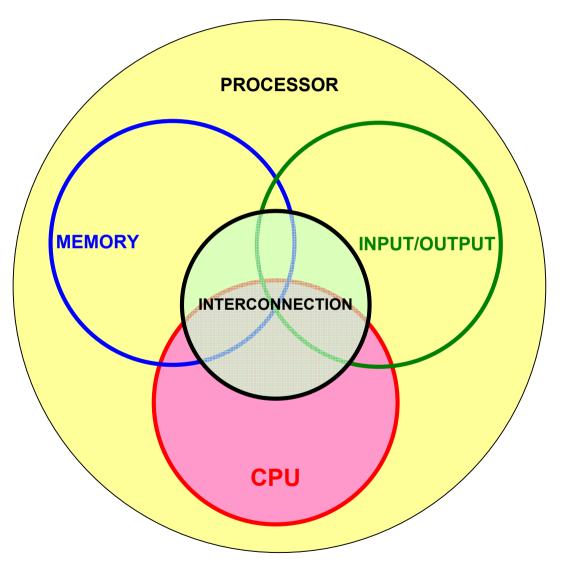
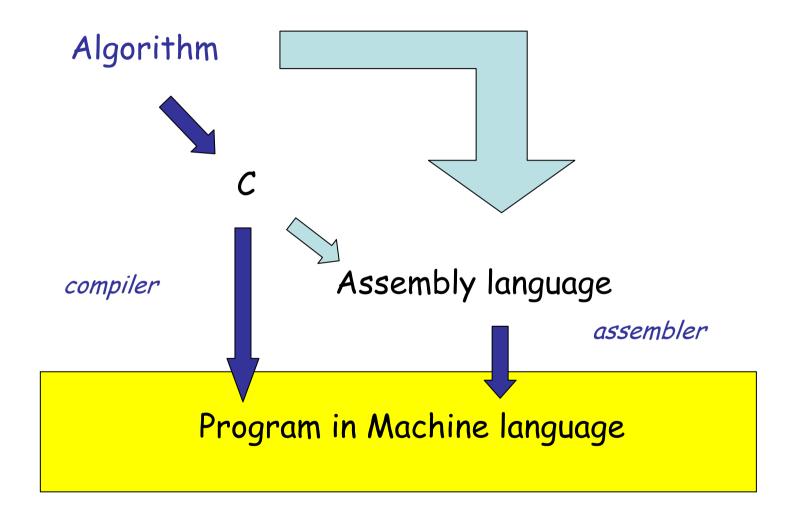
M2 Digital Microelectronics


Contents

```
C1: Architecture des ordinateurs - niveau 2
       Gestion des interruptions
       Mémoire, caches
       Unité de traitement, pipeline
       Architectures RISC, super-scalaires, spécialisées
C2: Programmation d'architectures spécialisées (micro-contrôleurs, DSP)
       Applications: traitements du signal et commande
C3: Conception de VLSI
       Synthèse VHDL
       Synthèse algorithmique
       Placement/Routage (ASIC, FPGA)
       Analyse de performances (vitesse, consommation, surface, ...)
C4: Architecture logicielle et matérielle (cosimulation)
       Principe et étude de cas
```

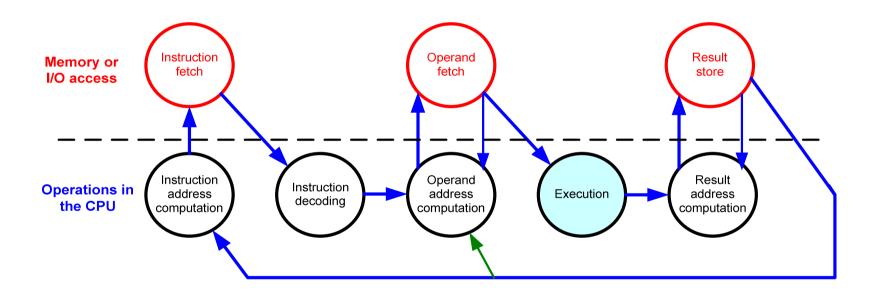
Labs.

- · Programmation Pentium (C et assembleur)
- Programmation machine RISC (MIPS)
- Programmation DSP (TMS320C6711)
- · Synthèse VHDL
- · Architecture logicielle/matérielle


Computer organization

Chapters

- · CPU
- · Memory, cache
- · Pipe-line
- · Risc, Super-scalar, ...
- · DSP


L3 (Reminder)

Notation pour la sémantique

ichier		Outils Affichage Fenêtre ?		_
		→		
	Notation	Signification	Exemple	Signification
	\leftarrow	Transfert de données. La	$Reg[R1] \leftarrow$	Transfère le contenu du
		longueur est donnée par la	Reg[R2]	registre R2 dans le reg-
		longueur de la destination.		istre R1
	\leftarrow_n	Transfère n bits. Permet	$\texttt{Mem[y]} \leftarrow_{16}$	Transfère 16 bits à par-
		de lever l'ambiguïté sur la	Mem[x]	tir de la case mémoire x
		longueur.		vers la case y.
	X_n	Sélection du bit d'indice n	$\text{Reg}[\text{R1}]_0 \leftarrow 0$	Mise à 0 du bit 0 du reg-
				istre R1
	X_{mn}	Sélection d'un champ de	$Reg[R3]_{70} \leftarrow$	Transfère le contenu de
		bits.	Mem[x]	la case mémoire x dans
				l'octet bas de R3
	X^n	Duplication d'un champ, n	$Reg[R3]_{318} \leftarrow$	Met à 0 les trois octets de
		fois.	0^{24}	poids fort de R3
	##	Concatène deux champs.	Reg[R3] ←	Registre R3 reçoit le
			0^{24} ##Mem[x]	contenu de la case
				mémoire x dans l'octet
				bas et 0 dans les 3 autres
				octets
F	200% ▼ 4 28	sur 28 ▶ 월 209,9 x 297 mm 월, 4		

Instruction Cycle

