
LUSTRE-V4 manual (draft)

Pascal RAYMOND

February 16, 2000

This document presents the tools associated to the language Lustre V4. The
language itself is not presented here, see A Tutorial of Lustre 1 for an introduc-
tion to the language, or one of the following references for a more exhaustive
presentation : [7, 11, 30]. The Lustre distribution is a set of tools dealing with
several formats; some of them are executables, while others are just scripts and
shortcuts. The �rst part gives an overview of this set. Each tool is then pre-
sented in details in its own section. A section is also dedicated to the useful
related tools that are not included in the distribution. The last section gives
the answers to the most frequently asked questions.

1available in the lustre distribution

1

Contents

1 LUSTRE 6
1.1 NAME . 6
1.2 DESCRIPTION . 6

1.2.1 Lustre and ec . 6
1.2.2 Simulation . 7
1.2.3 Automata generation . 7
1.2.4 C code generation . 7
1.2.5 Formal veri�cation . 8

2 LUS2EC 8
2.1 NAME . 8
2.2 SYNOPSIS . 9
2.3 DESCRIPTION . 9
2.4 OPTIONS . 9

3 ECEXE 9
3.1 NAME . 9
3.2 SYNOPSIS . 9
3.3 DESCRIPTION . 9

3.3.1 Stand-alone ec program 9
3.3.2 Supported mathematical functions 10
3.3.3 Reactive Input Format (rif) 10
3.3.4 Missing values . 11
3.3.5 Nil value . 11
3.3.6 Reset . 12

3.4 OPTIONS . 12

4 LUCIOLE 12
4.1 NAME . 12
4.2 SYNOPSIS . 12
4.3 DESCRIPTION . 12

4.3.1 Main window . 12
4.3.2 Boolean mode: auto step vs compose 12
4.3.3 Input/output layout . 13

4.4 OPTIONS . 13
4.5 IOP FORMAT . 13

4.5.1 Lexical aspects . 13
4.5.2 Syntax . 14
4.5.3 THE RESSOURCE FILE 14

4.6 ENVIRONMENT . 16

5 LUS2OC 16
5.1 NAME . 16

5.1.1 SYNOPSIS . 16
5.2 DESCRIPTION . 16

2

5.3 OPTIONS . 16
5.3.1 Miscellaneous . 16
5.3.2 Static optimization . 17
5.3.3 Output format . 17
5.3.4 Automaton . 17
5.3.5 Bdds . 18

6 OCMIN 18
6.1 NAME . 18
6.2 SYNOPSIS . 18
6.3 DESCRIPTION . 19

6.3.1 ocmin . 19
6.4 OPTIONS . 19

7 LUS2ATG 19
7.1 NAME . 19
7.2 SYNOPSIS . 19
7.3 DESCRIPTION . 19

8 EC2C 19
8.1 NAME . 19
8.2 SYNOPSIS . 19
8.3 DESCRIPTION . 20
8.4 TARGET CODE . 20

8.4.1 Execution context . 20
8.4.2 Step procedure . 21
8.4.3 Inputs and outputs . 21
8.4.4 Example . 21
8.4.5 External objects . 22
8.4.6 Standard main loop . 22
8.4.7 Pragmas . 23

8.5 OPTIONS . 23

9 LUX 23
9.1 NAME . 23
9.2 SYNOPSIS . 23
9.3 DESCRIPTION . 23
9.4 NOTES . 24

10 LESAR 24
10.1 NAME . 24
10.2 SYNOPSIS . 24
10.3 DESCRIPTION . 24
10.4 OPTIONS . 25

10.4.1 Miscellaneous . 25
10.4.2 Static analysis . 25
10.4.3 Model checking . 26

3

10.4.4 Bdds . 27
10.5 NOTES . 27

11 XLESAR 27
11.1 NAME . 27
11.2 SYNOPSIS . 27
11.3 DESCRIPTION . 27

11.3.1 Main window . 28
11.3.2 Property editor . 28
11.3.3 Correct lustre expressions 28
11.3.4 Imported nodes . 28
11.3.5 Prover launcher . 29
11.3.6 Saving and loading the session 29

11.4 ENVIRONMENT . 29

12 Related tools 29
12.1 OC tools . 29
12.2 Autograph . 29
12.3 Sim2chro . 29
12.4 Reglo . 30
12.5 Bdd calculator . 30

13 Frequently asked questions 30
13.1 Generalities . 30

13.1.1 I've just write my �rst lustre program, how can I
run it? . 30

13.2 Language . 30
13.2.1 I get type checking errors when I try to use arrays 30

13.3 Code generation . 31
13.3.1 I run lus2oc (ec2oc) and nothing happens 31
13.3.2 The number of states seems to grow in�nitely when

I run lus2oc (ec2oc) 31
13.4 Lustre/C interface . 31

13.4.1 Well, now I get a C �le form my lustre program,
but where is the main procedure? 31

13.4.2 What kind of C code is necessary for imported
types, constants, functions? 32

13.4.3 I get \syntax errors" (resp. \unde�ned refer-
ence") while compiling the C code 32

13.4.4 Can I run concurrently several Lustre node in a
C application? . 32

13.4.5 My external procedure is sometimes called twice
(resp. not called at all) each single step! 33

13.5 Veri�cation . 33
13.5.1 I run lesar (ecverif) and nothing happens 33
13.5.2 I wrote a property which is trivially true and lesar

(ecverif) answers FALSE PROPERTY 33

4

13.5.3 I replace an assertion by an equivalent implica-
tion, and lesar (ecverif) behaves di�erently 34

Bibliography 35

5

1 LUSTRE

1.1 NAME

lus2ec, ecexe, luciole, simec, lus2oc, ec2oc, ocmin, lus2atg, oc2atg, ec2c, poc,
lux, lesar, ecverif, xlesar | lustre v4 tools

oc

ec

lus

ec2c (-loop)

ec2oc

ecexe simec

stdin/stdout graphical

simulation simulation

lus2ec (pollux)

atg

exec

Ansi-C compiler

C (+ main)

poc (-loop)
oc2atg

ocmin

Figure 1: Formats and tools overview

1.2 DESCRIPTION

1.2.1 Lustre and ec

The front-end for Lustre-V4 tools is the pre-processor lus2ec 2

This compiler transforms a Lustre-V4 program (.lus �le, with modularity, ar-
rays, recursion) into a Lustre-expended-code program (.ec �le, with a single
node, no arrays, no recursion).

2This program is based on pollux, by F. Rocheteau, a lustre-to-circuit compiler which is

no longer maintained.

6

All other tools (compilers, simulators ...) are actually running on the .ec format,
but the distribution provides (in general) shell scripts combining the front-end
(lus2ec) with the various back-ends (compilers and simulators).

1.2.2 Simulation

The Lustre-V4 distribution provides simulation tools that interpret ec code.
They only run on basic programs, that do not require external types, constants
or functions; however, some classical functions are supported, corresponding to
the math C library. All those tools are based on the same interpreter, and only
di�er on the user interface:

File to �le simulation:
ecexe is a unix-�lter like tool, reading on standard input and writing to
standard output.

Graphical simulation:
xecexe (script xsimlus) provides a graphical interface to the ec inter-
preter; this tool, based on X-intrinsics and Athena widgets is quite old
and no longer maintained.

simec (script luciole) provides a more friendly interface, based on tcl-tk
widgets. Moreover, it allows the user to (slightly) customize the graphical
interfaces.

