
Charles ANDRE - UNSA

UML Activities & Actions



Charles ANDRE - UNSA

Action & Object Nodes

Send
Envoice Invoice Make

Payment
Accept

Payment

Invoice1234: 
Invoice

Invoice1234: 
Invoice

Output provided 
when action is 

complete
Action starts when 
input arrives

Sequencing: control 
« flows » when action 
is complete

Object/Data flow Control flow

Accept inputs, start behaviors, provide outputs



Charles ANDRE - UNSA3

Overview
• Activity modeling emphasizes the sequence and 

conditions for coordinating lower-level 
behaviors, rather than which classifiers own 
those behaviors. 

• These are commonly called control flow and 
object flow models. 

• The actions coordinated by activity models can 
be initiated 
– because other actions finish executing,
– because objects and data become available,

– or because events occur external to the flow. 



Charles ANDRE - UNSA

Activity diagrams
• Possibly more than any other UML diagram, activity diagrams apply 

to much more than just software modeling. They are applicable to 
just about any type of behavioral modeling; for example, business 
processes, software processes, or workflows.

• Software modeling, activities typically represent a behavior invoked 
as a result of a method call. 

• Business modeling, activities may be triggered by external events, 
such as an order being placed, or internal events, such as a timer to 
trigger the payroll process on Friday afternoons. 

• Activity diagrams have undergone significant changes with UML 2.0; 
they have been promoted to first-class elements and no longer 
borrow elements from state diagrams.

• Activity diagrams capture activities that are made up of smaller 
actions .

4



Charles ANDRE - UNSA

Actions & Activities
• An action execution corresponds to the execution of a 

particular action.
• Similarly, an activity execution is the execution of an 

activity, ultimately including the executions of actions 
within it. 

• Each action in an activity may execute zero, one, or 
more times for each activity execution. 

• At the minimum, actions need access to data, they need 
to transform and test data, and actions may require 
sequencing. 

• The activities specification (at the higher compliance 
levels) allows for several (logical) threads of control 
executing at once and synchronization mechanisms to 
ensure that activities execute in a specified order.

5



Charles ANDRE - UNSA

Activity – Meta model

Behavior

Activity ActivityNode
nodeactivity

0..1 0..*

ObjectNode ControlNode

ActivityParameterNodePin

Action

ActivityFinalNode InitialNode



Charles ANDRE - UNSA

Flows – Meta model

7

ActivityNode ActivityEdge

ControlFlow ObjectFlow

incomingtarget

1 0..*

0..*1

source outgoing

Activity
edge 0..1

activity0..*



Charles ANDRE - UNSA

Actions
• An action is a named element that is the 

fundamental unit of executable functionality. The 
execution of an action represents some 
transformation or processing in the modeled 
system, be it a computer system or otherwise. 

• The action begins execution by taking tokens 
from its incoming control edges and input pins. 
When the execution of an action is complete, it 
offers tokens in its outgoing control edges and 
output pins, where they are accessible to other 
actions. 



Charles ANDRE - UNSA

Actions (2)

a call action that invokes a behavior directly rather 
than invoking a behavioral feature that, in turn, 
results in the invocation of that behavior. 

an action that transmits an operation call request to 
the target object, where it may cause the invocation 
of associated behavior. 

An action with implementation-specific semantics.

an action that creates a signal instance from its 
inputs, and transmits it to the target object, where it 
may cause the firing of a state machine transition 
or the execution of an activity. 

The action returns the result of evaluating a value 
specification. 

an action that waits for the occurrence of an event 
meeting specified condition. 

an accept event action representing the receipt of a 
synchronous call request 



Charles ANDRE - UNSA

Activity Modeling (1)
• Activity modeling emphasizes the 

input/output dependencies, sequencing, 
and conditions for coordinating other 
behaviors.

• Uses secondary constructs to show which 
classifiers are responsible for those 
behaviors.

• Focus is on what tasks need to be done, 
with what inputs, in what order, rather than 
who/which performs each task.



