
OCL 2.0 Specification      June 2005 
Version 2.0 
ptc/2005-06-06 
 
 
OCL  complements 
 
 
Undefined Values  (p 30) 
Some expressions will, when evaluated, have an undefined value. For instance, typecasting with 
oclAsType() to a type that the object does not support or getting the ->first() element of an empty 
collection will result in undefined. In general, an expression where one of the parts is undefined will 
itself be undefined. There are some important exceptions to this rule, however. First, there are the 
logical operators: 

• True OR-ed with anything is True 
• False AND-ed with anything is False 
• False IMPLIES anything is True 
• anything IMPLIES True is True 

The rules for OR and AND are valid irrespective of the order of the arguments and they are valid 
whether the value of the other sub-expression is known or not. 
The IF-expression is another exception. It will be valid as long as the chosen branch is valid, 
irrespective of the value of the other branch. 
Finally, there is an explicit operation for testing if the value of an expression is undefined. 
oclIsUndefined() is an operation on OclAny that results in True if its argument is undefined and False 
otherwise. 
 
 
 
Implicit conversion:    element -> singleton 

 e.g.,  e -> p  ⇔  Set{e} -> p 
 

Abbreviation:  s->collect(p)   ⇔  s.p     + flattening (but usually it’s a bag) 

   collectNested    preserves the structure 
 
Iterate:   

collection->iterate ( elem: Type; acc: Type = <expression> | <expression-with-elem-and-acc> ) 
  iterator  accumulator initial value body, evaluated for each elem 
 
for a sequence the order is the order of the elements in the sequence. 

Andre
Zone de texte 
Collection	p 160
Set		p 161
OrderedSet	p 163
Bag		p 164
Sequence	p 166
Iterators	p 169

Andre
Droite 



OCL : Object Constraint Language 
 
Reference: UML 2.0 OCL Specification, ptc/03-10-14    http://www.omg.org/docs/ptc/03-10-14.pdf 
 
OCL is a query-only language. It can’t modify the model in any way. It can be used to express preconditions, 
postconditions, invariants, guard conditions, and results of method calls. 
 
Abbreviations (not official, for this document only). 
 
 
 
 

Syntactic constructs  
c 
id 
self 
t 

e op e  
e.id 
e.pt ( e, ... , e ) 
c -> pt ( e, ..., e ) 

ns:: ... ns::id 
if pd then e else e endif 
let id = e : T, id2 = e:T, ... in e2 

 
Standard library 
 
Type Value Operations  
   e1 = e2,  e1 <> e2 
Integer 1, -5, 34 i+i2, i-i2, i*i2, i.div(i2), i.mod(i), i.abs( ), 

i.max(i2), i.min(i2), <, >, <=, >= 
Real 1.5, 1.34, 

... 
r+r2, r-r2, r*r2, r/r2, r.floor( ), r.round( ), 
r.max(r2), r.min(r2), <, >, <=, >= 

Boolean true, false not b, b and b2, b or b2, b xor b2, b implies b2 

String ''  a 
string'' 

s.size(), s.concat(s2), s.substring(i1,i2), 
s.toUpper(), s.toLower(), s.toInteger(), s.toReal() 

Enumeration  Day::Monday, 
Day::Tuesday,  

=, <> 

TupleType( x : T1,  
            y : T2,  
            z : T3 ) 

Tuple {  
y : T2 = …,    
x = … ,        
z = … } 

t.x 
t.y 
t.z 

 
Collection(T) 

 
 

c->size(),  c->includes(o),  c->excludes(o)   
c->count(o),  c->includesAll(c2) 
c->excludesAll(c2),  c->isEmpty(),  c->notEmpty()  
c->sum(), c->exists(p),  c->forall(p),  c->isUnique(e)  
c->sortedBy(e), c->iterate(e) 

 
Set(T) 

Set{1,5,10,3} 
Set{} 

st->union(st2),   st->union(bg)   
st->intersection(st2), st->intersection(bg)   
st - st2, st->including(e), st->excluding(e) 
st->symmetricDifference(st2), st->select(e)    
st->reject(e),  st->collect(e), st->count(e) 
st->flatten(), st->asSequence(), st->asBag() 

Bag(T) Bag {1,5,5} 
Bag {} 

bg->union(bg2),  bg->union(st),  bg->intersection(bg2) 
bg->intersection(st), bg->including(e) 
bg->excluding(e), bg->count(e), bg->flatten() 
bg->select(e), bg->reject(e), bg->collect(e) 
bg->asSequence(), bg->asSet() 

OrderedSet(T) OrderedSet{10
,4,3} 
OrderedSet{} 

… 

 
 
Sequence(T) 

Sequence{5,3,
5} 
Sequence{} 

sq->count(e),  sq->union(sq2),  sq->append(e) 
sq->prepend(e), sq->insertAt(i,o) 
sq->subSequence(i1,i2), sq->at(i), sq->first() 
sq->last(), sq->indexOf(o), sq->including(e) 
sq->excluding(e), sq->select(e), sq->reject(e) 
sq->collect(e), sq->iterate(e), sq->asBag, sq->asSet 

 

i : Integer 
r : Real 
b : Boolean 
s : String 

c : Collection(T) 
st: Set(T) 
bg : Bag(T)  
sq : Sequence(T) 

os : OrderedSet(T) 
t : Tuple(…) 
id: identificateur 
pt: property 

cs: constant 
pd : predicat 
e : expression 
ns: namespace 



Operator precedence 
• @pre 
• dot and arrow operations: ‘.’ and ‘->’ 
• unary ‘not’ and unary minus ‘-’ 
• ‘*’ and ‘/’ 
• ‘+’ and binary ‘-’ 
• ‘if-then-else-endif’ 
• ‘<’, ‘>’, ‘<=’, ‘>=’ 
• ‘=’, ‘<>’ 
• ‘and’, ‘or’ and ‘xor’ 
• ‘implies’ 
•  

Keywords 
 
Keywords in OCL are reserved words. That means that the keywords cannot occur anywhere in an OCL expression as 
the name of a package, a type or a property. The list of keywords is shown below: 
 and, attr, body, context, def, else, endif, endpackage, if, implies, in, inv,  let, not,  oper, or, package, 
post, pre, then, xor 
 
Comments 
Comments in OCL are written following two successive dashes (minus signs). Everything immediately following the two 
dashes up to and including the end of line is part of the comment. For example: 

-- this is a comment 
 
Undefined values 
Some expressions will, when evaluated, have an undefined value. For instance, typecasting with oclAsType() to a type 
that the object does not support or getting the ->first() element of an empty collection will result in undefined. In general, 
an expression where one of the parts is undefined will itself be undefined. There are some important exceptions to this 
rule, however. First, there are the logical operators: 

• True OR-ed with anything is True 
• False AND-ed with anything is False 
• False IMPLIES anything is True 
• anything IMPLIES True is True 

The rules for OR and AND are valid irrespective of the order of the arguments and they are valid whether the value of the 
other sub-expression is known or not. 
The IF-expression is another exception. It will be valid as long as the chosen branch is valid, irrespective of the value of 
the other branch. 
Finally, there is an explicit operation for testing if the value of an expression is undefined. oclIsUndefined() is an 
operation on OclAny that results in True if its argument is undefined and False otherwise. 
 