1.2.3 Automata generation

Originally, the lustre compiler was designed to use an intermediate format,
called oc (for object code). This format was initiated by a collaboration with
the Esterel team, and several releases where de�ned. The main characteristic of
this format is that the control structure consists of a �nite state automaton. The
tool ec2oc (script lus2ec or lustre) supports oc version 2 (oc2) and 5 (oc5).
It also provides lot of options that allow the user to choose the automaton
stucture of the generated code.
Some tools based on the oc format are provided by the Esterel team, in par-
ticular C and Ada code generators (occ, ocada). An alternative Ansi-C code
generator, poc, is provided within the lustre distribution.
The distribution also provides a tool that performs minimization of oc automata
(ocmin) and a translator to the autograph format (oc2atg).

1.2.4 C code generation

The low-level target format in Lustre-V4 is Ansi-C. This code can be obtained
either:

� via ec2oc, using the poc compiler,

� directly from the ec code, using the compiler ec2c.

7

Note that the code generated by ec2c is di�erent from the one generated by
ec2oc; in particular ec2c does not build any kind of automaton. On the
contrary the generated interface is the same for both compiler, so one can
(normally) easily swap between code generated by poc and code generated by
ec2c.
By default, those compilers only provide a transition function, and the user has
to write his (her) own input/output and main procedures. Moreover, the user
has to provide the implementation of all external objects (types, constants and
functions) declared in the Lustre source.
Nevertheless, both poc and ec2c have an option -loop that builds an additional
main procedure. This simple "loop" works as a unix �lter (just like ecexe).
In order to obtain an executable, this main program may be completed by the
implementation of the (possible) external objects. Anyway, it can be used as a
pattern for more complex application.
If the code does not require external objects, the main generated by the -loop
option can be linked "as it is" with the transition function, in order to build a
stand-alone application. This is the case for almost all programs that can be
simulated using ecexe; by the way, the execution of such a stand-alone program
is completly similar to a simulation with ecexe: standard input to standard
output, interactive when called form a terminal.
The script lux is the best way for quickly building a stand-alone application: it
can take either lus, ec or oc �les as input, and uses the most suitable compilers
calls and build, if possible, a sstand-alone application. Note that C compilation
and the link-editing are performed by the host Ansi-C compiler; by default, lux
calls the GNU C compiler gcc, but one may customize this script.

1.2.5 Formal veri�cation

The Lustre model-checker is ecverif (shell lesar). It provides several algorithms
to check the validity of safety properties on Lustre programs. lesar (resp.
ecverif) takes as input special lustre (resp. ec) programs, called veri�cation
programs. Roughly speaking, such a program must be the parallel product of a
program to validate, a program observing that the desired property is satis�ed,
and another one observing that the hypothesis on the environment are satis�ed.
The user may build this product himself, and at last, lesar only checks that
its input has a single Boolean output, wich is supposed to be the property to
check; the hypothesis are supposed to be the conjunction of all the assertions
appearing in the veri�cation program.
xlesar is a graphical interface to lesar/ecverif. This tool is particularly suit-
able for managing a set of veri�cations on the same Lustre programs.

2 LUS2EC

2.1 NAME

lus2ec | lustre expansion

8

2.2 SYNOPSIS

lus2ec �le.lus node [options]

2.3 DESCRIPTION

Lustre to expanded-code compiler: it requires a Lustre-V4 input �le and a main
node name. It produces a �le node.ec. This �le contains the code of the main
node where node calls are inlined (recursively replaced by their de�nitions) and
where structured variables (arrays, tuples) are expanded into sets of atomic
variables (bool, int, real or external type).

2.4 OPTIONS

-o �le.ec
de�ne the name of the output �le.

-nos
output the result on stdout

3 ECEXE

3.1 NAME

ecexe | Lustre expanded code simulation

3.2 SYNOPSIS

ecexe �le.ec [options]

3.3 DESCRIPTION

This tool takes a stand-alone ec program, i.e. a program that does not require
external constants and functions (see below for details). The prede�ned types
are supported; more precisely, Booleans and integers are implemented by the
machine type int, and reals are implemented by double values. It simulates the
reactive behavior of the program, reading input values on stdin, and writing
outputs on stdout.

3.3.1 Stand-alone ec program

Basically, an ec node is said to be stand-alone if it only deals with pre-de�ned
types (bool, int, real), and does not require any external function or constant.
This is the general rule, but however, there exist several exceptions:

� External types are interpreted as enumerated types. The only values of
this type are supposed to be the declared constants of this type. Polymor-
phic operators are supported (=, ->, if then else, pre, when, current).

9

� Usual double-precision functions are supported; their names are those of
the standard C header math.h, and, indeed, they are implemented by
the corresponding function in libm.a library (see below for details).

3.3.2 Supported mathematical functions

Those functions must be declared in the lustre source with their exact names
and parameter types. A �le luslib/math.lus is provided in the distribution;
it contains the following declarations:

function acos (x: real) returns (y: real);

function asin (x: real) returns (y: real);

function atan (x: real) returns (y: real);

function cos (x: real) returns (y: real);

function sin (x: real) returns (y: real);

function tan (x: real) returns (y: real);

function cosh (x: real) returns (y: real);

function sinh (x: real) returns (y: real);

function tanh (x: real) returns (y: real);

function exp (x: real) returns (y: real);

function log (x: real) returns (y: real);

function log10 (x: real) returns (y: real);

function pow (x: real) returns (y: real);

function sqrt (x: real) returns (y: real);

function fabs (x: real) returns (y: real);

function ceil (x: real) returns (y: real);

function floor (x: real) returns (y: real);

3.3.3 Reactive Input Format (rif)

At each step, the interpretor reads on stdin a value for each input. The input

ow is supposed to follow the rif (Reactive Input Format) conventions: the in-
put
ow consists of a sequence of basic values (Booleans, integers, reals, strings)
separated by spaces (predicate ispace from ctype.h library). Moreover, com-
ments and pragmas can be written in the input
ow:

� All characters comprised between a # and the next new-line are considered
as a comment (resp. a pragma), and ignored (resp. treated if the pragma
is supported).

� All characters comprised between #@ and the next @# is also considered
as a comment.

The only pragma supported by ecexe is the string reset, which causes the
interpreter to restart in its initial state.
The syntax for integer and real values is the ansi-C one.
For Boolean values, the interpreter accepts:

� 0, f or F for false,

10

� 1, t or T for true.

When the interpreter has read all input values, it performs a computation step,
writes the corresponding outputs on stdout, reads a new input vector and so
on.
For instance, there is a valid input �le for a node that takes one Boolean input
and two integer inputs:

t 0 2

#this line is ignored

f 5 6 t 56 -12 #two steps on a single line

#@

all

those

characters are

ignored @# f 42 #this end of line is ignored

-10 #this is the end of the previous step

#reset

#@ the interpreter has been restarted @#

t 5 6

Note that new-lines have no special meaning: a new step is performed as soon
as a whole input vector is available.

