Reactive System Programming
Esterel (Part 1)

SF7 (EPU SI3) / E2 (Master STIC)
October 29, 2007

1 Introduction tothe Esterel Studio Environment

Esterel Studio (ES, in what follows) is used to model, simulate, and verify electronic devices and
embedded systems. The current version is ES v5.3. Esterel Studio is a collection of licensed
modules. It can be used only in licensed sites. As an academic user you can get a license for
a simpler version (visit //www.esterel-technologies. com, download section). From
there, you may download a compiler for ESTEREL v5_91 and related software, running under
Linux.

Inputs to ES are either textual (ESTEREL code) or graphical (SYNCCHARTS). In thislab we
consider the former and more precisely ESTEREL V7.3 (these programs must be adapted to run on
your private installation).

Several ESTEREL files and documents are availableat / /www.13s.unice.fr/~andre/
CAdoc (direct access to this directory). Copy td3St.zip. td3Stv5.zip is an archive containing
ESTEREL v5-91 code.

Remark 1 most screen captures have been made with ES-5.2. There may be slight difference
with the ES-5.3 screens.

Remark 2 your windows environment variables INCLUDE, LIB, and PATH may have to be
modified.

Launch ES(C:\Program Files\Esterel Technologies\EsterelStudio
\bin\estudio.exe).

1.1 Startinganew project

1. Create aproject from scratch:

e Either click on File>New or click ontheNew File button.

e Browseto select alocation for the new project.

¢ Type the name of the project (Here, ABRO). A new file ABRO.etp is created.
e Copy file ABRO.strl into the project directory.

e Click save.

2. Add EsTEREL filesto your project:

e Right-click the Mode1 folder in the Tree Pane (on the | ft side).



TD 3 2

P& Esterel Studio - [ABRO.etp] - [ABRO.strl]

File Edit “iew Project Tool: Window Help
DSEG & [mma x| o« &&=z
| N
=l e
3 ¥ ABRD.strl
=-[B) 4BRO.etp o~ % Reactive systems'97 (p 85)
—129 Model N ¥ Charles Andreé
- [ ABRO.stl 2 dule AERO
ABRO : module :
oF t. Q input 4. B. E:
a Dxtem @ output O
ata
=29 Observer EI l?DD . ' . B ]
= [ 1.zt .- awalt awalt :
prop <1 : cnit 0
- h R
[ Constraint Q =3e
- Configuration 3 end module
a 5
Default i
&
4
Project | Design | Modules
S & |H X ik =& R -y o) v

x
o | E Project loaded
C:\Documents and Settingshandre ZEPHYRMYes: documentsh\EMSEIGMERMEMT WM aster2RA\2004-20055TDNT D1 heolAB RO etp

Log IEnnrs Find | Output | Browsing

Feady

Figure 1. Esterel Studio Workspace.

Launch simulation model
Verify the model

Start browsing mode -
Coverage analysis

= udvig B e DE

Check model ‘

See or modify the active project

Clean current project

Generate reports

Generate target code

Figure 2: Project toolbar.

e Sdect Insert a file andtype ABRO.strl.
o Save.

3. To edit afile, click onitsicon in the Tree Pane.

1.2 Customizing

Click on Project>Active configuration.

Click the General tab settings.

Select EsterelV7 as the Project language. From now on, use ESTEREL V7 syntax only.
Fill intheMain Module entry. Here, set to ABRO.

Inthe Code Gen tab, check the Target Language. It should be C ANST.

Close the dialog window (click OK).

N o o M 0w D P

Click on Save All.



TD 3 3

Remark : Most commands are reachable from the menu, as explained above, and by clicking
on icons (see Fig. 2 and the in-line Help).

1.3 Simulating M odel Behavior

click to trigger a system reaction

reset signals to not emitted and reset model execution

keep inputs emitted as you progress through a simulation
quit simulation mode

save the simulation in progress

250 é SLICI | — LUk

clear all recorded simulation steps
view the number of system reactions (ticks)

add a comment to a simulation step

edit the list of breakpoints

add a breakpoint

Figure 3: Esterel Studio Simulation Toolbar.

1.3.1 Interactive Simulation
1. Checking syntax:

e Click on Project>Check model.
e Read messages in the Console pane.
e Modify your program if needed.

2. Lauchingthe simulation:

e Clickthesimulat ion button (exclamation markicon) or click Project>Simulate.
e The Inputs and the Outputs panels appear automatically.

