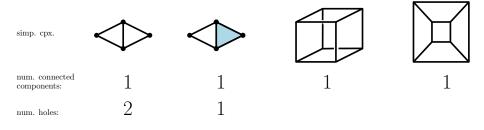
1 - Homology Theory

Clément Maria

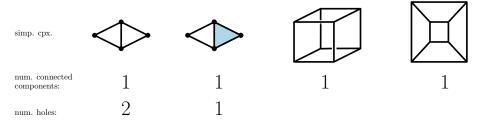
MPRI 2.14.1 Computational Geometry and Topology

2023-2024

Goal: Define a *topological invariant* of *simplicial complex* $\mathbf{K} \mapsto \mathbf{H}(\mathbf{K})$ that captures the *connectivity* of the domain $|\mathbf{K}|$, i.e., num. of connected components, of holes, of voids, etc.



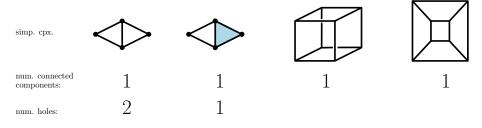
Goal: Define a *topological invariant* of *simplicial complex* $\mathbf{K} \mapsto \mathbf{H}(\mathbf{K})$ that captures the *connectivity* of the domain $|\mathbf{K}|$, i.e., num. of connected components, of holes, of voids, etc.



How many holes in the 1-skeleton of the cube?

- A 4
- **B** 5
- <mark>C</mark> 6

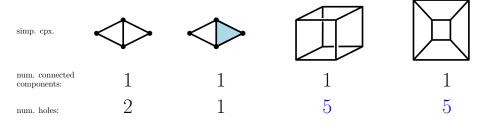
Goal: Define a *topological invariant* of *simplicial complex* $\mathbf{K} \mapsto \mathbf{H}(\mathbf{K})$ that captures the *connectivity* of the domain $|\mathbf{K}|$, i.e., num. of connected components, of holes, of voids, etc.



How many holes in the planar graph?

- A 4
- <mark>B</mark> 5
- **C** 6

Goal: Define a *topological invariant* of *simplicial complex* $\mathbf{K} \mapsto \mathbf{H}(\mathbf{K})$ that captures the *connectivity* of the domain $|\mathbf{K}|$, i.e., num. of connected components, of holes, of voids, etc.



How many holes in the planar graph?

- A 4
- **B** 5
- C 6

Abstract: Set of vertices:

$$V = \{1, \ldots, |V|\}$$

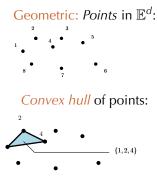
Geometric: Points in \mathbb{E}^d :

Abstract: Set of vertices:

$$V = \{1, \ldots, |V|\}$$

A *simplex* σ is a collection of vertices:

 $\sigma \subseteq V$



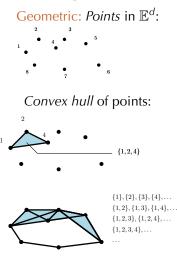
Abstract: Set of vertices:

$$V = \{1, \ldots, |V|\}$$

A *simplex* σ is a collection of vertices:

 $\sigma \subseteq V$

An abstract simplicial complex **K** is a family of simplices: $\mathbf{K} = \{\sigma_i\}_{i \in I}$ s.t.:



Abstract: Set of vertices:

$$V = \{1, \ldots, |V|\}$$

A *simplex* σ is a collection of vertices:

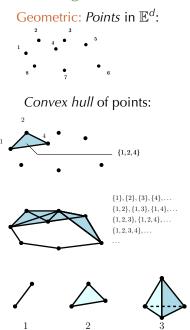
 $\sigma \subseteq V$

An abstract simplicial complex **K** is a family of simplices: $\mathbf{K} = \{\sigma_i\}_{i \in I}$ s.t.:

 $\tau \subseteq \sigma \in \mathbf{K} \Rightarrow \tau \in \mathbf{K}$

dim:

Dimension of a simplex = #vertices -1



3

Definition (Abstract simplicial complex)

- Let $V = \{v_1, \ldots, v_n\} \neq$ be a finite set of vertices.
 - A simplex σ of dimension $d \ge 0$ is a non-empty subset $\sigma \subseteq V$ of d+1 vertices,

Definition (Abstract simplicial complex)

Let $V = \{v_1, \ldots, v_n\} \neq$ be a finite set of vertices.

- A simplex σ of dimension $d \ge 0$ is a non-empty subset $\sigma \subseteq V$ of d+1 vertices,
- A simplicial complex **K** is a set of simplices satisfying:

Definition (Abstract simplicial complex)

Let $V = \{v_1, \ldots, v_n\} \neq$ be a finite *set* of vertices.