Charles ANDRE - UNSA

Activity Modeling (2)

Tasks and ordering …



Charles ANDRE - UNSA

Activity Modeling (3)

… plus resource assignments
«

ex
te

rn
al

»
«

at
tri

bu
te

» 
pe

rfo
rm

in
gD

ep
t: 

de
pa

rtm
en

t

C
us

to
m

er
O

rd
er

 D
ep

ar
tm

en
t

Ac
ct

g 
D

ep
ar

tm
en

t



Charles ANDRE - UNSA

“Flow” semantics

Activity execution defined in terms of flow of control and objects/data.



Charles ANDRE - UNSA

Actions & Object Nodes (1)

Send
Envoice Invoice Make

Payment
Accept

Payment

Invoice1234: 
Invoice

Invoice1234: 
Invoice

Output provided 
when action is 

complete
Action starts when 
input arrives

Sequencing: control 
« flows » when action 
is complete

Accept inputs, start behaviors, provide outputs



Charles ANDRE - UNSA

Actions & Object Nodes (2)
Alternate object node notation.

Must use this notation if the output type is different than the input 
type.



Charles ANDRE - UNSA

Queuing (1)

• Tokens can
– Stack up in “in/out” boxes
– Prevent upstream behaviors from taking new inputs

• Applicable to systems with significant resource 
constraints, such as physical or manual 
processes



Charles ANDRE - UNSA

Queuing (2)

• Tokens can be
– Stored temporarily
– Divided between flows

• Tokens cannot 
– Flow in more than one direction, unless copied



Charles ANDRE - UNSA

Activity Parameter Nodes

Get
Balance

+
Amount

Account
Set

Balance

Account

Accept_deposit

Activity parameter 
nodes

(uses of objects/data, 
a kind of object node)

Parameter nodes accept and provide values to/from whatever 
behavior uses this activity



Charles ANDRE - UNSA

Streaming Parameters

D/A Conversion Encode AudioAnalog Audio

{stream} {stream}

Analog waveform Analog waveform

Audio Encoder

In this activity diagram, the original analog audio is streamed through a digital-to-
analog converter, and the resulting digital data is sent to the encoding algorithm 
for processing.

Not executing

executing

time
Non-streaming

(this is the default)
streaming

Inputs
accepted

Outputs
provided

Streaming: values accepted and provided while action is executing



Charles ANDRE - UNSA

Control Nodes (1)

Initial Node
Gets control when containing 
activity starts. Flow out 
immediately.

Accepts inputs, aborts containing 
activity

Activity Final Node

Accepts inputs, does nothingFlow Final

Route objects/data

At beginning and end of activity:



Charles ANDRE - UNSA

Control Nodes (2)
Route objects/data

In middle of activity:



Charles ANDRE - UNSA

Interruptible Region

Receive 
Order

Fill 
Order

[order
accepted]

Send
Invoice Invoice Make

Payment
Accept

Payment

Ship
Order Close

Order

Request
Cancel

Cancel
Order

Interrupting edge

Interruptible region

Flows abort region



Charles ANDRE - UNSA

Extensions for Systems 
Engineering

• Available in SysML (a UML profile for SE)
• Control as data

– Enabling and disabling control values
– Output from activities to turn other behaviors “on” and “off”.

• Rate of flow, on edges and streaming parameters
• Reduce buffering

– Overwrite values already in buffer
– Turn off buffering

• Probability on decisions, parameter sets, competing 
outflows from object nodes

• Behavior decomposition



Charles ANDRE - UNSA

Rate and buffer reduction



Charles ANDRE - UNSA

Activity decomposition



Charles ANDRE - UNSA

References
• Conrad Bock, UML 2 Activity articles: 

http://www.conradbock.org/#UML2.0
• UML 2 specification: 

http://www.omg.org/docs/formal/07-02-
03.pdf

• SysML specification: 
http://www.omg.org/docs/ad/05-11-01.pdf