3. Running the simulation

e In the Inputs pane al system inputs are listed. The default color is blue, which
means that the signal is absent. Click on the signal hame to make it present, it then
turns to red.

e Click Tick inthe ssmulation control toolbar.

e Observe the reaction: signals changing color in the Outputs panel; signals and con-
trol points highlighted in the source code pane.

4, Setting signal activation modes:

e Right-Click the signal nhame in the Inputs pane.
e Try the various modes.

5. Quit simulation mode: Click on the crossed exclamation mark icon.



D 3

1.4 Scenarios

Browse for a scenario file

Reload a scenario file

Reset the simulation session when loading a new scenario file
Load the scenario in this file

See the number of steps  Drag to adjust scenario replay
speed

| naminal esi ﬁ @ E ,_E,I'E J' e N g l_D

Go backward one ste

Go forward one step

Stop Play and Stop scenario according to a
customized number of ticks

Play
Play with no graphical feedback

Figure 4: Simulation recorder toolbar.

While running a simulation you may record your scenario (Toolbar in Fig. 4).

1. Runningascenario:
e Apply ascenario that covers the main functionalities of your application.
e Theinitial state can be restored at any time by clicking the Reset icon.
2. Recording a scenario: before leaving your simulation

e Click theDisket icon in the simulation control toolbar.
e Give aname. Here, ABRO.esi
e Quit the simulation mode.

3. Replaying a scenario:

Launch the simulation mode.

In the Simulation control toolbar click the Open Folder icon.
Select arecorded scenario.

Now the scenario can be replayed step-by-step (Step icon) or automatically.

4. Displaying waveforms

e Click on the timewaves icon in the Simulation tool bar.
e Observe the waveforms.
¢ Note that waveforms are displayed using GTKware, afree software.

2 Variationson asimple example

Goal : understanding various forms of preemptions.
We consider an increasingly sophisticated “Clock”.



D 3 5

2.1 Basic Clock

The basic version receives a (periodic) input signal Pulse, and generates output signals Tick and
Tock.

Caution : don't confuse Tick (auser’s defined signal) with tick (the predefined ESTEREL signal).

/!l basicClock. strl

I/l never ending tick — tock
/!l Charles Andre

/!l October 2006

module basicClock :
input Pulse;
output Tick, Tock;

loop
await Pulse; emit Tick;
await Pulse; emit Tock
end loop
end module

Question a:  Compile and simulate this program. Observe the control points (highlighted key-
words) in the animated source code.

Question b: Explain why Pulse has no effect at the very first instant. Modify the code to take
account of a possible presence of Pulse at the first instant.

2.2 Preemption

The above system is not especially interesting and it does it for long! We add a signal Hush that
stops the clock.

221 Strongabortion

/! basicClockl. strl

[/l tick — tock + strong abort
/!l Charles Andre

/!l October 2006

module basicClock1l:
input Pulse, Hush;
output Tick, Tock;

abort
loop
await Pulse; emit Tick;
await Pulse; emit Tock
end loop
when Hush

end module



D 3

Question a:  Compile and simulate this program.

The same behavior can be obtained by re-using the basicClock module:

/!l basicClock?2. strl

/Il tick — tock + strong abort + run

/! Charles Andre
/! October 2006

module basicClock?2:
input Pulse, Hush;
output Tick, Tock;

abort
run basicClock
when Hush
end module

Question b: Compare the behavior of the two programs. run them concurrently and add an
observer module that emits an Alarm signal when the outputs differ (Fig. 5).

Y

Y

Pulse Tickl
——»
Hush basicClock1 Tockl
—@—>
Tick2
basicClock2 Tock2

A

\i

Observer

Figure 5: Comparing two programs.

2.2.2 Weak abort

Alarm

Now, when Hush occurs, we let the aborted part complete its current reaction, for instance react

to aPulse.

Question a:  Compile and simulate basicClock3.

/! basicClock3. strl

[/l tick — tock + weak abort + run
/!l Charles Andre

/!l October 2006

module basicClock3:
input Pulse, Hush;
output Tick, Tock;

weak abort
run basicClock
when Hush
end module



D 3 7

Question b:  The weak abort construct is derived from a trap construct. basicClock3b is the
trap-based version of the clock. Visualize signals and exceptions for a scenario. As you did in
Section 2.2.1, show that basicClock3 and basicClock3b have the same behavior.