- A simplex σ of dimension $d \ge 0$ is a non-empty subset $\sigma \subseteq V$ of d+1 vertices,
- A simplicial complex **K** is a *set* of simplices satisfying:

 $\tau \subset \sigma \in \mathbf{K} \Rightarrow \tau \in \mathbf{K},$

- A subface τ of σ is a simplex such that $\tau \subset \sigma$,

Definition (Abstract simplicial complex)

Let $V = \{v_1, \ldots, v_n\} \neq$ be a finite *set* of vertices.

- A simplex σ of dimension $d \ge 0$ is a non-empty subset $\sigma \subseteq V$ of d+1 vertices,
- A simplicial complex \mathbf{K} is a set of simplices satisfying:

- A subface τ of σ is a simplex such that $\tau \subset \sigma$,
- A facet τ of σ is a subface of dimension d-1,

Definition (Abstract simplicial complex)

Let $V = \{v_1, \ldots, v_n\} \neq$ be a finite set of vertices.

- A simplex σ of dimension $d \ge 0$ is a non-empty subset $\sigma \subseteq V$ of d+1 vertices,
- A simplicial complex **K** is a *set* of simplices satisfying:

- A subface τ of σ is a simplex such that $\tau \subset \sigma$,
- A facet τ of σ is a subface of dimension d-1,
- A coface ν of σ is a simplex such that $\sigma \subset \nu$,

Definition (Abstract simplicial complex)

Let $V = \{v_1, \ldots, v_n\} \neq$ be a finite set of vertices.

- A simplex σ of dimension $d \ge 0$ is a non-empty subset $\sigma \subseteq V$ of d + 1 vertices,
- A simplicial complex **K** is a *set* of simplices satisfying:

- A subface τ of σ is a simplex such that $\tau \subset \sigma$,
- A facet τ of σ is a subface of dimension d-1,
- A coface ν of σ is a simplex such that $\sigma \subset \nu$,
- A cofacet ν of σ is a coface of dimension d + 1.

Definition (Abstract simplicial complex)

Let $V = \{v_1, \ldots, v_n\} \neq$ be a finite set of vertices.

- A simplex σ of dimension $d \ge 0$ is a non-empty subset $\sigma \subseteq V$ of d + 1 vertices,
- A simplicial complex \mathbf{K} is a set of simplices satisfying:

- A subface τ of σ is a simplex such that $\tau \subset \sigma$,
- A facet τ of σ is a subface of dimension d-1,
- A coface ν of σ is a simplex such that $\sigma \subset \nu$,
- A cofacet ν of σ is a coface of dimension d + 1.
- A subcomplex K' of a simplicial complex K is a simplicial complex such that $K' \subset K,$

Definition (Abstract simplicial complex)

Let $V = \{v_1, \ldots, v_n\} \neq$ be a finite set of vertices.

- A simplex σ of dimension $d \ge 0$ is a non-empty subset $\sigma \subseteq V$ of d + 1 vertices,
- A simplicial complex \mathbf{K} is a set of simplices satisfying:

- A subface τ of σ is a simplex such that $\tau \subset \sigma$,
- A facet τ of σ is a subface of dimension d-1,
- A coface ν of σ is a simplex such that $\sigma \subset \nu$,
- A cofacet ν of σ is a coface of dimension d + 1.
- A subcomplex K' of a simplicial complex K is a simplicial complex such that $K' \subset K,$
- The *d*-skeleton of **K** is the subcomplex of **K** made of all simplices of dimension at most *d*.

Definition (Abstract simplicial complex)

Let $V = \{v_1, \ldots, v_n\} \neq$ be a finite set of vertices.

- A simplex σ of dimension $d \ge 0$ is a non-empty subset $\sigma \subseteq V$ of d+1 vertices,
- A simplicial complex **K** is a *set* of simplices satisfying:

$$\tau \subset \sigma \in \mathbf{K} \Rightarrow \tau \in \mathbf{K},$$

Remark

- A dimension 1 simplicial complex (e.g., the 1-skeleton of a simplicial complex) is combinatorially a graph (with no loop nor multiple edges).

Definition (Abstract simplicial complex)

Let $V = \{v_1, \ldots, v_n\} \neq$ be a finite set of vertices.

- A simplex σ of dimension $d \ge 0$ is a non-empty subset $\sigma \subseteq V$ of d+1 vertices,
- A simplicial complex **K** is a *set* of simplices satisfying:

$$\tau \subset \sigma \in \mathbf{K} \Rightarrow \tau \in \mathbf{K},$$

Remark

- A dimension 1 simplicial complex (e.g., the 1-skeleton of a simplicial complex) is combinatorially a graph (with no loop nor multiple edges).
- The intersection $\tau \cap \sigma$ of distinct simplices is a strict subface of both τ and σ .

Definition (Abstract simplicial complex)

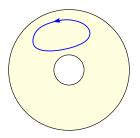
Let $V = \{v_1, \ldots, v_n\} \neq$ be a finite set of vertices.

