
Systems Engineering

Charles André - University of Nice2

What is Systems Engineering?
• Systems Engineering = definition, specification, and

high-level architecture of a system which is to be
realized with multiple disciplines, typically including
electronics, mechanical, software, and possible chemical
engineering.

• Primary activities:
– Capturing, specifying and validating the requirements of the

system as a whole
– Specification of the high-level subsystem architecture
– Definition of the subsystem interfaces and functionality
– Mapping the system requirements onto the various subsystems
– Decomposing the subsystems into the various disciplines –

electronic, mechanical, software and chemical – and defining the
abstract interfaces between those aspects

Charles André - University of Nice3

Role of the systems engineer
• In all of these activities, the systems

engineers are not concerned with the
design of the discipline-specific aspects of
the software or the electronics, but ARE
concerned with the specification of what
those design aspects must achieve and
how they will collaborate.

Systems Engineering

According to B.P. DOUGLASS

Charles André - University of Nice5

Systems Engineering Workflow Overview

Charles André - University of Nice6

System Requirements Capture
Identify capabilities as Use

Cases

Use Case scenario analysis Use Case specification

Identify interactions of
interest

Add QoS Constraints

Informal specification

Specify protocols of
interaction with Statecharts or

activity diagrams

Derive scenarios from
specifications

Add QoS Constraints

Requirements
“By example”

Requirements
“By specification”

Charles André - University of Nice7

Use Cases
• A use case usually provides a textual description

outlining its intent and purpose.
• Use Case Description Format:

– Name
– Purpose

• May be written informally (“The purpose of the capability is to…”)
– Description

• May be written semi-formally (“The system shall…”)
• May be informal
• May be a hyperlink off to a separate document

– Preconditions
• What is true prior to the execution of the capability?

– Postconditions
• What does the system guarantee to be true after the execution of

the use case?
– Constraints

• Additional QoS requirements or other rules for the use case

Charles André - University of Nice8

Use Case Diagram

User

Priority User

Edit Phone List
Data

Initialize phone

Display text

Connected
services

Make call

Send text
message

Receive call
Receive text

message

Phone
Company

Make priority call

<< predecessor >>

<< include >>

<< extends >>

{ worst case performance < 2s }

YakityYak Deluxe ™
Cell Phone use cases.

Identifies the
primary
capabilities
of the system.

Charles André - University of Nice9

Initialize phone scenario

Note: POST =
Power On Self Test

Charles André - University of Nice10

Initialize phone scenario (2)

Charles André - University of Nice11

Make Call Use Case Statechart

Charles André - University of Nice12

System architecture workflow

Identify subsystems

Define subsystem
responsabilities

Define subsystem
interfaces

Elaborate system scenarios
with subsystem architecture

Validate subsystem
architecture by executing

elaborated scenarios

Define High Level Subsystem Architecture
Define large-scale architectural pieces
of the system and their interfaces before
the system is decomposed into the
different design disciplines (software,
electronics,mechanical, and chemical).

Subsystem
Interface

Specifications

Subsystem
diagram

Elaborated
scenarios

Charles André - University of Nice13

Cellphone subsystem diagram
YakityYakCellphoneSystem

PhoneDataSubsystem
<<subsystem>>

DisplaySubsystem
<<subsystem>>

PowerSubsystem
<<subsystem>>

DialingManagementSubsystem
<<subsystem>>

TranceiverSubsystem
<<subsystem>>

<<system>>

1

1
1

1

1

1

1

1

1

1

1

1

User

Phone
Company

1 1

A « subsystem diagram » is a
class diagram whose mission is to
show the subsystem architecture.

Charles André - University of Nice14

Interface Specification
Subsystem Interface Specification Description

Format:
– Operation Name and parameter list
– Parameter Description (for each parameter)

• type
• range

– Description
– Preconditions

• What is true prior to the execution of the operation?
– Postconditions

• What does the system guarantee to be true after the
execution of the operation?

– Constraints
• Additional QoS requirements or other rules for the operation

(including performance requirements, if appropriate)

Charles André - University of Nice15

Transceiver interface

Charles André - University of Nice16

iSend interface statechart

Charles André - University of Nice17

Architecture validation
• Scenarios capture example traces of execution of the

system. The UML sequence diagrams are the most
popular way to capture scenarios. As we create a
subsystem architecture and define the interfaces among
this architectural components, we must ask ourselves if
we have done it properly. The only way to truly answer
that question is to validate the architecture via execution,
and that is exactly what scenarios allow you to do.