/! basicClock3b . strl

/Il tick — tock + trap + run
/!l Charles Andre

/!l October 2006

module basicClock3b:
input Pulse, Hush;
output Tick, Tock;

trap Purr in
run basicClock

await Hush;
exit Purr
end trap
end module

2.2.3 Mode Checking

Observing the same behavior of two modules on a given scenario is not enough to prove their
equivaence.
ES supports formal verification tools. Use formal verification to:

e Detect corner-case bugs in the design which are hard to find using standard simul ation-based
verification.

e Proverigoroudly that the design fulfills its main and critical functional requirements.

We apply the latter to prove that basicClock3 and basicClock3b are equivalent.

1. Create anew project equiv

2. LoadfilesbasicClock.strl,basicClock3.strl,basicClock3b.strl,eqTest.strl
(see Fig. 6).

3. Right-click the Observer folder in the Tree Pane.
4, Select News>File.

5. Type the observer module (eqObserver.strl). This module takes Tickl, Tockl, Tick2,
Tock2 asinput signals, and eqViolation as an output signal. It emits eqViolation whenever
Tick1 # Tick2 or Tockl # Tock2.

6. Saveall.
7. Click Project>Active configuration. Selectthe verification tab.

8. Sdlect the Use built-in verifier (BDD) and the Global evaluation op-
tion. Click on the Apply button.

9. Select the Environment tab. Double-click on the observer file name to enable it. Click
on the App1ly button.



D 3

W& Esterel Studio - [equiv.etp] - [eqTest.strl]

File Edit “iew Project S r Tool: ‘window Help
DR & *2@EX|oo||ezu vy |tisE e oE
[ ik 1 = v B L ]SV o»
1= ——
- Ll | @ eqTest.strl M=l E3 e~
-1 [B equiv.etp a - _o
Sl od:l et | S % eqlest.strl
— - % Charles André
= basmCIolc:kE.strl @ % October 172, 2004
w5 basicClock3 =)
= bazicClock 3b. st ﬁ nodule egTest
5 basicClock3h ;I input Pulse, Hush:
- . output Tickl, Toclkl:
T iTEStfmt output TickZ?, Tock?Z; E‘
eqles +-
= basicClock. st — run baszicClock? [=ignal Tickl-Tick. Tockl-Tock]
#a bazicClock Q [l . . . .
&1 Exten " run bazicClock3b [=zignal Tick2sTick, Tock2s Toclk]
|_—:‘ Data [ 1§ end module
=13 Observer 5
= eqlbserver stil i€
mn eqlbserver ¥ j _J f
Project | Desi Fodul A -
m‘ﬂ ~ [T 1 P S P B S e B
= S = >‘| == E LT S | »
x
j ‘erification complate
Log lEnors Find = Output | Browsing
Werification complete

Figure 6: Workspace for the verification.

10. Click OK to close.

Click Project>Verify. After acompilation phase, a new window appears. Click the
External Observers tab.

11.

12. Right-click on the signal name (eqViolation). Choose Possibly present?.

13. Click onthe veri £y button.

14. Check the diagnostic in the Result pane. If the property holds then the status of eqVio-

lation is Alwaysabsent. If the property is violated then a counter-example scenario is
built; the associated fileis given inthe Counter-example scenario column.

15. Click the Close button.

SeeFig. 7.

2.3 Displayingtime

A clock should give time! In this section we add a display functionality.
The new clock displays Hours, Minutes, and Seconds (output signals Hd, Md, Sd, the type
of which is integer). The pure input signal C is provided by an external generator whose

frequency is1 Hz.
The clock module consists of 3 instances of amodulo counter (See Fig. 8).

Question a:  Write and test amodule ModCounter for a modulo(N) counter.

Question b:  Assemble modulesin a new clock module.



D 3

i ~ 3 R | =
P& Verification of project: equiv E|IE|@
Lse the right-click button to set the inputs and to select properties to werify in the tabs below

Jutputs ‘ Erwironment xternalobserver ‘ Settings ]
Property Observers
eglbzerver
eqiiiolation
| Verify I s J
Results Lo _ |
Type | I ame ] Status | Counter example scenarin]
obzerver eqUbszerve_egifiolation Alweays Abzent
verification engine used: builk-in verifier Save Resulks Close
Figure 7: Verification window.
C—» nt:CntM | > S_Dspl:Dspl
(1 Hz)
-~ M_Cnt:CntMod(6Q)[— *|  M_DspiDspl
L»{ H_Cnt:CntMod(24) "|  H_Dspl:Dspl

Figure 8: Structure of the new clock module.