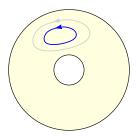
- A simplex σ of dimension $d \ge 0$ is a non-empty subset $\sigma \subseteq V$ of d+1 vertices,
- A simplicial complex **K** is a *set* of simplices satisfying:

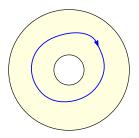
$$\tau \subset \sigma \in \mathbf{K} \Rightarrow \tau \in \mathbf{K},$$

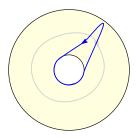
Remark

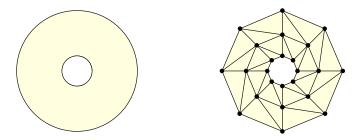
- A dimension 1 simplicial complex (e.g., the 1-skeleton of a simplicial complex) is combinatorially a graph (with no loop nor multiple edges).
- The intersection $\tau \cap \sigma$ of distinct simplices is a strict subface of both τ and σ .
- The empty set is not a simplex.



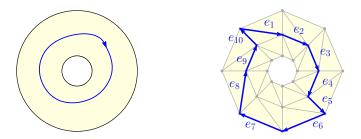








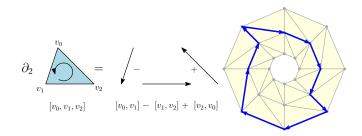
 \mathbb{F} coefficient field (such as $\mathbb{Z}/2\mathbb{Z}$), and **K** a simplicial complex:



 \mathbb{F} coefficient field (such as $\mathbb{Z}/2\mathbb{Z}$), and \mathbf{K} a simplicial complex:

Chain group $\mathbf{C}_d(\mathbf{K})$ of formal sums of *d*-simplices with \mathbb{F} coefficients: $\mathbf{C}_d(\mathbf{K}) = \left\{ \sum_i \gamma_i \sigma_i : \dim \sigma_i = d \text{ and } \gamma_i \in \mathbb{F} \right\}$ ex: $e_1 + \ldots + e_{10} \in \mathbf{C}_1$

 \longrightarrow **C**_d(**K**) is isomorphic to \mathbb{F}^{n_d} the \mathbb{F} -vector space of dimension $n_d :=$ the number of *d*-dimensional faces of **K**.

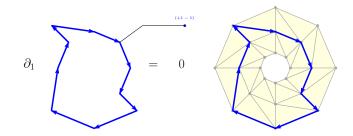


 \mathbb{F} coefficient field (such as $\mathbb{Z}/2\mathbb{Z}$), and **K** a simplicial complex:

Boundary operator: linear map $\partial_d : \mathbf{C}_d(\mathbf{K}) \to \mathbf{C}_{d-1}(\mathbf{K})$ satisfying

$$\partial_d[v_0,\ldots,v_d] = \sum_{i=0}^d (-1)^i [v_0,\ldots,\widehat{v}_i,\ldots,v_d]$$

 \rightarrow for σ a simplex (seen as a chain), $\partial_d(\sigma)$ equals the alternate sum of facets of σ , hence the name "boundary".

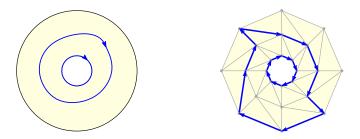


 \mathbb{F} coefficient field (such as $\mathbb{Z}/2\mathbb{Z}$), and \mathbf{K} a simplicial complex:

Boundary operator: linear map $\partial_d : \mathbf{C}_d(\mathbf{K}) \to \mathbf{C}_{d-1}(\mathbf{K})$ satisfying

$$\partial_d[v_0,\ldots,v_d] = \sum_{i=0}^d (-1)^i [v_0,\ldots,\widehat{v}_i,\ldots,v_d]$$

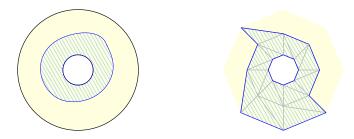
The kernel of ∂_d , denoted by $\mathbf{Z}_d(\mathbf{K})$, contains the cycles of \mathbf{K} . \longrightarrow captures the "blue loops".



 \mathbb{F} coefficient field (such as $\mathbb{Z}/2\mathbb{Z}$), and **K** a simplicial complex:

Boundary operator: linear map $\partial_d : \mathbf{C}_d(\mathbf{K}) \to \mathbf{C}_{d-1}(\mathbf{K})$ satisfying

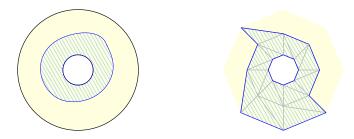
$$\partial_d[v_0,\ldots,v_d] = \sum_{i=0}^d (-1)^i [v_0,\ldots,\widehat{v}_i,\ldots,v_d]$$



 \mathbb{F} coefficient field (such as $\mathbb{Z}/2\mathbb{Z}$), and \mathbf{K} a simplicial complex:

Boundary operator: linear map $\partial_d : \mathbf{C}_d(\mathbf{K}) \to \mathbf{C}_{d-1}(\mathbf{K})$ satisfying

$$\partial_d[v_0,\ldots,v_d] = \sum_{i=0}^d (-1)^i [v_0,\ldots,\widehat{v}_i,\ldots,v_d]$$



