
Charles André - UNSA1

Memory

Interconnection

Memory I/O

CPU

Computer

Charles André - UNSA2

The CPU / Memory Gap (1)

Charles André - UNSA3

The CPU / Memory Gap (2)
To illustrate the problem consider “typical” delays,

measured in ns.

Clock Period: 0.3ns
Instructions : 1-4 instructions/clock (4-way super-scalar)
On-chip small-fast SRAM (Level-1 cache): 0.3-0.6ns (1-2

clocks).
On-chip large-fast SRAM (Level-2 cache) 4-6ns (12-18 clocks).
Off-chip large-fast SRAM (Level-3 cache) 7-14ns (20-40 clocks)
Off chip large-slow DRAM (Main memory) 90-120ns (270-360

clocks)

Question: How often does the computer access
memory?

Charles André - UNSA4

Key Idea

Keep the most often-used data in a small,
fast SRAM (often local to CPU chip)

Refer to Main Memory only rarely, for
remaining data.

The reason this strategy works:
LOCALITY

Charles André - UNSA5

The Principle of Locality
• The Principle of Locality:

– Program access a relatively small portion of the
address space at any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is

referenced, it will tend to be referenced again soon
(e.g., loops, reuse)

– Spatial Locality (Locality in Space): If an item is
referenced, items whose addresses are close by tend
to be referenced soon
(e.g., straightline code, array access)

• Last 15 years, HW relied on localilty for speed

Charles André - UNSA6

Typical Memory Reference Patterns
MEMORY TRACE

A temporal sequence
of memory references
(addresses) from a
real program.

TEMPORAL LOCALITY
If an item is referenced,
it will tend to be
referenced again soon

SPATIAL LOCALITY
If an item is referenced,
nearby items will tend
to be referenced soon.

Memory Technology

(a short reminder)

Charles André - UNSA8

Semi-conductor Memories

Type Category Erasing Writing Volatile
RAM Read/Write Elec. Byte electrical yes

ROM Read only impossible mask no

PROM Read only impossible electrical no

EPROM mostly Read UV, chip electrical no

Flash mostly Read elect, block electrical no

EEPROM mostly Read elect, byte electrical no

Charles André - UNSA9

SRAM Memory Cell
There are two bit-lines per

column, one supplies the bit
the other it’s complement.

On a Read Cycle
A single word line is activated

(driven to “1”), and the
access transistors enable
the selected cells, and their
complements, onto the bit
lines.

Writes are similar to reads,
except the bit-lines are driven

with the desired value of the
cell.

The writing has to “overpower”
the original contents of the
memory cell.

Charles André - UNSA10

Multiport SRAM (a.k.a. Register Files)
One can increase the number of SRAM ports by adding access
transistors. By carefully sizing the inverter pair, so that one
is strong and the other weak, we can assure that our WRITE
bus will only fight with the weaker one, and the READs are
driven by the stronger one. Thus minimizing both access
and write times.

Charles André - UNSA11

1-T Dynamic RAM
Six transistors/cell

may not sound like
much, but they can
add up quickly.
What is the fewest
number of
transistors that can
be used to store a
bit?

Charles André - UNSA12

Side-by-side Comparison

Charles André - UNSA13

Typical DRAM

contrôle

A0
A1

A10

compteur
rafraich.

décodeur
ligne

D1
D2
D3
D4

RAS CAS W OE

tampon
adresses

lignes

tampon
adresses
colonnes décodeur

colonne

amplis

MUX

mémoire
2048x
2028x

4 tampon
donnée
entrée

tampon
donnée
sortie

Charles André - UNSA14

DRAM Fundamentals
DRAM access is made of two parts:

– Row Access: Select a bank and a row and read a whole row
into the sense amplifiers. (Open a DRAM page)

– Column Access: Select an open page and read one word
out.

Multiple internal banks => one can keep multiple open
pages.

Typically multiple column accesses are needed to get a
whole cache line out.

