

Esterel Language Quick Reference Card

Revision 3.0

Conventions

bold Esterel keyword [] Optional term
| Alternative ::= Expansion term
{} Repeatable

Introduces one sequential control element

 Introduces a sequential control element that can be easily removed by optimization
Equations equation::=

[assert | next] sig_id [<= bool-exp] [if bool-exp] Pure or assert signal
[next] ?sig_id <= exp [if bool-exp] Valued signal

Statements stat::=
{ stat } Bracketed statement to unambiguously express control flow
nothing • Empty statement

• Terminates instantaneously

pause • Unit delay – pause for one instant

halt • Never terminates
• Can only be aborted

open {port-id,} in
 stat
end [open]

• Makes port id components visible in current scope

loc := exp • Assigns the evaluation of an expression to a variable
location, loc is for example X, Y[2], …

• Assignment is instantaneous

call proc-id({proc-arg,}) • Instantaneous execution of an external procedure
emit [seq] [next] [{]
 {equation,}
[}]

• Terminates instantaneously
• Concurrent or sequenced execution of equations
• Equation blocks can be replicated using the for … dopar

statement

sustain [seq] [next] [{]
 {equation,}
[}]

• Never terminates
• Equations same as emit
• Acts as a macro for:

 loop
 emit {equation,} ; pause
 end loop

stat1 ; stat2 • Sequence statement
• stat2 immediately starts as soon as stat1 terminates

loop
 stat
end [loop]

• Infinite loop; immediately restarts its body when
terminated

• Never terminates (can be aborted or exit-ed)
• stat must not be instantaneous (combinational)

always
 stat
end [always]

• Used to transform an instantaneous statement into a
permanent one

• stat should be instantaneous.
Is equivalent to: loop stat each tick

[positive]
repeat [count-id:=] exp
times
 stat
end [repeat]

• Finite loop; positive keyword asserts that the body will
be executed at least once

• count-id = exp down to 1.
• count-id is read-only

if bool-exp
 [then stat1]
 [else stat2]
end [if]

• Branching according to the value of test expression
• Test and branching are instantaneous

if
 {case bool-exp do
 stat}
 [default do stat]
end [if]

Multiple branching tests; the first true signal expression in
the list starts its statement

stat1 || stat2 • Parallel statements
• Lasts as long as one thread is still alive

for iter-id < static-exp dopar
 stat
end [for]

• Replication statement: generates static-exp copies
of stat that run concurrently

• iter-id iterator goes from 0 to static-exp-1 and is
read-only

• static-exp must be statically evaluable

for iter-id
in [static-exp1.. static-exp2]
dopar
 stat
end [for]

• Same as above except that iter-id goes from static-
exp1 to static-exp2

await guard-exp • Terminates when guard expression is true
• Instantaneous with immediate keyword
• Macro for: abort halt when guard-exp

await guard-exp do
 stat
end [await]

• Starts stat when the guard expression is true
• Is equivalent to:

 await guard-exp; stat

await
 { case guard-exp do stat }
end [await]

Multiple waiting; the first guard expression in the list
that is true starts its statements

[weak] abort
 stat
when guard-exp [do
 stat
end [abort]]

• Abortion; kills the statement when the guard
expression is true

• The weak variant starts the statement in the current
instant when the guard expression is true, before
killing it

• Can be instantaneous with the immediate keyword

(1)

[weak] abort
 stat
when
 { case guard-exp do {stat }}
end [abort]

Multiple case abortion (strong or weak); the first guard
expression in the list that is true starts its statement

(1)

[weak] abort
 stat1
after
 stat2
end [abort]

• stat1 and stat2 are concurrently started; stat1 is
aborted when stat2 terminates

• Immediately terminates if stat2 immediately
terminates

(1)

loop
 stat
each guard-exp

• Temporal loop with body initially started.
• guard-exp cannot be immediate
• Is a macro for:
 loop
 abort
 stat; halt
 when guard-exp
 end loop

every guard-exp do
 stat
end [every]

