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Toy Examples

Goal: Define a topological invariant of simplicial complex K — H(K)
that captures the connectivity of the domain |K]|, i.e., num. of
connected components, of holes, of voids, etc.
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Toy Examples

Goal: Define a topological invariant of simplicial complex K — H(K)
that captures the connectivity of the domain |K]|, i.e., num. of
connected components, of holes, of voids, etc.

num. connected 1 1 1 1
components:

. holes: 2 1 5!

How many holes in the planar
graph?

A 4

B 5

C 6



Simplicial complexes, abstract and geometric

Abstract: Set of vertices: Geometric: Points in E:

V={1,...,|V]} LT



Simplicial complexes,

Abstract: Set of vertices:

V={1,....|V|}

A simplex o is a collection of
vertices:
ocCV

abstract and geometric

Geometric: Points in E:

{1,2,4}



Simplicial complexes, abstract and geometric

Abstract: Set of vertices: Geometric: Points in E:
2 3
V=1{1,..., |V} LT
8 * ’7 * 6
A simplex o is a collection of Convex hull of points:
vertices: 2
ocCV : L.
- 1,2,4}
L ] [ ]
[ ]

An abstract simplicial complex K
. . . . . (1}, {21, 3}, {4},
is a family of simplices: (120 (.5 1 2.

— 1. . {1,2,3},{1,2,4},...
K {UI}IEI s.t. @ {1,2,3,4},...

TCoeK=71€K



Simplicial complexes, abstract and geometric

Abstract: Set of vertices:

V={1,...,|V]}

A simplex o is a collection of
vertices:
ocCV

An abstract simplicial complex K
is a family of simplices:
K= {O’,‘},’e/ s.t.:

TCoeK=71€K
Dimension of a simplex =

F£vertices —1

dim:

0

Geometric: Points in E:
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- Asimplex o of dimension d > 0 is a non-empty subset o C V of
d + 1 vertices,
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Definition (Abstract simplicial complex)

Let V= {vi,...,v,} # be a finite set of vertices.
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A cofacet v of o is a coface of dimension d + 1.
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complex such that K’ C K,



Simplicial complexes, abstract

Definition (Abstract simplicial complex)

Let V= {vi,...,vn} # be a finite set of vertices.

A simplex o of dimension d > 0 is a non-empty subset o C V of
d + 1 vertices,

A simplicial complex K is a set of simplices satisfying:

TCoeK=r71ek,

A subface T of o is a simplex such that 7 C o,

A facet T of o is a subface of dimension d — 1,

A coface v of o is a simplex such that o C v,

A cofacet v of o is a coface of dimension d + 1.

A subcomplex K of a simplicial complex K is a simplicial
complex such that K’ C K,

The d-skeleton of K is the subcomplex of K made of all
simplices of dimension at most d.
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Simplicial complexes, abstract

Definition (Abstract simplicial complex)

Let V= {vi,...,vn} # be a finite set of vertices.

- Asimplex o of dimension d > 0 is a non-empty subset o C V of
d + 1 vertices,

- Asimplicial complex K is a set of simplices satisfying:
TCoeK=r71ek,
Remark

- A dimension 1 simplicial complex (e.g., the 1-skeleton of a

simplicial complex) is combinatorially a graph (with no loop nor
multiple edges).

- The intersection T N o of distinct simplices is a strict subface of
both T and o.

- The empty set is not a simplex.
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IF coefficient field (such as Z/2Z), and K a simplicial complex:
Chain group Cy4(K) of formal sums of d-simplices with I coefficients:

Cy(K) = { nyia,- : dimo;=d and v; € F} ex: e1+...+ejg € C;

— Cy(K) is isomorphic to F" the F-vector space of dimension
ng := the number of d-dimensional faces of K.



