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Introduction (French)

S, —\ ES GRAPHES sont des structures combinatoires tres simples. Ils peuvent étre vus
‘é @Qﬁi comme des représentations abstraites des interactions entre divers objets. En

dépit de leur apparente simplicité, les graphes sont des outils puissants quand
il s’agit de modéliser de nombreuses situations de la vie réelle. Leurs applications sont
variées : recherche opérationnelle (allocation de ressources, ordonnancement), Internet
mondial (liens entre les pages web), réseaux de communication, mais aussi réseaux
routiers, transports et véhicules autonomes, entre autres. Ces structures combinatoires
sont présentes dans de nombreux domaines scientifiques : on les rencontre par exemple en
biologie (arbres phylogénétiques, génétique, interactions protéines-protéines), en chimie
(structures des molécules), en sociologie (analyse des réseaux sociaux), en neurosciences
(interactions entre les différentes zones du cerveau). ..

F1GURE 1 : Un graphe construit a partir de données d’IRMf au repos sur le cerveau
d’un patient dans le coma. Données : Achard et al., 2012 [1].

Pour illustrer une de ces applications, la Figure 1 représente un graphe construit a
partir de données médicales sur le cerveau d’un patient dans le coma [1]. Il modélise
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les 90 zones identifiées du cerveau et 400 connexions entre ces zones. Dans ce cas, la
représentation des données sous forme de graphe est utilisée pour étudier comment
I'organisation du cerveau change chez les patients dans le coma.

Peut-étre parce que les graphes sont omniprésents en science, la théorie des graphes
est un domaine de recherche tres actif. Les problemes étudiés sur les graphes concernent
a la fois les aspects algorithmique et structurel. En théorie des graphes, les problemes
les plus généralement étudiés sont des probléemes d’optimisation : quel est le nombre
minimal de couleurs dont on a besoin pour colorer un graphe donné ? Comment peut-on
trouver le nombre minimum de nceuds a enlever pour qu’un graphe acquiere une certaine
propriété décidée a I’avance ? Peut-on calculer efficacement le plus court circuit passant
par une liste de villes donnée avant de retourner a son point de départ ? En réalité, ces
problémes sont pour la plupart difficiles (NP-difficiles ou NP-complets), et sont de ce
fait étudiés sous divers angles.

Parfois il est difficile de résoudre des problemes d’optimisation, mais plus souvent
encore, calculer seulement une solution d’un probléme n’a en fait méme pas de sens.
Par exemple, lorsque I'on s’intéresse a une base de données, la requéte la plus courante
est la liste de toutes les entrées qui satisfont certaines conditions : la liste des personnes
vivant dans une ville donnée, la liste des étudiants qui ont réussi un examen, la liste des
itinéraires possibles pour atteindre une destination. .. Dans d’autres situations comme
des applications en biologie ou en statistiques [27, 12], la notion de « meilleure » solution
peut étre tres difficile a modéliser en termes de graphes. Il est plus intéressant dans
ce cas de pouvoir générer un échantillon de « bonnes » solutions (pour une définition
appropriée de « bonne »), et laisser 'utilisateur-rice choisir celle qui convient le mieux
selon ses criteres.

C’est pourquoi on s’intéresse aux algorithmes d’énumération qui, a I'inverse des
algorithmes d’optimisation, renvoient toutes les solutions d’un probléme (ou au moins
toutes les « bonnes » solutions). En général (mais pas toujours), pour trouver toutes les
solutions du probleme, on commence par en trouver une et par des modifications sur les
solutions déja trouvées, on en génere de nouvelles. Pour faire cela, on doit s’assurer que
les regles de modifications locales permettent vraiment de visiter toutes les solutions
possibles.

L’approche énumérative présente quelques autres spécificicités. En particulier, le
nombre de solutions qu'un algorithme d’énumération doit renvoyer peut étre vraiment
énorme comparé a la taille de I'entrée. Dans une telle situation, qu’entend-on par
efficace pour un algorithme d’énumération ? Le temps d’exécution de 'algorithme est-il
encore borné en fonction de la taille de ’entrée, ou bien doit-on aussi prendre en compte
le nombre de solutions ? Dans ce cas précis, la notion d’efficacité a été adaptée pour
prendre en compte les spécificités des algorithmes d’énumération [57].

En pratique, on cherche a générer toutes les solutions l'une apres 'autre en ga-
rantissant un temps court entre deux solutions. Les algorithmes présentés dans cette
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these ont ce qu’on appelle un délai polynomial, ce qui signifie que le temps passé a
attendre entre deux solutions sera polynomial en la taille de I’entrée. Ces algorithmes
sont considérés comme rapides en théorie.

Dans cette these, je m’intéresse aux problemes de modification de graphes. Imaginons
une situation dans laquelle des données ont été acquises et transformées en graphe, et la
structure des données implique des propriétés structurelles spécifiques sur le graphe qui
en résulte. Les propriétés structurelles sont importantes car elles permettent de faire
des calculs beaucoup plus rapidement. Malheureusement, pendant 1’envoi, certaines
des données ont été altérées : le graphe a perdu sa propriété intéressante. Dans cette
situation, il est naturel de vouloir essayer de réparer le graphe pour qu’il récupere sa
propriété. Cependant, on ne sait pas comment était le graphe avant envoi.

Pour « réparer » le graphe, nous avons trois choix : enlever des nceuds, enlever des
liens entre des noeuds ou au contraire ajouter des liens. Pour chaque probleme considéré,
on se cantonne a I'une de ces trois opérations. Le probleme d’optimisation associé est
celui de savoir quel est le nombre minimum de nceuds ou d’arétes a enlever (ou ajouter)
dans le but de donner au graphe la propriété voulue. Mais ce probleme d’optimisation
est bien souvent difficile [63] et c’est la que I"énumération devient utile.

Lorsqu’on essaye de résoudre notre probleme d’énumération, on fait ’hypothese que
le nombre de données altérées n’est « pas trop grand ». Le principe est alors de générer
un ensemble de réparations potentielles du graphe pour ensuite choisir la plus crédible,
puisque la crédibilité d'une solution n’est pas toujours quelque chose qui se modélise
facilement en termes mathématiques.

La question posée dans ce manuscrit est la suivante. Etant donnés un graphe G et
une propriété de graphes P, peut-on énumérer efficacement toutes les « réparations »
de G qui possedent la propriété P 7 Il y a plusieurs manieres d’attaquer le probléme.

Une premiere approche consiste a fixer la propriété P en avance et a profiter des
caractérisations connues de P pour énumérer toutes les « réparations » de GG qui satisfont
P. Cette approche peut étre trés puissante et donner lieu a des algorithmes tres efficaces
comme ceux présentés dans le Chapitre 3. Cependant, les algorithmes obtenus ainsi
sont en général difficiles a adapter a d’autres propriétés de graphes.

L’autre approche consiste a chercher un algorithme général qui, étant donnés un
graphe G et une propriété P (et éventuellement une opération sur les graphes spécifique
a P), renvoie toutes les « réparations » de GG possédant la propriété P, sans fixer P en
avance. Des progres récents ont été faits sur 'approche générale [22, 23]. Dans ce but,
j'étudie et améliore dans ma theése une technique générale existante appelée Proximity
Search.

Je m’intéresse ici a quatre classes de graphes bien connues : graphes split, cographes,
graphes threshold et graphes cordaux. Ces classes de graphes sont reliées a des parametres
de graphes tres importants pour de nombreuses applications.
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Le reste du manuscrit est rédigé en anglais. J’en donne ici un résumé succinct en
francais.

Premieérement, le Chapitre 1 contient quelques éléments de contexte sur les graphes
en général, les définitions des objets et concepts utilisés dans la suite, sans prétendre
a 'exhaustivité. Les complétions et délétions minimales d’'un graphe dans une classe
donnée sont définies formellement. Ces objets seront au centre de notre attention, ainsi
que les sous-graphes maximaux induits.

Ensuite, le Chapitre 2 est consacré a 1I’énumération et ses aspects algorithmiques.
Avant de relier formellement I’énumération avec les complétions et délétions minimales
de graphes, je présente des techniques d’énumération connues pour donner de bons
résultats en termes d’efficacité.