• Temporal loop with initial waiting of true guard
expression

• guard-exp can be immediate
• Macro for: await guard-exp;
 loop
 stat
 each guard-exp

[weak] suspend
 stat
when bool-exp

• Freezes the execution of a statement when guard
expression is true. The weak variant keeps the
combinational part running

trap except-list in
 stat
{handle except-evt do
 stat}
end [trap]

• Mechanism to catch exceptions raised by the body
statement

exit except-evt • Raises an exception

(1) Only weak abortion may introduce sequential element

finalize
 stat1
with
 stat2
end [finalize]

• Starts stat2 as soon as stat1
spontaneously terminates
or is strongly or weakly
aborted

• stat2 must be
instantaneous

signal
 {sig-id [{[exp]}] [:
 [temp | reg[1]][[value] type
 [combine]
 [init exp]],} |
 {port sig-id :
 [input|output|inputoutput] intf-unit-id, }
 {extends [input|output|inputoutput] intf-
unit-id,}
 [{refinement-clause,}] in
 stat
end [signal]

• Local declaration of a
signal

• Determines its scope
• See module-header

expansion for refinement-
clause

oracle {sig-id[: type],} in
 stat
end oracle

• Local declaration of signal
introducing model
non-determinism

• Determines its scope

var {var-id : [temp]
 type[:= exp],}
in
 stat
end [var]

• Local declaration of a
variable

• Determines its scope
• Cannot be shared between

threads

mcrun|run inst-id/mod-unit [[
 [[weak] reset sig-id;]
 [clock sig-id;] not for mcrun
 [constant {new/old,};]
 [type {new/old,};]
 [function {new/old,};]
 [procedure {new/old,};]
 [[signal] {new/old,};]*
]]

• Creates an instance of a
module or a multi-clock unit
with renaming of the
interface elements, i.e.,
connects the handled
current objects with the
interface objects of the
module

• new can be an expression
bracketed into parenthesis
for input renaming. * new
can be empty for signal
renaming

Predefined Types
bool Literals are: true = ‘1, false = ‘0
clock Clock type
unsigned<N>
unsigned<[n]>
unsigned
unsigned<>

Denotes unsigned numbers from 0 to N-1
Is equivalent to unsigned<2**n >
Is equivalent to unsigned<[32] >
Only for constant definitions. unsigned<> = N is equivalent to unsigned<N+1> = N
Literals can be written in dec, bin, oct or hex

signed<N>
signed<[n]>
signed
signed<>
integer

Denotes signed numbers from: -2n-1 to 2n-1-1
Is equivalent to signed<2**n >
Is equivalent to signed<[32] >
Only for constant definitions. signed<> = N is equivalent to signed<N+1> = N
Is equivalent to signed
Signed literals are unsigned literals preceded by + or – for example: –123 or +0x10fa

float Literals examples: 2.31f, .12f
double Literals examples: 2.31, 1.2E-1
string Literal example: “a \”string\””

Array Types
type {[exp]} Examples: int[5] denotes an array of 5 integers, bool[4][6] denotes a 4*6 matrix of

booleans
bool[n] Denotes a bitvector

© 2005 Esterel Technologies

© 2005 Esterel Technologies

Expressions
guard-exp::= [immediate | uns-exp times] bool-exp
encoding-exp ::= u2bin(uns-exp, bit-size) |
 u2code<my-cod>(uns-exp,uns-size,bit-size)
 u2gray(uns-exp, bit-size) |
 u2onehot(uns-exp, bit-size) |
 s2bin(sign-exp, bit-size) |
decoding-exp ::= bin2u(bit-vector, uns-size)|
 bin2s(bit-vector, sign-size) |
 code2u<my-cod>(bit-vect-exp,uns-size,bit-size)
 gray2u(bit-vector, uns-size)|
 onehot2u(bit-vector, uns-size)|
predefined-sig ::= tick | never