Homology Theory: Topology via linear algebra

o - N

[vo, v1, v0) [vo, v1] — [v1,v9] + [v2, 0]

F coefficient field (such as Z/27), and K a simplicial complex:

Boundary operator: linear map 9y : Cy(K) — Cy—_1(K) satisfying

d
0d[Vo, - val = > (1) Vo, ., Vis. .., vd]
i=0
—— for o a simplex (seen as a chain), 94(c0) equals the alternate sum
of facets of o, hence the name “boundary”.
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[ coefficient field (such as Z/27), and K a simplicial complex:

Boundary operator: linear map 9y : Cy(K) — Cy—_1(K) satisfying

d
Ad[voy -+ E Y [Voy - Viy ooy V]

i=0
The kernel of 9y, denoted by Zy(K), contains the cycles of K.
— captures the “blue loops”.
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IF coefficient field (such as Z/2Z), and K a simplicial complex:

Boundary operator: linear map Jy : Cy(K) — Cy_1(K) satisfying

d
04V, - val = > _(=1)[Vo,. .., Viy. .., vd]



Homology Theory: Topology via linear algebra

[ coefficient field (such as Z/27), and K a simplicial complex:

Boundary operator: linear map 9y : Cy(K) — Cy_1(K) satisfying

d
8d[V07 tt Vd] = Z(_l)i[v()? e a/\7i7 t Vd]
i=0
The image of 041, denoted by By (K), contains the boundaries of K.
— captures the “hashed surfaces” separating two equivalent cycles.

B
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IF coefficient field (such as Z/2Z), and K a simplicial complex:

Cycles Zyq = ker Oy Boundaries By = im 0411

Theorem

For a simplicial complex K, for all d > 0.

ForF = Z/27Z, and o = [vp, ..., v4] a d-dimensional simplex:
5'd_1 e} 8d(0')
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Theorem
For a simplicial complex K, for all d > 0.
ForF = Z/27Z, and o = [vp, ..., v4] a d-dimensional simplex:
d
6‘d_1 Oad(O') = 8d_1 (Z[VO""’Vi""’Vd]>
i=0
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IF coefficient field (such as Z/2Z), and K a simplicial complex:

Cycles Zyq = ker Oy Boundaries By = im 0411

Theorem
For a simplicial complex K, for all d > 0.
ForF = Z/27Z, and o = [vp, ..., v4] a d-dimensional simplex:

d
5‘d_1 Oad(O') = 8d_1 (Z[VO""’Vi""’Vd]>
J i=0
= > g1 ([Vos- -5 Viy - val)
i=0

d
= Z ZVO, Ve Vi Vg E [VOs -3 Viy oy Vo, V)

i=0 J<i i<j
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Cycles Zyq = ker Oy Boundaries By = im 0411

Theorem
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d
6‘d_1 Oad(O') = 8d_1 (Z[VO""’Vi""’Vd]>
i=0
d
= ad_l ([vo,...,V,-,...,vd])
i=0

d
= D> D lvor Vo Va0 Vi Ve v

=0 \ j<i i<

= Vd >0, By C Zy.

[6]
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Theorem
For a simplicial complex K, for all d > 0.
ForF = Z/27Z, and o = [vp, ..., v4] a d-dimensional simplex:
d
8(1_1 Oad(O') = 8d_1 (Z[VO""’Vi""’Vd]>
i=0
d
= ad_l ([vo,...,V,-,...,vd])
i=0

d
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IF coefficient field (such as Z/2Z), and K a simplicial complex:

Cycles Zg = ker 8y Boundaries By = im Oyr1 Homology group |Hy = Zg/By

Theorem

For a simplicial complex K, for all d > 0.

The dimension  dimHy(K) = dimZ, — dim By is the dth Betti
number [y of K (with IF coefficients).

Hy=([d)



Homology computation

ac

cd

ab
be

acd

Q6 o2

ac cd ad ab be

1 0
0 0

1

0
0
1

1
1
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0
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Homology computation

ac

cd
ad

ab
be

ac

ac+cd

ac + ad
ab

be

acd

o o o <O

Q6 o2

d + ¢
d

b
a+b+c+d

ac cd ad ab be

1 0 1 1 0

0 0 0 1 1

1 1 0 0 1

0 1 1 0 0
ab+ ac+

we od ab ac+ cd+
bc  ad

1 0 0 0 0

0O 1 0 0 0

0 0 1 0 0

0 0 0 0 0




op

basis for

Bi

Homology computation

ac

cd
ad

ab
be

basis for Zy

acd

1

Q6 o2

[ —

basis for Cy

ac cd ad ab be

1 0 1 1 0
o 0 0 1 1
11 0 0 1
01 1 0 0

Smith normal form
O(n?) algorithm

basis for

Cia
By = dimZy — dimBy



Euler characteristic and Betti numbers

Lemma

Let K be simplicial complex with ny d-dimensional simplices, and dth
Betti number 4. Then its Euler characteristic x(K) satisfies:

X(K) = (=1)%ng = (-1)%Bq

d d
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Euler characteristic and Betti numbers

Lemma

Let K be simplicial complex with ny d-dimensional simplices, and dth
Betti number 4. Then its Euler characteristic x(K) satisfies:

X(K) = (=1)%ng = (-1)%Bq

d d
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Euler characteristic and Betti numbers

Lemma

Let K be simplicial complex with ny d-dimensional simplices, and dth
Betti number 4. Then its Euler characteristic x(K) satisfies:

X(K) = S(=1)%ng = S(-1)%84

d d

d (=1)%q = > (~1)?[dim Zg — dim By

d d
= > (-1)?dimZys+ Y (-1)*" dimBy
d d
= Y (~1)?dimkerdg + » (~1)?dimim dy
d d+1
= Y (-1)?dimCy=> (~1)ny.
d d
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exists a path u = vp, v1,..., vk = v in the 1-skeleton connecting
uand v. Hence: u 4 01 ([vovl] + [viva] + ... [v4—1v4]) = v, and
u and v belong to the same homology class (they differ by an
element of By).

Bo < num. of connected components.



A graph theory exercise:

Prove that 3y (with Z/27Z coefficients) is equal to the number of
connected components of the complex.

- 0p = 0 = Cy = Zp and all vertices are cycles.

- if vertices u and v are in the same connected component, there
exists a path u = vp, v1,..., vk = v in the 1-skeleton connecting
uand v. Hence: u 4 01 ([vovl] + [viva] + ... [v4—1v4]) = v, and
u and v belong to the same homology class (they differ by an
element of By).

Bo < num. of connected components.

- if [u] = [v] in Hy then there exists ¢ € Cy such that u + v = dc.
Considering c as a graph (it is a collection of edges), u and v are
the only odd degree vertices in c. Because the sum of degrees of
a graph is even, u and v must belong to the same connected
component.

Bo > num. of connected components.



Topological invariance

The fundamental property of homology is its topological invariance:

Theorem (Topological invariance)

Let K and K’ be simplicial complexes such that their domains |K| and
|K'| are homotopy equivalent as topological spaces, then

H,(K) = Hy(K'), Vd.

We prove something simpler, and purely combinatorial.

10



Elementary collapses

Definition
Let K be a simplicial complex. A free pair (T, 0) is a pair of simplices
such that 7 has a unique coface o.

An elementary collapse K — K — {7, 0} is the removal of a free pair.

— an elementary collapse is a combinatorial version of a “local
deformation retract” in topology.
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Elementary collapses

Definition

Let K be a simplicial complex. A free pair (T, 0) is a pair of simplices
such that 7 has a unique coface o.

An elementary collapse K — K — {7, 0} is the removal of a free pair.
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Lemma (Invariance)
For a free pair (1,0) in K, Hy(K) 2 Hy(K — {o,7}), Vd.
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Proof of invariance by elem. collapse, with matrices

Lemma (Invariance)
For a free pair (1,0) in K, Hy(K) 2 Hy(K — {o,7}), Vd.

A matrix proof: write dim 7 = d and dimo = d + 1.
Dir2 Od+1 o
X
X
X
oL 0 T W Oladdrow
A o has no coface A 7 has one coface

Oyg T ...Tq T
x| 0300441(0) =0=0y(m + ...+ 74) + 047

dim By(K') = dim By(K) — 1
dim Zd(K/) = dim Zd(K) —1




Chain maps and their homotopy

Definition (Chain map)

A chain map ¢: (C,0) — (C', ") between two chain complexes is a
family of homomorphisms:
¢p: Cp — C;g

that commutes with boundary maps.