 \mathbb{F} coefficient field (such as $\mathbb{Z}/2\mathbb{Z}$), and \mathbf{K} a simplicial complex:

Boundary operator: linear map $\partial_d : \mathbf{C}_d(\mathbf{K}) \to \mathbf{C}_{d-1}(\mathbf{K})$ satisfying

$$\partial_d[\mathbf{v}_0,\ldots,\mathbf{v}_d] = \sum_{i=0}^d (-1)^i [\mathbf{v}_0,\ldots,\widehat{\mathbf{v}}_i,\ldots,\mathbf{v}_d]$$

The image of ∂_{d+1} , denoted by $\mathbf{B}_d(\mathbf{K})$, contains the boundaries of \mathbf{K} . \longrightarrow captures the "hashed surfaces" separating two equivalent cycles.

 \mathbb{F} coefficient field (such as $\mathbb{Z}/2\mathbb{Z}$), and \mathbf{K} a simplicial complex:

Cycles $\mathbf{Z}_d = \ker \partial_d$ Boundaries $\mathbf{B}_d = \operatorname{im} \partial_{d+1}$

 \mathbb{F} coefficient field (such as $\mathbb{Z}/2\mathbb{Z}$), and \mathbf{K} a simplicial complex:

Cycles $\mathbf{Z}_d = \ker \partial_d$ *Boundaries* $\mathbf{B}_d = \operatorname{im} \partial_{d+1}$

Theorem	
For a simplicial complex ${f K}_{,}$	$\partial_d \circ \partial_{d+1} = 0$ for all $d \ge 0$.

Cycles $\mathbf{Z}_d = \ker \partial_d$ Boundaries $\mathbf{B}_d = \operatorname{im} \partial_{d+1}$

Theorem	
For a simplicial complex ${f K}$,	$\partial_d \circ \partial_{d+1} = 0$ for all $d \ge 0$.
	1 / 11

For $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$, and $\sigma = [v_0, \dots, v_d]$ a *d*-dimensional simplex:

Cycles $\mathbf{Z}_d = \ker \partial_d$ Boundaries $\mathbf{B}_d = \operatorname{im} \partial_{d+1}$

Theorem						
For a simplicial complex ${f K}$,	$\boxed{\partial_d \circ \partial_{d+1} = 0} \text{ for all } d \ge 0.$					
For $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$, and $\sigma = [v_0, \dots, v_d]$ a <i>d</i> -dimensional simplex:						

 $\partial_{d-1} \circ \partial_d(\sigma)$

Theorem
For a simplicial complex **K**,
$$\overline{\partial_d \circ \partial_{d+1}} = 0$$
 for all $d \ge 0$.
For $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$, and $\sigma = [v_0, \dots, v_d]$ a *d*-dimensional simplex:
 $\partial_{d-1} \circ \partial_d(\sigma) = \partial_{d-1} \left(\sum_{i=0}^d [v_0, \dots, \widehat{v}_i, \dots, v_d] \right)$

Theorem
For a simplicial complex **K**,
$$\partial_d \circ \partial_{d+1} = 0$$
 for all $d \ge 0$.
For $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$, and $\sigma = [v_0, \dots, v_d]$ a *d*-dimensional simplex:
 $\partial_{d-1} \circ \partial_d(\sigma) = \partial_{d-1} \left(\sum_{i=0}^d [v_0, \dots, \widehat{v}_i, \dots, v_d] \right)$
 $= \sum_{i=0}^d \partial_{d-1} \left([v_0, \dots, \widehat{v}_i, \dots, v_d] \right)$

Theorem
For a simplicial complex **K**,
$$\overline{\partial_d \circ \partial_{d+1}} = 0$$
 for all $d \ge 0$.
For $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$, and $\sigma = [v_0, \dots, v_d]$ a d -dimensional simplex:
 $\partial_{d-1} \circ \partial_d(\sigma) = \partial_{d-1} \left(\sum_{i=0}^d [v_0, \dots, \widehat{v}_i, \dots, v_d] \right)$
 $= \sum_{i=0}^d \partial_{d-1} \left([v_0, \dots, \widehat{v}_i, \dots, v_d] \right)$
 $= \sum_{i=0}^d \left(\sum_{j < i} [v_0, \dots, \widehat{v}_j, \dots, \widehat{v}_i, \dots, v_d] + \sum_{i < j} [v_0, \dots, \widehat{v}_i, \dots, \widehat{v}_j, \dots, v_d] \right)$

Theorem
For a simplicial complex **K**,
$$\overline{\partial_d \circ \partial_{d+1}} = 0$$
 for all $d \ge 0$.
For $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$, and $\sigma = [v_0, \dots, v_d]$ a *d*-dimensional simplex:
 $\partial_{d-1} \circ \partial_d(\sigma) = \partial_{d-1} \left(\sum_{i=0}^d [v_0, \dots, \widehat{v}_i, \dots, v_d] \right)$
 $= \sum_{i=0}^d \partial_{d-1} \left([v_0, \dots, \widehat{v}_i, \dots, v_d] + \sum_{i < j} [v_0, \dots, \widehat{v}_i, \dots, \widehat{v}_j, \dots, v_d] \right)$
 $= 0$

