UML Extensions: the SysML profile

Excerpts from Bran Selic (IBM) tutorial on UML & SysML (2007)

Charles ANDRE - UNSA

Rationale

Systems engineering typically involves complex combinations of diverse disciplines and technologies

- Difficult to understand
- Many integration problems

Modeling can alleviate many of these problems

- Raising the level of abstraction hides technological detail that can be confusing Why a UML profile?
 - Reuse of widely-available UML expertise
 - Reuse of UML tooling

UML 2 and SysML

Uses a subset of UML concepts

- Simplified language
- Provides SE-specific customization of certain UML concepts
- However, it is possible to combine the excluded concepts if desired

SysML Diagram Types

Some UML diagrams were modified ____, others omitted, and new SysMLspecific diagrams added _____

SysML Diagram format

Simpler and more systematic approach than UML

- All diagrams have a common format

Defining & Specifying Physical Quantities

- Using value types
 - e.g. a delay expressed in seconds: timeDelay : s
- ValueType is a specialization of the UML DataType concept and has
 - a dimension and
 - a unit:

Pre-defined units

• Time

- Power
- ...

SysML Blocks

- Block = a unifying SysML concept that unifies the UML Class and Collaboration concepts into a concept more familiar to systems engineers
- Models:
 - Hardware
 - Software
 - Data
 - Facilities
 - Physical entities
 - etc.

« block » {isEncapsulated} Controller	A non-encapsulated block is logically equivalent to a collaboration
<i>parts</i> driver: Driver console: Instrumentation	Parts are elements of the internal structure of a block
references policy: Policy	Defines useful values
<i>values</i> timeoutInterval: s = 30	related to the block
operations start() stop()	
constraints { a+b = 0 }	

Block Definition Diagrams (bdd)

• Play the same role as UML Class diagrams

Internal Block diagram (ibd)

Nested Connectors

Connectors that reach inside a non-encapsulated block instance

SysML Ports and Flows

Two kinds:

- Standard ports = UML ports
- Flow ports = support the transfer of *flows*
- A flow models a *streaming* phenomena (energy, liquids, electrical currents, data streams, etc,)
 - Flows have a *direction* relative to a block

SysML Parametrics

Specify relationships (equations) between value properties

- Used for engineering analysis
- Have a block-like syntax

Constraint blocks define a constraint and identify its parameters

Parametrics Diagram

Used for engineering analysis

SysML Allocation

 Mapping of a set of (client) elements in a model to another (target) element

- An abstract concept with many potential interpretations
 - The target element is an implementation of the client elements
 - The client element is an abstract representation of the target
 - The target is the hardware on which the client software is deployed
 - The target is responsible for the behavior represented by the client
 - etc.

SysML Requirements Modeling

- Requirements represent an important and dynamic element of system engineering
 - SysML provides a set of modeling concepts and relationships for capturing requirements and their relationships to other system engineering artifacts
 - Complement to use case modeling
- Basic concepts:

Hierarchical Requirements

For decomposing complex requirements into sub-requirements

Requirements Relationships

Derivation

OMG SysML website

http://www.omgsysml.org

OMG Systems Modeling Language, v1.0

http://www.omg.org/cgi-bin/doc?formal/2007-09-01

SysML tutorial

Sanford Friedenthal, Alan Moore, Rick Steiner OMG Systems Modeling Language Tutorial Incose 2007, San Diego, June 2007

Distiller Sample Problem

Distiller Problem Statement

- The following problem was posed to the SysMLteam in Dec '05 by D. Oliver:
- Describe a system for purifying dirty water.
 - Heat dirty water and condense steam are performed by a Counter Flow Heat Exchanger
 - Boil dirty water is performed by a Boiler
 - Drain residue is performed by a Drain
 - The water has properties: vol = 1 liter, density 1 gm/cm3, temp 20 deg C, specific heat 1cal/gm deg C, heat of vaporization 540 cal/gm.
- A crude behavior diagram is shown.

What are the real requirements? How do we design the system?

