Peer-to-Peer Prefix Tree

for Large Scale Service Discovery

Cédric Tedeschi

October 2, 2008

arasl o ilk-BiNnrIA %S ¢

(ele} 000000000 [e]
000 000000 (e]o]e}

Computing Pow

Computational Grids

Climate prediction

Genomics Nuclear security

Peer Prefix Tree arge Scale Service Discovery

000 000000 000
[e]

Peer Prefix Tree fo e Scale Service Discovery

000 000000 000

Peer Prefix Tree fo e Scale Service Discovery

000 000000 000

e Scale Service Discovery

000 000000 000

Service

Discovery

e Scale Service Discovery

000 000000 000

Service

Discovery

e Scale Service Discovery

000 000000 000

Service

Discovery

140.77.26.11

00 000000000 o
00

000000 o

000

(o]

Service
Discovery

Peer Prefix Tree for Large Scale Service Discovery

00 000000000 (e}
000 000000 (e]o]e}

Peer Prefix Tree for Large Scale Service Discovery

00 000000000 o
000 000000 (e]o]e}

Peer Prefix Tree for Large Scale Service Discovery

o

P2P Information Retrieval (review)

Unstructured (Gnutella)

¢ Flooding
e Cost

¢ Non-exhaustiveness

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

P2P Information Retrieval (review)

Structured (DHTS)

e Routing
Unstructured (Gnutella) - Bl eress
¢ Flooding e Scalability
e Cost e Logarithmic state
« Non-exhaustiveness ¢ Logarithmic path

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

P2P Information Retrieval (review)

Structured (DHTS)

e Routing
Unstructured (Gnutella) - Bl eress
¢ Flooding e Scalability
e Cost e Logarithmic state
« Non-exhaustiveness ¢ Logarithmic path
e Drawbacks
o Exact queries only

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
[e]

Objectives

A P2P structured solution with
e Expressiveness
e Range queries
o Automatic completion
o Multi-attribute queries
o Efficiency in a P2P environment

e Heterogeneous = Load balancing
e Dynamic = Fault-tolerance

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

@ DLPT : a Trie-Based Solution

9 Mapping & Load Balancing
@ Protocol
@ Load Balancing
@ Simulation

e Fault-tolerance
@ Snap-Stabilizing PGCP Tree (State Model)
@ Self-Stabilizing PGCP Tree (Message-Passing Model)

° Prototype Implementation
@ Design
@ Early Experiments

e Summary & Open Problems

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

@ DLPT : a Trie-Based Solution

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

DLPT : A trie-based indexing system

Distributed Logical Structure

Definition

» Greatest Common Prefix Tree :
Each node is the greatest common

prefix of any pair of its children

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

DLPT : A trie-based indexing system

Distributed Logical Structure

e Greatest Common Prefix Tree

e Dynamically constructed

DGEMM

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

DLPT : A trie-based indexing system

Distributed Logical Structure

o Greatest Common Prefix Tree
e Dynamically constructed ‘ \‘

DGEMM DGEMM DTRSM

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

DLPT : A trie-based indexing system

Distributed Logical Structure

o Greatest Common Prefix Tree DTR
DGEMM
e Dynamically constructed

DGEMM DGEMM DTRSM DTRMM DTRSM

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

DLPT : A trie-based indexing system

Distributed Logical Structure

o Greatest Common Prefix Tree DTR
DGEMM

e Dynamically constructed o

¢ Bounded degree and height DGEMM DGEMM DTRSM DTRMM DTRSM

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000000

DLPT : A trie-based indexing system

Distributed Logical Structure

D
o Greatest Common Prefix Tree DTR
DGEMM
e Dynamically constructed o
¢ Bounded degree and height DGEMM DGEMM DTRSM DTRMM DTRSM

e Exact match

DTRMM DTRSM S3L_mat_mult noadd

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000000

DLPT : A trie-based indexing system

Distributed Logical Structure

D
o Greatest Common Prefix Tree DTR
DGEMM
e Dynamically constructed o
¢ Bounded degree and height DGEMM DGEMM DTRSM DTRMM DTRSM

e Exact match

e Autocompetion

DTRMM DTRSM S3L mat mult noadd

A Peer-to-Peer Prefix Tree f Scale Service Discovery

000000

DLPT : A trie-based indexing system

Distributed Logical Structure

D
o Greatest Common Prefix Tree DTR
DGEMM
e Dynamically constructed o
¢ Bounded degree and height DGEMM DGEMM DTRSM DTRMM DTRSM