Built-in Object Properties 
 
OCL provides a set of properties on all objects in a system. 
The built-in properties are: 
 
oclIsTypeOf(t:Type): Boolean 
 Returns true if the tested object is exactly the same type as t. 
 
oclIsKindOf(t:Type): Boolean 
 Returns true if the tested object is exactly the same type or a subtype of t. 
 
oclInState(s: State): Boolean 
 Returns true if the tested object is in state s. The states you can test must be part of a state  machine attached to 
the classifier being tested. 
 
oclIsNew( ): Boolean 
 Designed to be used in a postcondition for an operation, it returns true if the object being tested was created as a 
result of executing the operation. 
 
oclAsType (t:Type): Type 
 Returns the owning object casted to Type. If the object is not a descendant of t, the operation is undefined. 
 



7.5.11 Collection Literals 
Sets, Sequences, and Bags can be specified by a literal in OCL. Curly brackets surround the elements 
of the collection, elements in the collection are written within, separated by commas. The type of the 
collection is written before the curly brackets: 

Set { 1 , 2 , 5 , 88 } 
Set { 'apple' , 'orange', 'strawberry' } 

A Sequence: 
Sequence { 1, 3, 45, 2, 3 } 
Sequence { 'ape', 'nut' } 

A bag: 
Bag {1 , 3 , 4, 3, 5 } 

Because of the usefulness of a Sequence of consecutive Integers, there is a separate literal to create 
them. The elements inside the curly brackets can be replaced by an interval specification, which 
consists of two expressions of type Integer, Int-expr1 and Int-expr2, separated by ‘..’. This denotes all 
the Integers between the values of Int-expr1 and Int-expr2, including the values of Int-expr1 and Int-
expr2 themselves: 

Sequence{ 1..(6 + 4) } 
Sequence{ 1..10 } 
-- are both identical to 
Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } 

The complete list of Collection operations is described in chapter 11 (“The OCL Standard Library”). 
Collections can be specified by a literal, as described above. The only other way to get a collection is 
by navigation. To be more precise, the only way to get a Set, OrderedSet, Sequence, or Bag is: 

1. a literal, this will result in a Set, OrderedSet, Sequence, or Bag:  
Set {2 , 4, 1 , 5 , 7 , 13, 11, 17 } 
OrderedSet {1 , 2, 3 , 5 , 7 , 11, 13, 17 } 
Sequence {1 , 2, 3 , 5 , 7 , 11, 13, 17 } 
Bag {1, 2, 3, 2, 1} 

2. a navigation starting from a single object can result in a collection: 
context Company inv:  

self.employee 
3. operations on collections may result in new collections: 

collection1->union(collection2) 
 

 



Example 
(Borrowed from ptc/05-06-06) 
 
 

 
 
Invariants 
 

 context Company inv: 
 self.numberOfEmployees > 50 
 
context c:Company inv: 
 c.numberOfEmployees > 50 
 
context c:Company inv enoughEmployees:  -- named invariant 
 c.numberOfEmployees > 50 

 
Pre and Post conditions 
 

context Person::income(d: Date): Integer 
 post: result = 5000 
 
context Person::income(d: Date): Integer 
 pre: d > 2000 
 post: result = 5000 
 
context Person::income(d: Date): Integer  -- with optional condition names 
 pre parameterOK: d > 2000 
 post resultOK: result = 5000 

 
Let expressions 
Sometimes a sub-expression is used more than once in a constraint. The let expression allows one to define a variable 
which can be used in the constraint. 

context Person inv: 



let income : Integer = self.job.salary->sum() in 
if isUnemployed then 

income < 100 
else 

income >= 100 
endif 

A let expression may be included in any kind of OCL expression. It is only known within this specific expression. 
 
Additional operations/attributes through «definition» expressions 
 
The Let expression allows a variable to be used in one Ocl expression. To enable reuse of variables/operations over 
multiple OCL expressions one can use a Constraint with the stereotype «definition», in which helper variables/operations 
are defined. 
This «definition» Constraint must be attached to a Classifier and may only contain variable and/or operation definitions, 
nothing else. All variables and operations defined in the «definition» constraint are known in the same context as where 
any property of the Classifier can be used. Such variables and operations are attributes and operations with stereotype 
«OclHelper» of the classifier. They are used in an OCL expression in exactly the same way as normal attributes or 
operations are used. The syntax of the attribute or operation definitions is similar to the Let expression, but each attribute 
and operation definition is prefixed with the keyword ’def’ as shown below. 
 

context Person 
def: income : Integer = self.job.salary->sum() 
def: nickname : String = ’Little Red Rooster’ 
def: hasTitle(t : String) : Boolean = self.job->exists(title = t) 

 
The names of the attributes / operations in a let expression may not conflict with the names of respective attributes/ 
associationEnds and operations of the Classifier. 
Using this definition syntax is identical to defining an attribute/operation in the UML with stereotype «OclHelper» with an 
attached OCL constraint for its derivation. 
 
Properties: AssociationEnds and Navigation 
Starting from a specific object, we can navigate an association on the class diagram to refer to other objects and their 
properties. 
To do so, we navigate the association by using the opposite association-end: 

object.associationEndName 
 

The value of this expression is the set of objects on the other side of the associationEndName association. If the 
multiplicity of the association-end has a maximum of one (“0..1” or “1”), then the value of this expression is an object. In 
the example class diagram, when we start in the context of a Company (i.e., self is an instance of Company), we can 
write: 

context Company 
inv: self.manager.isUnemployed = false 
inv: self.employee->notEmpty() 

 
In the first invariant self.manager is a Person, because the multiplicity of the association is one. In the second invariant 
self.employee will evaluate in a Set of Persons. By default, navigation will result in a Set. When the association on the 
Class Diagram is adorned with {ordered}, the navigation results in an OrderedSet. 
 
Collections, like Sets, OrderedSets, Bags, and Sequences are predefined types in OCL. They have a large number of 
predefined operations on them. A property of the collection itself is accessed by using an arrow ‘->’ followed by the name 
of the property. The following example is in the context of a person: 

context Person inv: 
self.employer->size() < 3 
 

This applies the size property on the Set self.employer, which results in the number of employers of the Person self. 
context Person inv: 

self.employer->isEmpty() 
 

This applies the isEmpty property on the Set self.employer. This evaluates to true if the set of employers is empty and 
false otherwise. 
 
Missing AssociationEnd names 
When the name of an association-end is missing at one of the ends of an association, the name of the type at the 
association end starting with a lowercase character is used as the rolename. If this results in an ambiguity, the rolename 
is mandatory. This is e.g. the case with unnamed rolenames in reflexive associations. If the rolename is ambiguous, then 
it cannot be used in OCL. 
 