3.3.4 Missing values

In order to interpret programs whose inputs are not always de�ned (clocked
inputs) the value ? is accepted for any type. For instance, the following input
sequence is correct for a node whose header is
node CLOCKED(c : bool; (x : real) when c):

t 42e2

f ?

f ?

t 24 #integer notation is accepted for real values

t -3.14

f ?

f 22.2E-10 #this value will be ignored anyway...

The symbol ? is also used for unde�ned outputs.

3.3.5 Nil value

When some output takes the value of an uninitialized variable, the interpreter
normally stops with error code 1. But there is an option that inhibits this
feature: in this case the interpreter outputs the string nil and goes on.

11

3.3.6 Reset

All comments begining with the string reset, are interpreted as a reset com-
mand: the interpretation restarts from the begining, just as if a new process
had been called for the remaining input �le.

3.4 OPTIONS

-r (reactive)
inhibits all bu�er mechanism on �les (to be used with command pipes).

-n outputs the string nil for non initialized value, instead of exiting with error
code 1.

4 LUCIOLE

4.1 NAME

luciole, simec | Lustre graphical simulation

4.2 SYNOPSIS

luciole �le.lus node [options]
luciole �le.ec [options]
simec �le.ec [options]

4.3 DESCRIPTION

The Lustre graphical simulation is based on the same library than the �le-to-
�le simulator ecexe. The main tool is simec, based on tcl-tk for the graphical
aspects. 3

When called with a lustre �le name, the script luciole calls lus2ec and then
simec with the remaining options (otherwise it behaves like simec).

4.3.1 Main window

simec opens a main window containing a widget for each input and each out-
put of the ec program. Input widgets allow the user to set the input values,
while output widgets just show the current values of the program output. Ba-
sically, Boolean inputs are implemented by buttons, while numerical inputs are
implemented by "scale widgets".

4.3.2 Boolean mode: auto step vs compose

The behavior of Boolean inputs depend on the mode:

3the �rst graphical simulator, xecexe was based on the Athena Widget library, and is no

longer maintained.

12

� In auto-step mode, Boolean inputs are supposed to be exclusive, and a
step is performed as soon as an input button is pressed.

� In compose mode, Boolean inputs are displayed as "check buttons": the
user may select/deselect Boolean inputs without performing a computa-
tion step.

Whatever is the current mode, the pre-de�ned button Step allows the user to
provoque a computation step.
The current mode can be changed via the Clocks menu.

4.3.3 Input/output layout

Input/output widgets are organized into lines and columns. The tool normally
opens a panel with a column for the inputs, and a column for the outputs, but
the user may de�ne a customized layout by de�ning an associated Input Output
Panel �le (iop extension). When called with foo.ec, simec �rst searches for a
�le whose name is foo.iop, and tries to use it as a layout description.
Since no speci�c tool is available, the best way to customize the input/output
panel for a program �le.ec is to �rst get the default iop description by using
the save �le.iop command in the Files menu, and then edit the resulting �le.
See x 4.5 for details.

4.4 OPTIONS

-h (help) display available options.

-v set verbose mode: every reaction is echoed on standard output. The output
format follows the rif conventions; as a consequence the outputed text
can be used as a correct Reactive Input Flow description by tools that
support this format (cf. sim2chro).

-auto
start in auto step mode.

-comp
start in compose mode.

-p �le.iop
(panel) specify a particular layout description.

4.5 IOP FORMAT

4.5.1 Lexical aspects

� Comments: all characters between "//" and the end of the line are ig-
nored; all characters between "/*" and the following "*/" are ignored.

� number is an integer or real notation.

� ident means any string of alphanumeric characters, including number .

13

� string means any string of printable characters enclosed whithin quotes.

4.5.2 Syntax

Parts whithin brackets are optional; item-list simply means one or more "space-
separated" items.
iop�le ::= module string

inputs var-decl-list
outputs var-decl-list
panels panel-list

var-decl ::= ident : type [label = string] ;
Additional information can be added to integer and real types.
type ::= bool

j int [min = number] [max = number]
j real [min = number] [max = number] [step = number]

A panel expression is built with the n-ary operators line and col. Leaf expres-
sions are references to input, output or panel identi�ers. The leaf box has no
meaning: it simply "takes place" in the layout. An identi�er must be declared
before it can be used. The panel top must be the last declared.
panel-decl ::= ident = panel-exp ;

panel-exp ::= col f panel-exp-listg
j line f panel-exp-listg
j $ident
j box

4.5.3 THE RESSOURCE FILE

The user may customize luciole by de�ning a ressource �le, whose name must
be luciolerc.tcl. The extension outlines the fact that this �le is a tcl/tk script
�le. A standard ressource �le is provided in the Lustre distribution which can
be copied and modi�ed:

$LUSTRE_INSTALL/lib/luciolerc.tcl

The ressource �le is automatically searched when luciole has initialized its win-
dow. The �le is searched �rst in the current directory, then in the user home
directory, and at last in the lustre distribution library:

./luciolerc.tcl

./.luciolerc.tcl

~/luciolerc.tcl

~/.luciolerc.tcl

$LUSTRE_INSTALL/lib/luciolerc.tcl

The �rst encountered �le in the previous list is evaluated as it is by the luciole
tcl interpret, and, as a consequence, it has (potentially) access to all internal
variable de�ned by luciole. However it is strongly recommended to only use a
few set of variables, as it is explained in the standard ressource �le. The most
useful variables are:

14

Global(verbose)
(read/write) holds a Boolean value (1 or 0) indicating wheter the verbose
mode is set or not.

Global(verbose channel)
(read/write) holds a tcl channel identi�er (initially stdout) indicating
where to put messages in verbose mode.

Global(show step ctr)
(read/write) is a Boolean indicating if the step counter is shown (1) or
not (0).

Global(show step)
(read/write) is a Boolean indicating if the step button is shown (1) or not
(0).

Global(auto step)
(read/write) is a Boolean indicating if luciole runs in auto-step mode (1)
or in compose mode (0).

Note that some command line options (-v, -auto, -comp) may override com-
mands in the ressource �le.
Informations on the current program are also available; those variables may not
be modi�ed :

Global(module name)
(read only) is the name of the running lustre node (string).

Global(input names)
(read only) is the list of input names (string list).

Global(input types)
(read only) is the list of input types (string list).

Global(output names)
(read only) is the list of output names (string list).

Global(output types)
(read only) is the list of output types (string list).

At last, a tk container widget (i.e. a frame) is reserved in the lurette window for
user's customization. Most preciselly, this widget (initially empty) is located
in the luciole menubar, and its typical use is to add one or more user-de�ned
menu buttons

Global(user menu)
(read only) contains the tk-path of a frame where the user can pack his/her
own menus.

The standard ressource �le is an example of how to create such a menu: it adds
a menu button Tools, with a command sim2chro that dynamically launches
the chronogram manager sim2chro. See x12.3 for details.

15

4.6 ENVIRONMENT

The environement variable LUSTRE INSTALLmust exist and hold the path
of the lustre v4 distribution.

5 LUS2OC

5.1 NAME

lus2oc, ec2oc | lustre to Lustre/Esterel Object Code

5.1.1 SYNOPSIS

lus2oc �le.lus node [options]
ec2oc �le.ec [options]

5.2 DESCRIPTION

The lus2oc command requires a �le and a main node; it �rst calls lus2ec to
build the corresponding expanded code, then calls ec2oc with all remaining
options.
The ec2oc command builds a sequential program structured as an automaton.
Several options allow the user to adjust the automaton generation. The default
target format is oc version 5 , but the version 2 is still supported, for compati-
bility with old tools. The default is to write the result in the �le "node.oc".