e Exact match

e Autocompetion

e Range queries

DTRMM DTRSM S3L mat mult noadd

A Peer-to-Peer Prefix Tree f Scale Service Discovery

o

e Mapping & Load Balancing
@ Protocol
@ Load Balancing
@ Simulation

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

The Mapping Problem

D

DTR

DGEMM

DTRMM DTRSM

e Associate a Node to a Peer J

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

The Mapping Problem

/ I.DTR. M DTRSM \

...................... U T
L B PR

e Associate a Node to a Peer
e An underlying DHT .

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

The Mapping Problem

/ I.DTR. M DTRSM \

...................... U T
L B PR

Drawbacks
Need for a DHT

e Costly
e Random mapping (No clustering)

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

MatSUM
MatPROD

DTR

DGEMM

DTRMM DTRSM

BgCkh

DMrXz

RsBFz

MatSUM
MatPROD

DTR

Lrces

DTRMM DTRSM

e Build a ring over peers

Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

g

DTRMM ;
“._Mat prrsm O
Q. I

) _MatPROD

MatSUM
MatPROD

DTR

DGEMM
Lrces

DTRMM DTRSM

e Build a ring over peers
e Each peer maintains at least one node
e Map using consistent hashing

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
[e]

g

DTRMM ;
“._Mat prrsm O
Q. -

) _MatPROD

MatSUM
MatPROD

DTR

DGEMM
Lrces

DTRMM DTRSM

e Build a ring over peers

e Each peer maintains at least one node
e Map using consistent hashing

e Clustering

A Peer-to-Peer Prefix Tree f ge Scale Service Discovery

000 000000 000
o

Insertion of a New Peer

Join Algorithm

RSBFz\j ...

MatSUM syt ‘
’ e

/
VL

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

Insertion of a New Peer

Join Algorithm

@ Random contact peer
@ |nitiating the tree routing

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

Insertion of a New Peer

Join Algorithm

@ Random contact peer
@ |Initiating the tree routing
© Routing in the tree

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

Insertion of a New Peer

Join Algorithm

@ Random contact peer

@ |nitiating the tree routing

© Routing in the tree

@ Successor of Pis P, or succ(Pn)

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

Insertion of a New Peer

Join Algorithm

@ Random contact peer
NDMrXz @ |Initiating the tree routing

© Routing in the tree
@ Successor of Pis P, or succ(Pn)

c Join Complexities

O(Trie complexities)

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

Insertion of a New Peer

Join Algorithm

@ Random contact peer
BgCkh @ |Initiating the tree routing

_ @ © Routing in the tree

! “'Q:ODGEMM @ Successor of Pis P, or succ(Pn)
\DMrXz

Join Complexities
O(Trie complexities)

Load balancing

e Depth of nodes
e Popularity of services
e Capacity of peers

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

e00 000000 000
o

Load balancing heuristics - related work (DHTSs)

Each peer is assigned a set of items

e Karger and Ruhl, 2001

e Periodic random item balancing
e Homogeneity of peer capacities

e Godfrey et al., 2003

e Periodic item redistribution
e Semi-centralized

e Ledlie and Seltzer, 2005

e Chooses the best location for a joining peer among k
e Heterogeneity of peer capacities and data popularity

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

(@)

End of period 7
S get load information
from P

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

P
(a)
End of period 7 Search for a new
S get load information locally optimall
from P distribution

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000000

o

A novel heuristic : Max Local Throughput

S S
P
P
(@) (c)
End of period
F.) T. Search for a new Starting the next
S get load information locally optimal]
o period 7 + 1

from P distribution

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

A novel heuristic : Max Local Throughput

e At the end of period 7
e Two adjacent peers S and P with capacity Cs and Cp
 vg and vp the sets of nodes currently managed by S and P

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

A novel heuristic : Max Local Throughput

At the end of period 7

Two adjacent peers S and P with capacity Cs and Cp

vg and vp the sets of nodes currently managed by S and P
Lg = Zn€u§ I

Lp = Zneu; In

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

A novel heuristic : Max Local Throughput

At the end of period 7

Two adjacent peers S and P with capacity Cs and Cp

vg and vp the sets of nodes currently managed by S and P
Lg = Zneug I

Lp = Zneu; In

TS p = min(Lg, Cs) + min(Lp, Cp)