Navigation over Associations with Multiplicity Zero or One 
Because the multiplicity of the role manager is one, self.manager is an object of type Person. Such a single object can be 
used as a Set as well. It then behaves as if it is a Set containing the single object. The usage as a set is done through the 
arrow followed by a property of Set. This is shown in the following example: 

context Company inv: 
self.manager->size() = 1 
 

The sub-expression self.manager is used as a Set, because the arrow is used to access the size property on Set. This 
expression evaluates to true. 

context Company inv: 
self.manager->foo 
 

The sub-expression self.manager is used as Set, because the arrow is used to access the foo property on the Set. This 
expression is incorrect, because foo is not a defined property of Set. 

context Company inv: 
self.manager.age > 40 
 

The sub-expression self.manager is used as a Person, because the dot is used to access the age property of Person. 
In the case of an optional (0..1 multiplicity) association, this is especially useful to check whether there is an object or not 
when navigating the association. In the example we can write: 

context Person inv: 
self.wife->notEmpty() implies self.wife.gender = Gender::female 

 
 
Combining Properties 
Properties can be combined to make more complicated expressions. An important rule is that an OCL expression always 
evaluates to a specific object of a specific type. After obtaining a result, one can always apply another property to the 
result to get a new result value. Therefore, each OCL expression can be read and evaluated left-to-right. 
Following are some invariants that use combined properties on the example class diagram: 

[1] Married people are of age >= 18 
context Person inv: 

self.wife->notEmpty() implies self.wife.age >= 18 and 
self.husband->notEmpty() implies self.husband.age >= 18 

[2] a company has at most 50 employees 
context Company inv: 

self.employee->size() <= 50 
 
Iterate Operation 
The iterate operation is slightly more complicated, but is very generic. The operations reject, select, forAll, exists, collect, 
can all be described in terms of iterate. An accumulation builds one value by iterating over a collection.  
 

collection->iterate( elem : Type; acc : Type = <expression> |  
expression-with-elem-and-acc ) 

 
The variable elem is the iterator, as in the definition of select, forAll, etc. The variable acc is the accumulator. The 
accumulator gets an initial value <expression>. When the iterate is evaluated, elem iterates over the collection and the 
expression-with-elem-and-acc is evaluated for each elem. After each evaluation of expression-with-elem-and-acc, its 
value is assigned to acc. In this way, the value of acc is built up during the iteration of the collection. The collect operation 
described in terms of iterate will look like: 
 

collection->collect(x : T | x.property) 
-- is identical to: 
collection->iterate(x : T; acc : T2 = Bag{} | acc->including(x.property)) 

 
Or written in Java-like pseudocode the result of the iterate can be calculated as: 

iterate(elem : T; acc : T2 = value) 
{ 

acc = value; 
for(Enumeration e = collection.elements() ; e.hasMoreElements(); ){ 

elem = e.nextElement(); 
acc = <expression-with-elem-and-acc> 

} 
return acc; 

} 
Although the Java pseudo code uses a ‘next element’, the iterate operation is defined not only for Sequqnce, but for each 
collection type. The order of the iteration through the elements in the collection is not defined for Set and Bag. For a 
Sequence the order is the order of the elements in the sequence. 
 



 
Other Examples :  (from J-M Favre, http://www-adele.imag.fr/~jmfavre ) 
 
context Personne 
  inv :  enfants->forall( e | e.age < self.age - 7) 
  inv :  enfants->forall( e : Personne | e.age < self.age - 7) 
  inv i3 :  enfants->forall( e1,e2 : Personne |  e1 <> e2 implies e1.prénom <> e2.prénom) 
  inv i4 :  self.enfants -> isUnique ( prénom ) 
  def cousins : Set(Personne) = parents.parents.enfants.enfants->excluding( 
parents.enfants )->asSet() 
 
context Personne::age : Integer 
  init : 0 
 
context Personne::estMarrié : Boolean 
  derive : conjoint->notEmpty() 
 
context Personne::salaire() : integer 
   post : return > 5000 
 
context Compagnie::embaucheEmployé( p : Personne) 
  pre pasPrésent : not (employés->includes(p)) 
  post embauché : employés->includes(p) 
 
context Personne::grandsParents() : Set(Personne) 
   body : parents.parents->asSet() 
 
(age<40 implies salaire>1000) and (age>=40 implies salaire>2000) 
if age<40 then salaire > 1000 else salaire > 2000 endif 
salaire > (if age<40 then 1000 else 2000 endif) 
nom= nom.substring(1,1).toUpper().concat(  
          nom.substring(2,nom.size()).toLower()) 
épouse->notEmpty() implies épouse.sexe = Sexe::Feminin 
Set { 3, 5, 2, 45, 5 }->size() 
Sequence { 1, 2, 45, 9, 3, 9 } ->count(9) 
Sequence { 1, 2, 45, 2, 3, 9 } ->includes(45) 
Bag { 1, 9, 9, 1 } -> count(9) 
c->asSet()->size() = c->size() 
c->count(x) = 0 
Bag { 1, 9, 0, 1, 2, 9, 1 } -> includesAll( Bag{ 9,1,9} ) 
self.enfants ->select( age>10 and sexe = Sexe::Masculin) 
self.enfants ->reject(enfants->isEmpty())->notEmpty() 
membres->any(titre='président') 
 
self.employé->select(age > 50) 
self.employé->select( p | p.age>50 ) 
self.employé->select( p : Personne | p.age>50) 
self.enfants->forall(age<10) 
self.enfants->exists(sexe=Sexe::Masculin) 
self.enfants->one(age>=18)self.enfants->forall( age < self.age ) 
self.enfants->forall( e | e.age < self.age - 7) 
self.enfants->forall( e : Personne | e.age < self.age - 7) 
self.enfants->exists( e1,e2 | e1.age = e2.age ) 
self.enfants->forall( e1,e2 : Personne |  
                                e1 <> e2 implies e1.prénom <> e2.prénom) 
self.enfants -> isUnique ( prénom ) 
self.enfants->collect(age) = Bag{10,5,10,7} 
self.employés->collect(salaire/10)->sum() 
self.enfants.enfants.voitures 
enfants.enfants.prénom = Bag{ 'pierre', 'paul', 'marie', 'paul' } 
 
enfants->collectNested(enfants.prénom) =  
          Bag { Bag{'pierre', 'paul'}, Bag{'marie','paul'} 
 
Sequence{1..s->size()-1} -> forall(i | s.at(i) < s.at(i+1) ) 
enfants->sortedBy( age ) 



enfants->sortedBy( enfants->size() )->last() 
let ages = enfants.age->sortedBy(a | a) in ages.last() - ages.first() 
s.Emploi  
p.Emploi 
s.Emploi->collect(salaire)->sum() 
 
s.Emploi.salaire->forall(x | x>500) 
p.Evaluation[chefs] 
p.Evaluation[employés] 
p.Evaluation[chefs].note -> sum()s.Emploi-> select(salaire<1000).employé 
p.enfants->select(oclIsKindOf(Femme)).asTypeOf(Set(Femme)) ->select(nomDeJF <> nom) 
Personne.allInstances->size() < 500 
Personne.allInstances->forall(p1,p2 | p1<>p2 implies p1.numsecu <> p2.numsecu) 
Personne.allInstances->isUnique(numsecu) 
 



UML OCL2 Specification 152 

11 The OCL Standard Library 

This section describes the OCL Standard Library of predefined types, their operations, and predefined expression templates in 

the OCL. This section contains all standard types defined within OCL, including all the operations defined on those types. For 

each operation the signature and a description of the semantics is given. Within the description, the reserved word ‘result’ is 

used to refer to the value that results from evaluating the operation. In several places, post conditions are used to describe 

properties of the result. When there is more than one postcondition, all postconditions must be true. A similar thing is true for 

multiple preconditions. If these are used, the operation is only defined if all preconditions evaluate to true. 

11.1 Introduction 

The structure, syntax and semantics of the OCL is defined in chapters 8 (“Abstract Syntax”), 9 (“Concrete Syntax”) and 10 

(“Semantics Described using UML”). This section adds another part to the OCL definition: a library of predefined types and 

operations. Any implementation of OCL must include this library package. This approach has also been taken by e.g. the Java 

definition, where the language definition and the standard libraries are both mandatory parts of the complete language 

definition. 

The OCL standard library defines a number of types. It includes several primitive types: Integer, Real, String and Boolean. 

These are familiar from many other languages. The second part of the standard library consists of the collection types. They are 

Bag, Set, Sequence and Collection, where Collection is an abstract type. Note that all types defined in the OCL standard library 

are instances of an abstract syntax class. The OCL standard library exists at the modeling level, also referred to as the M1 level, 

where the abstract syntax is the metalevel or M2 level. 