Une classe de graphes particuliere, les graphes split, est étudiée dans le Chapitre 3.
Deux algorithmes efficaces sont proposés : un pour I'énumération des complétions
minimales en graphe split et un pour celle des sous-graphes split induits maximaux.
Pour les complétions split minimales, une bijection est établie avec les stables maximaux
d’un graphe auxiliaire. En utilisant des résultats connus sur I’énumération des stables
maximaux [84], je montre que I’énumération des complétions split minimales est possible
avec délai polynomial en espace polynomial. Quant au cas des sous-graphes split induits
maximaux, la technique du probléme restreint introduite par Cohen, Kimelfeld & Sagiv
en 2008 [22] est appliquée pour trouver un algorithme a délai polynomial en espace
polynomial également. Les algorithmes obtenus pour les graphes split sont tres efficaces
mais ils sont aussi tres spécifiques et ne peuvent étre facilement adaptés pour d’autres
classes de graphes.

Pour trouver une technique générale efficace, on s’intéresse au célebre Flashlight
Search dans le Chapitre 4. C’est une technique conceptuellement simple qui peut se
révéler tres efficace dans certains cas. L’énumération d’objets par Flashlight Search
passe par la résolution répétée d’un sous-probleme appelé le probleme d’extension. Je
prouve que ce probléme est difficile (NP-difficile ou NP-complet) si aucune hypothese
n’est faite sur la classe de graphes considérée, ce qui empéche la technique d’étre aussi
générale que nous le souhaiterions.

C’est pourquoi dans le Chapitre 5, on s’intéresse au Proximity Search, une technique
récemment formalisée par Conte & Uno [26], qui semble en un sens étre plus générale que
d’autres techniques d’énumération connues et permet d’atteindre de bons résultats de
complexité. J’applique cette technique pour résoudre plusieurs problémes, notamment
a I’énumération des sous-cographes induits et des sous-graphes threshold induits d’un
graphe. Enfin, le Proximity Search est utilisé pour énumérer les complétions minimales
en graphe cordal avec délai polynomial, une question qui a suscité beaucoup d’intérét
dans les dernieres années [18].

Cette approche est généralisée pour étendre la technique de Proximity Search
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utilisée en pratique. Deux extensions — dans différentes directions — en sont exposées au
Chapitre 6. L'une permet d’élargir I’ensemble des problemes auxquels on peut appliquer
le Prozimity Search, I'autre de réduire la complexité en espace dans certains cas.

En parallele des algorithmes d’énumération, j'ai aussi participé a d’autres projets de
recherche concernant la théorie des graphes. Les résultats obtenus se rapportent a des
aspects plus structurels des graphes.

L’un de ces projets concerne les colorations gloutonnes connexes de graphes. La
question que 'on se pose est la suivante : quels sont les graphes pour lesquels aucun
algorithme de coloration gloutonne connexe n’utilise le nombre optimal de couleurs ?
L’autre projet a pour sujet les ensembles dominants localisateurs. Etant donné un
graphe orienté D, quelle est la taille minimum d’un ensemble de sommets qui soit
a la fois dominant (chaque sommet est soit dans I’ensemble, soit a un voisin dans
I'ensemble) et localisateur (deux sommets peuvent étre différenciés par leurs voisinages
dans I'ensemble) ? Dans chaque situation, en se restreignant a un graphe d’entrée qui
satisfait certaines propriétés, nous avons partiellement répondu a ces questions.

Les deux problemes mentionnés ici ne sont pas présentés dans la these elle-méme,
mais un résumé de mes contributions (en anglais) se trouve a la fin du manuscrit.

oo
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Introduction

Y~ RAPHS are very simple combinatorial structures. They can be seen as abstract
gj% representations of objects and their interactions. Despite their apparent
Z simplicity, graphs are powerful tools when it comes to modelling many real-life
situations. Their applications are various: operations research (resources allocation,
scheduling), the world wide web (links between webpages), communication networks, but
also roads, transportation, and autonomous vehicles, among others. These combinatorial
structures are found in many — if not all — scientific fields: they arise for example in
biology (phylogenetic trees, genetics, protein-protein interactions), chemistry (structures
of molecules), sociology (social network analysis), neurosciences (interactions between
the different zones of the brain). ..

As an illustration, Figure 1 represents a graph obtained from medical data on the
brain of a comatose patient [1]. It models the 90 identified zones of the brain and 400
connections between them. In this case, the representation of data in the form of a
graph is used to study how the organisation of the brain changes for a person in a coma.

Figure 1: A graph obtained from fMRI data on the brain of a comatose patient. Data:
Achard et al., 2012 [1].
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Perhaps due to the omnipresence of graphs in science, graph theory — the study
of graphs — is nowadays a very active branch of research. The problems studied on
graphs concern both the structural and the algorithmic aspects. In graph theory, the
problems typically studied are optimisation problems: what is the minimum number
of colours needed to colour a given graph? How can we find the minimum number of
nodes one has to remove to acquire some desired property? Can we compute efficiently
the shortest circuit going through a prescribed set of cities before going back home?
In fact, these questions are usually hard (NP-hard or NP-complete), and are therefore
studied from many angles.

Sometimes, solving optimisation problems is hard, yet even more often it is just
not meaningful to generate only one solution of a problem. For example, when dealing
with databases, the typical request is the [list of all entries satisfying some specified
conditions: list of people living in a given city, list of students who have passed an
exam, list of possible itineraries to reach a destination. ..

In some other situations such as applications in bioinformatics or statistics [27, 12],
the notion of “best” solution can be hard to model in terms of graphs. It is more
interesting in this case to be able to generate a sample of “good” solutions (for an
appropriate definition of “good”), and let the user choose themself the best suited
solution for their purpose.

This is why we are interested in enumeration algorithms which, unlike optimisation
algorithms, return all the solutions of a given problem (or at least all the “good” ones).
In general (but not always), to find all the solutions of a problem we begin with finding
one, and then slightly modify the solutions already found to discover new ones. Doing
this, we need to ensure the local modification rules really allow us to visit all the
possible solutions.

The enumeration approach has other specific issues. In particular, the number of
solutions that have to be computed by an enumeration algorithm can be really huge
compared to the input size. In such a situation, what does it mean for an enumeration
algorithm to be efficient? Is the running time of the algorithm still bounded in terms
of the input size, or is it necessary to take the number of solutions into account? The
notion of efficiency for enumeration algorithms has therefore been adapted to take these
issues in consideration [57] (see Chapter 2 for more details).

In practice, we seek to generate all the solutions one after the other while guaran-
teeing the shortest possible time between two solutions. The algorithms mentioned in
the present manuscript run with polynomial delay, meaning the time spent between
two solutions is polynomial in the input size. These algorithms are considered fast in
theory.

In this thesis, we are interested in graph modification problems. Imagine a situation
where some data have been acquired and transformed into a graph, and the structure
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of the data implies some specific structural property on the graph. The structural
property is important because it permits to run the computations faster. Unfortunately,
during the transfer or gathering, some of the data have been altered: the graph lost its
interesting property. In this situation, a natural thing to do is try to repair the graph
so that it gets the interesting property again. However, we do not know how the graph
was before it was sent.

To “repair” the graph, we have three choices: removing some nodes, removing
some links between nodes, or on the contrary adding some links. For each problem
we consider, we choose one of these operations and only make this sort of changes.
The associated optimisation problem asks for the minimum number of elements to
remove (or add) in order to make the graph acquire the desired property. However, such
an optimisation problem is usually hard [63], and this is where enumeration becomes
useful.

When trying to solve our problem with enumeration, we assume that the amount of
alterations is “not too large”. Then, the principle is to generate a bunch of potential
reparations of the graph, and choose the most credible one, since the credibility of a
solution is not always something easy to model mathematically.

The question we address in the present thesis is the following. Given a graph G
and a graph property P, can we enumerate efficiently all “reparations” of GG into the
property P? There are several ways to approach the question.

First, one can fix the property P in advance and benefit from the known charac-
terisations of P to enumerate all “reparations” of GG in P. This can be very powerful
and provide efficient algorithms, as those designed in Chapter 3. However, algorithms
obtained this way cannot be adapted easily to other properties.

The other approach consists in looking for a general algorithm which, given a
graph G' and a property P (plus maybe some operation specific to P), returns all the
“reparations” of GG into the property P, without fixing P in advance. Recent progress
has been made on the general approach [22; 23]. In Chapter 6 of the present thesis, we
also study and improve an existing general method for this purpose.

We are interested here in four well known graph properties that are related to
interesting parameters in graphs. These properties are detailed in Chapter 1.

\7,
R\

The manuscript is organised as follows.