5.3 OPTIONS

5.3.1 Miscellaneous

-v set the verbose mode.

-help
print available options.

-default
print default options.

-o �le.oc
de�ne the output �le.

-pure
implement Boolean inputs/outputs with "pure" signal (i.e. side-e�ects).
The default is to implement Boolean inputs/outputs with "classic" vari-
ables, just like integer or reals.

-double
implement the lustre type real with the target type double (the default
target type is
oat).

16

5.3.2 Static optimization

-min
(default) the initial operator network is minimized before code generation.
This minimization is a kind of "common sub-expression checking" except
that the network may contain cycles; as a consequence this phase can be
expensive, so the user can disable it (cf. -nomin).

-nomin
disable the minimization of the operator network (cf. -min).

-const
perform static computation of constant expressions.

5.3.3 Output format

-oc2
generate an oc V2 �le.

-oc5
(default) generate an oc V5 �le.

5.3.4 Automaton

The main control structure is an automaton, obtained by static simulation of
the Boolean variables (called state variables). The user can select the set of
state variables:

-0 no state variable; the resulting automaton has only one state. This mode is
not supported if the source program contains clocks.

-1 only clocks are simulated. For single-clocked program, the resulting automa-
ton has always 2 states (the initial one and the non-initial one).

-2 (default) all Boolean variables are simulated; the resulting program is the
"fastest" code that can be generated, but unfortunately its size may be
exponentially greater that the source code one. It it advisable to use the
-v option, in order to stop the compilation if the automaton size grows
too much.

The user may choose between two algorithms for the generation:

-data
(default) the data-driven algorithm simulates the Boolean variables with-
out taking into account their actual in
uence on the outputs. The result-
ing automaton is in general non-minimal according to the output compu-
tation.

-states integer
works in data-driven mode. The generation stops after the speci�ed num-
ber of states (default 10000). This limit avoids the generation of too huge
code.

17

-demand
the demand-driven algorithm builds a automaton just "big" enough to
perform the computation of the outputs. Using this option is quite equiv-
alent to perform a standard minimization on the automaton produced by
the data-driven algorithm. See S 6.2 for details.

The user can select the way conditional statements are treated:

-S1 forbid code duplication, i.e. tests are closed as soon as possible.

-S2 (default) use an heuristic for opening/closing tests; it forbids duplication
of "big" parts of code.

-S3 forbid test duplication, i.e. tests are closed only when they are no longer
needed.

-S4 forbid test closing; this option is the worst one in term of code size, but it
can be very useful for analysing the program (see in particular lus2atg).

5.3.5 Bdds

The bdd (binary decision diagrams) library is one of the most critical (time
and space cost) part of the compiler. The user may change some parameters in
order to improve compilation time.

-merge
perform a "clever" variable ordering before building bdds; this option is
sometimes useful when the state generation step cannot even start.

-bddpage integer
the space devoted to bdds is allocated by pages. Before allocating new
pages, the program �rst performs garbage collection; for big programs,
frequent garbage collection may dramatically slow down the compilation,
so the user may increase the size of pages, expressed in kilo-unit (default
10).

6 OCMIN

6.1 NAME

ocmin | automata minimization

6.2 SYNOPSIS

ocmin �le.oc [options]

18

6.3 DESCRIPTION

6.3.1 ocmin

This tool performs state equivalence checking to reduce the size of the automa-
ton. It takes either oc2 or oc5 �les, and outputs the minimized automaton in
the same format version; the default output �le is module-name min.oc.

6.4 OPTIONS

-v set verbose mode

-o �le
de�ne the output �le (default is module-name min.oc)

7 LUS2ATG

7.1 NAME

lus2atg, oc2atg | automata visualisation

7.2 SYNOPSIS

lus2atg �le.lus node
oc2atg �le.lus node

7.3 DESCRIPTION

oc2atg extracts basic information about the underlying automaton in the
source �le, and outputs this information in the atg format, suitable for the
tool autograph; (See x 12.2).
Most of the information is lost: the atg �le only contains the skeleton of the
program. This skeleton consists of a set of states and transitions labelled by
"input/output" presence conditions.
It is quite hard to compile a lustre program in such a way that the resulting oc
program produces a meaningful atg automaton, so it is recommended to use
the script lus2atg. Using this script, the Boolean part of the source program
will be exactly re
ected in the resulting automaton.

8 EC2C

8.1 NAME

ec2c, poc | ansi C code generator

8.2 SYNOPSIS

ec2c �le.ec [options]
poc �le.oc [options]

19

8.3 DESCRIPTION

These tools are Ansi-C code generators. They are presented together, since they
share the same conventions for the generated user interface. Otherwise, they
are completely separated tools, working in di�erent formats, and performing
di�erent tasks:

� poc takes as input a oc �le, which is already a sequential imperative
program; the work of poc is then a simple translation between similar
formalisms. See x 5.1 for details.

� ec2c compiles an ec program into Ansi-C code. Since ec (which is a
subset of Lustre) is a declarative language, a lot of work remains to do
for building sequential code. In this sense, ec2c is closer (but anyway
simpler) to a tool like ec2oc. Roughly speaking, using ec2c is almost
equivalent to using ec2oc with the -0 option, and then poc. The main
characteristic of this compiler is that both the compilation time and the
size of the code are linear with respect to the size of the source code.
Moreover the compilation algorithm strictly follows the Lustre formal
semantics, just like the simulator ecexe does. See x 3.2.The consequence
is that, on one hand, the code is not very e�cient (no control structures,
lots of intermediate variables), but in the other hand, it is very safe.

8.4 TARGET CODE

The code generated by those compilers consists essentially in a procedure im-
plementing a step of the reactive program described in the source �le. In order
to run the reactive program, the user must write a main loop around the "step"
procedure.
In the following, we precise what it is automatically generated, and what the
user has to write. Let us call foo.oc (resp. foo.ec) the source �le, FOO the
oc module (resp. the ec node) de�ned in the source �le, foo.c and foo.h the
generated �les, and loop.c the main program written by the user.

8.4.1 Execution context

The generated code allows multiple allocations of a reactive module. The mem-
ory needed for an instance of the reactive module is de�ned in foo.c, and de-
clared in foo.h:

struct FOO_ctx;

The user does not have to know what this structure is made of, he is only allowed
to manipulate pointers. The user can get a new context using a procedure
declared in foo.h:

struct FOO_ctx * FOO_new_ctx(void* client_data);

The user can associate an extra information to a new execution context using
the client_data argument. This information is necessary if the user wants to
run several instances of a same reactive module concurrently.

20

8.4.2 Step procedure

The procedure implementing a step of the reactive module is declared in foo.h:

void FOO_step(struct FOO_ctx * ctx);

This procedure is called with an execution context previously created by a call
to FOO_new_ctx. This step procedure has no input/output parameters, since
communication between the main loop and the reactive module is made via
input/output procedures. More precisely, the user must call input procedures
to set the input values before he calls the step procedure. The step procedure
calls output procedures to send its outputs to the environment.