Issue 6012: ModelPropertyCallExp renamed FeatureCallExp 

Next to definitions of types the OCL standard library defines a number of template expressions. Many operations defined on 

collections, map not on the abstract syntax metaclass FeatureCallExp, but on the IteratorExp. For each of these a template 

expression that defines the name and format of the expression, is defined in Section 11.8 (“Predefined Iterator Expressions”). 

Issue 5972: Adding OclUndefined and updating OclVoid 

11.2 The OclAny, OclVoid, OclInvalid and OclMessage types 

11.2.1 OclAny 

Issue 8791: Replace  inheritance at M1 level by compliamce 

All types in the UML model and the primitive types in the OCL standard library comply with the type OclAny. Conceptually, 

OclAny behaves as a supertype for all the types except for the OCL pre-defined collection types. Features of OclAny are 

available on each object in all OCL expressions. OclAny is itself an instance of the metatype AnyType. 

Issue 8791: Removed figure showing specific inheritance links at M1 level 

All classes in a UML model inherit all operations defined on OclAny. To avoid name conflicts between properties in the model 

and the properties inherited from OclAny, all names on the properties of OclAny start with ‘ocl.’ Although theoretically there 

may still be name conflicts, they can be avoided. One can also use the oclAsType() operation to explicitly refer to the OclAny 

properties. 

Operations of OclAny, where the instance of OclAny is called object. 

11.2.2 OclMessage 

Charly
Texte surligné

Charly
Texte surligné

Charly
Texte surligné



                        UML OCL2 Specification  153 

This section contains the definition of the standard type OclMessage. As defined in this section, each ocl message type is 

actually a template type with one parameter. ‘T’ denotes the parameter. A concrete ocl message type is created by substituting 

an operation or signal for the T. 

The predefined type OclMessage is an instance of MessageType. Every OclMessage is fully determined by either the operation, 

or signal given as parameter. Note that there is conceptually an undefined (infinite) number of these types, as each is determined 

by a different operation or signal. These types are unnamed. Every type has as attributes the name of the operation or signal, and 

either all formal parameters of the operation, or all attributes of the signal. OclMessage is itself an instance of the metatype 

MessageType. 

OclMessage has a number of predefined operations, as shown in the OCL Standard Library. 

11.2.3 OclVoid 

Issue 5972 : OclVoid changed and OclInvalid added 

 

The type OclVoid is a type that conforms to all other types. It has one single instance called  null which corresponds with the 

UML NullLiteral value specification. Any property call applied on  null results in OclInvalid, except for the operation 

oclIsUndefined(). OclVoid is itself an instance of the metatype VoidType. 

11.2.4 OclInvalid  

The type OclInvalid is a type that conforms to all other types. It has one single instance called invalid. Any property call applied 

on invalid results in OclInvalid, except for the operations oclIsUndefined() and oclIsInvalid(). OclInvalid is itself an instance of 

the metatype InvalidType 

11.2.5 Operations and well-formedness rules 

OclAny 

= (object2 : OclAny) : Boolean 

True if self is the same object as object2. Infix operator. 

post: result = (self = object2) 

<> (object2 : OclAny) : Boolean 

True if self is a different object from object2. Infix operator. 

post: result = not (self = object2) 

oclIsNew() : Boolean 

Can only be used in a postcondition. Evaluates to true if the self is created during performing the operation. I.e. it didn’t exist at 

precondition time.  

post: self@pre.oclIsUndefined() 

Issue 5972: Update OclUndefined and add oclIsInvalid 

oclIsUndefined() : Boolean  

Evaluates to true if the self is equal to OclInvalid or equal to null.  

post: result = self.isTypeOf( OclVoid )  or self.isTypeOf(OclInvalid) 

Charly
Texte surligné

Charly
Texte surligné

Charly
Texte surligné

Charly
Texte surligné

Charly
Texte surligné

Charly
Texte surligné



UML OCL2 Specification 154 

oclIsInvalid() : Boolean 

Evaluates to true if the self is equal to OclInvalid 

post: result = self.isTypeOf( OclInvalid)  

 

Issue 6531: Enumerations are not used anymore: typename becomes typespec 

oclAsType(typespec : OclType) : T 

Evaluates to self, where self is of the type identified by typespec.  

post: (result = self) and result.oclIsTypeOf( typeName ) 

oclIsTypeOf(typespec : OclType) : Boolean 

Evaluates to true if the self is of the type identified by typespec. . 

post: -- TBD 

oclIsKindOf(typespec : OclType) : Boolean 

Evaluates to true if the self conforms to the type identified by typespec.  

post: -- TBD 

oclIsInState(statespec : OclState) : Boolean 

Evaluates to true if the self is in the state indentified by statespec.  

post: -- TBD 

allInstances() : Set( T ) 

Returns all instances of self. Type T is equal to self. May only be used for classifiers that have a finite number of instances. This 

is the case for, for instance, user defined classes because instances need to be created explicitly. This is not the case for, for 

instance, the standard String, Integer, and Real types.  

pre:  self.isKindOf( Classifier ) -- self must be a Classifier 

      and -- TBD                  -- self must have a finite number of instances 

                                  -- it depends on the UML 2.0 metamodel how this can be 

                                  -- expressed 

post: -- TBD 

11.2.6 OclMessage 

hasReturned() : Boolean 

True if type of template parameter is an operation call, and the called operation has returned a value. This implies the fact that 

the message has been sent. False in all other cases. 

post: --  

result() : <<The return type of the called operation>> 

Returns the result of the called operation, if type of template parameter is an operation call, and the called operation has 

returned a value. Otherwise the undefined value is returned.  

pre: hasReturned() 

Charly
Texte surligné

Charly
Texte surligné

Charly
Texte surligné

Charly
Texte surligné

Charly
Texte surligné

Charly
Texte surligné

Charly
Texte surligné



                        UML OCL2 Specification  155 

isSignalSent() : Boolean 

Returns true if the OclMessage represents the sending of a UML Signal.  

isOperationCall() : Boolean 

Returns true if the OclMessage represents the sending of a UML Operation call.  

Issue 5972: Remove oclIsUndefined since already defined in AnyType 

 

Issue 6531:Special types instead of Model element types 

 

11.3  Special types 

This section defines several types that qre used to formalize the signature of pre-defined operations manipulating type and 

elements defined in the UML model. 

11.3.1 OclElement 

The singleton instance of ElementType. 

11.3.2 OclType 

The singleton instance of TypeType. 

11.3.3 Operations and well-formedness rules 

This section contains thye operatiins and well-formedness rules of the model element types. 

OclElement 

= (object : OclType) : Boolean 

True if self is the same object as object. 

<> (object : OclType) : Boolean 

True if self is a different object from object. 

post: result = not (self = object) 

OclType 

= (object : OclType) : Boolean 

True if self is the same object as object. 

<> (object : OclType) : Boolean 

True if self is a different object from object. 

post: result = not (self = object) 



UML OCL2 Specification 156 

11.4 Primitive Types 

The primitive types defined in the OCL standard library are Integer, Real, String and Boolean. They are all instance of the 

metaclass Primitive from the UML core package. 

11.4.1 Real 

The standard type Real represents the mathematical concept of real. Note that Integer is a subclass of Real, so for each 

parameter of type Real, you can use an integer as the actual parameter. Real is itself an instance of the metatype PrimitiveType 

(from UML). 