First, in Chapter 1, we give some necessary background about graphs: definitions of
the basic objects and concepts used in the sequel, and we introduce minimal completions
and deletions of a graph into a prescribed class. These objects will be at the centre of
our attention, together with maximal induced subgraphs.

Then, Chapter 2 is devoted to the introduction of enumeration and its algorithmic
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aspects. Before linking formally enumeration with minimal graph completions and
deletions, we present some of the most famous existing techniques that imply efficient
enumeration algorithms under certain conditions.

We will have a closer look on a particular class of graphs, split graphs, in Chapter 3.
Two problems are considered on split graphs; both of them give different insights on
subgraph enumeration problems. However, the algorithms we obtained for split graphs
are very specific.

In order to look for a general technique, we investigate the famous Flashlight
Search in Chapter 4. We prove the difficulty of a sub-problem, the extension problem,
preventing the technique to be as general as we would like it to be.

This is why in Chapter 5, we are interested in a recently introduced enumeration
technique, Proximity Search, which seems to be in some sense more general than the
previously known ones and achieves good time complexity. This technique is here
successfully applied to several problems: enumeration of maximal sub-cographs and
threshold subgraphs, and the challenging question of minimal chordal completions
enumeration.

Generalising our approach leads us to extend the usual Proximity Search-based
technique used in practice. Two extensions of it — in different directions — are exposed
in Chapter 6, allowing us to enlarge the set of problems that can be solved, and to
reduce the space usage in some cases.

In parallel to enumeration algorithms, other scientific projects about graphs have been
joined during this thesis. The results we obtained refer to more structural aspects of
graphs.

One of the projects is about connected greedy colourings of graphs. The question
we addressed is the following: what are the graphs for which no connected greedy
colouring algorithm uses the optimal number of colours? The other project was about
locating-dominating sets. Given a directed graph D, what is the minimum size of a
set of nodes that is both dominating (every node is linked to a node in the set) and
locating (two different nodes have different neighbours in the set)? By restricting each
time the graph to satisfy a specific property, we were able to partially answer those
questions.

The two aforementioned problems will not be addressed in the present document,
but a summary of these contributions can be found at the end of the manuscript.

oo



Chapter 1

Graphs, completions and deletions

This chapter contains a brief introduction to the basic objects in which we are interested:
graphs. More information on this topic can be found in several works including the
reference books written by Diestel [36] and Golumbic [}9]. After giving some general
information about graphs, we will detail the problems that are studied in all the remaining
of this thesis.

\7,
R\

@ @LL THE PROBLEMS mentioned in this work are problems on graphs. This is
@é\ﬁ\@

why in this chapter, we will give the necessary background and notations on
graph theory that will be useful in the sequel. After that, we describe more
formally the problems in which we are interested.

1.1 Graphs and properties

1.1.1 General definitions and notations

This section is intended to present in a unified way the notations that will be used
in the rest of the thesis. Standard graph theory notations are adopted, such as those
provided in Diestel’s book [36].

In the present work, graphs as “basic objects” — those on which the problems are
defined — are always considered simple and undirected. Nevertheless, on a higher level,
we will also be led to consider some oriented graphs.

Definition 1.1 (Graph). A graph is a couple of sets G = (V, E) such that all elements
of E are two-element-subsets of V. The elements of V' are called the vertices of G,
those of E are called its edges.



16 |

For the remainder of this section, let G = (V| E) be a graph. When the context is
ambiguous, for example when several graphs are involved, we may use the notations
V(G) and E(G) to precise which graph we are considering,.

Edges and neighbourhoods. For an edge {u,v} € F, we will often use the simpler
notation uv. The vertices u and v are called adjacent if uv € E, and the edge uv is said
to be incident to its endpoints u and v.

The neighbourhood of a vertex v in G is denoted by Ng(v) and defined as the set
of vertices adjacent to v. These vertices are called the neighbours of v. More formally,
Ng(v) :={w € V(GQ) | vw € E(G)}. The number of neighbours of a vertex v is called
its degree, denoted by dg(v). The closed neighbourhood of a vertex v in G is defined as
Ng[v] := Ng(v) U {v}. When it is clear from the context, the subscript G might be
omitted.

Whenever two vertices « and y are such that N(z) \ {y} = N(y) \ {z}, they are
called twins. If z and y are twins and xy € E, that is, if N|[z|] = N[y|, then x and y are
called true twins. Otherwise, N(x) = N(y) and x and y are called false twins. These
two situations are illustrated in Figure 1.1.

Z ) Z )

(o) o

false twins true twins

Figure 1.1: The two vertices x and y have the same neighbours: they are (true or false)
twins.

A path in G between two vertices v and v, also called a u-v-path, is a sequence of
distinct vertices vg = u,vq,...,vr = v such that for any 1 <1 < k, v;_1v; € E. The
graph G is connected if for any two vertices u and v € V, there exists a u-v-path, that
is, a path between v and v, in G.

A cycle is a sequence of distinct vertices vy, v1,...,v; = vy such that for any
1 <i<k, v qv; € E. A graph without any cycle is called a tree.

The complement of a graph G is the graph G on the vertex set V whose edge
set is exactly the set of two-element-subsets of V' that are not in E. More formally,
G = (V,{{u,v} |u#v eV and {u,v} ¢ E}). Therefore, two adjacent vertices in G
are non-adjacent in G, and conversely two non-adjacent vertices in G are adjacent in G.

Finally, given X,Y two subsets of vertices of GG, the symmetric difference between
X and Y, denoted by XAY', is defined as (X UY) \ (X NY).
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Subgraphs and supergraphs. Let X C V be a subset of vertices of G. We denote
by G[X] the subgraph of G induced by X, defined as G[X]| = (X, E(G) N (X>), where

2
the notation ()2( ) stands for the set of all two-element subsets of X. Alternatively, G[X]
is obtained from G by removing all the vertices which do not belong to X, and all the
edges incident to at least one deleted vertex. For simpler notations, for a set Y C V we
might sometimes write G \ Y instead of G[V \ Y.

A graph H is called an induced subgraph of G if there exists X C V' such that G[X]
is isomorphic to H'.

For a graph H, if G does not contain a copy of H as an induced subgraph, the
graph G is called H -free.

A graph H is a subgraph of G if H can be obtained from G by removing some
vertices and some edges of GG, including those which were incident to at least one
deleted vertex, that is to say if V(H) C V(G) and E(H) C (E(G)N (V(H))). Of course,

2
induced subgraphs are particular subgraphs where the last inclusion is an equality,

i.e. E(H) = (E(G)N (V(zH))). If in addition V(H) = V(G), then H is called an
edge-subgraph of G.

A graph H is called an edge-supergraph of G, if V(H) = V(G) and E(G) C E(H).
Remark that H is an edge-supergraph of G if and only if its complement H is an
edge-subgraph of G.

Graph properties. Since we are interested in graphs that satisfy a certain graph
property, let us have a look on the different kinds of graph properties.

By abuse of language, we will often identify a graph property with the set of graphs
satisfying it, and write “the class P” to denote the set of all graphs that fulfil the
property P.

Let us denote by P = {G | G € P} the complementary class of P, that is, the class
of all graphs whose complement fulfils the property P. Then, if P = P, we will say
that the class P is self-complementary.

A graph property P is called hereditary when it is closed under vertex removal. In
other words, if the property is fulfilled by the graph we consider, then it is also fulfilled
by all its induced subgraphs. A property P is said to be connected-hereditary if, when a
graph satisfies P, all its connected induced subgraphs also satisfy P. All the properties
considered in this thesis are hereditary. Typically, being H-free (for a given graph H)
is a hereditary property. In this case, H is called a forbidden induced subgraph for the
property. When a graph property P is defined by a family F of forbidden induced
subgraphs — equivalently, P corresponds to being F-free, or H-free for any H € F —,
the elements of F are called obstructions for P.

!That is to say, there must exist a bijection ¢ : X — V(H) such that for any two vertices u and v
in X, uwv € E(G) if and only if p(u)p(v) € E(H).
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A graph property is called monotone when it is closed under both edge removal and
vertex removal. That is to say, if the property is satisfied by G, then it is also satisfied
by all subgraphs of G.

A property P is called sandwich-monotone [56] if, for any two graphs G and H on the
same vertex set V', that both fulfil the property P, and such that H is an edge-subgraph
of G, there exists a sequence of edges ey, es, ... ¢, of E(G) \ E(H) such that for any
1 < i < k, the graph (V, E(H) U S;) verifies property P, where S; = {e1,...,¢;}. In
other words, there exists a sequence of single-edge removals that allows us to go from G
to H. In the general framework of set systems, being sandwich-monotone is equivalent
to being a strongly accessible set system [24].