7/26/2007

Distiller Types

Note: Not all aspects of the distiller are modeled in the example

7/26/2007

Distiller Problem – Process Used

- Organize the model, identify libraries needed
- List requirements and assumptions
- Model behavior
 - In similar form to problem statement
 - Elaborate as necessary
- Model structure
 - Capture implied inputs and outputs
 - segregate I/O from behavioral flows
 - Allocate behavior onto structure, flow onto I/O
- Capture and evaluate parametric constraints
 - Heat balance equation
- Modify design as required to meet constraints
- Model the user interaction
- Modify design to reflect user interaction

Distiller Problem – Package Diagram: Model Structure and Libraries

Distiller Example Requirements Diagram

Distiller Example: Requirements Tables

table [requirement] OriginalStatement [Decomposition of OriginalStatement]

id	name	text					
S0.0	OriginalStatement	Describe a system for purifying dirty water					
S1.0	PurifyWater The system shall purify dirty water.						
S2.0	2.0 HeatExchanger Heat dirty water and condense steam are performed by a						
S3.0	Boiler Boil dirty water is performed by a Boiler.						
S4.0	Drain	Drain residue is performed by a Drain.					
S5.0	water has properties: density 1 gm/cm3, temp 20 deg C,						
S5.1	WaterInitialTemp	water has an initial temp 20 deg C					

table [requirement] PurifyWater [Requirements Tree]

id	name	relation	id	name	Rationale
					The requirement for a boiling function and a boiler
S1.0	PurifyWater	deriveReqt	D1.0	DistillWater	implies that the water must be purified by distillation

• This activity diagram applies the SysML EFFBD profile, and formalizes the diagram in the problem statement.

7/26/2007

7/26/2007

Distiller Example – Activity Diagram: Control-Driven: Serial Behavior

Distiller Example – Block Definition Diagram: DistillerBehavior

7/26/2007

Distiller Example – State Machine Diagram: States of H2O

Distiller Example – Activity Diagram: I/O Driven: Continuous Parallel Behavior

7/26/2007

Distiller Example – Activity Diagram: No Control Flow, ActionPin Notation, Simultaneous Behavior

7/26/2007

Copyright © 2006,2007 by Object Management Group.

88

Distiller Example – Activity Diagram (with Swimlanes): DistillWater

Allocated ibd 7/26/2007

Copyright © 2006,2007 by Object Management Group.

SYSTEMS

MODELING LANGUAGE

Distiller Example – Block Definition Diagram: DistillerStructure

Distiller Example – Block Definition Diagram: Heat Exchanger Flow Ports

Distiller Example – Internal Block Diagram: Distiller Initial Design

Distiller Example – Internal Block Diagram: Distiller with Allocation

7/26/2007

INCOSE Distiller Example – Parametric Diagram: Heat Balance Equations

7/26/2007

Copyright © 2006,2007 by Object Management Group.

SYSTEMS MODELING LANGUAGE

Distiller Example – Heat Balance Results

specific heat cal/gm-°C latent heat cal/cm	10 540	 	Satisfies «requirement» WaterSpecificHeat Satisfies «requirement» WaterHeatOfVaporization			
Satisfies «requirement» WaterInitialTemp	water_in		nx_water_out	bx_water_in	bx_steam_out	water_out
temp °C	0.70 b 20	0.1		100	100	100
	20		<u>, </u>	100	100	100
dQ/dt cooling water cal/sec	540	Ī	$\langle \cdot \rangle$	、 、		
dQ/dt steam-condensate cal/sec	540		Note: Cooling water needs to have 6x flow			
condenser efficency	1	i n				
heat deficit	0		lee	eam! d bypa	ss betv	veen
dQ/dt condensate-steam cal/sec	540	n b	X_\ X_\	water_o water_i	out and n!	
boiler efficiency	1	Î				
$d\Omega/dt$ in boiler cal/sec	540	1				

7/26/2007

7/26/2007

Distiller Example – Activity Diagram: Updated DistillWater

Distiller Example – Internal Block Diagram: Updated Distiller

ibd: [block] Distiller [DistillerBlockDiagram - ItemFlows]

Distiller Example – Use Case and Sequence Diagrams

7/26/2007

Distiller Example – Internal Block Diagram: Distiller Controller

7/26/2007

Distiller Example – State Machine Diagram: Distiller Controller

7/26/2007