Systems Engineering

What is Systems Engineering?

o Systems Engineering = definition, specification, and
high-level architecture of a system which is to be
realized with multiple disciplines, typically including
electronics, mechanical, software, and possible chemical
engineering.

* Primary activities:

Capturing, specifying and validating the requirements of the
system as a whole

Specification of the high-level subsystem architecture
Definition of the subsystem interfaces and functionality
Mapping the system requirements onto the various subsystems

Decomposing the subsystems into the various disciplines —
electronic, mechanical, software and chemical — and defining the
abstract interfaces between those aspects

Charles André - University of Nice

Role of the systems engineer

* In all of these activities, the systems
engineers are not concerned with the
design of the discipline-specific aspects of
the software or the electronics, but ARE
concerned with the specification of what
those design aspects must achieve and
how they will collaborate.

3 Charles André - University of Nice

Systems Engineering

According to B.P. DOUGLASS

stems

{May include
Requirement validation
via execution and test}

{Includes validation via

execution of system-level

scenarios but including

subsystems} Tt

{Done using <<includes:
and <<extends>> relations
to decompose use cases}

~~_

{Disciplines typically incl
electronic, mechanical,
chemical, and software} S~
~ ~
~
~

A A

Software_Specifications
{Subsystem Level}

Engineering Workflow Overview

Process Activities Artifacts
{ System_UseCases
System_Requirements_Capture , 4
7/ //
, s _ _v Sys_UseCase_Statechart
System_UseCaseModel [~ -
{System Level} -
~ = - Sys_UseCase_Description
j A
N
S— N N
N
Define_High_Level_ LN .
Subsystem_Architecture Sys_Scenarios
————— - Subsystem_Diagram
P~ Subsystem_Architecture
{Subsystem Level} ~ o
N h = ~
L N N A Subsystem_Interfaces
\\
Map_Requirements_to_ N
Subsystems N 4
ys_Scenarios_Elaborate:
Sys_Si ios_Elab d
Subsystem_UseCaseModel h_ ~ =~ A
{Subsystem Level} N Subsystem_UseCases
NERN
W\ N
N N
\\\\) Subs_UseCase_Statechart
\
Decompose_Subsystems_ \\ \\
Into_Disciplines \ \
\
' \ 4 Subs_UseCase_Description
\
\
Electronics_Specifications \
{Subsystem Level}
Subs_Scenarios

Chemical_Specifications
{Subsystem Level}

Mechanics_Specifications
{Subsystem Level}

Charles André - University of Nice

System Requirements Capture

Identlfy capabilities as Usa
Cases
Requirements

) - Requirements
By example % “By specification”

Use Case scenario anaIyS|s

Use Case specmcatlon

[S~
|

v \ y

\
- . \
Identlfy_lnteractlons of \ Informal specification Add QoS Constraints
interest \
|

|
|
/

’ Specify protocols of
interaction with Statecharts o
Add QoS Constraints activity diagrams

Derive scenarios from
specifications

Charles André - University of Nice

Use Cases

* A use case usually provides a textual description
outlining its intent and purpose.

e Use Case Description Format:
— Name
— Purpose
« May be written informally (“The purpose of the capability is to...”)
— Description
* May be written semi-formally (“The system shall...”)
« May be informal
« May be a hyperlink off to a separate document
— Preconditions
* What is true prior to the execution of the capability?
— Postconditions

* What does the system guarantee to be true after the execution of
the use case?

— Constraints
« Additional QoS requirements or other rules for the use case

7 Charles André - University of Nice

Identifies the
primary
capabilities
of the system.

4

Priority User

Use Case Diagram

User

)

Edit Phone List
Data

|

I
<< extends >> |
I
I

Make priority call

\

Connected
services

Send text
message

_ —- {worst case performance < 2s }

—

Display text

e
e

//’<< include >>

Phone
Company

Receive text
message

Receive call

YakityYak Deluxe ™
Cell Phone use cases.

Charles André - University of Nice

Initialize phone scenario

Initialize Phone
User
phone company
] — Use Case: Initialize Phone
Preconditions: Telephone is off
Off Postconditions: Telephone is on
Description:
evPowerOn() The «sunny day» scenario. The
> I simplest scenario where
everything works

(o)
\/

POST()

—
o
0
[
D
o

Login()
> {<2s}
< Loggingin >
< LoginConfirm()
<Loggedin> Note: POST =

Power On Self Test

Connected() .