Column accesses are pipelined
– It takes about 25ns-30ns from the start of the column access

command until the data come out.
– A sequence of column access commands can be issued,

one every clock cycle (one every ~7.5ns).

Charles André - UNSA15

Memory Organization

M
A
R

M
B
R

Wider memory word

M
A
R

M
B
R

Décodeur
d ’adresse

Larger memory space

Charles André - UNSA16

Interleaved Memories

Charles André - UNSA17

Interleaving: Increasing Bandwidth

Charles André - UNSA18

Summary of Memory Technology
DRAM is slow but cheap and dense:

– Good choice for presenting the user with a BIG memory
system

– Uses one transistor, must be refreshed.
SRAM is fast but expensive and not very dense:

– Good choice for providing the user FAST access time.
– Uses six transistors, holds state as long as power is

supplied.
GOAL:

– Present the user with large amounts of memory using the
cheapest technology.

– Provide access at the speed offered by the fastest
technology.

Next: Caches

Cache

Charles André - UNSA20

Motivation for Caches

• Motivation:
– Large memories (DRAM) are slow
– Small memories (SRAM) are fast

• Make the average access time shorter by:
– Servicing most accesses from a small, fast memory.

• Reduce the bandwidth required of the large memory.

Processor Cache DRAM

Memory System

Charles André - UNSA21

Cache

CPU

Main
Memory

Cache

Word transfer

Block transfer

Charles André - UNSA22

Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Charles André - UNSA23

Memory Hierarchy: Principles of Operation

• At any given time, data is copied between only 2 adjacent
levels:
– Upper Level (Cache) : the one closer to the processor

• Smaller, faster, and uses more expensive technology
– Lower Level (Memory): the one further away from the processor

• Bigger, slower, and uses less expensive technology
• Block:

– The minimum unit of information that can either be present or not
present in the two level hierarchy

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Block X

Block Y

Charles André - UNSA24

Memory Hierarchy: Terminology

• Hit: data appears in some block in the upper level (example: Block X)
– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss
• Miss: data needs to be retrieve from a block in the lower level (Block Y)

– Miss Rate = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor
• Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Block X

Block Y

Charles André - UNSA25

Cache/main memory
adresse
mémoire

0
1
2
3

2n-1

bloc
(K mots)

bloc
(K mots)

bloc
(K mots)

0
1
2
3

numéro
fenêtre tag bloc

K mots

(a) mémoire (b) cache

Charles André - UNSA26

Cache Read Operation

H
IT

Charles André - UNSA27

Direct Mapped Cached

Location 0 can be occupied by
data from:
Memory location 0, 4, 8, ... etc.
In general: any memory

location whose 2 LSBs of
the address are 00

Address<1:0> => cache index
Which one should we place in

the cache?
How can we tell which one is in

the cache?

Charles André - UNSA28

Direct-Mapping Cache Organization

Charles André - UNSA29

Example of Mapping
• The Cache can hold 64 KB
• Data is transferred between main memory

and the cache in blocks of 4 bytes each.
• The Main Memory consists of 16 MB, with

each byte directly addressable by a 24-bit
address.

• K = 4 = 2w; w = 2
• m = 64 k / 4 = 16 k = 214 lines in the cache
• r = 14
• Main memory: 16 M = 224; s = 22 = 24 - w

Charles André - UNSA30

Direct Mapped Cached
• j : numéro du bloc en mémoire
• m : nombre de lignes du cache
• Le bloc Bj ne peut être copié que dans la ligne i

du cache, avec
• i = j modulo m

Charles André - UNSA31

Charles André - UNSA32

Access
To select:
Slot ←(address & 0xFFFF)>>2
Tag ←(address & 0xFF0000)>>16
if Cache[Slot].Tag == Tag
then

Return Cache[Slot].data
else

Miss // access to main memory

Charles André - UNSA33

Fully Associative Cache

Memory Address

Tag Word

Cache
Tag Data

(hit in cache)