Theorem
For a simplicial complex **K**,
$$\overline{\partial_d \circ \partial_{d+1} = 0}$$
 for all $d \ge 0$.
For $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$, and $\sigma = [v_0, \dots, v_d]$ a d -dimensional simplex:
 $\partial_{d-1} \circ \partial_d(\sigma) = \partial_{d-1} \left(\sum_{i=0}^d [v_0, \dots, \widehat{v}_i, \dots, v_d] \right)$
 $= \sum_{i=0}^d \partial_{d-1} \left([v_0, \dots, \widehat{v}_i, \dots, v_d] + \sum_{i < j} [v_0, \dots, \widehat{v}_i, \dots, \widehat{v}_j, \dots, v_d] \right)$
 $= 0 \implies \forall d \ge 0, \ \mathbf{B}_d \subseteq \mathbf{Z}_d.$

Cycles $\mathbf{Z}_d = \ker \partial_d$ Boundaries $\mathbf{B}_d = \operatorname{im} \partial_{d+1}$ Homology group $|\mathbf{H}_d = \mathbf{Z}_d / \mathbf{B}_d|$

Theorem

For a simplicial complex **K**,
$$\partial_d \circ \partial_{d+1} = 0$$
 for all $d \ge 0$.

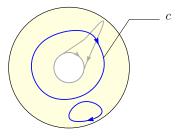
For $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$, and $\sigma = [v_0, \dots, v_d]$ a *d*-dimensional simplex:

$$\partial_{d-1} \circ \partial_d(\sigma) = \partial_{d-1} \left(\sum_{i=0}^d [v_0, \dots, \widehat{v}_i, \dots, v_d] \right)$$
$$= \sum_{i=0}^d \partial_{d-1} \left([v_0, \dots, \widehat{v}_i, \dots, v_d] \right)$$
$$= \sum_{i=0}^d \left(\sum_{j < i} [v_0, \dots, \widehat{v}_j, \dots, \widehat{v}_i, \dots, v_d] + \sum_{i < j} [v_0, \dots, \widehat{v}_i, \dots, \widehat{v}_j, \dots, v_d] \right)$$
$$= 0 \Longrightarrow \forall d \ge 0, \quad \mathbf{B}_d \subseteq \mathbf{Z}_d,$$

Cycles $\mathbf{Z}_d = \ker \partial_d$ Boundaries $\mathbf{B}_d = \operatorname{im} \partial_{d+1}$ Homology group $|\mathbf{H}_d = \mathbf{Z}_d / \mathbf{B}_d|$

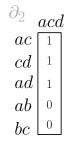
Theorem	
For a simplicial complex \mathbf{K} ,	$\overline{\partial_d \circ \partial_{d+1}} = 0$ for all $d \ge 0$.

The dimension $\dim \mathbf{H}_d(\mathbf{K}) = \dim \mathbf{Z}_d - \dim \mathbf{B}_d$ is the *d*th Betti number β_d of **K** (with \mathbb{F} coefficients).



$$\mathbf{H}_1 = \langle [c] \rangle$$

Homology computation

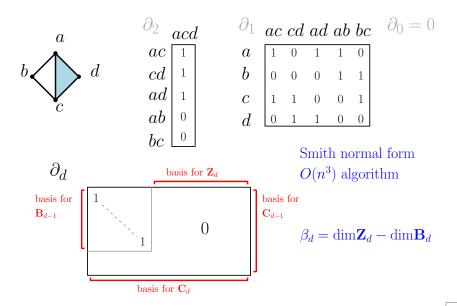


$$\begin{array}{ccccccc} \partial_1 & ac \ cd \ ad \ ab \ bc \\ a & \hline 1 & 0 & 1 & 1 & 0 \\ b & 0 & 0 & 0 & 1 & 1 \\ c & 1 & 1 & 0 & 0 & 1 \\ d & 0 & 1 & 1 & 0 & 0 \end{array}$$

Homology computation

∂_2	acd	∂_1	ac	cd	ad	ab	bc	$\partial_0 = 0$
$ac \\ cd$	1	a	1	0	1	1	0	
cd	1	b	0	0	0	1	1	
ad	1	c	1	1	0	0	1	
ab bc	0	$c \\ d$	0	1	1	0	0	
bc	0							
∂_2	acd	∂_1	ac	cd	ab	ab+ac+bc	ac-cd-ad	
ac	1	d + c	1	0	0	0	0	
ac + cd	0	d	0	1	0	0	0	
ac + ad	0	b	0	0	1	0	0	
ab	0	a+b+c+d	0	0	0 1 0	0	0	
bc	0							