Directed graphs. Some graphs that will be considered here are directed graphs,
meaning that their edges have a direction. They will not be encountered as the “basic
objects” on which the problems are defined, but rather as “meta-structures” in which
the directed edges represent ways to transform an object into another.

Definition 1.2 (Directed graph). A directed graph is a couple of sets D = (V, A) such
that all elements of A are couples of elements of V', that is, A CV x V. The elements
of A are called the arcs of D and the elements of V' are its vertices.

With this definition, the neighbours of a vertex u are split into two categories: these
for which (u,v) € A, called its out-neighbours, and those such that (v,u) € A, called
its in-neighbours.

If there exists an oriented path — a sequence of vertices vy, vq, ..., v, such that for
any 1 <1i <k, (v;_1,v;) € A — between any two vertices of D, then D is called strongly
connected.

Now that all the necessary notions are defined, let us have a closer look on the
objects that will be of interest in the remaining of the present manuscript.

1.1.2 Some remarkable graph classes

In this thesis, we are particularly interested in some well-known graph classes, namely
chordal graphs, split graphs, and cographs. These have been well studied and char-
acterised in the literature. In this section, we give the definitions of those graph
classes.

Chordal graphs. Chordal graphs, also called triangulated graphs or sometimes rigid
circuit graphs have been studied since the 1960s [37]. They constitute a well-studied
class of graphs since they arise in many practical applications [18, 27, 49, 69].

Definition 1.3 (Chordal graphs). A graph is chordal if it does not contain any induced
cycle of length 4 or more.
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In other words, every cycle of length more than 3 of a chordal graph has at least one
chord (i.e. an edge that connects non-consecutive vertices of the cycle). Equivalently,
any induced cycle of a chordal graph has length 3. These are simply reformulations of
the definition of chordal graphs.

Note that, since removing vertices cannot create long induced cycles, chordal graphs
form a hereditary graph class.

A chordal graph is represented in Figure 1.2. The obstructions of chordal graphs
are the long induced cycles, as shown on the right.

1 ﬂ

FAN ()
@ W

Figure 1.2: A chordal graph with its simplicial vertices identified. A corresponding
clique tree is shown in the middle. The obstructions are long cycles (on the right).

Chordal graphs benefit from characterisations of various types. For example, and
perhaps most importantly, it has been shown by Dirac in 1961 that any chordal graph
has at least two simplicial vertices, that is, vertices whose neighbourhoods induce a
clique [37]. The simplicial vertices are identified on the graph of Figure 1.2. Since
the class of chordal graphs is hereditary, this implies that simplicial vertices can be
recursively removed from a chordal graph until there is no vertex left. This gives an
ordering on the vertices of the graph, called a perfect elimination ordering. In fact,
chordal graphs are exactly the graphs in which such an ordering exists. Because of the
existence of a perfect elimination ordering, it has been shown that chordal graphs can
be recognised in linear time [82].

Several other characterisations are known for chordal graphs. To cite a few of them,
chordal graphs can be seen as intersection graphs of paths in a tree [48], or characterised
in terms of minimal clique separators [37].

Chordal graphs possess some very interesting properties. Indeed, several problems
that are usually hard on general graphs (e.g. graph colouring) become polynomial
on chordal graphs [49]. On top of that, chordal graphs are closely connected to
an important graph parameter called trecwidth and its associated tree-decomposition
introduced independently by Halin [52] and Robertson & Seymour [73].

A tree-decomposition of a graph G is a tree whose vertices are sets of vertices of G,
called the bags of the decomposition. Moreover, it is required that each vertex appears
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in at least one bag, for each edge there exists a bag containing its two endpoints, and
for any vertex v of GG, the subgraph induced by the bags containing v is a tree. Chordal
graphs have been characterised as the graphs for which there exists a tree-decomposition
whose bags all induce cliques in the original graph [48, 73]. For chordal graphs, such
a decomposition is called clique tree. The clique tree associated with the graph of
Figure 1.2 is shown in the middle.

Split graphs. The class of split graphs was introduced in the 1970s by Foldes &
Hammer [42]. It is a well-studied subclass of chordal graphs [43, 49, 53, 65]. Its
definition is the following.

Definition 1.4 (Split graphs). A graph G is split if its vertex set can be partitioned in
K + S where K is a clique of G and S is a stable set of G. The partition K + S is
called a split partition of G.

As a direct consequence of the definition, the class of split graphs is self-complemen-
tary, meaning that for any split graph G, its complement G is also split. Moreover,
split graphs form a hereditary graph class.

Note that the split partition of a split graph is not necessarily unique. Indeed, a
vertex belonging to the clique but with no neighbour in the stable set could as well be
placed in the stable set. Conversely, a vertex in the stable set that is adjacent to every
vertex of the clique can be transferred to the clique without any consequence. Such a
situation is illustrated in Figure 1.3, where the coloured vertex can be placed in any set

of the split partition.

C4 2K2 C(5

Figure 1.3: A split graph with its split partition. The coloured vertex can be placed
either in the clique or in the stable set. The obstructions are shown on the right.

The class of split graphs benefits from various characterisations [42]. Among other
ones, split graphs correspond exactly to chordal graphs whose complement is also
chordal. Moreover, they have been characterised by forbidden induced subgraphs,
namely as (Cy, 2K,, C5)-free graphs. These obstructions are shown on the right of
Figure 1.3. Finally, split graphs can be recognised in polynomial time by looking only
at the degrees of their vertices [53].
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Cographs. The class of cographs was introduced in the 1970s by several authors
under various names such as hereditary Dacey graphs or D*-graphs [59, 81]; since then,
this class has been widely studied and characterised [28, 29, 33, 51]. In particular,
Corneil, Lerchs & Stewart [28] provided some very useful characterisations of cographs.
One of the many equivalent definitions of cographs is the following.

Definition 1.5 (Cographs). The class of cographs is defined recursively:

e a single-node graph is a cograph;
o if Gy and Gy are cographs, then their disjoint union Gy U Gy is also a cograph;

e if G is a cograph, then its complement G is also a cograph.

First, remark that the class of cographs is hereditary. By definition, this class is
also self-complementary.

Cographs have been characterised as the graphs that do not contain any P; — that
is, a path on four vertices — as an induced subgraph. Moreover, graphs in this class
benefit from a unique tree representation, the cotree [28]. The cotree associated with
a cograph is a rooted tree whose leaves are exactly the vertices of the cograph, and
whose internal nodes are labelled either 0 or 1. Then, two vertices are connected in the
cograph if and only if the least common ancestor? of the corresponding leaves in the
cotree is labelled 1. Thanks to this representation, it has been proved that cographs
can be recognised in linear time [29]. A cograph with its associated cotree is illustrated
in Figure 1.4, where two pairs of twin vertices are identified.

Py

Figure 1.4: A cograph (on the left) with its associated cotree. In this graph, the vertices
1 and 2 are true twins, the vertices 4 and 5 are false twins. The obstruction P; can be
seen on the right.

It has also been proved that in a cograph, there always exist two (true or false) twin
vertices [28]. Even more, all cographs can be constructed by beginning with a single
vertex and recursively adding a true or false twin to an already existing vertex. This
provides what we call a twin construction ordering on the vertices of a cograph.

2the first common vertex encountered when going from the leaves to the root
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We call induced sub-cograph of G an induced subgraph that is also a cograph; it is
moreover maximal if it is inclusion-wise maximal among all induced sub-cographs of G.

Threshold graphs. Threshold graphs were introduced in 1977 by Chvatal & Hammer
[21] as the set of graphs such that there exists a real number b and a weight function
w : V +— R such that for any subset X of vertices, X is a stable set if and only if
> vex w(v) < b. This rather complicated definition was motivated by applications to
integer programming, and gave its name to the corresponding class of graphs: the
number b can be seen as a threshold value for the existence of edges.

In the same paper [21, Theorem 1], this class of graphs has been characterised by a
recursive construction involving isolated vertices — vertices that have no neighbour in
the graph — and wuniversal vertices, whose closed neighbourhood is the entire graph. We
give here this characterisation as a simpler definition for the class of threshold graphs.

Definition 1.6 (Threshold graphs). A graph is threshold if it can be constructed from
the empty graph by recursively adding isolated or universal vertices.