(miss in
cache)

compare

w

s

B0

Bj

Li

L0

W0
W1
W2

W3

W4j
W4j+1
W4j+2
W4j+3

Main
Memory

s + w

w

w

s

s

s

s

s

Charles André - UNSA34

Associative Mapping
• Tag ← address

>>2

• Ex: 16339C
• 000101100011

001110011100
• 000001011000

110011100111
• 058CE7

FFFFFC
FFFFF8
FFFFF4

1633A0
16339C
163398

000008
000004
000000

24682468
11223344
33333333

87654321

12345678

058CE7 87654321

3FFF
3FFE
3FFD

0001
0000

Tag Slot numberData

22 b 32 b

16 k Word Cache

32 b

16 MB Main Memory

22 2

Tag Word

Main memory Address =

Charles André - UNSA35

FFFFFC
FFFFF8
FFFFF4

1633A0
16339C
163398

000008
000004
000000

24682468
11223344
33333333

87654321

12345678

3FFFFF
000000
3FFFFD

058CE7
3FFFFE

24682468
12345678
33333333

87654321
11223344

3FFF
3FFE
3FFD

0001
0000

Tag Slot numberData

22 b 32 b

16 k Word Cache

32 b

16 MB Main Memory

22 2

Tag Word

Main memory Address =

Charles André - UNSA36

Set Associative Cache
• Combination of the previous solutions
• The cache is divided into v sets
• Each of which consists of k lines
• The number of lines in the cache is m=v*k
• Block Bj can be mapped into any of the

lines of set i such that
• i = j modulo v

Charles André - UNSA37

Set Associative Cache: Example
• 2 lines per set

Charles André - UNSA38

Performances
• Ex: cache de blocs de 8 mots
• 1 cycle pour envoyer adresse
• Accès au premier mot: 8 cycles
• Accès aux 7 mots suivants: 4 cycles
• 1 cycle pour transmettre la donnée
• Si une DRAM unique: 1+8+(7x4)+1=38

Charles André - UNSA39

Performances (2)

4 modules entrelacés

Transfert de 8 mots

1+8+4+4=17 cycles

Charles André - UNSA40

Performance du cache
• h: hit rate, 1-h: miss rate
• C: time to access information in the cache
• M: miss penalty
• Average access time = hC+(1-h)M
• Ex: h=0.95 pour instructions, O.90 pour données. 30%

d’instructions avec accès mémoire.

130 10 5.04
100(0.95 1 0.05 17) 30(0.9 1 0.1 17)

×
=

× + × + × + ×

temps sans cache
temps avec cache

1+8+1

i-fetch d-fetch

Charles André - UNSA41

Pentium
Code Cache

8kB Branch prediction

Prefetch
Buffers

Integer
ALU

Integer
ALU

Integer Register
File

Data Cache
8 kB

64-bit
Bus

Interface

Divider

Adder

Multiplier

Registers

Floating-Point
Unit

64 b

256 b

32 b 32 b

32 b 32 b

U Pipe V Pipe

32 b 32 b

64 b

Charles André - UNSA42

References
• Gershon Kedem, “Computer Organization and Programming

Lecture- 26: Memory, Cache Memory”, Oct. 2004,
http://kedem.duke.edu/cps104/Lectures

• [HVZ96] V.C. Hamacher, Z.G. Vranesic, S.G. Zaky. « Computer
Organization ». 4th Edition, Mac Graw-Hill, 1996.

• [PH94] D.A. Patterson, J.L. Hennessy. « Computer Organization &
Design: the Hardware/Software Interface ». Morgan Kaufmann,
1994.

• [PH96] D.A. Patterson, J.L. Hennessy. « Architecture des
Ordinateurs : une approche quantitative ». Thomson Publ., 1996.

• [STA96] W. Stallings. « Computer Organization and Architecture »
4th Edition, Prentice Hall, 1996