8.4.3 Inputs and outputs

Communications between foo.c and loop.c are made via input and output pro-
cedures. The input procedures are de�ned in foo.c and used in the main loop,
the output procedures are de�ned by the user (in loop.c for instance), and used
in foo.c.
For each input IN, of type TYP, foo.c contains the de�nition of the procedure:

void FOO_I_IN(struct FOO_ctx* context, TYP value);

Note that if IN is a pure signal (poc only), the value parameter is omitted:

void FOO_I_IN(struct FOO_ctx* context);

For each output OUT, of type TYP, the user must de�ne a procedure:

void FOO_O_OUT(void* client_data, TYP value);

Note that if OUT is a pure signal (poc only), the value parameter is omitted:

void FOO_O_OUT(void* client_data);

Output procedures are called within FOO step(FOO ctx� ctx), using the
client data which has been associated with ctx when it was created.

8.4.4 Example

Here is a simple example of a main loop using a reactive module (whose name
is sum) with two real inputs (x and y) and a single real output s; note that the
client data is not necessary, since the loop uses only one instance of the reactive
module:

#include <stdlib.h>

#include "sum.h"

void sum_O_s(void* cdata, float _V){

printf("result: %f\n", _V);

}

21

main(){

_float x;

_float y;

struct sum_ctx* prg = sum_new_ctx(NULL);

while(1){

printf("(float) x ?\n");

scanf("%f", &x);

sum_I_x(prg, x);

printf("(float) y ?\n");

scanf("%f", &y);

sum_I_y(prg, y);

sum_step(prg);

}

}

8.4.5 External objects

Each external object declared in the source �le is supposed to be implemented
by the user. Some information is necessary for the compilation of the c gener-
ated code, other is necessary only for linking.

� Compiling The foo.c program generated by poc cannot be compiled
unless the external types are de�ned. poc supposes that those de�nitions
are in a �le called foo ext.h.

� Linking External constants, functions and procedures are declared in
foo.c as imported objects, so foo.c can be compiled separately. Indeed
the user must de�ne those objects somewhere, and link the corresponding
code with the poc object code if he wants to build an executable program!

8.4.6 Standard main loop

When called with the -loop option, poc (resp. ec2c) produces an extra c-�le
FOO loop.c. This code contains a main procedure implementing a loop which
reads inputs on stdin and write outputs to stdout. If foo.c does not need
external object, it is a simple way to obtain executable code. For instance:

poc sum.oc -loop

gcc sum.c sum_loop.c -o sum

produces an interactive program sum, which allows the user to test his code.
If external objects are needed, the user must write all the necessary code plus
two procedures for each external type TYP:

� TYP _get_TYP(char* name) reads a value of type TYP on stdin, and
returns it. The argument "name" is the name of the input, used to make
the procedure more "interactive".

� void _put_TYP(TYP val) prints the value "val" on stdout.

22

8.4.7 Pragmas

In order to allow automatic manipulation of the code generated, the compiler
generates special comments (pragmas) in the header �le. Pragmas are single
line Ansi C comments, begining with the string poc:. Ther is a pragma which
gives the name of the module, and a pragma for each input and each output,
giving its type and its name. Here is an example of pragma section:

//poc:MODULE sum

//poc:IN _float x

//poc:IN _float y

//poc:OUT _float s

8.5 OPTIONS

-v set the verbose mode.

-o name
de�ne the pre�x for the target �les. The default is to use the name of the
module (i.e. node), which is not necessarily the name of the source �le.

-loop
generate an extra main �le called name loop.c. This main is su�cient
to build a stand-alone application if the reactive module does not need
any external de�nitions.

9 LUX

9.1 NAME

lux | all in one Lustre compilation

9.2 SYNOPSIS

lux �le.lus node
lux �le.ec
lux �le.oc

9.3 DESCRIPTION

This shell script performs all the compilation stages necessary to produce a
binary �le from a lustre (resp. ec or oc) program. A main node is expected
when starting from the lustre level.
The binary generation only works for basic lustre programs (resp. ec or oc),
that means programs that do not need any external de�nitions to work (external
types, constants, functions).
The several stages are depending on the input format:

23

lus:
call lus2ec, then ec2c with the -loop option, and then the gnu C-
compiler/linker gcc.

ec: call ec2c with the -loop option, and then gcc.

oc: calls poc with the -loop, and then gcc.

When the compilation succeeds, the name of the resulting program is the name
of the main lustre node (resp. the ec node or the oc module).

9.4 NOTES

Indeed, Lustre distribution does not provide a C compiler. The lux script sup-
poses that the gnu-C compiler is properly installed, but the user may customize
the script in order to use another available compiler.

10 LESAR

10.1 NAME

lesar, ecverif | formal veri�cation

10.2 SYNOPSIS

lesar �le.lus node [options]
ecverif �le.ec [options]

10.3 DESCRIPTION

The lesar command �rst calls lus2ec, then ecverif. The ecverif tool takes
a program whose �rst output is Boolean, and try to prove that this Boolean
output remains true, for any execution of the program (i.e. whatever is the
in�nite sequence of input values received by the program). Moreover, the tool
supposes that every assertion (assert statements) appearing in the program
denotes an hypothesis on the program environement, so the goal of the tool is
at last to prove that:
whatever could be the sequence of inputs, as long as the assertions are satis�ed
(hypothesis), the �rst output remains true (the property).
The input program is often called veri�cation program, and it is generally build
by combining a program to validate with another program expressing some
safety property (called the observer). The user may read the Tutorial of Lustre
which explains how to build veri�cation programs suitable for lesar/ecverif.
ecverif is a model-checker : it explores a �nite model (an automaton) of the
program. This model is an abstraction that represents an upper-approximation
of all the possible executions of the program. The abstraction made on the
"real" program is conservative: if the veri�cation succeds on the model, the
property is also satis�ed by the program. In this case the tool answer True
Property . If the veri�cation fails on the model, the result is unconclusive: either

24

the property is not satis�ed by the program, or the property is too complex for
the tool. So when the tool answer False Property , it simply means in general i
don't know !
More precisely, the Boolean part of the program is completly re
ected in the
model, but everything else is abstracted (numerical variables, external types
and functions ...). Note that, as a consequence, the model-checking is complete
for purely Boolean programs (e.g. logical circuits).
Nevertheless, some knowledge on numerical properties has been added to the
model checker. A library based on polyhedra manipulation can be used to check
whether linear constraints are feasible or not. For instance, using the polyhedra
library, the tool "knows" that the condition "(x y) and (e > 0) and (x + 2�e
< y)" cannot be satis�ed by any numerical values. This kind of information
is taken into account to obtain a more precise model, but indeed, the result
remains partial in general.
The successive stages of the computation are involving complex algorithms that
may take (a lot of) time. It is recomended to use the verbose mode: in this
case ecverif outputs information on the current stage, that allows the user to
"guess" if the computation has a chance to end in a reasonable delay. The
stages are:

Static analysis
The source code is optimized for the proof: this stage performs depen-
dence checking, syntactic minimisations, and other optimizations at the
source level. The complexity is here reasonable (linear or quadratic).

Bdds construction
The Boolean part of the program is identi�ed and transformed in a set of
logical functions, represented by bdds (Binary Decision Diagrams). The
result is an implicit representation of the model to check. This stage may
be exponential in the worst case.