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000000

o

A novel heuristic : Max Local Throughput

e At the end of period 7

e Two adjacent peers S and P with capacity Cs and Cp

 vg and vp the sets of nodes currently managed by S and P
° Lg = Zn@g In

o Lp= Zneug In

o TS p = min(Lg, Cs) + min(Lp, Cp)

e Maximize the throughput of 7 + 1 based on information of =

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000000

A novel heuristic : Max Local Throughput

e At the end of period 7

e Two adjacent peers S and P with capacity Cs and Cp

 vg and vp the sets of nodes currently managed by S and P
° Lg = Zn@g In

o Lp= Zneug In

° TE,P = min(Lg, Cs) + min(L,T,, Cp)

e Maximize the throughput of 7 + 1 based on information of =
e Find v5"" and v that maximizes T3},

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
L

Simulation results

Load Stable network Dynamic network
Max local th. | K-choices | Max local th. | K-choices
5% 39,62% 38,58% 18.25% 32,47%
10% 103,41% 58,95% 46,16% 51,00%
16% 147,07% 64,97% 65,90% 59,11%
24% 165,25% 59,27% 71,26% 60,01%
40% 206,90% 68,16% 97,71% 67,18%
80% 230,51% 76,99% 90,59% 71,93%

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

Load balancing — dynamic network — dynamic load

Max Local Thr'oughput '[50 run] JE—
K-choices [50 r n

Satisfied requests

02 | S S]

0 20 40 60 80 100 120 140 160
Time

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

Simulation results

Hops

14

12

Communication clustering

'physical hops - Ie>’<icographi’c mappin'g (MLT) [iOO runs] ——
Physical hops — random mapping [100 runs] -~
Logical hops [100 runs] ----»--- |

20 40 60 80 100 120 140 160
Time

Peer Prefix Tree arge Scale Service Discovery

o

e Fault-tolerance
@ Snap-Stabilizing PGCP Tree (State Model)
@ Self-Stabilizing PGCP Tree (Message-Passing Model)

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

e Creation and maintenance of the tree

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

e Creation and maintenance of the tree
e Fault-tolerance
e Usually, based on replication

e Costly
e Unable to recover after arbitrary transient failures

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

e Creation and maintenance of the tree
e Fault-tolerance
e Usually, based on replication

e Costly
e Unable to recover after arbitrary transient failures

o Best-effort ?

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000

Self-Stabilization (Dijkstra, 74)

e General technique to tolerate transient faults
e Guaranteed to converge to the intended behavior

¢ Regardless of the initial state of the system
e In finite time

fault/crash
correct stabilization phase correct

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

OOO 000000

Architecture Model

Physical Network

Basic entity : peer (processor)

e P; can communicate with P if
P; knows Ps.

¢ Runs some logical nodes

,
LoglcaITree -----i--'i--’\--.e--‘.nn

Basic entity : (tree) node p1
o Distributed among peers
o Mapping details abstracted out
¢ Protocol run inside nodes

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

State Model

e Message exchanges modeled by the ability to read va-
riables of other nodes (Neighbors)

e A node can only write its own variables

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

State Model

Message exchanges modeled by the ability to read va-
riables of other nodes (Neighbors)

e A node can only write its own variables

The state of a node is defined by the values of its variables
The configuration of the system is the product of the states

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
(o]

State Model

Message exchanges modeled by the ability to read va-
riables of other nodes (Neighbors)

e A node can only write its own variables

The state of a node is defined by the values of its variables
The configuration of the system is the product of the states

Actions : < guard >—< statement >

e < guard > bool. expr. of variables of p and its neighbors
e < statement >

e Executed only if its < guard >= true

e Updates one or more variables of p

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
(o]

State Model

Message exchanges modeled by the ability to read va-
riables of other nodes (Neighbors)

e A node can only write its own variables

The state of a node is defined by the values of its variables
The configuration of the system is the product of the states

Actions : < guard >—< statement >

e < guard > bool. expr. of variables of p and its neighbors
e < statement >

e Executed only if its < guard >= true

e Updates one or more variables of p

e Distributed and unfair scheduler daemon)

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
[e]

Snap-stabilization

Let P be a protocol designed to solve a task T. P is said snap-
stabilizing if and only if, starting from any configuration, any
execution e of P always satisfies the specification of T.

