
Reactive System Programming
Lustre (Part 2)

SF7 (EPU-SI) / E2 (Master STIC)

October 22, 2007

Several LUSTRE files and documents are available at //www.i3s.unice.fr/~andre/
CAdoc (direct access to this directory). Copy td2St.zip.

1 Associativity of − >

1.1 Boolean flows

Write an observer of the following property:

(X −> Y) −> Z = X −> (Y −> Z)

1.2 Integer flows

Question a: Why LESAR is unconclusive in this case?

Question b: Observe the behavior of X = 1 -> 2 -> 3;

Remark: remember that X -> Y -> Z ≡ X ->Z.

2 -> and pre

Observe the behavior of the programs studied in the lecture.

1. X = A −> pre(X);

2. X = A −> pre(B −> pre(X));

3. node T(X:bool) returns (Y:bool);

4. node F(X:bool) returns (Y:bool);

Sources codes are in src/ExWithPre.lus and src/TF.lus

TD 4 2

C

N

t

H

D=2 P=3

0

1

2

2

3

instants 1 2 3 4 5 6 7 8 9 10 11

P=3 P=3

Figure 1: Timing diagrams of a Timer.

2.1 Application: Fibonacci Numbers

Write a LUSTRE program that generates Fibonacci 1 numbers, defined by the following recurrence:

Fn = Fn−1 + Fn−2

F1 = 1
F2 = 1

3 Clock generation

This is an improved version of the clock generated in the previous Lab.

3.1 Specification

The clock emits a periodic pulse: the output is set to true for one instant every P instants (period
= P). There is an initial delay (delay = D): the clock remains to false for D instants before
entering the periodic behavior. This kind of clock is often called a Timer in RTOS. Fig. 1 shows
the behavior when D = 2 and P = 3.

3.2 Use of counters

Propose a solution making use of the modulo counter studied in the previous Lab. D and P are
known at run-time.

3.3 Use of Boolean functions

Now D and P are constants known at compile time. The solution shall make use of Boolean shift
registers.

4 Mutual exclusion algorithm

Adapted from “A Tutorial Of LUSTRE”, N. Halbwachs.

1Fibonacci is a nickname. His real name is Leonardo Pisano.

TD 4 3

4.1 Specification

n processes p0, p1, · · · , pn−1 compete for an exclusive resource. The arbiter receives a Boolean
array REQ, where REQ[i] is true whenever the process pi requests the resource — and returns an
array GRANT, such that GRANT[i] is true whenever the resource is granted to pi.

The arbiter proceeds by letting a token travel around the processes. When the process, which
has the token, is requesting the resource, it takes the resource and keeps the token until it releases
the resource. If it does not use the resource, it passes the token at the next instant.

4.2 Behavior of a process

The behavior of a process is specified as follows:

−− t okenRing . l u s
−− adap t ed from "A T u t o r i a l o f L u s t r e " , N. Halbwachs
−− C h a r l e s André
−− November 16 , 2004

node SR (S , R , I : bool) re turns (Q: bool) ;
l e t

Q = I −>
i f S and not pre (Q) then true
e l s e i f R then f a l s e

e l s e pre (Q) ;
t e l

node FALLING_EDGE (X: bool) re turns (Y: bool) ;
l e t

Y = f a l s e −> not X and pre (X) ;
t e l

node p r o c e s s (req , t ok : bool) re turns (g r an t , new_tok : bool) ;
l e t

g r a n t = SR(t ok and req , not req , t ok and r eq) ;
new_tok = f a l s e −> pre (t ok and not r eq) or

FALLING_EDGE(g r a n t) ;
t e l

node a r b i t e r (cons t n : i n t ; REQ: bool ^n) re turns (GRANT: bool ^n) ;
var TOK, NTOK: bool ^n ;
l e t

(GRANT, NTOK) = p r o c e s s (REQ, TOK) ;
−− i n t i a l l y : p r o c e s s 0 has t h e t oken
TOK[0] = t rue −> pre (NTOK[n −1]) ;
TOK [1 . . n−1] = f a l s e ^ (n−1) −> pre (NTOK[0 . . n −2]) ;

t e l

Question a: Analyze node SR, draw the associated automaton.

Question b: Justify node FALLING_EDGE.

Question c: Justify node process. new_tok is set to true when the process passes the token to
its successor on the ring.

TD 4 4

4.3 Behavior of the arbiter

Question a: Justify node arbiter.

4.4 Proof of the exclusion

Build an observer of the exclusion property.

Hints: use the EX and OR arrays seen in the lecture.