Homology computation



Lemma

$$\chi(\mathbf{K}) = \sum_{d} (-1)^{d} n_{d} = \sum_{d} (-1)^{d} \beta_{d}$$

Lemma

$$\chi(\mathbf{K}) = \sum_{d} (-1)^{d} n_{d} = \sum_{d} (-1)^{d} \beta_{d}$$

$$\sum_{d} (-1)^{d} \beta_{d} = \sum_{d} (-1)^{d} \left[\dim \mathbf{Z}_{d} - \dim \mathbf{B}_{d} \right]$$

Lemma

$$\chi(\mathbf{K}) = \sum_{d} (-1)^{d} n_{d} = \sum_{d} (-1)^{d} \beta_{d}$$

$$\sum_{d} (-1)^{d} \beta_{d} = \sum_{d} (-1)^{d} \left[\dim \mathbf{Z}_{d} - \dim \mathbf{B}_{d} \right]$$
$$= \sum_{d} (-1)^{d} \dim \mathbf{Z}_{d} + \sum_{d} (-1)^{d+1} \dim \mathbf{B}_{d}$$

Lemma

$$\chi(\mathbf{K}) = \sum_{d} (-1)^{d} n_{d} = \sum_{d} (-1)^{d} \beta_{d}$$

$$\begin{split} \sum_{d} (-1)^{d} \beta_{d} &= \sum_{d} (-1)^{d} \left[\dim \mathbf{Z}_{d} - \dim \mathbf{B}_{d} \right] \\ &= \sum_{d} (-1)^{d} \dim \mathbf{Z}_{d} + \sum_{d} (-1)^{d+1} \dim \mathbf{B}_{d} \\ &= \sum_{d} (-1)^{d} \dim \ker \partial_{d} + \sum_{d+1} (-1)^{d} \dim \operatorname{im} \, \partial_{d} \end{split}$$

Lemma

$$\chi(\mathbf{K}) = \sum_{d} (-1)^{d} n_{d} = \sum_{d} (-1)^{d} \beta_{d}$$

$$\begin{split} \sum_{d} (-1)^{d} \beta_{d} &= \sum_{d} (-1)^{d} \left[\dim \mathbf{Z}_{d} - \dim \mathbf{B}_{d} \right] \\ &= \sum_{d} (-1)^{d} \dim \mathbf{Z}_{d} + \sum_{d} (-1)^{d+1} \dim \mathbf{B}_{d} \\ &= \sum_{d} (-1)^{d} \dim \ker \partial_{d} + \sum_{d+1} (-1)^{d} \dim \operatorname{im} \partial_{d} \\ &= \sum_{d} (-1)^{d} \dim \mathbf{C}_{d} = \sum_{d} (-1)^{d} n_{d}. \end{split}$$

Prove that β_0 (with $\mathbb{Z}/2\mathbb{Z}$ coefficients) is equal to the number of connected components of the complex.

Prove that β_0 (with $\mathbb{Z}/2\mathbb{Z}$ coefficients) is equal to the number of connected components of the complex.

- $\partial_0 = 0 \Rightarrow C_0 = \mathbf{Z}_0$ and all vertices are cycles.

Prove that β_0 (with $\mathbb{Z}/2\mathbb{Z}$ coefficients) is equal to the number of connected components of the complex.

- $\partial_0 = 0 \Rightarrow C_0 = \mathbf{Z}_0$ and all vertices are cycles.
- if vertices *u* and *v* are in the same connected component, there exists a path $u = v_0, v_1, \ldots, v_k = v$ in the 1-skeleton connecting *u* and *v*. Hence: $u + \partial_1([v_0v1] + [v_1v_2] + \ldots [v_{d-1}v_d]) = v$, and *u* and *v* belong to the same homology class (they differ by an element of **B**₀).

 $\beta_0 \leq$ num. of connected components.

Prove that β_0 (with $\mathbb{Z}/2\mathbb{Z}$ coefficients) is equal to the number of connected components of the complex.

- $\partial_0 = 0 \Rightarrow C_0 = \mathbf{Z}_0$ and all vertices are cycles.
- if vertices *u* and *v* are in the same connected component, there exists a path $u = v_0, v_1, \ldots, v_k = v$ in the 1-skeleton connecting *u* and *v*. Hence: $u + \partial_1([v_0v1] + [v_1v_2] + \ldots [v_{d-1}v_d]) = v$, and *u* and *v* belong to the same homology class (they differ by an element of **B**₀).

$\beta_0 \leq$ num. of connected components.

- if [u] = [v] in \mathbf{H}_0 then there exists $c \in \mathbf{C}_1$ such that $u + v = \partial_1 c$. Considering *c* as a graph (it is a collection of edges), *u* and *v* are the only *odd* degree vertices in *c*. Because the sum of degrees of a graph is even, *u* and *v* must belong to the same connected component.

 $\beta_0 \geq$ num. of connected components.

