
Synchronous Hypotheses

Behind the scene …

Charles André - Université de Nice-Sophia Antipolis2

Determinism & Reactivity

• Determinism:
The same input sequence always yields
The same output sequence

• Reactivity:
The program must react(1) to any stimulus
Implies absence of deadlock

(1) Does not necessary generate outputs, the reaction may change
internal state only.

Charles André - Université de Nice-Sophia Antipolis3

Abstraction

Reactive Program

Environ-
ment

InputsOutputs

Abstraction

Signals =
Abstraction of

Communications

Charles André - Université de Nice-Sophia Antipolis4

Reactive Programs

Incoming Communications
Actors’ reactions and internal communications
Outgoing Communications

Charles André - Université de Nice-Sophia Antipolis5

Reactive Programs

Environment

Refinement

Charles André - Université de Nice-Sophia Antipolis6

Demands for expressing
• Communication

– Internal and with the environment
• Simultaneous activities

– Independent/Concurrent/Parallel/ Sequential
• Modularity / Interfaces
• Hierarchy

Charles André - Université de Nice-Sophia Antipolis7

Synchronous Reactive Programs (1)

Environment

Atomic
execution:

• Read

• Compute

• Write

Charles André - Université de Nice-Sophia Antipolis8

The Synchronous Approach
• Notion of logical instant

– Simultaneity
– Priority (reaction to absence)

• Signals
– Abstraction of communications
– Instantaneous broadcast

• Non-overlapping sequence of reactions
• Control

– Deterministic, inter/intra instant
– Preemption

• Possible instantaneous actions (0-duration)

Charles André - Université de Nice-Sophia Antipolis9

Synchronous Reactive Programs (2)

Environment

I O
Input Output

P
Program

Charles André - Université de Nice-Sophia Antipolis10

Synchronous Reactive Programs (2)

Environment

I O
P

P

* *:P →I O
Deterministic transformation of input sequences into output sequences.

Sequences are indexed by logical instants.

Charles André - Université de Nice-Sophia Antipolis11

Synchronous Reactive Programs (3)

X

I OState

() (), ',X I X O

Charles André - Université de Nice-Sophia Antipolis12

Synchronous Reactive Programs (3)

X

I O

: (next state function)
: (output function)

λ
ω

× →
× →
I
I O

X X
X

() (), ',X I X O

Charles André - Université de Nice-Sophia Antipolis13

Synchronous Reactive Programs (3)

X

I O

1 2
1

'

1 20 2 1

(rewriting)P P

P n
n

P P P P Pn n

⎯⎯→

= ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→−

O
I

O O O
I � I � I �

Charles André - Université de Nice-Sophia Antipolis14

Synchronous Reactive Programs (4)

Environment

X
I O

Reaction :

Data
processing

Control

() (), ',X I X O Control (finite state)

+ controlled data processing

P → a compiled scheduler

Charles André - Université de Nice-Sophia Antipolis15

Hypotheses: Tuples of Signals

Reactive
Program

Input
signals

Output
signals

a1 a2 a3 a4 ….
b1 b2 b3 b4 ….

….
z1 z2 z3 z4 ….

Tuples of signals
a.k.a. vectors

But this is too strong a requirement!

Some signals may be absent.

a1 ⊥ a2 a3 ⊥ a4 ….
⊥ b1 b2 ⊥ b3 b4 ….

….
z1 z2 z3 ⊥ z4 ⊥ ….

Sequence of tuples
vs. tuples of sequences

OReactive
Program

I

Charles André - Université de Nice-Sophia Antipolis16

Hypotheses: Non overlapping Reactions
• Actually, a synchronous model works on a

logical time.
• The time is

– Discrete
– Total ordering of instants.

• A reaction executes in one instant.
• Actions that compose the reaction may be

partially ordered.

Use N as time base

Charles André - Université de Nice-Sophia Antipolis17

Hypotheses: Instantaneous broadcast
• Communications between actors are also

supposed to be instantaneous.
• All parts of a synchronous model perceive

exactly the same information
(instantaneous broadcast).

• Outcome: Outputs are simultaneous with
Inputs (they are said to be synchronous)

• Thanks to these strong hypotheses,
parallel composition can be fully
deterministic.

Charles André - Université de Nice-Sophia Antipolis18

Hypotheses: Summary
• Signals are the unique support of

communications
• The model deals with tuples of signals
• Any reaction has a 0-duration
• Logical time: instants, simultaneity
• Instantaneous broadcast of information

Charles André - Université de Nice-Sophia Antipolis19

Synchrony and Real-Time
• Relationship between Logical time and

“physical” time?
• Through distinguished signals bound to “time

passing” (i.e., clock signals)
• A simple (and usual way) to execute a

synchronous program:
do
await Activation // a signal taken as a clock
read inputs // acquisition
execute actions // reaction
write outputs // actuation

forever

Execution of the body of
the loop =

A reaction ↔ 1 instant

Charles André - Université de Nice-Sophia Antipolis20

Synchrony and Real-Time
• For automatic control and digital signal

processing applications, a periodic (w.r.t.
physical time) signal is chosen as activation
signal: A form of time-triggered system.

• For event-triggered systems another execution
mode may be taken:
do

wait for an event
execute actions // reaction
write outputs // actuation

forever

Charles André - Université de Nice-Sophia Antipolis21

Synchrony and Real-Time
• Since executions are fully deterministic,

the longest (actual) execution time for a
reaction δ can be computed accurately(1).

• For a given environment (contractual
aspect) with a bounded and known
response time τ, the synchronous
implementation runs in real-time if δ is
negligible w.r.t. τ.

• Precise meaning of negligible: refer to the
system engineer

(1) Provided it can be computed for all elementary actions

Charles André - Université de Nice-Sophia Antipolis22

Synchrony and Real-Time
• Remark:

Digital circuits have been using a similar
approach for long: known as “Synchronous
circuits”

Synchronous circuits are easier to develop
In some special cases asynchrony is

unavoidable.
• So are synchronous programs:

– Easier to write, analyze, implement
– Not applicable when underlying hypotheses

are unrealistic for the application at hand.

Charles André - Université de Nice-Sophia Antipolis23

Semantics of Synchronous Languages
• Synchronous languages (SL) are

specialized languages, not general
purpose ones (GPLs).

• SL are dedicated to reactive system
programming.

• Compared to GPLs, Synchronous
languages are both
– Simpler (limited number of constructs)
– Cleaner (based on mathematical semantics)

• May be more efficient (sophisticated
compilation)