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

The Distributed Structures Maintained

DGEMM

DGEMM DTRMM DTRSM
DTRMM DTRSM

PGCP Tree Prefix Heap

A labeled rooted tree s.t. each A labeled rooted tree s.t. each
node label is the PGCP of any pair node label is the PGCP of all its
of its children labels. children labels.

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

The Distributed Structures Maintained

D

DGEMM

DGEMM DTRMM DTRSM
DTRMM DTRSM

A Prefix Heap s.t. for each node p, every pair of children (g, r) :

(1) lg #1r
(2) Ig(resp. I) is not a prefix of /,(resp. Iy)
(3) [GCP(g,)| = [l

is a PGCP Tree.

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000000

Snap-stabilizing PGCP Tree construction

Topology Assumptions
The initial graph is a rooted connected tree.

Snap-stabilizing PGCP Tree

A protocol P is considered as a snap-stabilizing PGCP tree
construction if and only if, any execution initiated by the root ter-
minates in finite time and when the execution terminated, the
tree is a PGCP tree.

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

The Protocol

e newNode (1lbl, st, chldn)

e destroy (p)
e heapify () locally creates a heap
e repair () locally builds a PGCP Tree from a heap

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

OOO 000000

The Protocol

Functions

e newNode (1lbl, st, chldn)

e destroy (p)
e heapify () locally creates a heap
e repair () locally builds a PGCP Tree from a heap

From the snap-stabilizing PIF [Bui, Datta, Petit, Villain - 99]
Broadcast phase : top-down wave initiating the algorithm
Heapify phase : down-top traversal building a prefix heap
Repair phase : final top-down wave building a PGCP tree

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

DSWAP DROTMG D SROTM

DROT SROTMG

SROTG DROTM

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

DSWAP DROTMG D SROTM

DROT SROTMG

SROTG DROTM

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

DSWAP DROTMG D SROTM

DROT SROTMG

SROTG DROTM

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

DSWAP DROTMG D SROTM

DROT SROTMG

SROTG DROTM

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

DSWAP DROTMG D SROTM
heapify()

DROT SROTMG

SROTG DROTM

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

DSWAP DROTMG D SROTM

DROT SROTMG

SROTG DROTM

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

DSWAP DROTMG D SROTM

SROT DROT SROTMG
heapify()

SROTG DROTM

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

DSWAP DROTMG D SROTM

SROT DROT SROTMG

SROTG DROTM

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

heapify()
DSWAP DROTMG D SROTM

SROT DROT SROTMG

SROTG DROTM
heapify() heapify() heapify()

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
[e]

DSWAP DROTMG D SROTM

SROT DROT SROTMG

heapfify()

SROTG DROTM

A Peer-to-Peer Prefix Tree fo ge Scale Service Discovery

000 000000 000
[e]

DSWAP DROTMG D SROTM

SROT DROT SROTMG

SROTG DROTM

A Peer-to-Peer Prefix Tree fo ge Scale Service Discovery

000 000000 000
[e]

heapify()
DSWAP DROTMG SROTM

DROT SROTMG

SROTG DROTM

A Peer-to-Peer Prefix Tree e Scale Service Discovery

000 000000 000

DROTMG SROTM

SROTMG

SROTG DROTM

A Peer-to-Peer Prefix Tree fo ge Scale Service Discovery

000 000000 000

heapify() SSWAP

DROTMG D SROTM

SROTMG

SROTG DROTM

A Peer-to-Peer Prefix Tree fo ge Scale Service Discovery

000 000000 000

SROT DSWAP DROTMG D SROTM SSWAP

DROT SROTMG

SROTG

A Peer-to-Peer Prefix Tree e Scale Service Discovery

000 000000 000

heapify()

SROT DSWAP DROTMG D SROTM SSWAP

DROT SROTMG

SROTG

A Peer-to-Peer Prefix Tree e Scale Service Discovery

000 000000 000

SROT| DSWAP DROTMG D SROTM SSWAP

S

SROTMG

A Peer-to-Peer Prefix Tree for e Scale Service Discovery

000 000000 000

heapify()

SROTM SSWAP

SROT| DSWAP DROTMG D

SROTMG

A Peer-to-Peer Prefix Tree fo ge Scale Service Discovery

000000

repair()