Threshold graphs are at the intersection between split graphs and cographs. There-
fore, they are characterised by forbidden induced subgraphs as the class of (P, Cy, 2K5)-
free graphs. A threshold graph is can be seen in Figure 1.5, and the obstructions are
also represented. The class of threshold graphs is quite common in the literature; see
for example the chapter dedicated to it in Golumbic’s book [49].

< | 7V L
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Figure 1.5: A threshold graph whose threshold construction ordering is 123456. White
vertices were added as isolated, black vertices were added as universal. The three
obstructions are presented on the right.

Like the split and cograph properties, the threshold property is hereditary and closed
under complement. Moreover, like split graphs, threshold graphs can be recognised in
linear time through their degree sequences [53]. Finally, note that the construction of a
threshold graph by adding isolated and universal vertices naturally implies an ordering
on its vertex set, that is called the threshold construction ordering.
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A recap of the inclusions between the four graph classes presented in this section
is given in Figure 1.6. A graph class is above another if it is larger, and the arcs are
directed towards the smallest class. For the sake of completeness, the class of Trivially
Perfect graphs, corresponding to the intersection between cographs and chordal graphs,
is also represented on the picture. All the graph classes considered here are hereditary,
and the coloured ones are self-complementary in addition.

cograph

trivially

perfect

Figure 1.6: Diagram showing the inclusions between all the mentioned graph classes.
An arrow shows an inclusion (directed towards the smallest class).

1.2 Minimal completions and deletions

Given an arbitrary graph G, there is no reason for it to fulfil a given property P. Then,
one of the questions we address is about computing induced subgraphs of G' which
satisfy P. When the property is hereditary, finding such an induced subgraph is very
easy: for example, the single-node graph is a trivial solution. However, finding such
trivial solutions is not really satisfactory: we want to preserve somehow the structure
of GG, and find an induced subgraph that satisfies P and is “as close as possible” to G.
In other words, we want to remove as few vertices as possible from G in order to make
the graph fulfil property P.

Unfortunately, finding the minimum number of vertices that have to be removed
from G is in general a hard problem. This problem, known as the node-deletion problem
has been shown to be NP-complete for most hereditary properties [63].
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The other problem in which we are interested here is that of computing edge-
subgraphs (resp. supergraphs) of G that satisfy P and are “close” to G. Like the
previous one, this problem corresponds to removing (resp. adding) as few edges as
possible from G to make the graph satisfy P. Less general complexity results are
known for the computation of the minimum number of edges that must be removed
from (resp. added to) G in order to obtain a graph fulfilling P, but some have been
proved in special cases. In fact, there are several properties for which this problem is
also NP-complete [86, 50], for example when the property under consideration is being
chordal, as studied in Chapters 5 and 6.

Since the problem of finding the minimum number of elements (vertices or edges)
that must be removed to make a graph satisfy a given property is hard in general, let us
focus on the easier task of finding such a set of elements that is minimal for inclusion.
If such a set is of minimum cardinality, it is necessarily also minimal for inclusion. This
is why all over this thesis, minimal (resp. mazimal) will always refer to inclusion-wise
minimal (resp. maximal), and never to minimum (resp. maximum) cardinality.

We introduce here the objects studied in all the sequel: minimal P-completions and
deletions, and maximal induced P-subgraphs of a graph G = (V| E).

Let P be a graph property. An induced subgraph G[X] of GG, on the vertex set X,
that verifies P is called an induced P-subgraph of G. 1t is mazimal if for any subset
of vertices Y C V, if X C Y then G[Y] does not fulfil the property P. By abuse of
language, we will often identify an induced P-subgraph G[X] with its set of vertices X.

A graph H is a P-edge-subgraph of G, also called a P-deletion of G, if it is an
edge-subgraph of GG and it fulfils property P. It is called a maximal P-edge-subgraph,
or a minimal P-deletion, if it is inclusion-wise maximal, that is to say there is no
P-edge-subgraph H' of G such that F(H) C E(H') C E(G). If E is a subset of edges
of G, we might by abuse of language call £’ a deletion of G, referring to the graph
(V(G), E'), thus identifying a deletion of G with its edge set.

Similarly, a graph H is a P-edge-supergraph of G, also called a P-completion of
G, if it is an edge-supergraph and G and it fulfils property P. It is called a minimal
P-edge-supergraph of G, or a minimal P-completion, if it is inclusion-wise minimal:
there is no P-supergraph H' of G such that E(G) C E(H') C E(H). The edges wv
belonging to H but not to G, that is, uv € E(H) \ E(G), are called the fill edges of the
completion. Similarly as for deletions, completions will often be identified with the set
of fill edges they induce.

When P refers to being in some known class of graphs, say being a split graph, we
will omit the hyphen and simply say: a split edge-subgraph, a split deletion, a minimal
split completion, and so on.

In general, when P is satisfied by all stable sets — as it is the case for the property
of being chordal, split, cograph, or threshold —, we are ensured that a P-deletion exists
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for any input graph. It makes sense in this case to look for an algorithm computing the
minimal P-deletions of G without any restriction on G. Conversely, if P is verified by
all cliques, then a P-completion exists for any graph G, in which case we look for an
algorithm computing the minimal P-completions of G without any restriction on G.

Let us illustrate these notions in the particular case when P denotes the class of
split graphs. In Figure 1.7, a graph is represented with a minimal split completion, a
(non-minimal) split deletion, and a maximal induced split subgraph.

~ v Vv

Figure 1.7: A graph with a split completion, a split deletion, and an induced split
subgraph.

Many classical problems on graphs are hard in general, but can be solved by
polynomial algorithms as long as the input graph belongs to an appropriate graph
class. This is for example the case for the maximum clique problem, asking for the size
of the biggest clique in the graph, or for the colouring problem: both are proved to
be NP-hard (see the excellent book by Garey & Johnson [47] for more NP-hardness
and NP-complete information), but become polynomial on chordal graphs and all their
subclasses [49]. In this kind of situation, completions and deletions turn out to be a
useful tool.

Consider a problem that is hard in general but can be solved in polynomial time
on a certain graph class P. For a graph G, if it does not already fulfil the property P,
the idea is to compute a minimal P-completion (or a minimal P-deletion, depending
on what is considered) of G and solve the problem in polynomial time on this new
graph. Of course, the solution obtained this way is maybe not the real solution of the
problem on input GG, but it can be seen as an “approximation” — without any guarantees,
though — of the real solution, that can be found in polynomial time.

When it comes to more structural aspects of graph theory, some questions about
graph decompositions can be addressed. In fact, some well-known graph decompositions
are defined from the graph classes themselves. The most well-known example of this
is certainly the tree-decomposition. Since this decomposition is closely related to a
very important graph parameter called treewidth, it permits to solve a large number of
problems in polynomial time on chordal graphs, provided that the “width” is bounded.
Some other graph parameters are strongly linked to graph properties: let us cite
the treedepth and the class of Trivially Perfect graphs — which correspond to chordal
cographs — or the twin-width, closely related to cographs.
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Because it is usually hard to know exactly how many fill edges are required in order
to give the appropriate property to an input graph, being able to compute minimal
completions into the appropriate class would be very useful. Indeed, it is easier to
compute a decomposition for a completed graph, and consider it as a decomposition,
maybe not optimal, of the input graph.

Another motivation of the study of completions and deletions in a given graph class
is the structure present in many real-world datasets. Some of them have a structure
that is very close to an existing and well-studied graph class such as cographs [33]. It
is of interest to know how far these graphs acquired through real data are from the
considered graph class: once again, this is a difficult problem that can be “approximated”
by completions and deletions. Graph completions into a property could also be used to
repair a graph that was known to have this specific property, but has been transferred
via a communication network in which some information has been lost.

Graph completions and deletions are in fact particular cases of the more general
framework of graph modification problems. Another problem that is often studied in
this framework is the graph edition problem. Computing an edition of a graph G into a
class P consists in finding a set of two-element subsets of its vertex set V', that can be
edges or not, that have to be modified in order to make GG obtain the property P. The
considered modification is a very simple one: for u,v € V', if uv is an edge in G, then it
is removed, else it is added to E. Like completions and deletions, the graph editions
that are studied in practice are often the ones that are minimal for inclusion, that is to
say, for which the set of modifications is minimal with respect to inclusion [67].

