Cd
∂d //

ψ◦ϕ

��

id





Dd
yy
yy
yy

||yy
yy
yy

Cd−1

0
yy
yy
yy
y

||yy
yy
yy
y

Cd+2
// Cd+1

// Cd
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||
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||
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x 6= τ, σ
∂d //

ψ◦ϕ
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id
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Dd
xx
xx
xx

||xx
xx
xx

Cd−1

0
xx
xx
xx

||xx
xx
xx

Cd+2
// 0 // x− x
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}}
}}

τ
∂d //
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Dd
uu
uu
uu
u

z zuu
uu
uu
u

Cd−1

0
uuu

uuu
u

zzuuu
uuu

u

Cd+2
// σ // τ − (τ − ∂σ)
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0
xx
xx
xx
xx

||xx
xx
xx
xx

∂σ = τ + · · · ∂d //

ψ◦ϕ

��

id

��

Dd
sss

sss
ss

yysss
sss

ss

Cd−1

0
ttt

ttt
ttt

yyttt
ttt

ttt

Cd+2
// 0− σ // Cd

16



Proof of invariance by elem. collapse, with homotopy

K a simplicial complex, (σ, τ) a free pair:

C•(K)
ϕ // C•(K − {σ, τ}) ψ // C•(K)

with:

ψ(x) = x, i.e. the inclusion C•(K − {σ, τ}) ↪→ C•(K)

φ(x) =


0 if x = σ,

τ − ∂σ if x = τ, and
x otherwise.

D(x) =

{
σ if x = τ,

0 otherwise.

y 6= σ
∂d+1 //

ψ◦ϕ
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0
yy
yy
yy
y

||yy
yy
yy
y

∂y 63 τ
∂d //

ψ◦ϕ

��

id

��

Dd
ww
ww
ww
w

{{www
ww
ww

Cd−1

0
xx
xx
xx
xx

{{xx
xx
xx
xx

Cd+2
// y− y // Cd
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Exercise

Compute the homology of:

- a tetrahedron, and of an empty tetrahedron,

- a circle,

- an annulus.

Prove the other direction (φ ◦ψ) for the chain equivalence proof of the
invariance of homology by elementary collapse.
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