11.4.2 Integer 

The standard type Integer represents the mathematical concept of integer. Integer is itself an instance of the metatype 

PrimitiveType (from UML). 

11.4.3 String 

The standard type String represents strings, which can be both ASCII or Unicode. String is itself an instance of the metatype 

PrimitiveType (from UML). 

11.4.4 Boolean 

The standard type Boolean represents the common true/false values. Boolean is itself an instance of the metatype 

PrimitiveType (from UML). 

11.4.5 UnlimitedInteger 

The standard type UnlimitedInteger is used to encode the upper value of a multiplicity specification. UnlimitedInteger is itself 

an instance of the metatype UnlimitedIntegerType. 

11.5 Operations and well-formedness rules 

This section contains the operatiins and well-formedness rules of the primitive types. 

11.5.1 Real 

Note that Integer is a subclass of Real, so for each parameter of type Real, you can use an integer as the actual parameter. 

+ (r : Real) : Real 

The value of the addition of self and r. 

- (r : Real) : Real 

The value of the subtraction of r from self. 

* (r : Real) : Real 

The value of the multiplication of self and r. 

- : Real 

Charly
Texte surligné

Charly
Texte surligné

Charly
Texte surligné



                        UML OCL2 Specification  157 

The negative value of self. 

/ (r : Real) : Real 

The value of self divided by r. Evaluates to OclInvalid if r is equal to zero. 

abs() : Real 

The absolute value of self. 

post: if self < 0 then result = - self else result = self endif 

floor() : Integer 

The largest integer which is less than or equal to self. 

post: (result <= self) and (result + 1 > self) 

round() : Integer 

The integer which is closest to self. When there are two such integers, the largest one. 

post: ((self - result).abs() < 0.5) or ((self - result).abs() = 0.5 and (result > self)) 

max(r : Real) : Real 

The maximum of self and r. 

post: if self >= r then result = self else result = r endif 

min(r : Real) : Real 

The minimum of self and r. 

post: if self <= r then result = self else result = r endif 

< (r : Real) : Boolean 

True if self is less than r. 

> (r : Real) : Boolean 

True if self is greater than r. 

post: result = not (self <= r) 

<= (r : Real) : Boolean 

True if self is less than or equal to r. 

post: result = ((self = r) or (self < r)) 

>= (r : Real) : Boolean 

True if self is greater than or equal to r. 

post: result = ((self = r) or (self > r)) 

11.5.2 Integer 

- : Integer 

The negative value of self. 

Charly
Texte surligné



UML OCL2 Specification 158 

+ (i : Integer) : Integer 

The value of the addition of self and i. 

- (i : Integer) : Integer 

The value of the subtraction of i from self. 

* (i : Integer) : Integer 

The value of the multiplication of self and i. 

/ (i : Integer) : Real 

The value of self divided by i.Evaluates to OclInvalid if r is equal to zero 

abs() : Integer 

The absolute value of self. 

post: if self < 0 then result = - self else result = self endif 

div( i : Integer) : Integer 

The number of times that i fits completely within self. 

pre : i <> 0 

post: if self / i >= 0 then result = (self / i).floor()  

                       else result = -((-self/i).floor())  

      endif 

mod( i : Integer) : Integer 

The result is self modulo i. 

post: result = self - (self.div(i) * i) 

max(i : Integer) : Integer 

The maximum of self an i. 

post: if self >= i then result = self else result = i endif 

min(i : Integer) : Integer 

The minimum of self an i. 

post: if self <= i then result = self else result = i endif 

11.5.3 String 

size() : Integer 

The number of characters in self. 

concat(s : String) : String 

The concatenation of self and s. 

post: result.size() = self.size() + string.size() 

post: result.substring(1, self.size() ) = self 

Charly
Texte surligné



                        UML OCL2 Specification  159 

post: result.substring(self.size() + 1, result.size() ) = s 

substring(lower : Integer, upper : Integer) : String 

The sub-string of self starting at character number lower, up to and including character number upper. Character numbers run 

from 1 to self.size(). 

pre: 1 <= lower 

pre: lower <= upper 

pre: upper <= self.size() 

toInteger() : Integer 

Converts self to an Integer value. 

toReal() : Real 

Converts self to a Real value. 

11.5.4 Boolean 

or (b : Boolean) : Boolean 

True if either self or b is true. 

xor (b : Boolean) : Boolean 

True if either self or b is true, but not both. 

post: (self or b) and not (self = b) 

and (b : Boolean) : Boolean 

True if both b1 and b are true. 

not : Boolean 

True if self is false. 

post: if self then result = false else result = true endif 

implies (b : Boolean) : Boolean 

True if self is false, or if self is true and b is true. 

post: (not self) or (self and b)  

11.6 Collection-Related Types 

This section defines the collection types and their operations. As defined in this section, each collection type is actually a 

template type with one parameter. ‘T’ denotes the parameter. A concrete collection type is created by substituting a type for the 

T. So Set (Integer) and Bag (Person) are collection types. 

11.6.1 Collection 

Collection is the abstract supertype of all collection types in the OCL Standard Library. Each occurrence of an object in a 

collection is called an element. If an object occurs twice in a collection, there are two elements. This section defines the 

properties on Collections that have identical semantics for all collection subtypes. Some operations may be defined within the 

Charly
Texte surligné

Charly
Texte surligné

Charly
Texte surligné



UML OCL2 Specification 160 

subtype as well, which means that there is an additional postcondition or a more specialized return value. Collection is itself an 

instance of the metatype CollectionType. 

The definition of several common operations is different for each subtype. These operations are not mentioned in this section. 

The semantics of the collection operations is given in the form of a postcondtion that uses the IterateExp ot the IteratorExp 
construct. The semantics of those constructs is defined in chapter 10 (“Semantics Described using UML”). In several cases the 

postcondtion refers to other collection operations, which in turn are defined in terms of the IterateExp or IteratorExp 

constructs. 

11.6.2 Set 

The Set is the mathematical set. It contains elements without duplicates. Set is itself an instance of the metatype SetType. 

11.6.3 OrderedSet 

The OrderedSet is a Set the elements of which are ordered. It contains no duplicates. OrderedSet is itself an instance of the 

metatype OrderedSetType. 

11.6.4 Bag 

A bag is a collection with duplicates allowed. That is, one object can be an element of a bag many times. There is no ordering 

defined on the elements in a bag. Bag is itself an instance of the metatype BagType. 

11.6.5 Sequence 

A sequence is a collection where the elements are ordered. An element may be part of a sequence more than once. Sequence is 

itself an instance of the metatype SequenceType. 

11.7 Operations and well-formedness rules 

This section contains the operations and well-formedness rules of the collection types. 

11.7.1 Collection 

size() : Integer 

The number of elements in the collection self. 

post: result = self->iterate(elem; acc : Integer = 0 | acc + 1) 

includes(object : T) : Boolean 

True if object is an element of self, false otherwise. 

post: result = (self->count(object) > 0) 

excludes(object : T) : Boolean 

True if object is not an element of self, false otherwise. 

post: result = (self->count(object) = 0) 

count(object : T) : Integer 

The number of times that object occurs in the collection self. 