Charles André - University of Nice

10

Initialize phone scenario (2)

User

Initialize
phone

Off

evPowerOn()

&

< Error

Failure(FailureMessage:String)

POST()

Phone
company

Use Case: Initialize Phone
Preconditions: Telephone is off
Postconditions: Telephone is on

Description:

POST fails. Error message is
displayed on the phone display

Charles André - University of Nice

Make Call Use Case Statechart

.
Statachart for Maxe Call
US# case

evOnHook/
digconnect{),

T evOonLne/

¥ sound(DIALTONE)

I'J'

11

num=getPreviumbarinList), 1;‘""("“““

WaltngFerPekup }\
evRinging \

tm{S00)
souUNnd(BUSYTONE)

[Connecting

e o evieiNumber) ™
n=0m T ' num = getNextNumberinList(l. a,mackspacer ook
ey ﬁ v-"-)mm-num-mgt
f Dialing 1
WW} ‘l" [\g Enu; e [Connected
num=num+digit | / \ |
evaNumth/ \\. evinitateCall

A
Pickupy
/gnmcﬂ_lnea[]

wunco]}“*"""

sound(RINGTONE)

b

Charles André - University of Nice

System architecture workflow

_)) Define High Level Subsystem Architecture
Define large-scale architectural pieces

of the system and their interfaces before
the system is decomposed into the Identify subsystems
different design disciplines (software,

electronics,mechanical, and chemical). i

7

Define subsystem

/[responsabilities

Define subsystem

/ [interIces

laborate system scenarios
with subsystem architecture

/El

Validate subsystem
architecture by executing
elaborated scenarios
Elaborated

Subsystem
diagram

N N N

Subsystem
Interface
Specifications

7

scenarios

12 Charles André - University of Nice

13

Cellphone subsystem diagram

YakityYakCellphoneSystem

PhoneDataSubsystem

<<subsystem>>

1

1

1

TranceiverS

DisplaySubsystem
<<subsystem>>

ubsystem

<<subsystem>>

1

1

1

DialingManagementSubsystem

1

Phone
Company

<<subsystem>>
PowerSubsystem
1 <<subsystem>>
<<system>>
1 A « subsystem diagram » is a
class diagram whose mission is to
show the subsystem architecture.
User

Charles André - University of Nice

Interface Specification

Subsystem Interface Specification Description
Format:

— Operation Name and parameter list
— Parameter Description (for each parameter)
* type
* range
— Description
— Preconditions
* What is true prior to the execution of the operation?
— Postconditions

» What does the system guarantee to be true after the
execution of the operation?

— Constraints

* Additional QoS requirements or other rules for the operation
(including performance requirements, if appropriate)

14 Charles André - University of Nice

15

Transceiver interface

TransceiverSubsystem

iSend

+startSession():SESSION_ID
+endSessionSESSION_ID id): void
+sendMsg(MESSAGE msg): Boolean

<<interface>>

iReceive

+getMessage():MESSAGE
+waitingMessages():int

<<interface>>

iText

+sendText(TEXT_MESSAGE tMsg):Boolean
+getText(): TEXT_MESSAGE

<<interface>>

{ SESSION_ID is of type int anb
must be in the range of 0 (no

seesion) to 999. }

{ startSession must execute prim
sendMsg. sendMsg requires a valid
session. }

{ sendMsg shall retry every 2 | >
seconds upto 10 times in the event

of failure. }

<<subsystem>>

- { message length limited to 102b

characters. }

Charles André - University of Nice

iSend interface statechart

| Statechert for iSend Interface. This
specifes the orders and condfions Tor

| the exedusion of the opersbons
' SantingSession
"
Wie | entryequestSassion])
T T | [:::;Cuui MAX_SESSION RETRYY evSesmonieply
/i' InSessicn evSendMessage! A

(else} 3 =0
emonCANNOT_START_SESSION) p—
Seswonldle |

SessonTransmit]

m— enirgtrarsmtimessage)

[retryCount<MAXRETRY)
seratryCounl

I | S [ets]/

evDisconnect |s sem when | ‘\ aror CANNOT_TRANSMIT)

\the remoke side wants to g
=op Ihe session

16 Charles André - University of Nice

17

Architecture validation

Scenarios capture example traces of execution of the
system. The UML sequence diagrams are the most
popular way to capture scenarios. As we create a
subsystem architecture and define the interfaces among
this architectural components, we must ask ourselves if
we have done it properly. The only way to truly answer
that question is to validate the architecture via execution,
and that is exactly what scenarios allow you to do.

The point of a subsystem architecture, ultimately, is the
efficient realization of the system requirements, so the
validation of the architecture must take the requirements
Into account.

Charles André - University of Nice

Elaborated Scenario (1)

Dialing

User Initialize Management Displaying Phone Data Power Transceiver Phone company
phone Subsystem subsystem subsystem subsystem subsystem Use Case: Initialize Phone
- Preconditions: Telephone is off
] Postconditions: Telephone is on
orf Description:
evPowerOn() The «sunny day» scenario. The
> A simplest scenario where

everything works. This elaborated
< On > scenario shows the subsystem
interaction. Original system-level

POST() | evoND ol o terms are colored in red for clarity.
1 displayLogo()

display("Initializing")

post()

Y

{<2s}
batteryCheck()

post()

Y

loopBackTest()

testMsgTest()

18 Charles André - University of Nice

Elaborated Scenario (2)