Exploration of the model
Several algorithms can be selected. In all cases, the time necessary for
the traversal of the model can be exponential in the worst case.

10.4 OPTIONS

10.4.1 Miscellaneous

-v set the verbose mode. Since the algorithms used in the tool are very ex-
pensive, it is strongly recomended to use this option in order to have a
feed-back on the veri�cation progress.

-help
print available options.

10.4.2 Static analysis

-nomin
Normally, the �rst stage of the veri�cation consists in minimizing the

25

source program, according to syntactic equivalence of expressions. This
checking also takes into account equivalence of recursive de�nitions. The
result is much more precise than a simple "common sub-expression check-
ing", but indeed more expensive, so the user can disable it with this op-
tion.

-split
split the property into several smaller ones (if possible).

-optb
force static Boolean optimization of the source program. This option was
supported by older versions, but it is (almost) obsolete since the bdds
construction stage is now optimized.

10.4.3 Model checking

The main stage of the model checker consists in exploring the underlying au-
tomaton (the model). The user may choose between several algorithms for this
exploration.
Assertions are taken into account durring the exploration to "cut" unfeasible
transitions. A state whose all transitions have been cut, is said to be a sink
state. Assertions that can produce sink states are said to be non-causal .

-enum
(default) use the enumerative algorithm. The automaton is checked state
by state, starting from the initial one. The veri�cation fails as soon as a
state violating the property is reached. An error occurs if the assertions
are found to be non-causal.

-states n
only works in enumerative mode. The exploration stops after n states are
visited.

-forward
use the symbolic forward algorithm. The set of reachable states is build
as a Boolean formula over the state variables. The veri�cation fails if this
set contains states violating the property.

-backward
use the symbolic backward algorithm. This algorithm builds a symbolic
representation of the bad states, i.e. states that can lead to the violation
of the property. The veri�cation fails if the initial state belongs to this
set.

-causal
compute a causal assertion equivalent to the initial one, before starting
the model-checking. This computing is expensive, so it is recommended
to use it only when needed (when a �rst attempt have failed because of
non-causal assertions). Moreover, this option must not be used with the

26

forward algorithm, which implements its own treatment for non-causal
assertions.

-poly
force the model checker to use the polyhedra library to check wether lin-
ear constraints on numerical values are feasible. Without this option,
semantics of numerical values is completly ignored, and any condition is
supposed to be feasible as soon as integers or reals are involved.

-diag
print a diagnosis when veri�cation fails. The diagnosis is a sequence of
input values that may leads to a state violating the property.

10.4.4 Bdds

-merge
perform a "clever" variable ordering before building bdds; this option is
sometimes useful when the state generation pahse cannot even start.

-bddpage n
the space devoted to bdds is allocated by pages. Before allocating new
pages, the program �rst performs garbage collection; for big programs, fre-
quent garbage collection may dramatically slow down the model-checking,
so the user may increase the size of pages, expressed in kilo-unit (default
10).

10.5 NOTES

Building veri�cation programs to "feed" lesar is quite hard. The graphical
proof manager xlesar can be a simpler way for starting with formal veri�cation.
See x 11.1.

11 XLESAR

11.1 NAME

xlesar | graphical proof manager for lustre

11.2 SYNOPSIS

xlesar

11.3 DESCRIPTION

This tool is a graphical interface to the lustre veri�cation tool ecverif. See S 10.1
for details.
More precisely, this tool allows the user to manage a set of properties for a
given lustre program. Each property can be edited, annotated, completed with
local assumptions. A window allows the user to select the desired options and
to launch the prover ecexe.

27

11.3.1 Main window

The main window allows the user to select a main program and a main node
within this program. Once selected, the lists of inputs and outputs are displayed
and the user can de�ne properties involving those variables.
The property manager is part of the main window: the user can create, delete
and edit properties.

11.3.2 Property editor

In the main window, one must select a property (by clicking in the properties
list) and launch a property editor by clicking Edit. In the property editor
window, the user can:

� edit the property name

� de�ne the property, by typing a correct Lutre Boolean expression (see
below for details).

� declare a local input (menu Edit, �eld New input). A local input be-
haves as a "random" value in the proofs.

� declare and de�ne a local variable (menu Edit, �eld New variable).

� de�ne a local assertion (menu Edit, �eldNew assertion). The assertion
must be a correct Boolean lustre expression.

� write a description of the property. The command Show description
from the Edit menu opens a text editor where the user can type his
description.

11.3.3 Correct lustre expressions

Each lustre expression entered in xlesar is checked for consistency before the
prover is launched. Such an expression must be syntactically correct, but xlesar
also checks type and the identi�er consistency. Every identi�er appearing in
the expression must exists in the current context. A valid identi�er is:

� any global input or output (those from the main node, if it exists).

� any local input or variable that is currently enabled.

11.3.4 Imported nodes

The tool does not allow the user to de�ne complex objects like nodes. In order
to use a node call in the de�nition of a property (resp. assertion, local variable),
the user must import its de�nition (main window menu Import, menu Files,
command Load �le). Once loaded, the imported �le is parsed by xlesar to �nd
and display all the nodes declaration. From this moment on, the user will be
able to use those nodes in the property (resp. assertion or variable) de�nitions.

28

11.3.5 Prover launcher

A prover launcher is displayed in the property editor window. This launcher
allows the user to select the options and run the proof. It also display the
current status of the property (checked, not checked or unknown). When the
prover is running, all messages are "echoed" in the window, and the user may
kill the proof process by pushing the Stop button.

11.3.6 Saving and loading the session

A xlesar session is called a project (extension .lesar). The user may save, load
or restart a project via the Files menu in the main window.

11.4 ENVIRONMENT

The environement variable LUSTRE INSTALLmust exist and hold the path
of the lustre v4 distribution.

12 Related tools

12.1 OC tools

The oc format was designed to be a common object-code for both lustre and
esterel compilers. The occ (oc to c) compiler is distributed as part of the esterel
distribution. See http://www-sop.inria.fr/meije/esterel.

12.2 Autograph

Autograph is a graphical editor that can load automata descriptions generated
by lus2atg (see x7.1). It is distributed by theMeije team at Sophia-Antipolis.
See http://www-sop.inria.fr/meije/verification.

12.3 Sim2chro

This tool converts
ows of values into a \viewable" chronogram. The input
format (called rif for reactive input
ow) is compliant with the output produced
by lustre simulators (ecexe, luciole/simec). So one can saves a simulation
outputs into a �le, and then feeds sim2chro with this �le.
If the rif producer is non-blocking, a command pipeline can even be de�ned.
This is for instance the case when the producer is luciole. For instance:

luciole file.lus node -v | sim2chro -ecran > /dev/null

starts a process where each steps of luciole \increases" the chronogram dis-
played by sim2chro. This feature is exploited in the standard luciolerc �le:
a menu is added in luciole which allows the user to dynamically call/kill a
sim2chro process (see x4.5.3).
The default for sim2chro is to output the chronogram as a latex picture. The
-ecran (french word for screen) option displays the chronogram into a X win-
dow. Much more formats are available (x�g, postscript, tcltk), and a huge

29

amount of options are de�ned for customizing the result. The tool (version 3.0)
is present in the lustre distribution, but unfortunately, no documentation is
available for the time being. The best way to get information is then to contact
the author Yann.Remond@imag.fr.