Topological invariance

The fundamental property of homology is its topological invariance:

Theorem (Topological invariance)

Let K and K' be simplicial complexes such that their domains $|\mathbf{K}|$ and $|\mathbf{K}'|$ are homotopy equivalent as topological spaces, then

 $\mathbf{H}_d(\mathbf{K}) \cong \mathbf{H}_d(\mathbf{K}'), \quad \forall d.$

We prove something simpler, and purely combinatorial.

Elementary collapses

Definition

Let **K** be a simplicial complex. A *free pair* (τ, σ) is a pair of simplices such that τ has a unique coface σ . An *elementary collapse* $\mathbf{K} \to \mathbf{K} - \{\tau, \sigma\}$ is the removal of a free pair.

 \longrightarrow an elementary collapse is a combinatorial version of a "local deformation retract" in topology.

Elementary collapses

Definition

Let **K** be a simplicial complex. A *free pair* (τ, σ) is a pair of simplices such that τ has a unique coface σ .

An elementary collapse $\mathbf{K} \to \mathbf{K} - \{\tau, \sigma\}$ is the removal of a free pair.

 \longrightarrow an elementary collapse is a combinatorial version of a "local deformation retract" in topology.

Lemma (Invariance)

For a free pair (τ, σ) in \mathbf{K} , $\mathbf{H}_d(\mathbf{K}) \cong \mathbf{H}_d(\mathbf{K} - \{\sigma, \tau\}), \quad \forall d.$

Elementary collapses

Definition

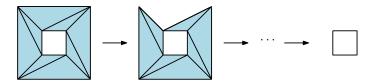
Let **K** be a simplicial complex. A *free pair* (τ, σ) is a pair of simplices such that τ has a unique coface σ .

An elementary collapse $\mathbf{K} \to \mathbf{K} - \{\tau, \sigma\}$ is the removal of a free pair.

 \longrightarrow an elementary collapse is a combinatorial version of a "local deformation retract" in topology.

Lemma (Invariance)

For a free pair (τ, σ) in \mathbf{K} , $\mathbf{H}_d(\mathbf{K}) \cong \mathbf{H}_d(\mathbf{K} - \{\sigma, \tau\}), \quad \forall d.$



Proof of invariance by elem. collapse, with matrices

Lemma (Invariance)

For a free pair (τ, σ) in **K**, $\mathbf{H}_d(\mathbf{K}) \cong \mathbf{H}_d(\mathbf{K} - \{\sigma, \tau\}), \quad \forall d.$

Proof of invariance by elem. collapse, with matrices

Lemma (Invariance)

For a free pair (τ, σ) in \mathbf{K} , $\mathbf{H}_d(\mathbf{K}) \cong \mathbf{H}_d(\mathbf{K} - \{\sigma, \tau\})$, $\forall d$.

A matrix proof: write $\dim \tau = d$ and $\dim \sigma = d + 1$.

Proof of invariance by elem. collapse, with matrices

Lemma (Invariance)

For a free pair (τ, σ) in \mathbf{K} , $\mathbf{H}_d(\mathbf{K}) \cong \mathbf{H}_d(\mathbf{K} - \{\sigma, \tau\})$, $\forall d$.

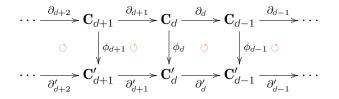
A matrix proof: write dim $\tau = d$ and dim $\sigma = d + 1$. ∂_{d+2} ∂_{d+1} σ 0 au0 σ . . . add row σ has no coface τ has one coface ∂_d $\tau_1 \ldots \tau_d$ au $\partial_d \circ \partial_{d+1}(\sigma) = 0 = \partial_d(\tau_1 + \ldots + \tau_d) + \partial_d \tau$ × × $\dim \mathbf{B}_d(\mathbf{K}') = \dim \mathbf{B}_d(\mathbf{K}) - 1$ × $\dim \mathbf{Z}_d(\mathbf{K}') = \dim \mathbf{Z}_d(\mathbf{K}) - 1$

Definition (Chain map)

A *chain map* ϕ : (**C**, ∂) \rightarrow (**C**', ∂ ') between two chain complexes is a family of homomorphisms:

$$\phi_{\rho} \colon \mathbf{C}_{\rho} \to \mathbf{C}'_{\rho}$$

that commutes with boundary maps.



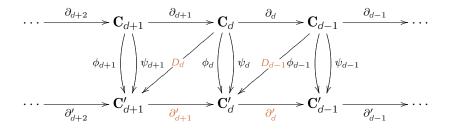
Definition (Chain homotopy)

If $\phi, \psi \colon (\mathbf{C}, \partial) \to (\mathbf{C}', \partial')$ are chain maps, a *chain homotopy* of ϕ to ψ is a family of homomorphisms

$$D_{\rho} \colon \mathbf{C}_{\rho} \to \mathbf{C}'_{\rho+1}$$

such that

$$\partial_{p+1}' \circ D_p + D_{p-1} \circ \partial_p = \psi_p - \phi_p$$



Definition (Chain homotopy)

A chain map ϕ : $(\mathbf{C}, \partial) \to (\mathbf{C}', \partial')$ is a *chain equivalence* if there is a chain map ϕ' : $(\mathbf{C}', \partial') \to (\mathbf{C}, \partial)$ such that $\phi \circ \phi'$ and $\phi' \circ \phi$ are chain homotopic to the identity (of their respective domains).