User Initialize Dialing Displaying Phone Data Power Transceiver
Management Phone company
phone Subsystem subsystem subsystem subsystem subsystem Use Case: Initialize Phone
_ Preconditions: Telephone is off
] Postconditions: Telephone is on
post() > Description:

The «sunny day» scenario. The
simplest scenario where
everything works. This elaborated
scenario shows the subsystem
post() interaction. Original system-level
terms are colored in red for clarity.

checkDataBase()

checkDialing(

~

Y

readFromSIM()

ar;

Tested >

initialize()

o

initialize()

initialize()

Y

19 Charles André - University of Nice

User

Connected()

Elaborated Scenario (3)

Dialing

Phone company

Use Case: Initialize Phone
Preconditions: Telephone is off
Postconditions: Telephone is on

Description:

The «sunny day» scenario. The
simplest scenario where
everything works. This elaborated
scenario shows the subsystem
interaction. Original system-level
terms are colored in red for clarity.

Initialize Management Displaying Phone Data Power Transceiver
phone Subsystem subsystem subsystem subsystem subsystem
ready()
. display("Signing in")
Login()
<Loggingin>
Msg(SYSTEM_ID)

-

Msg(SYSTEM_ID)

sendMsg(PHONE_ID)

[
|

<l
-l

sendMsg(PHONE_ID)

[
-

-l

LogInConfirm()

-

display("Connected")

<
i}

20

< Loggedin >

Y

Charles André - University of Nice

Mapping requirements to subsystems

21

Goal: Provide the subsystem development teams with
detailed requirements specific to their subsystems, and a
well-defined means for plugging their subsystem into the
overall system architecture in such a way that the
completed system meets all its functional and QoS
requirements.

Primary Artifacts: For each subsystem the following is
producted: a Subsystem Use Case Model, consisting a
set of use cases (and associated actors), each of which
identifies or defines

— Use Case Description

— Use Case statechart or activity diagram (optional)

— Use Case Scenarios

Charles André - University of Nice

Mapping requirements

UML Diagrams and Model Elements Utilized:

— Use case Diagram, containing
 Use Cases
« Actor (including “internal actors,” i.e. peer subsystems)

» Relations among model elements
— Associations between actors and use cases
— Generalization of actors and use cases
— Dependency among use cases

« Constraints

— Text Description
« May be done in Description field associated with Use case
 May be done in a separate documentation tool (e.g. word)

— Statechart associated with a single subsystem-level use case

— Activity diagram associated with a subsystem-level single use
case

— Sequence diagram, each depicting a single scenario of a
subsystem-level single use case

22 Charles André - University of Nice

Hierarchical architecture model

/ Ez «systems

23
£3
o

«subsystems

T =1

«subsystems

«subsystems 4

Electronics

Software aspect]

Mechanical
aspect

Level O:
System
Level

Level 1:
Systems
Engineering
Level

Level 2:
Multi-
Displinary
Level

~

Systems engineer’s
concerns

-

\ aspect
.»”

«subsystems

«actives

wactives

sactives

Level 3:
Software
Component
Level

Level 4:
Thread
Level

23

Discipline experts

Charles André - University of Nice

24

Subsystem level Use Cases

Display Subsystem

Display
Calling

Display
Call Status

Power Subsystem N

Power
display S

Power
transceiver

Phone Data Subsystem

{System Le
Use Case}

Initiate
Session

Maintain
Session

Dialing Management Subsystem

Packetize
Messages

Tranceiver Subsystem

Transmit
Message

Subsystem level use cage
derived from System Use
Cases "Make Call".
All dependences here are
<<includes>> (implicit on the
diagram)

Receive
Message

Charles André - University of Nice

Subsystem Use Cases

Power for
SIM Write

Power for
SIM Read

PowerSubsystem in use case
Derived from the system level
use cases ans the subsystem

architecture.

Power Speaker
Power

Transceiver

aSIM

aSpeaker aTranceiver
_Subsystem
Power
Display Monitor
Power i
i aBattery
aDisplay
_Subsystem
aCharger

25 Charles André - University of Nice

Discipline decomposition

e Goal: Decompose the internal structure of a
subsystem into the various disciplines, define
the interfaces among those design aspects, and
map the requirements to those disciplines.

 Primary Artifacts: Subsystem Deployment
Design

« UML Diagrams and Model Elements Utilized:
— Deployment Diagram
— Component Diagram

26 Charles André - University of Nice

27

Dep]oymen’r architecture

Bepleyment erctilecicm for lhe
Powed Subsysien. Mate that this
CPU plso runs giher softwans - fhal
B, e P I shared ameng Ihe
subsysbents but here sme ony shaw
Ihe Powee Managemen softesre

{active source may De either battery of ¢
F

rger
harger. but not both}
[physicaly separptable unt}
«. {elecironic)
T

cLEmoape s>

. [shared

Y, BMmang
subsyslems)

Charles André - University of Nice