12.4 Reglo

Reglo is a compiler which translates regular expressions into sequential circuits,
implemented as lustre nodes. This tool can be useful for describing observers
in a imperative way and to automatically translate them into lustre observers
suitable for the veri�cation tools (cf. x10.1, x11.1). The tool is distributed in this
distribution, see the related documentation (doc/reglo doc.ps) for details.

12.5 Bdd calculator

The tool bddc implements an interactive processor for the evaluation of logical
formula. The tool is distributed in this distribution, see the related documen-
tation (doc/reglo doc.ps) for details.

13 Frequently asked questions

13.1 Generalities

13.1.1 I've just write my �rst lustre program, how can I run it?

Let foo.lus be this �le, and bar the node (de�ned in foo.lus) you whant to
run. If this program only uses basic features (no external declarations), you
can either use the graphical simulator by typing:

luciole foo.lus bar

or compile it by typing:

lux foo.lus bar

foo

13.2 Language

13.2.1 I get type checking errors when I try to use arrays

The most common errors come form the homomorphic extension of the oper-
ators. This means that all operator (e.g. and, from bool � bool to bool) is
implicitly extended to arrays of any size (e.g. form booln � booln to booln).
This rule holds for the if...then...else operator, so for instance:

node bad(c : bool; A, B : int^n) returns (X : int^n);

let

X = if c then A else B; --TYPE ERROR: c IS NOT AN ARRAY

tel

In order to make that, just build an array with n \copies" of the condition:

30

node good(c : bool; A, B : int^n) returns (X : int^n);

let

X = if c^n then A else B; --OK

tel

13.3 Code generation

13.3.1 I run lus2oc (ec2oc) and nothing happens

All the tools that are based on automata generation may provoque (in the worst
case) an exponential \explosion" of computation time and space. For instance,
the underlying automaton of the following node has 264 states, which is much
more than the age of earth in seconds !

const n = 64;

node boom(dummy : bool) returns (end : bool);

var

cpt : bool^n;

carry : bool^n;

let

cpt = false^n -> carry xor pre cpt;

carry[0] = true;

carry[1..n-1] = carry[0..n-2] and pre cpt[0..n-2];

end = false -> carry[n-1] or pre end;

tel

First, it is recommended to use the verbose option (-v) while using lus2oc: you
will see the progression of the automaton generation, then see question 13.3.2.

13.3.2 The number of states seems to grow in�nitely when I run
lus2oc (ec2oc)

The number of states is always �nite, but maybe exponential, which is prac-
tically quite equivalent (see the example in question 13.3.1). If the number of
states grows dramatically, just kill the compilation process and try a \cheaper"
way:

� lus2oc with the option -0 or -1

� ec2c which generates a naive (but always linear) code

13.4 Lustre/C interface

13.4.1 Well, now I get a C �le form my lustre program, but where
is the main procedure?

The goal of the C-code generator (eitheir ec2c or poc) is to produce a step
procedure, that implements a computation step of the lustre program. In order
to run this code, the user must write the main procedure that \loops" around
the step procedure. Writing such a main procedure from scratch is a little bit

31

hard, so ec2c (resp. poc) provides a -loop option, that generates a standard
main loop procedure. This main is quite basic: it reads inputs on stdin, writes
outputs on stdout. Moreover, it can only runs \as it is" for Lustre programs
that do not require external de�nitions (imported types, constants, functions).
However, this standard loop is a good starting point for designing mode complex
applications.

13.4.2 What kind of C code is necessary for imported types, con-
stants, functions?

All external objects declared in a Lustre program bar must be declared and/or
de�ned in a �le whose name is bar ext.h. In the generated �les bar.h and
bar.c you will �nd (as a comment) the list of all objects whose de�nition is
expected in bar ext.h. There is no strong restrictions on the way external
objects are actually implemented:

� external types can be any ansi-C types (records, arrays, enum or what-
ever). Indeed the actual size of the C type must be known at compile
time, so bar ext.h must contain the de�nition of the time, not only its
declaration. Note that for each external type FOO, some procedures must
be declared too:

{ the assignment: void assign FOO(FOO*,FOO)

{ the comparizons: boolean eq FOO(FOO,FOO)

boolean ne FOO(FOO,FOO)

{ the condition: FOO cond FOO(boolean,FOO,FOO)

� external constants can be global constants, variables or even \#"-de�ned
constant expressions. The declaration is su�cient in bar ext.h.

� external procedures must follow the expected parameter pro�le. In par-
ticular, external functions are (in general) supposed to be implemented
by procedures: functions returning \void", where the �rst parameters are
pointers to the output variables. The actual declaration has no impor-
tance since the pro�le is correct: external function, inlined function, or
even \#"-de�ned function.

13.4.3 I get \syntax errors" (resp. \unde�ned reference") while
compiling the C code

This probably means that external objects are not properly declared in the
external header �le (the default is bar ext.h for a lustre program bar). See
question 13.4.2.

13.4.4 Can I run concurrently several Lustre node in a C applica-
tion?

Yes. The ansi-c code produced by poc or ec2c is \object-oriented". That
meens that a lustre node bar is translated into a structured type (the context)

32

with several functions to manage it (the methods: creation, copy, step call,
input procedures etc...). See the poc manual for details (x8.1). You can even
run concurrently several instances of the same node: a simple mechanism of
\client data" allows the user to di�erentiate at run-time outputs comming from
di�erent instances of a same node.

13.4.5 My external procedure is sometimes called twice (resp. not
called at all) each single step!

That may happen if you use the lus2oc compiler. This compiler supposes that
external functions are \safe" (just like prede�ned operator) so the function can
be called only when needed: zero, one or times in a step. In fact, only output
procedures are supposed to perform side-e�ect: those procedures are called
exactly once in each step if and only if the output clock is true.
If you use the ec2c compiler, things are quite di�erent: any operator (including
procedure calls) appearing in the program is executed once in each step if the
corresponding clock is true.

13.5 Veri�cation

13.5.1 I run lesar (ecverif) and nothing happens

Like lus2oc (see question 13.3.1, 13.3.2), this tool is based on automata ex-
ploration, and both computation time and size may grow exponentially. It
is recommended to use the verbose option to see where the computation is
\blocked":

� while building bdds. Try the -merge option, which computes a better
variable ordering.

� while exploring states. Try another algorithm for the automaton ex-
ploration, -forward is the best in general, but -backward is sometimes
surprising.

13.5.2 I wrote a property which is trivially true and lesar (ecverif)
answers FALSE PROPERTY

If the property only involves Boolean variables and operators, lesar is likely to
be right...
If the property involves numerical values, this answers simply meens I don't
know : the default behavior of lesar is to ignore everything that is not purely
logical. For instance lesar does not even know that \(X � 2)) (2 �X > 3)".
In order to \increase" the knowledge of the tool, you may use the -poly option.
With this option, lesar uses a polyhedra library to \compute" linear constraints:
in particular, \(X � 2)) (2 �X > 3)" will be replaced by \true".
In all cases, properties that involve temporal behavior of numerical variables
can not be checked.