Operators
- Unary minus Num
- Subtraction Num
Incompatibility Boolean
* Multiplication Num
** Power Num
/ Division Num
[op] Array operator Extension of operator to

array level, examples:
[+], [mux]

+ Unary plus Num
+ Addition Num
< Less than Num
<= Less than or equal to Num
<=> Equivalence Boolean
<> Inequality Any
= Equality Any
=> Implication Boolean
> Greater than Num
>= Greater than or equal to Num
>> << Right shift and left shift Bitvector
>>> <<< Signed right shift and signed left shift Bitvector
abs Absolute value Signed
and Conjunction Boolean
assert<N> Size assertion Signed or unsigned
assert_unsigned<N> Size and sign assertion Signed or unsigned
binsize(n) Number of bits to encode n in binary Signed or unsigned
extend Unsigned extension of bit vector to nbit Bitvector
mcat lcat msb and lsb concatenation Bitvector
mod Module Unsigned
mux Multiplexor Any
next Next status of registered signal Signal status
next(?sig-id) Next value of a registered valued signal Signal value
not Negation Boolean
or Disjunction Boolean
pre Pre status of standard signal, false at initial instant Signal status
pre(?sig-id) Previous value of a standard valued signal Signal value
pre1 Pre status of standard signal, true at initial instant Signal status
reverse Reverses argument bits Bitvector
sat<N> Saturation Signed or unsigned
sextend Signed extension of bit vector to nbit Bitvector
trunc<[n]> Truncation Signed or unsigned
xor Exclusive or Boolean

Data
Unit
data data-unit-id :
 data-elem
end data

Data unit definition

Declaration (data-elem ::=)
[host | generic] type-id | type-id=enum{..} | type;
[host | generic] constant cst-id : type [=exp];
host | generic function fct-id ([{type,}]) : type;
host | generic procedure proc-id([{in | out | inout type,}]);
extends [data] unit-id;
map [map-id :] type-id {{field-id[exp[..exp]],}};

Interface
Unit
interface intf-unit-id :
 [data-elem]
 interface-eleml
end interface

Interface unit definition

Declaration (interface-elem::=)
input sig-id [{[exp]}] [:[temp] [value] type
 [init exp] [combine function]];
output sig-id [{[exp]}] [:[temp | reg[1]] [value] type
 [init exp] [combine function]];
inputoutput sig-id [{[exp]}] [:[temp] [value] type
 [init exp] [combine function]];
port port-id:[mirror] [input|output|inputoutput] intf-unit-id ;
extends [interface | data] [mirror] [input|output|inputoutput] unit-
id;
input | output relation [rel-id:] combinational-sig-exp ;

Module
Unit
[main] module mod-unit-id :
 [module-header]
 stat
end module

Module unit definition

Header (module-header::=)
[data-elem]
[interface-elem]
[{refine sig-id : [temp][mem] [reg[1]][init exp][combine function];}]

Multi-clock Unit
[main] multiclock mod-unit-id:
 [module-header] (including clocks)
 stat (reduced set of statements)
end multiclock

Lexical Elements
id::= [\]letter{ [underline] alphanumeric}
unsigned-literal:= 0[b | o | x] hexint with optional '_' characters
double-literal::=[integer] [.integer] [E[+|-]integer]
float-literal::=double-literal F
string-literal ::=”a \”double quote\n”
bool-literal ::= ‘0 | ‘1
bitvector-literal:= ‘[b | x] hexint with optional '_' characters
label ::= operator | delayed_statement@id|string-literal
comment ::= // mono line comment |
 /* multi line comments */ |
 /// mono line propagated comments |
 /** multi line propagated comments */

ESTEREL
LANGUAGE QUICK
REFERENCE CARD

FOR
ESTEREL STUDIO 5.3

www.esterel-technologies.com

Last modified: 3-Nov-05

http://www.esterel-technologies.com/