Og12 41 , Og-1
Cat1 Cy—>Cyq ——=
i¢d+l ' J{(ﬁd ' l%l
CZ/ 1 Cii C& 1 =

/ / / — /
ad+2 8d-‘—l 8d 8(1— 1



Chain maps and their homotopy

Definition (Chain homotopy)

If p,7: (C,0) — (C', ) are chain maps, a chain homotopy of ¢ to
1 is a family of homomorphisms

. /
Dp: Cp = Gy

such that 0410Dp+Dp108, =thp —

Od+2 Od+1 o) Od—1
Cy d

Gy

d+1 Ya41 Dd ¢4 Y Dy 1¢d-1 Ya—1

/
Cd K)/ — a/
d+2 d+1 Ga d—1

Cyq——t o,



Chain maps and their homotopy

Definition (Chain homotopy)

A chain map ¢: (C,9) — (C',d’) is a chain equivalence if there is a
chain map ¢': (C',9") — (C, ) such that ¢ o ¢' and ¢’ o ¢ are chain
homotopic to the identity (of their respective domains).

— the algebraic version of an homotopy of continuous functions.



Chain maps and their homotopy

Definition (Chain homotopy)

A chain map ¢: (C,9) — (C',d’) is a chain equivalence if there is a
chain map ¢': (C',9") — (C, ) such that ¢ o ¢' and ¢’ o ¢ are chain
homotopic to the identity (of their respective domains).

— the algebraic version of an homotopy of continuous functions.

Theorem

If there exists a chain equivalence between two chain complexes,
they have same homology.
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Proof of invariance by elem. collapse, with homotopy

K a simplicial complex, (o, 7) a free pair:

CoK) — 2~ Co(K - {o,7}) — ¥~ Cu(K)
with:

P(x) = x, ie.theinclusion Ce(K — {0,7}) < Ce¢(K)

0 if x =0, .
¢(X) = T—00 ifx= T, and D(X) _ o 1nx= 7?7
; 0 otherwise.
X otherwise.
0,
Cot1 o — oy,

/()41’ id//)(% id/()/

Co2 Cay1 Cy




Proof of invariance by elem. collapse, with homotopy

K a simplicial complex, (o, 7) a free pair:

with:

P(x)

Co(K) — 2

Ca(K — {0, 7}) ——= C.(K)

= x, i.e. theinclusion C¢(K — {0,7}) — C4(K)

0 if x = o, iy —
= T—00 ifx=7, and D(x) = “ IX_T_’
) 0 otherwise.
X otherwise.

Cd+1ﬂ>#fﬂi>cd—1
0 ww( )id Dd%( )id o/
/ e e

Cyt2 X — X




Proof of invariance by elem. collapse, with homotopy

K a simplicial complex, (o, 7) a free pair:

Co(K)— 2~ Cu(K — {o,7})
with:

C.(K)

P(x) = x, ie.theinclusion Ce(K — {0,7}) < Ce¢(K)

0 if x =0, .
¢(X) = T—00 ifx= T, and D(X) _ o 1nx= 7?7
; 0 otherwise.
X otherwise.
o P
Cd“ = . Cy-1




Proof of invariance by elem. collapse, with homotopy

K a simplicial complex, (o, 7) a free pair:

with:

P(x)

CoK) — 2~ Co(K - {o,7}) — ¥~ Cu(K)

= x, i.e. theinclusion C¢(K — {0,7}) — C4(K)

0 if x = o, iy —
= T—00 ifx=7, and D(x):{a =T

) 0 otherwise.
X otherwise.

0

I/
\
\

/ \ l/d ww ¢7

G ———[0-]




Proof of invariance by elem. collapse, with homotopy

K a simplicial complex, (o, 7) a free pair:

with:

P(x)

CoK) — 2~ Co(K - {o,7}) — ¥~ Cu(K)

= x, i.e. theinclusion C¢(K — {0,7}) — C4(K)

0 if x = o, iy —
= T—00 ifx=7, and D(x) = “ IX_T_’
) 0 otherwise.
X otherwise.
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Exercise

Compute the homology of:
- atetrahedron, and of an empty tetrahedron,
- acircle,
- an annulus.

Prove the other direction (¢ o ) for the chain equivalence proof of the
invariance of homology by elementary collapse.