33

13.5.3 I replace an assertion by an equivalent implication, and lesar
(ecverif) behaves di�erently

A common error is to think that a veri�cation scheme such that:

node Proof1 (Hypothesis : bool; Property : bool) returns (ok : bool);

let

assert Hypothesis;

ok = Property;

tel

is equivalent to the following one:

node Proof2 (Hypothesis : bool; Property : bool) returns (ok : bool);

let

ok = Hypothesis => Property;

tel

Intuitively, in the �rst case, lesar try to check that if Hypothesis is always true,
then Property is always true too, while in the second one, lesar try to check that
the proposition \Hypothesis implies Property" is always true. More formally,
let's consider that Hypothesis and Property are in�nite sequences of Boolean
values, indexed by naturals (H = H0;H1; :::;Ht; ::: and P = P0; P1; :::; Pt; :::).
In Proof1, lesar try to verify that:

(8t 2 NHt)) (8t 2 NPt);

which is di�erent (in general) than the case of Proof2:

8t 2 N(Ht) Pt):

34

References

[1] J-L. Bergerand. Lustre: un langage d�eclaratif pour le temps r�eel. Thesis,
Institut National Polytechnique de Grenoble, 1986.

[2] J-L. Bergerand, P. Caspi, N. Halbwachs, D. Pilaud, and E. Pilaud. Outline
of a real-time data-
ow language. In 1985 Real-Time Symposium, San
Diego, December 1985.

[3] J-L. Bergerand, P. Caspi, N. Halbwachs, and J. Plaice. Automatic con-
trol systems programming using a real-time declarative language. In
IFAC/IFIP Symp. 'SOCOCO 86, Graz, May 1986.

[4] B. Berkane. V�eri�cation des syst�emes mat�eriels num�eriques s�equentiels
synchrones : Application du langage Lustre et de l'outil de v�eri�cation
Lesar. Thesis, Institut Polytechnique de Grenoble, October 1992.

[5] C. Buors. S�emantique op�erationnelle du langage Lustre. DEA Report,
University of Grenoble, June 1986.

[6] P. Caspi. Clocks in data
ow languages. Theoretical Computer Science,
94:125{140, 1992.

[7] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: a declarative
language for programming synchronous systems. In 14th ACM Symposium
on Principles of Programming Languages, POPL'87, Munchen, January
1987.

[8] A. Girault and P. Caspi. An algorithm for distributing a �nite transition
system on a shared/distributed memory system. In PARLE'92, Paris, July
1992.

[9] A-C. Glory. V�eri�cation de propri�et�es de programmes
ots de donn�ees syn-
chrones. Thesis, Universit�e Joseph Fourier, Grenoble, France, December
1989.

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. Programmation
et v�eri�cation des syst�emes r�eactifs �a l'aide du langage
ot de donn�ees
synchrone Lustre. Technique et Science Informatique, 10(2), 1991.

[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data
ow programming language Lustre. Proceedings of the IEEE,
79(9):1305{1320, September 1991.

[12] N. Halbwachs and F. Lagnier. S�emantique statique du langage lustre -
version 3. Technical Report SPECTRE L15, IMAG, Grenoble, February
1991.

[13] N. Halbwachs, F. Lagnier, and C. Ratel. An experience in proving regu-
lar networks of processes by modular model checking. Acta Informatica,
29(6/7):523{543, 1992.

35

[14] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-
time systems by means of the synchronous data-
ow programming lan-
guage Lustre. IEEE Transactions on Software Engineering, Special Issue
on the Speci�cation and Analysis of Real-Time Systems, September 1992.

[15] N. Halbwachs, A. Lonchampt, and D. Pilaud. Describing and designing
circuits by means of a synchronous declarative language. In IFIP Work-
ing Conference \From HDL Descriptions To Guaranteed Correct Circuit
Designs", Grenoble, September 1986.

[16] N. Halbwachs and D. Pilaud. Use of a real-time declarative language for
systolic array design and simulation. In International Workshop on Systolic
Arrays, Oxford, July 1986.

[17] N. Halbwachs, D. Pilaud, F. Ouabdesselam, and A.C. Glory. Specifying,
programming and verifying real-time systems, using a synchronous declar-
ative language. In Workshop on Automatic Veri�cation Methods for Finite
State Systems, Grenoble. LNCS 407, Springer Verlag, June 1989.

[18] N. Halbwachs, P. Raymond, and C. Ratel. Generating e�cient code from
data-
ow programs. In Third International Symposium on Programming
Language Implementation and Logic Programming, Passau (Germany),
August 1991. LNCS 528, Springer Verlag.

[19] D. Pilaud and N. Halbwachs. From a synchronous declarative language to
a temporal logic dealing with multiform time. In M. Joseph, editor, Sym-
posium on Formal Techniques in Real-Time and Fault-Tolerant Systems,
Warwick, September 1988. LNCS 331, Springer Verlag.

[20] J. A. Plaice. S�emantique et compilation de Lustre, un langage d�eclaratif
synchrone. Thesis, Institut National Polytechnique de Grenoble, 1988.

[21] J. A. Plaice and N. Halbwachs. Lustre-v2 user's guide and reference
manual. Technical Report SPECTRE L2, IMAG, Grenoble, October 1987.

[22] C. Ratel. Etude de la conformit�e d'un programme Lustre et de ses sp�eci�-
cations en logique temporelle arborescente. DEA Report, Institut National
Polytechnique de Grenoble, June 1988.

[23] C. Ratel. D�e�nition et r�ealisation d'un outil de v�eri�cation formelle de
programmes Lustre: Le syst�eme Lesar. Thesis, Universit�e Joseph Fourier,
Grenoble, June 1992.

[24] C. Ratel, N. Halbwachs, and P. Raymond. Programming and verifying
critical systems by means of the synchronous data-
ow programming lan-
guage Lustre. In ACM-SIGSOFT'91 Conference on Software for Critical
Systems, New Orleans, December 1991.

[25] P. Raymond. Compilation s�epar�ee de programmes Lustre. Technical
Report SPECTRE L5, IMAG, Grenoble, June 1988.

36

[26] P. Raymond. Compilation e�cace d'un langage d�eclaratif synchrone : Le
g�en�erateur de code Lustre-v3. Thesis, Institut National Polytechnique de
Grenoble, November 1991.

[27] F. Rocheteau. Programmation d'un circuit massivement parall�ele �a l'aide
d'un langage d�eclaratif synchrone. Technical Report SPECTRE L10,
IMAG, Grenoble, June 1989.

[28] F. Rocheteau. Extension du langage Lustre et application �a la conception
de circuits: Le langage Lustre-V4 et le syst�eme Pollux. Thesis, Institut
National Polytechnique de Grenoble, June 1992.

[29] F. Rocheteau and N. Halbwachs. Implementing reactive programs on cir-
cuits, a hardware implementation of Lustre. In Rex Workshop on Real-
Time: Theory in Practice, DePlasmolen (Netherlands), pages 195{208.
LNCS 600, Springer Verlag, June 1991.

[30] F. Rocheteau and N. Halbwachs. Pollux, a Lustre-based hardware de-
sign environment. In P. Quinton and Y. Robert, editors, Conference on
Algorithms and Parallel VLSI Architectures II, Chateau de Bonas, June
1991.

[31] G. Thuau and B. Berkane. Using the language Lustre for sequential cir-
cuit veri�cation. In International Workshop on Designing Correct Circuits,
Lingby (Denmark), January 1992.

37