Although convinced of the interest of graph edition problems [32, 40], we will not
investigate them further in this thesis. Their nature is slightly different from that of the
two other graph modification problems, and very little is known about graph editions
in the world of enumeration. Anyway, we will focus here on the graph completions and
deletions problems.
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Enumeration problems on graphs

This chapter is intended as an introduction to enumeration problems and the measure
of their complexities. Other sources of interest on this topic include (but are not limited
to) the works of Defrain [35], Mary [6]], and Strozecki [79, 80]. We give here some
elements to state our problems in the context of enumeration.

% % family of enumeration problems. Therefore, let us first have a closer look on

this special kind of problems, their definition, and the ways to measure the
complexity of the corresponding algorithms. Then, we will have an overview of the
existing efficient enumeration techniques. In the last section of the present chapter, we
state more precisely which type of problems will be studied.

%I%HE GRAPH PROBLEMS in which we are interested are part of the more general

2.1 Definitions and models

In this section, we present more formally the general concepts and the specificities of
enumeration.

2.1.1 Enumeration problems: definition

Let X be a set and R be a binary relation on X. For one x € X, called the input
or instance, let us denote by R(x) := {y € X | (z,y) € R} the set of all y such that
(z,y) € R. The elements of R(x) are called solutions, or outputs.

Definition 2.1 (Enumeration problem). The enumeration problem associated with the
binary relation R on X takes in input an x € X, and outputs the set R(x).
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An algorithm which solves an enumeration problem is called an enumeration al-
gorithm. More precisely, an enumeration algorithm called on an input z outputs an
ordered sequence yi, . ..,yy such that {y;,...,yn} = R(z). In particular, enumeration
algorithms generate each solution of the problem exactly once.

It is worth noticing that enumeration generalises recognition: we must be able to
certify that all outputs are indeed solutions. This is why we will focus on problems for
which recognition is possible in polynomial time.

Computational model. The computational model we use is the Random Access
Machine (RAM) model, equipped with the four basic operations (comparison, addition,
subtraction, multiplication), and a special instruction output (i,j) — different from the
classical return instruction — which displays the content of registers R;, R;11,..., R;
in constant time without stopping the computation. This is the model commonly
used for enumeration problems [3, 35, 79, 80]. In particular, it permits to access an
exponential amount of memory in polynomial time, using the appropriate dictionary
data structures.

2.1.2 Complexity of enumeration algorithms

Given an enumeration problem, the number of solutions that have to be outputted
can be very large. Indeed, it is not rare for such a problem to admit an exponential
number of solutions. To cite a simple example, it has been shown that a graph on n
vertices can have as many as 33 inclusion-wise maximal stable sets [66]. In such a
case, we still want to generate all solutions in a reasonable time, but there is obviously
no hope for outputting an exponential number of objects in polynomial time, since we
need at least the time of writing them. It is therefore no longer relevant to measure the
running time of an enumeration algorithm with the classical complexity classes such
as P or NP. Knowing this, how can we adapt the notion of efficiency to an algorithm
which outputs a potentially exponential number of solutions?

To answer this question, two main approaches have been proposed in the literature.
One of them, called input-sensitive, consists in finding the fastest possible exact
exponential algorithms, since the considered problems are exponential in the input size.
The other one, output-sensitive, assumes that, since all solutions have to be generated
anyway, a good measure of efficiency for enumeration algorithms should take this into
account. The two approaches give results of different types, and in that sense they are
complementary.

In this thesis, we will always measure the complexity in an output-sensitive way.
However, for the sake of completeness, both approaches are mentioned here.

Input-sensitive approach. This approach consists in measuring the running time of
enumeration algorithms in terms of the input size only. In this case, algorithms usually
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run in exponential time, and research typically focuses on lowering the exponent.

Since the running time of an enumeration algorithm is necessarily lower-bounded by
the number of solutions, expressing its complexity in terms of the input size can give
useful insights for the number of solutions that have to be outputted. In fact, many
known input-sensitive enumeration algorithms were obtained by bounding tightly the
number of objects to enumerate [66, 30]. Another advantage of measuring the complexity
of enumeration algorithms in terms of the input size only is to give guarantees on the
total running time.

However, if the number of solutions to output is exponentially larger than the input
size, an enumeration algorithm will not be considered “efficient” in the usual sense,
even if it needs a constant time per solution. Indeed, knowing that there exists an
exponential enumeration algorithm gives in fact no insight on the real efficiency of the
algorithm: is it exponential in the input size because there is an exponential number of
solutions, or is it exponential in the number of solutions?

In this sense, the input sensitive-approach seems therefore not the most satisfactory
to capture the notion of efficiency for enumeration algorithms.

Output-sensitive approach. The output-sensitive approach is based on the idea
that complexity measures for enumeration problems need to take into account the
potentially large number of solutions they can have. To measure its efficiency, the
running time of an algorithm is then bounded by a function of the input size n and
the number N of solutions. Since the output-sensitive complexity measures take into
account the large number of solutions, they allow us to capture a notion of running
time per solution and to compare the complexities of two problems that do not possess
the same number of solutions.

This is the point of view adopted in all the remaining of this thesis: all algorithms
presented here have their complexities measured in terms of the input size and the
output size.

When dealing with enumeration, as for many other domains, our aim is to design
efficient algorithms. In classical complexity theory, the algorithms that are regarded
as “efficient” are polynomial algorithms. This raises a question: since polynomial
algorithms have no sense in general for enumeration, how can we capture the essence of
efficiency in this case? To answer this question, three complexity measures have been
proposed by Johnson, Yannakakis & Papadimitriou in the 1980s [57].

Output-polynomial. An algorithm is said to be output-polynomial if its total running
time is bounded by a polynomial both in the input size n and the number of
solutions N that have to be outputted. This ensures every solution will eventually
be generated in a reasonable amount of time. This complexity measure is also
called “Polynomial total time”. It is the natural translation of polynomial time



complexity into the field of enumeration problems. An illustration of the running
time of an output-polynomial algorithm is presented in Figure 2.1.

first last
solution solution
start | f H H— H— end
—
poly(n, N)

Figure 2.1: Execution time of an output-polynomial algorithm. A vertical line indicates
the output of a solution.

The issue with output-polynomial algorithms is mostly that there is no guarantee
on the time needed to generate the first solution. A large amount of time
(polynomial in N but still exponential in the input size n) could be necessary
before outputting just one solution, which may not be satisfactory for many
practical cases. We try to highlight this phenomenon on Figure 2.1.

Incremental-polynomial. To guarantee a fast access to the first generated solutions,

the time needed by an incremental-polynomial algorithm to output a solution is
polynomial in the input size n and the number of solutions already found. In
other words, for each i < N, the time needed between the ith solution and the
next one is bounded by a polynomial in n and . To help the reader visualise the
behaviour of an incremental-polynomial algorithm in terms of running time, it is
schematised in Figure 2.2.

first last

solution i i+1 solution
1 | | | | | |

start I T T T T T T T I end

poly(n, i)

Figure 2.2: Execution time of an incremental-polynomial algorithm. A vertical line
indicates the output of a solution.

Incremental-polynomial algorithms are obviously output-polynomial. However,
an incremental-polynomial algorithm ensures in addition that solutions will be
outputted all along the execution, and not only at the end, as it could be the case
for output-polynomial algorithms. Moreover, with such an algorithm the first
solutions are outputted quickly, even if the computation of the following ones



31

can take more and more time. Such guarantees are therefore of better use for
applications.

Polynomial delay. An algorithm has polynomial delay if the time needed before the
first solution, between two consecutive solutions (regardless of the number of
already generated solutions), and to stop after the last solution, is polynomial
only in the input size n. To visualise the difference between polynomial delay and
the other output-sensitive complexity measures presented here, the running time
of a polynomial delay algorithm is illustrated in Figure 2.3. Algorithms running
with polynomial delay are the most efficient among those considered in this thesis.

first last
solution i i+1 solution
start i i i i i i i i i i — end
poly(n) poly(n) poly(n)

Figure 2.3: Execution time of a polynomial delay algorithm. A vertical line indicates
the output of a solution.

Necessarily, polynomial delay algorithms are incremental-polynomial, and there-
fore output-polynomial, linear in the number of solutions. The main advantage
of polynomial delay algorithms is to completely remove the dependence on the
number of solutions already found. This way, solutions are outputted quickly all
along the algorithm’s execution.