 \longrightarrow the algebraic version of an homotopy of continuous functions.

Definition (Chain homotopy)

A chain map ϕ : $(\mathbf{C}, \partial) \to (\mathbf{C}', \partial')$ is a *chain equivalence* if there is a chain map ϕ' : $(\mathbf{C}', \partial') \to (\mathbf{C}, \partial)$ such that $\phi \circ \phi'$ and $\phi' \circ \phi$ are chain homotopic to the identity (of their respective domains).

 \longrightarrow the algebraic version of an homotopy of continuous functions.

Theorem

If there exists a chain equivalence between two chain complexes, they have same homology.

Proof of invariance by elem. collapse, with homotopy

K a simplicial complex, (σ, τ) a free pair:

$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

$$\psi(x) = x$$
, i.e. the inclusion $\mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

with:

 $\psi(\mathbf{x}) = \mathbf{x}, \quad \text{i.e. the inclusion } \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial \sigma & \text{if } x = \tau, \text{ and} \\ x & \text{otherwise.} \end{cases}$$

$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

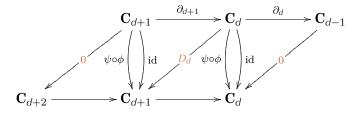
$$\psi(x) = x$$
, i.e. the inclusion $\mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial \sigma & \text{if } x = \tau, \text{ and} \\ x & \text{otherwise.} \end{cases} \quad D(x) = \begin{cases} \sigma & \text{if } x = \tau, \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

$$\psi(x) = x$$
, i.e. the inclusion $\mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

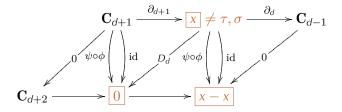
$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial \sigma & \text{if } x = \tau, \text{ and} \\ x & \text{otherwise.} \end{cases} \quad D(x) = \begin{cases} \sigma & \text{if } x = \tau, \\ 0 & \text{otherwise.} \end{cases}$$



$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

$$\psi(x) = x$$
, i.e. the inclusion $\mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

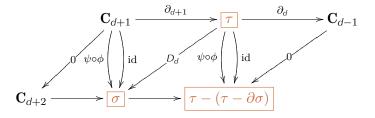
$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial \sigma & \text{if } x = \tau, \text{ and} \\ x & \text{otherwise.} \end{cases} \quad D(x) = \begin{cases} \sigma & \text{if } x = \tau, \\ 0 & \text{otherwise.} \end{cases}$$



$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

$$\psi(x) = x$$
, i.e. the inclusion $\mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

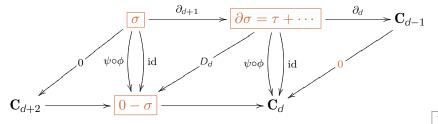
$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial \sigma & \text{if } x = \tau, \text{ and} \\ x & \text{otherwise.} \end{cases} \quad D(x) = \begin{cases} \sigma & \text{if } x = \tau, \\ 0 & \text{otherwise.} \end{cases}$$



$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

$$\psi(x) = x$$
, i.e. the inclusion $\mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

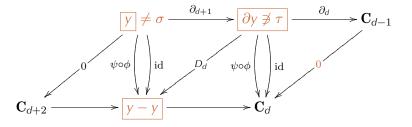
$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial \sigma & \text{if } x = \tau, \text{ and} \\ x & \text{otherwise.} \end{cases} \quad D(x) = \begin{cases} \sigma & \text{if } x = \tau, \\ 0 & \text{otherwise.} \end{cases}$$



$$\mathbf{C}_{\bullet}(\mathbf{K}) \xrightarrow{\phi} \mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \xrightarrow{\psi} \mathbf{C}_{\bullet}(\mathbf{K})$$

$$\psi(x) = x$$
, i.e. the inclusion $\mathbf{C}_{\bullet}(\mathbf{K} - \{\sigma, \tau\}) \hookrightarrow \mathbf{C}_{\bullet}(\mathbf{K})$

$$\phi(x) = \begin{cases} 0 & \text{if } x = \sigma, \\ \tau - \partial \sigma & \text{if } x = \tau, \text{ and} \\ x & \text{otherwise.} \end{cases} \quad D(x) = \begin{cases} \sigma & \text{if } x = \tau, \\ 0 & \text{otherwise.} \end{cases}$$



Exercise

Compute the homology of:

- a tetrahedron, and of an empty tetrahedron,
- a circle,
- an annulus.

Prove the other direction ($\phi \circ \psi$) for the chain equivalence proof of the invariance of homology by elementary collapse.