SROTM SSWAP

SROT| DSWAP DROTMG D

SROTMG

A Peer-to-Peer Prefix Tree e Scale Service Discovery

000 000000 000

SROTG SROTMG DROTG DROTM

A Peer-to-Peer Prefix Tree fo ge Scale Service Discovery

000 000000 000

repair() repair()

SROTG SROTMG DROTG DROTM

A Peer-to-Peer Prefix Tree fo ge Scale Service Discovery

000 000000 000
[e]

DROTMG DROTG DROTM

SROTMG

A Peer-to-Peer Prefix Tree e Scale Service Discovery

000 000000 000
[e]

repair() repair() repair()

DSWAP

DROTMG DROTG DROTM

SROTMG

A Peer-to-Peer Prefix Tree e Scale Service Discovery

000 000000 000
o

SROTMG DROTMG

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

SROTMG DROTMG

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

Complexities

o Average convergence time to PGCP tree : O(h+ /') rounds
e Worst case :

e O(n) rounds
e O(n?) operations
e O(n) extra space (degree)

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

Simulation : Time Complexity

200 T T ; T T T
" Number of rounds [average on 40 runs] ——
N axlog(n) ——
=
8
2]
e 150 r .
el
o
=)
o
£ 100
(%]
=]
c
>
2)
S 50
[} .
Qo
IS
>
P4

0

0 1000 2000 3000 4000 5000 6000
Number of nodes in the tree

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

Simulation : Extra Space

6000

5000

4000

3000

2000 + .

Maximum degree of the node

1000 _+ + + + + i

+ +

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Nodes

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

000000

Snap in State Model vs Self in Message Passing

Snap : Drawbacks

e Assumes a rooted connected tree
o Written in a coarse grain communication model

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000000 000

Snap in State Model vs Self in Message Passing

Snap : Drawbacks

e Assumes a rooted connected tree
o Written in a coarse grain communication model

A New Protocol

e Work with any initial topology
e Designed in the message passing model

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 0®0000 000
o

e Launched periodically on each node
e 1 - Parent processing
e 2 - Children processing

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

Peer Prefix Tree for Large Scale Service Discovery

Peer Prefix Tree for Large Scale Service Discovery

l-parent processing

Peer Prefix Tree for Large Scale Service Discovery

Peer Prefix Tree for Large Scale Service Discovery

G e 2-children processing

Peer Prefix Tree for Large Scale Service Discovery

G e 2-children processing
2.1l-merge

Peer Prefix Tree for Large Scale Service Discovery

2-children processing
2.2-prefix relation

Peer Prefix Tree for Large Scale Service Discovery

2-children processing
2.2-prefix relation

Peer Prefix Tree for Large Scale Service Discovery

2-children processing
2.2-prefix relation

Peer Prefix Tree for Large Scale Service Discovery

2-children processing
2.3-GCP

Peer Prefix Tree for Large Scale Service Discovery

2-children processing
2.3-GCP

GetNewProcess ()

Peer Prefix Tree for Large Scale Service Discovery

2-children processing

2.3-GCP

<Host>
<UpdateParent>
<UpdateParent>

Peer Prefix Tree for Large Scale Service Discovery

Peer Prefix Tree for Large Scale Service Discovery

l-parent processing

Peer Prefix Tree for Large Scale Service Discovery

l-parent processing

GetEpsilon()

Peer Prefix Tree for Large Scale Service Discovery

A Peel Peer Prefix Tree for Large Scale Service Discovery

2-children processing

A Peel Peer Prefix Tree for Large Scale Service Discovery

2-children processing
2.1l-merge

A Peel Peer Prefix Tree for Large Scale Service Discovery

A Peel Peer Prefix Tree for Large Scale Service Discovery

100

80 b

Number of periods to converge

0 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Network size

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

Simulation : Communication Amount

100 T T T T T

5 [average] ——
=)

o

c

2 80t _
(=]

3

2

g

° 60 R
c

o

[%]

>

] 40 i
1A

[

1S

kS

5 20 R
Qo

S

=}

=4

0 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Network size

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

Simulation : Degradation

100 T —— T T
self-stabilizing tree —+—
basic tree
80 | .
2 i
I 60 | |
c ‘
K] |
51
g i
9]
T 40 -
n |
20 -
0 1 1 1 1
0 2 4 6 8 10