The inclusions between the three historical complexity classes that have just been
presented are schematised in Figure 2.4. But these complexity measures are not the
only ones that are considered in practice.

output-polynomial

polynomial
delay

incremental-
polynomial

Figure 2.4: Inclusions between the three complexity classes output-polynomial,
incremental-polynomial, and polynomial delay.
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In fact, polynomial delay is not the best complexity we could hope for in all cases.
For some problems, polynomial delay could even be lowered to constant delay, meaning
that the time needed between two consecutive outputs is bounded by a constant. This
complexity cannot be achieved for all problems [80], but sometimes the problem’s
structure allows to use a particularly well-suited enumeration technique, such as Gray
codes.

When the solutions can be represented as words on a finite alphabet, it is possible to
enumerate them via Gray codes. The idea of enumeration with Gray codes is to generate
all the solutions in such a way that the number of different characters between two
consecutive solutions is exactly one. Therefore, in such a case it is not even necessary
to output the whole new solution when one is found, because outputting the difference
with the previous one suffices, thus achieving constant delay for problems that have
solutions of polynomial size. Moreover, it is only necessary to keep in memory the last
generated solution, hence using only polynomial space.

Gray codes have been introduced for the first time in 1941 as reflected binary codes
in order to enumerate binary integers on n bits [78], but they can also be used to
enumerate such various objects as subsets of a given set, permutations of a set [58], or
configurations of Hanoi Towers. Many more applications of Gray codes can be found in
Ruskey’s (unpublished) book [76].

Gray codes are not the only mean to achieve constant delay for a given problem.
Let us mention briefly the Fisher-Yates shuffle [39], with its constant-delay variant,
for the generation element by element of a random permutation. This technique is
especially used for generating a permutation « of a large set [19]. With this method,
for any 4, the time needed between the output of (i) and a(i + 1) is constant.

We have surveyed some of the most classical output-sensitive complexity measures.
In fact, many more notions exist for output-sensitive algorithms [31, 80], but they will
not be encountered here.

Yet, we do not know output-polynomial algorithms for all enumeration problems. It
is even proven that, unless P = NP, there are enumeration problems for which no such
efficient algorithm can be found [14, 62]. In some cases, what happens is that there
exists a polynomial number of “trivial” solutions, which can be found in polynomial
time, but the time necessary to find another solution is exponential in the input size.

This is for example the case with the so-called minimal rainbow induced subgraphs
problem, taking in input a graph whose edges are assigned one or more colours and
asking for the list of all minimal induced subgraphs containing at least an edge of each
colour [38]. In some instances, finding a non-trivial solution is equivalent to finding a
truth assignment of a SAT formula, therefore impossible in polynomial time if P # NP.

An enumeration algorithm is said to be output-quasi-polynomial if it runs in total
time O(2P°W108("+N)) where n denotes the input size, and N the number of solutions.
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When an output-polynomial algorithm cannot be found, it is often desirable to provide
an output-quasi-polynomial algorithm that solves the problem [64, 35].

Space complexity. The space complexity of enumeration algorithms is also a chal-
lenge: many enumeration techniques require to store the generated solutions in memory;,
in order to check if the newly discovered solution is really new, or if it has already
been found in the past. In general, when the number of solutions is exponential, this
naturally leads to exponential-space algorithms. However, in some cases it is possible
to avoid storing all solutions in memory, therefore reducing the space complexity of the
algorithm to make it polynomial in the input size.

2.1.3 Classical enumeration problems

Among all enumeration problems, some are widely known and studied, mostly because
they are very general. These have been surveyed in previous work [64]. We give here a
brief overview of some of the most classical enumeration problems, without aiming at
being exhaustive.

Independent set systems and dependent set systems. A set family Z on a
ground set F is called an independent set system if @ € 7 and for any two Iy, I, C F, if
Iy € Z and I, C Iy, then I, € Z. In other words, an independent set system is a family
of sets closed under inclusion.

Independent set systems are far from being rare in enumeration problems. In
particular, many set families naturally have this property: in graphs, some very classical
objects such as stable sets, cliques, or matchings define independent set systems. Due
to their omnipresence, these set families are interesting objects to enumerate.

In fact, when dealing with independent set systems, it often suffices to generate all
the independent sets that are inclusion-wise maximal, since all sets included in any
of them are by definition elements of the family. It was shown by Lawler, Lenstra
& Rinnooy Kan [62] that in general, if the set system is given by a constant-time
membership oracle, there does unfortunately not exist an output-polynomial algorithm
enumerating all the maximal elements of an independent set system, unless P = NP.
However, they also proved that such an algorithm exists for many practical particular
cases, as it will be shown in the next section.

Independent set systems are closely related to dependent set systems, that are
set families closed under taking supersets. In the case of dependent set systems, the
interesting elements to enumerate are the inclusion-wise minimal sets belonging to the
family. Some dependent set systems are very famous: dominating sets, Vertex Covers,
transversals of an hypergraph. ..
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Enumeration of minimal transversals of an hypergraph. Hypergraphs are a
generalisation of graphs with edges of arbitrary size. An hypergraph can be seen as a
family of sets &£, the hyperedges, on a set of vertices V. A transversal of an hypergraph
H = (V,E) is a set of vertices T intersecting every hyperedge of H, that is to say, for
any F € & TNFE # &. The transversals of an hypergraph are also referred to as hitting
sets.

The associated enumeration problem is the following: given a hypergraph H,
generate all minimal transversals of it. Equivalently, it is sometimes asked to return
a hypergraph whose hyperedges are the minimal transversals of H. The minimal
transversals enumeration problem is so general that numerous enumeration problems
(corresponding to dependent set systems) can be seen as particular cases of it.

For example, the dominating sets of a graph G — the sets of vertices D such that
every vertex belongs to D or has a neighbour in D — can be seen as the transversals
of an hypergraph whose hyperedges are the closed neighbourhoods of all the vertices
of G. Then, enumerating the minimal dominating sets of a graph [60] is a particular
case of the minimal transversals enumeration. In another direction, we can look at the
Feedback Vertex Set problem, which asks for the minimal sets of vertices whose removal
makes the input graph acyclic. Then, enumerating all feedback vertex sets of G [77] is
equivalent to enumerating all minimal transversal of the hypergraph on the vertex set
V' whose hyperedges are the sets of vertices inducing cycles in G.

The current best algorithm for the enumeration of minimal transversals of an
hypergraph dates back to the 1990s. It is due to Fredman & Khachiyan [45] and runs
in output-quasi-polynomial time. Knowing if all minimal transversals of an hypergraph
can be enumerated in output-polynomial time is a famous, long-lasting open question
[41]. This question is in fact not restricted to hypergraphs: several formalisms capture
the same problem [6].

2.2 Algorithmic methods for enumeration

To generate all solutions of a problem, the principle is often to give a structure to the
space of solutions, and then explore it. Each time a new solution is found, it is outputted.
Sometimes, the structure is given to the space of solutions via ad-hoc methods. This
is for example the case with the ingenious algorithm proposed by Carmeli et al. [18]
to generate all minimal chordal completions of a graph. In Chapter 3, we will give
another, simpler example of such an ad-hoc algorithm when enumerating minimal split
completions. However, there also exist generic methods that can apply to a wide range
of problems. Some of these general frameworks are known to give good complexity
results, but they are not always applicable. Among the most popular techniques used
to devise enumeration algorithms, let us cite Flashlight Search, maximal independent
set generation, the Input Restricted Problem approach, Reverse Search, and Proximity
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Search.

In the whole section, we state a general enumeration problem as follows: given a
ground set F, with n = |E|, and a property P, generate all (inclusion-wise maximal)
subsets of £ which satisfy property P.

2.2.1 Flashlight Search

When dealing with (maximal) subset enumeration, a classical technique sometimes
called Backtrack [72], Binary Partition [25, 60], or Flashlight Search [15, 16] naturally
arises. Let us insist here on the fact that the property P under consideration — as it
will always be the case in the present work — is hereditary.

The Flashlight algorithm consists in choosing an arbitrary ordering eq,...,e, on
the elements of E/, and considering them in order. To begin, we have to decide whether
there exists a solution containing ey, and if there exists a solution excluding e;. Then,
each time a solution S exists up to elements ey, ..., ¢e;, we have to decide if there exists
a solution compatible with S and containing e; 1, and a solution compatible with S
and excluding e; ;. If not, the branch is no longer explored. This way, we build a
binary tree rooted at @ such that each internal node at level ¢ represents a subset of
{e1,...,e;} satisfying P, and the leaves correspond exactly to the maximal solutions.
An example of the tree explored by Flashlight Search is presented in Figure 2.5. The
tree is searched while being constructed, outputting a solution each time a new one
is found. The decision problem solved at each step of the computation is called an
extension problem.