Charly
Texte surligné

Charly
Texte surligné



                        UML OCL2 Specification  161 

post: result = self->iterate( elem; acc : Integer = 0 | 

             if elem = object then acc + 1 else acc endif) 

includesAll(c2 : Collection(T)) : Boolean 

Does self contain all the elements of c2 ? 

post: result = c2->forAll(elem | self->includes(elem)) 

excludesAll(c2 : Collection(T)) : Boolean 

Does self contain none of the elements of c2 ? 

post: result = c2->forAll(elem | self->excludes(elem)) 

isEmpty() : Boolean 

Is self the empty collection? 

post: result = ( self->size() = 0 ) 

notEmpty() : Boolean 

Is self not the empty collection? 

post: result = ( self->size() <> 0 ) 

sum() : T 

The addition of all elements in self. Elements must be of a type supporting the + operation. The + operation must take one 

parameter of type T and be both associative: (a+b)+c = a+(b+c), and commutative: a+b = b+a. Integer and Real fulfill this 

condition. 

post: result = self->iterate( elem; acc : T = 0 | acc + elem ) 

product(c2: Collection(T2)) : Set( Tuple( first: T, second: T2) ) 

The cartesian product operation of self and c2. 

post: result = self->iterate (e1; acc: Set(Tuple(first: T, second: T2)) = Set{} |  

                       c2->iterate (e2; acc2: Set(Tuple(first: T, second: T2)) = acc |  

                           acc2->including (Tuple{first = e1, second = e2}) ) ) 

11.7.2 Set 

union(s : Set(T)) : Set(T) 

The union of self and s. 

post: result->forAll(elem | self->includes(elem) or s->includes(elem)) 

post: self  ->forAll(elem | result->includes(elem)) 

post: s     ->forAll(elem | result->includes(elem)) 

union(bag : Bag(T)) : Bag(T) 

The union of self and bag.  

post: result->forAll(elem | result->count(elem) = self->count(elem) + bag->count(elem)) 

post: self->forAll(elem | result->includes(elem)) 

post: bag ->forAll(elem | result->includes(elem)) 

Charly
Texte surligné



UML OCL2 Specification 162 

= (s : Set(T)) : Boolean 

Evaluates to true if self and s contain the same elements. 

post: result = (self->forAll(elem | s->includes(elem)) and  

                                    s->forAll(elem | self->includes(elem)) ) 

intersection(s : Set(T)) : Set(T) 

The intersection of self and s (i.e, the set of all elements that are in both self and s). 

post: result->forAll(elem | self->includes(elem) and s->includes(elem)) 

post: self->forAll(elem | s   ->includes(elem) = result->includes(elem)) 

post: s   ->forAll(elem | self->includes(elem) = result->includes(elem)) 

intersection(bag : Bag(T)) : Set(T) 

The intersection of self and bag. 

post: result = self->intersection( bag->asSet ) 

– (s : Set(T)) : Set(T) 

The elements of self, which are not in s. 

post: result->forAll(elem | self->includes(elem) and s->excludes(elem)) 

post: self  ->forAll(elem | result->includes(elem) = s->excludes(elem)) 

including(object : T) : Set(T) 

The set containing all elements of self plus object. 

post: result->forAll(elem | self->includes(elem) or (elem = object)) 

post: self-  >forAll(elem | result->includes(elem)) 

post: result->includes(object) 

excluding(object : T) : Set(T) 

The set containing all elements of self without object. 

post: result->forAll(elem | self->includes(elem) and (elem <> object)) 

post: self-  >forAll(elem | result->includes(elem) = (object <> elem)) 

post: result->excludes(object) 

symmetricDifference(s : Set(T)) : Set(T) 

The sets containing all the elements that are in self or s, but not in both. 

post: result->forAll(elem | self->includes(elem) xor s->includes(elem)) 

post: self->forAll(elem | result->includes(elem) = s   ->excludes(elem)) 

post: s   ->forAll(elem | result->includes(elem) = self->excludes(elem)) 

count(object : T) : Integer 

The number of occurrences of object in self. 

post: result <= 1 

flatten() : Set(T2) 

If the element type is not a collection type this result in the same self. If the element type is a collection type, the result is the set 



                        UML OCL2 Specification  163 

containing all the elements of all the elements of self. 

post: result = if self.type.elementType.oclIsKindOf(CollectionType) then 

                  self->iterate(c; acc : Set() = Set{} | 

                       acc->union(c->asSet() ) ) 

               else 

                  self 

               endif 

asSet() : Set(T) 

A Set identical to self. This operation exists for convenience reasons. 

post: result = self 

asOrderedSet() : OrderedSet(T) 

An OrderedSet that contains all the elements from self, in undefined order. 

post: result->forAll(elem | self->includes(elem)) 

asSequence() : Sequence(T) 

A Sequence that contains all the elements from self, in undefined order. 

post: result->forAll(elem | self->includes(elem)) 

post: self->forAll(elem | result->count(elem) = 1) 

asBag() : Bag(T) 

The Bag that contains all the elements from self. 

post: result->forAll(elem | self->includes(elem)) 

post: self->forAll(elem | result->count(elem) = 1) 

11.7.3 OrderedSet 

append (object: T) : OrderedSet(T) 

The set of elements, consisting of all elements of self, followed by object. 

post: result->size() = self->size() + 1 

post: result->at(result->size() ) = object 

post:   Sequence{1..self->size() }->forAll(index : Integer | 

         result->at(index) = self ->at(index)) 

prepend(object : T) : OrderedSet(T) 

The sequence consisting of object, followed by all elements in self. 

post: result->size = self->size() + 1 

post: result->at(1) = object 

post:   Sequence{1..self->size()}->forAll(index : Integer | 

        self->at(index) = result->at(index + 1)) 

insertAt(index : Integer, object : T) : OrderedSet(T) 

The set consisting of self with object inserted at position index. 

post: result->size = self->size() + 1 

Charly
Texte surligné



UML OCL2 Specification 164 

post: result->at(index) = object 

post: Sequence{1..(index - 1)}->forAll(i : Integer | 

        self->at(i) = result->at(i)) 

post: Sequence{(index + 1)..self->size()}->forAll(i : Integer | 

        self->at(i) = result->at(i + 1)) 

subOrderedSet(lower : Integer, upper : Integer) : OrderedSet(T) 

The sub-set of self starting at number lower, up to and including element number upper. 

pre : 1 <= lower 

pre : lower <= upper 

pre : upper <= self->size() 

post: result->size() = upper -lower + 1 

post: Sequence{lower..upper}->forAll( index | 

         result->at(index - lower + 1) = 

                          self->at(index)) 

at(i : Integer) : T 

The i-th element of self. 

pre : i >= 1 and i <= self->size() 

indexOf(obj : T) : Integer 

The index of object obj in the sequence. 

pre  : self->includes(obj) 

post : self->at(i) = obj 

first() : T 

The first element in self. 

post: result = self->at(1) 

last() : T 

The last element in self. 

post: result = self->at(self->size() ) 

11.7.4 Bag 

= (bag : Bag(T)) : Boolean 

True if self and bag contain the same elements, the same number of times. 

post: result = (self->forAll(elem | self->count(elem) = bag->count(elem)) and  

                bag->forAll(elem | bag->count(elem) = self->count(elem)) ) 

union(bag : Bag(T)) : Bag(T) 

The union of self and bag. 

post: result->forAll( elem | result->count(elem) = self->count(elem) + bag->count(elem)) 

post: self  ->forAll( elem | result->count(elem) = self->count(elem) + bag->count(elem)) 

Charly
Texte surligné



                        UML OCL2 Specification  165 

post: bag   ->forAll( elem | result->count(elem) = self->count(elem) + bag->count(elem)) 

union(set : Set(T)) : Bag(T) 

The union of self and set. 

post: result->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem)) 

post: self  ->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem)) 

post: set   ->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem)) 

intersection(bag : Bag(T)) : Bag(T) 

The intersection of self and bag. 