• The point of a subsystem architecture, ultimately, is the
efficient realization of the system requirements, so the
validation of the architecture must take the requirements
into account.

Charles André - University of Nice18

Elaborated Scenario (1)
User Initialize

phone
Phone company

Off

On

evPowerOn()

post()
{ < 2 s }

Use Case: Initialize Phone
Preconditions: Telephone is off
Postconditions: Telephone is on

Description:
The «sunny day» scenario. The
simplest scenario where
everything works. This elaborated
scenario shows the subsystem
interaction. Original system-level
terms are colored in red for clarity.

Dialing
Management
Subsystem

Displaying
subsystem

Phone Data
subsystem

Power
subsystem

evON()
displayLogo()

display("Initializing")

Transceiver
subsystem

batteryCheck()

post()

loopBackTest()

testMsgTest()

POST()

Charles André - University of Nice19

Elaborated Scenario (2)
User Initialize

phone
Phone company

post()

Use Case: Initialize Phone
Preconditions: Telephone is off
Postconditions: Telephone is on

Description:
The «sunny day» scenario. The
simplest scenario where
everything works. This elaborated
scenario shows the subsystem
interaction. Original system-level
terms are colored in red for clarity.

Dialing
Management
Subsystem

Displaying
subsystem

Phone Data
subsystem

Power
subsystem

Transceiver
subsystem

checkDataBase()

initialize()

post()

checkDialing()

readFromSIM()

Tested

initialize()

initialize()

Charles André - University of Nice20

Elaborated Scenario (3)
User Initialize

phone
Phone company

Login()

Use Case: Initialize Phone
Preconditions: Telephone is off
Postconditions: Telephone is on

Description:
The «sunny day» scenario. The
simplest scenario where
everything works. This elaborated
scenario shows the subsystem
interaction. Original system-level
terms are colored in red for clarity.

Dialing
Management
Subsystem

Displaying
subsystem

Phone Data
subsystem

Power
subsystem

Transceiver
subsystem

ready()

display("Signing in")

Msg(SYSTEM_ID)

LoggingIn

Msg(SYSTEM_ID)

sendMsg(PHONE_ID)

sendMsg(PHONE_ID)

LogInConfirm()

LoggedIn

display("Connected")
Connected()

Charles André - University of Nice21

Mapping requirements to subsystems
• Goal: Provide the subsystem development teams with

detailed requirements specific to their subsystems, and a
well-defined means for plugging their subsystem into the
overall system architecture in such a way that the
completed system meets all its functional and QoS
requirements.

• Primary Artifacts: For each subsystem the following is
producted: a Subsystem Use Case Model, consisting a
set of use cases (and associated actors), each of which
identifies or defines
– Use Case Description
– Use Case statechart or activity diagram (optional)
– Use Case Scenarios

Charles André - University of Nice22

Mapping requirements
UML Diagrams and Model Elements Utilized:

– Use case Diagram, containing
• Use Cases
• Actor (including “internal actors,” i.e. peer subsystems)
• Relations among model elements

– Associations between actors and use cases
– Generalization of actors and use cases
– Dependency among use cases

• Constraints
– Text Description

• May be done in Description field associated with Use case
• May be done in a separate documentation tool (e.g. word)

– Statechart associated with a single subsystem-level use case
– Activity diagram associated with a subsystem-level single use

case
– Sequence diagram, each depicting a single scenario of a

subsystem-level single use case

Charles André - University of Nice23

Hierarchical architecture model

Systems engineer’s
concerns

Discipline experts

Charles André - University of Nice24

Subsystem level Use Cases

Charles André - University of Nice25

Subsystem Use Cases

aCharger
Charge
Battery

aSpeaker

Power Speaker

Power SIM

Power for
SIM Read

Power for
SIM Write

aSIM

aTranceiver
_Subsystem

Power
Transceiver

aDisplay
_Subsystem

aBattery

Monitor
Power

Power
Display

PowerSubsystem in use cases,
Derived from the system level
use cases ans the subsystem

architecture.

Charles André - University of Nice26

Discipline decomposition
• Goal: Decompose the internal structure of a

subsystem into the various disciplines, define
the interfaces among those design aspects, and
map the requirements to those disciplines.

• Primary Artifacts: Subsystem Deployment
Design

• UML Diagrams and Model Elements Utilized:
– Deployment Diagram
– Component Diagram

Charles André - University of Nice27

Deployment architecture