Percentage of failing nodes at each unit

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

e Prototype Implementation
@ Design
@ Early Experiments

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

Physical Layer >4<
o JXTA-based DLPT group ® _
o JXTA discovery

e “DLPT” JXTA-group

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
(o]

o Explicit tree topology maintenance

o Random distribution of nodes on peers
o Message in the tree :

e Serialized communication
JXTA peers

between
e JXTA communications

Physical Layer
e JXTA-based

o JXTA discovery
e “DLPT” JXTA-group

|
EGAECTED

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

OOO 000000

Experiments : Set-Up

Platform used

Grid’5000 platform
e Capricorne clusterin Lyon

e 25 nodes (2 x AMD Opteron 246)
o Gigabit Ethernet (Myrinet-2000 cards)

e Grelon cluster in Nancy

e 60 nodes (2 x Intel Xeon 5110)
e Gigabit Ethernet (Broadcom BCM5721 cards)

e Physical deployment
e Simulation of servers (insertion requests)
e Simulation of clients (discovery requests)

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

Experiments : Capricorne Results
0.2 T T T . T T T T T
Average time to get responses —+—

0.15 | i
D
'°§J 0.1}
|_

0.05 i

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

Experiments : Grelon Results

Nodes (Services) | Peers | Response time (s)
432 (300) 60 0.105

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

e Summary & Open Problems

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

e DLPT

¢ A novel P2P-fashioned approach for service discovery
e Structured and Expressive

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

e DLPT

¢ A novel P2P-fashioned approach for service discovery
e Structured and Expressive

e Mapping and load balancing

e Self-contained architecture
¢ Load balancing heuristics

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

e DLPT

¢ A novel P2P-fashioned approach for service discovery
e Structured and Expressive

e Mapping and load balancing

e Self-contained architecture
e Load balancing heuristics

e Fault-tolerance

o Best-effort alternatives
e Snap-stabilizing protocol in the state model
¢ Self-stabilizing protocols in message-passing

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

e DLPT

¢ A novel P2P-fashioned approach for service discovery
e Structured and Expressive

e Mapping and load balancing

e Self-contained architecture
e Load balancing heuristics

¢ Fault-tolerance

o Best-effort alternatives

e Snap-stabilizing protocol in the state model

¢ Self-stabilizing protocols in message-passing
e Software Prototype

o Two layer architecture implemented
e Promising first experiments

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

Hints for Future Work

e Design
¢ Topology awareness
e Optimizations (cache, shortcuts)

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

o

Hints for Future Work

e Design
¢ Topology awareness
e Optimizations (cache, shortcuts)
e Mapping & Load balancing
e Coupling our objective function with K-choices
o Analysis results on the clustering obtained
¢ Implementation

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

Hints for Future Work

e Design
¢ Topology awareness
¢ Optimizations (cache, shortcuts)

e Mapping & Load balancing
e Coupling our objective function with K-choices
¢ Analysis results on the clustering obtained
¢ Implementation

e Fault-tolerance
e Snap-stabilization and message-passing
e Self-stabilization and availability
e Implementation

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000 000000 000
o

Hints for Future Work

e Design
¢ Topology awareness
¢ Optimizations (cache, shortcuts)
e Mapping & Load balancing
e Coupling our objective function with K-choices
¢ Analysis results on the clustering obtained
¢ Implementation
e Fault-tolerance
e Snap-stabilization and message-passing
e Self-stabilization and availability
e Implementation
 Experiments
e Load balancing
o Self-stabilization
e Larger scale

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

000000

Service Discovery : Open Problems

Different kinds of platforms

e Petascale computing
e Research grids
e Desktop computing

Different kinds of volatility

e Failures
e Crashes
¢ Resources sharing

A Peer-to-Peer Prefix Tree for Large Scale Service Discovery

Thx!

A Peer-to-Peer Prefix Tree for Large Scale Service Discovel

	DLPT: a Trie-Based Solution
	Mapping & Load Balancing
	Protocol
	Load Balancing
	Simulation

	Fault-tolerance
	Snap-Stabilizing PGCP Tree (State Model)
	Self-Stabilizing PGCP Tree (Message-Passing Model)

	Prototype Implementation
	Design
	Early Experiments

	Summary & Open Problems