post: result->forAll(elem |  

      result->count(elem) = self->count(elem).min(bag->count(elem)) ) 

post: self->forAll(elem | 

      result->count(elem) = self->count(elem).min(bag->count(elem)) ) 

post: bag->forAll(elem | 

      result->count(elem) = self->count(elem).min(bag->count(elem)) ) 

intersection(set : Set(T)) : Set(T) 

The intersection of self and set. 

post: result->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)) ) 

post: self  ->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)) ) 

post: set   ->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)) ) 

including(object : T) : Bag(T) 

The bag containing all elements of self plus object. 

post: result->forAll(elem |  

        if elem = object then 

           result->count(elem) = self->count(elem) + 1 

        else 

           result->count(elem) = self->count(elem) 

        endif) 

post: self->forAll(elem |  

        if elem = object then 

           result->count(elem) = self->count(elem) + 1 

        else 

           result->count(elem) = self->count(elem) 

        endif) 

excluding(object : T) : Bag(T) 

The bag containing all elements of self apart from all occurrences of object. 

post: result->forAll(elem |  

        if elem = object then 

           result->count(elem) = 0 

        else 

           result->count(elem) = self->count(elem) 



UML OCL2 Specification 166 

        endif) 

post: self->forAll(elem |  

        if elem = object then 

           result->count(elem) = 0 

        else 

           result->count(elem) = self->count(elem) 

        endif) 

count(object : T) : Integer 

The number of occurrences of object in self. 

flatten() : Bag(T2) 

If the element type is not a collection type this result in the same bag. If the element type is a collection type, the result is the bag 

containing all the elements of all the elements of self. 

post: result = if self.type.elementType.oclIsKindOf(CollectionType) then 

                  self->iterate(c; acc : Bag() = Bag{} | 

                       acc->union(c->asBag() ) ) 

               else 

                  self 

               endif 

asBag() : Bag(T) 

A Bag identical to self. This operation exists for convenience reasons. 

post: result = self 

asSequence() : Sequence(T) 

A Sequence that contains all the elements from self, in undefined order. 

post: result->forAll(elem | self->count(elem) = result->count(elem)) 

post: self  ->forAll(elem | self->count(elem) = result->count(elem)) 

asSet() : Set(T) 

The Set containing all the elements from self, with duplicates removed. 

post: result->forAll(elem | self  ->includes(elem)) 

post: self  ->forAll(elem | result->includes(elem)) 

asOrderedSet() : OrderedSet(T) 

An OrderedSet that contains all the elements from self, in undefined order, with duplicates removed. 

post: result->forAll(elem | self  ->includes(elem)) 

post: self  ->forAll(elem | result->includes(elem)) 

post: self  ->forAll(elem | result->count(elem) = 1) 

11.7.5 Sequence 

count(object : T) : Integer 

The number of occurrences of object in self. 

Charly
Texte surligné



                        UML OCL2 Specification  167 

= (s : Sequence(T)) : Boolean 

True if self contains the same elements as s in the same order. 

post: result = Sequence{1..self->size()}->forAll(index : Integer | 

                                 self->at(index) = s->at(index)) 

                                 and 

                                 self->size() = s->size() 

union (s : Sequence(T)) : Sequence(T) 

The sequence consisting of all elements in self, followed by all elements in s. 

post: result->size() = self->size() + s->size() 

post: Sequence{1..self->size()}->forAll(index : Integer | 

                                                          self->at(index) = result->at(index)) 

post: Sequence{1..s->size()}->forAll(index : Integer | 

                                           s->at(index) =  result->at(index + self->size() ))) 

flatten() : Sequence(T2) 

If the element type is not a collection type this result in the same self. If the element type is a collection type, the result is the 

seuqnce containing all the elements of all the elements of self. The order of the elements is partial. 

post: result = if self.type.elementType.oclIsKindOf(CollectionType) then 

                  self->iterate(c; acc : Sequence() = Sequence{} | 

                       acc->union(c->asSequence() ) ) 

               else 

                  self 

               endif 

append (object: T) : Sequence(T) 

The sequence of elements, consisting of all elements of self, followed by object. 

post: result->size() = self->size() + 1 

post: result->at(result->size() ) = object 

post:   Sequence{1..self->size() }->forAll(index : Integer | 

         result->at(index) = self ->at(index)) 

prepend(object : T) : Sequence(T) 

The sequence consisting of object, followed by all elements in self. 

post: result->size = self->size() + 1 

post: result->at(1) = object 

post:   Sequence{1..self->size()}->forAll(index : Integer | 

        self->at(index) = result->at(index + 1)) 

insertAt(index : Integer, object : T) : Sequence(T) 

The sequence consisting of self with object inserted at position index. 

post: result->size = self->size() + 1 

post: result->at(index) = object 

post: Sequence{1..(index - 1)}->forAll(i : Integer | 

        self->at(i) = result->at(i)) 



UML OCL2 Specification 168 

post: Sequence{(index + 1)..self->size()}->forAll(i : Integer | 

        self->at(i) = result->at(i + 1)) 

subSequence(lower : Integer, upper : Integer) : Sequence(T) 

The sub-sequence of self starting at number lower, up to and including element number upper. 

pre : 1 <= lower 

pre : lower <= upper 

pre : upper <= self->size() 

post: result->size() = upper -lower + 1 

post: Sequence{lower..upper}->forAll( index | 

         result->at(index - lower + 1) = 

                          self->at(index)) 

at(i : Integer) : T 

The i-th element of sequence. 

pre : i >= 1 and i <= self->size() 

indexOf(obj : T) : Integer 

The index of object obj in the sequence. 

pre  : self->includes(obj) 

post : self->at(i) = obj 

first() : T 

The first element in self. 

post: result = self->at(1) 

last() : T 

The last element in self. 

post: result = self->at(self->size() ) 

including(object : T) : Sequence(T) 

The sequence containing all elements of self plus object added as the last element. 

post: result = self.append(object) 

excluding(object : T) : Sequence(T) 

The sequence containing all elements of self apart from all occurrences of object. 

The order of the remaining elements is not changed. 

post:result->includes(object) = false 

post: result->size() = self->size() - self->count(object) 

post: result = self->iterate(elem; acc : Sequence(T) 

     = Sequence{}| 

         if elem = object then acc else acc->append(elem) endif ) 

asBag() : Bag(T) 



                        UML OCL2 Specification  169 

The Bag containing all the elements from self, including duplicates. 

post: result->forAll(elem | self->count(elem) = result->count(elem) ) 

post: self->forAll(elem | self->count(elem) = result->count(elem) ) 

asSequence() : Sequence(T) 

The Sequence identical to the object itself. This operation exists for convenience reasons. 

post: result = self 

asSet() : Set(T) 

The Set containing all the elements from self, with duplicated removed. 

post: result->forAll(elem | self  ->includes(elem)) 

post: self  ->forAll(elem | result->includes(elem)) 

asOrderedSet() : OrderedSet(T) 

An OrderedSet that contains all the elements from self, in the same order, with duplicates removed. 

post: result->forAll(elem | self  ->includes(elem)) 

post: self  ->forAll(elem | result->includes(elem)) 

post: self  ->forAll(elem | result->count(elem) = 1) 

post: self  ->forAll(elem1, elem2 |  

                         self->indexOf(elem1) < self->indexOf(elem2)  

                               implies result->indexOf(elem1) < result->indexOf(elem2) ) 

11.8 Predefined Iterator Expressions 

This section defines the standard OCL iterator expressions. In the abstract syntax these are all instances of IteratorExp. These 

iterator expressions always have a collection expression as their source, as is defined in the well-formedness rules in Chapter 8 

(“Abstract Syntax”). The defined iterator expressions are shown per source collection type. The semantics of each iterator 

expression is defined through a mapping from the iterator to  the ’iterate’ construct. this means that the semantics of the iterator 

expressions does not need to be defined seperately in the sementics sections.  

Whenever a new itertor is added to the library, the mapping to the iterate expression must be defined. If this is not done, the 

semantics of the new iterator is undefined. 

In all of the following OCL expressions, the lefthand side of the equals sign is the IteratorExp to be defined, and the righthand 

side of the equals sign is the equivalent as an IterateExp.  The names source, body and iterator refer to the role names in the 

abstract syntax: 

•  source The source expression of the IteratorExp 

•  body The body expression of the IteratorExp 

•  iterator The iterator variable of the IteratorExp 

•  result The result variable of the IterateExp 

11.8.1 Extending the standard library with iterator expressions 

When new iterator expressions are added to the standard library, there mapping to existing constructs should be fully defines. If 

this is done, the semantics of the new iterator expression will be defined. 

11.9 Mapping rules for predefined iterator expressions 

Charly
Texte surligné

Charly
Texte surligné



UML OCL2 Specification 170 

This section contains the operations and well-formedness rules of the collection types. 

11.9.1 Collection 

exists 

Results in true if body evaluates to true for at least one element in the source collection. 

source->exists(iterators | body) = 

                     source->iterate(iterators; result : Boolean = false | result or body) 

forAll 

Results in true if the body expression evaluates to true for each element in the source collection; otherwise, result is false. 

source->forAll(iterators | body ) =  

                   source->iterate(iterators; result : Boolean = true | result and body) 

isUnique 

Results in true if body evaluates to a different value for each element in the source collection; otherwise, result is false. 

source->isUnique (iterators | body) =  

    source->collect (iterators | Tuple{iter = Tuple{iterators}, value = body})  

          ->forAll (x, y | (x.iter <> y.iter) implies (x.value <> y.value)) 

isUnique may have at most one iterator variable. 

any 

Returns any element in the source collection for which body evaluates to true. If there is more than one element for which body 

is true, one of them is returned. There must be at least one element fulfilling body, otherwise the result of this IteratorExp is null. 

source->any(iterator | body) = 

       source->select(iterator | body)->asSequence()->first() 

any may have at most one iterator variable. 

one 

Results in true if there is exactly one element in the source collection for which body is true. 

source->one(iterator | body) = 

      source->select(iterator | body)->size() = 1 

one may have at most one iterator variable. 

collect 

The Collection of elements which results from applying body to every member of the source set. The result is flattened. Notice 

that this is based on collectNested, which can be of different type depending on the type of source. collectNested is defined 

individually for each subclass of CollectionType. 

source->collect (iterators | body) = source->collectNested (iterators | body)->flatten() 

collect may have at most one iterator variable. 

Charly
Texte surligné



                        UML OCL2 Specification  171 

11.9.2 Set 

The standard iterator expression with source of type Set(T) are: 

select 

The subset of set for which expr is true. 

source->select(iterator | body) = 

         source->iterate(iterator; result : Set(T) = Set{} | 

                          if body then result->including(iterator) 

                                  else result 

                           endif) 

select may have at most one iterator variable. 

reject 

The subset of the source set for which body is false. 

source->reject(iterator | body) = 

        source->select(iterator | not body) 

reject may have at most one iterator variable. 

collectNested 

The Bag of elements which results from applying body to every member of the source set. 

source->collect(iterators | body) = 

        source->iterate(iterators; result : Bag(body.type) = Bag{} | 

                        result->including(body ) ) 

collectNested may have at most one iterator variable. 

sortedBy 

Results in the OrderedSet containing all elements of the source collection. The element for which body has the lowest value 

comes first, and so on. The type of the body expression must have the < operation defined. The < operation must return a 

Boolean value and must be transitive i.e. if a < b and b < c then a < c. 

source->sortedBy(iterator | body) = 

    iterate( iterator ; result : OrderedSet(T) : OrderedSet {} | 

         if result->isEmpty() then 

           result.append(iterator) 

         else 

           let position : Integer = result->indexOf (  

                        result->select (item | body (item) > body (iterator)) ->first() ) 

           in 

             result.insertAt(position, iterator) 

         endif 

sortedBy may have at most one iterator variable. 

11.9.3 Bag 

Charly
Texte surligné

Charly
Texte surligné



UML OCL2 Specification 172 

The standard iterator expression with source of type Bag(T) are: 

select 

The sub-bag of the source bag for which body is true. 

source->select(iterator | body) = 

        source->iterate(iterator; result : Bag(T) = Bag{} | 

                        if body then result->including(iterator) 

                                else result 

                        endif) 

select may have at most one iterator variable. 

reject 

The sub-bag of the source bag for which body is false. 

source->reject(iterator | body) = 

        source->select(iterator | not body) 

reject may have at most one iterator variable. 

collectNested 

The Bag of elements which results from applying body to every member of the source bag. 

source->collect(iterators | body) = 

        source->iterate(iterators; result : Bag(body.type) = Bag{} | 

                        result->including(body ) ) 

collectNested may have at most one iterator variable. 

sortedBy 

Results in the Sequence containing all elements of the source collection. The element for which body has the lowest value 

comes first, and so on. The type of the body expression must have the < operation defined. The < operation must return a 

Boolean value and must be transitive i.e. if a < b and b < c then a < c. 

source->sortedBy(iterator | body) = 

    iterate( iterator ; result : Sequence(T) : Sequence {} | 

         if result->isEmpty() then 

           result.append(iterator) 

         else 

           let position : Integer = result->indexOf (  

                        result->select (item | body (item) > body (iterator)) ->first() ) 

           in 

             result.insertAt(position, iterator) 

         endif 

sortedBy may have at most one iterator variable. 

11.9.4 Sequence 

The standard iterator expressions with source of type Sequence(T) are: 

Charly
Texte surligné



                        UML OCL2 Specification  173 

select(expression : OclExpression) : Sequence(T) 

The subsequence of the source sequence for which body is true. 

source->select(iterator | body) = 

        source->iterate(iterator; result : Sequence(T) = Sequence{} | 

                        if body then result->including(iterator) 

                                else result 

                        endif) 

select may have at most one iterator variable. 

reject 

The subsequence of the source sequence for which body is false. 

source->reject(iterator | body) = 

        source->select(iterator | not body) 

reject may have at most one iterator variable. 

collectNested 

The Sequence of elements which results from applying body to every member of the source sequence. 

source->collect(iterators | body) =  

        source->iterate(iterators; result : Sequence(body.type) = Sequence{} | 

                        result->append(body ) ) 

collectNested may have at most one iterator variable. 

sortedBy 

Results in the Sequence containing all elements of the source collection. The element for which body has the lowest value 

comes first, and so on. The type of the body expression must have the < operation defined. The < operation must return a 

Boolean value and must be transitive i.e. if a < b and b < c then a < c. 

source->sortedBy(iterator | body) = 

    iterate( iterator ; result : Sequence(T) : Sequence {} | 

         if result->isEmpty() then 

           result.append(iterator) 

         else 

           let position : Integer = result->indexOf (  

                        result->select (item | body (item) > body (iterator)) ->first() ) 

           in 

             result.insertAt(position, iterator) 

         endif 

sortedBy may have at most one iterator variable. 

 

 

 

 


	CollectionLiterals.pdf
	7.5.11 Collection Literals