{er,ea}  {ez,es} {ea} {es}

Figure 2.5: Illustration of the tree explored by Flashlight Search.

Flashlight Search is a powerful technique: if the extension problem is solvable
in polynomial time, it yields a polynomial delay algorithm for the enumeration of
all (maximal) subsets of E satisfying P [72]. Unfortunately, the extension problems
associated with enumeration problems are not polynomial in general: they will be
addressed in detail for maximal subgraphs in Chapter 4.
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When this technique was introduced by Read & Tarjan [72], it was used for example
to enumerate all spanning trees of a connected graph. Indeed, knowing if a set of edges
can be extended into a spanning tree is rather easy. In fact, it suffices to check if this
set of edges induces an acyclic graph: if not, it cannot be extended into a spanning tree.
Forbidding some edges to belong to a solution does not make the problem much harder,
as we will see in Chapter 4. Consequently, Flashlight Search yields a polynomial delay
polynomial space algorithm for the enumeration of spanning trees of a connected graph.

Maximal subgraphs are not the only application of Flashlight Search: due to its
generality, this technique can be applied to many different problems. For example, it is
used to enumerate efficiently the truth assignments of a logic formula under certain
conditions [15].

2.2.2 Maximal independent set generation

The goal here is to generate all inclusion-wise maximal elements of an independent set
system. If P is a hereditary property, that is, closed under inclusion, then the family of
all subsets of E satisfying P is an independent set system Z. Generating all maximal
subsets of E satisfying P is thus the same as generating the maximal elements of Z.
Let us take a look on a technique designed by Lawler, Lenstra & Rinnooy Kan
[62] to enumerate all maximal elements of an independent set system, generalising the
work of Paull & Unger [71]. They assume that the set family under consideration is
given by a membership oracle — a function answering TRUE on a set if it belongs to the
independent set system, FALSE otherwise — whose running time is denoted by c¢. Then,
if the ground set is arbitrarily ordered E = {ej,ea,...,e,}, the algorithm proceeds
incrementally, following the ordering. For any 7 < n, denote by Z; the family of all
independent sets included in {eq,...,e;}. They prove the following theorem.

Theorem 2.2 ([62], Theorem 4). It is possible to enumerate the maximal elements
of an independent set system I in total time polynomial in n, N and c, provided that
for any j < n, and for any I € T;_,, the maximal independent sets of I U {e;} can be
found in polynomial time.

The general algorithm they give for maximal independent set generation is presented
here as Algorithm 2.1. If it is possible to generate all maximal independent sets of
I'u{e;} in polynomial time (line 12), then this Algorithm runs in polynomial total time
O(neN +n%cN?+n?N3) [62]. However, this classical algorithm needs a time polynomial
in N to output a first solution. Therefore, its time complexity is output-polynomial
but not incremental-polynomial.

Due to the large presence of independent set systems among optimisation problems,
the method introduced by Lawler, Lenstra & Rinnooy Kan can be used in various
contexts. For example, it permits to generate all maximal feasible solutions to a
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Algorithm 2.1: Maximal independent set generation

input : An independent set system Z on E (given by a membership oracle in time c)
output: All maximal elements of 7

1S :=g; /* the set of all partial solutions */;
2 1 =1;

3 while 7 <n do

4 S :=EXTEND (S, ¢;,7);

5 L increment ;

6 return S;

Function EXTEND (S, e;,7):

T :=g;
foreach I € S do
if U {e;} € Z then

10 L T:=TUu{IU{e}}; /* TU{e;} is maximal in Z; */;
11 else
12 foreach J € Z maximal within I U {e;} do
13 if J is maximal in Z; then
14 L T :=TuU{J}; /* do not add if J &7 already */;
15 | return T;

knapsack problem by extending partial solutions into maximal ones, or to enumerate
all maximal feasible solutions of an inequality system [62].

It can also be used to solve enumeration problems on graphs. Lawler et al. applied
their technique to the enumeration of all maximal complete k-partite subgraphs, that is,
subgraphs formed of k disjoint sets, and where two vertices are adjacent if and only if
they do not belong to the same set. Therefore, this technique gives an output-polynomial
algorithm for the enumeration of maximal complete k-partite subgraphs.

The setting being very general, Algorithm 2.1 can be applied to many different
problems. It might not have the optimal complexity in all cases, but it still provides an
efficient way to solve a large set of enumeration problems.

2.2.3 Reverse Search

In 1992, Avis & Fukuda [2] designed a general framework for enumeration problems,
called Reverse Search. At the time, several works on enumeration were using similar
techniques. For example, the well-known algorithm of Tsukiyama et al. for the
enumeration of maximal cliques of a graph [84] and the algorithm of Johnson et al. for
the enumeration of maximal elements of an independent set system with polynomial
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delay [57] used similar methods. Those techniques were designed to improve the existing
ones such as the maximal independent set generation of Lawler et al. [62]. When
Reverse Search was made explicit, it unified these frameworks.

Reverse Search is designed explicitly for polynomial delay and polynomial space. It
is the “reverse” approach of local search, a technique often used in optimisation which
consists in navigating the space of solutions, transforming a solution into a better one
with local changes, until a local optimum is found. The principle of Reverse Search is
the following: build a rooted spanning arborescence on the solution space by defining
for each solution S its parent PARENT(S), and explore the arborescence in a DFS
manner, keeping in memory the parent of the current solution. The function PARENT
is therefore defined on the solution space, apart from the root(s). To illustrate the idea,
let us take a look at Figure 2.6.

So

S
S2 S()151>S41527557S3

54 SS

Figure 2.6: An example of the arborescence induced by the function PARENT on the
solution space. Reverse Search consists in enumerating the solutions by following this
arborescence.

More precisely, the arborescence is defined by the following information:

 a root solution Sy (or a set of root solutions if the arborescence is a forest rather
than a tree);

 a function NEIGHBOURS for generating in polynomial time all neighbouring solu-
tions of the current one in the solution space: in Avis & Fukuda’s original paper
[2], the neighbours of a solution are computed by the LOCALSEARCH procedure;

e a function PARENT to decide for each solution which one is its parent, with
the property that following the parent relation, one will eventually reach Sy (or
any root solution). This PARENT function allows us to define for each solution
S the set of its children, that is, CHILDREN(S) = {S’ € NEIGHBOURS(S) |
PARENT(S') = S}.

Note that the children of a solution form a subset of its neighbours. Since each
solution (except the root) has one parent, the previous requirements ensure that each
solution is generated at most once.
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The general Reverse Search algorithm is quite simple: it is presented here as
Algorithm 2.2.

Algorithm 2.2: The general Reverse Search algorithm
input : An enumeration problem, together with a polynomially computable
PARENT function
output: All solutions of the problem

1 Sy := a particular “root” solution;
2 Call ENUM (Sp);

Function ENUM (95):

3 Output S if recursion depth is even;
4 foreach S’ € CHILDREN (S) do
5 | Call ENUM (S5");

6 Output S if recursion depth is odd;

Delay. If the set of children of a solution can be computed in polynomial time (in
particular, if any solution has a polynomial number of neighbours), then Algorithm 2.2
has polynomial delay. But to guarantee this delay, we need to be careful about
outputting the solutions at the right time.

When exploring the solution space with the PARENT relation, one may have to
explore a path whose length is exponential in the input size. Therefore, if each new
solution is outputted at the time it is found, then it might be necessary to backtrack
during an exponential time when the whole branch has been explored. This leads to
an exponential delay between two solutions, which is not very efficient. However, a
classical trick, sometimes called the Alternative Output Method [85] is to output the new
solutions at the beginning of the recursion step if the recursion depth is even (line 3),
and at the end if the depth is odd. This way, the time spent between two consecutive
solutions can be lengthened, but solutions are also outputted when backtracking the
DFS, preventing the algorithm to run during an exponential time without producing
any new solution.

Because the structure given to the solution space is an arborescence, it is no longer
necessary to keep in memory all solutions that have already been found. Being able to
compute the parent of each solution in polynomial time guarantees the knowledge of
the current state. Since each solution (apart from the root solutions) has one parent,
there is exactly one way to reach this solution by following the arborescence. Therefore,
there is no need to check: whenever a new solution is generated, we know for sure it
has never been outputted before. Hence, no memory is required to store an exponential
number of solutions: Algorithm 2.2 runs in polynomial space.
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The Reverse Search technique has proved efficient on a wide variety of problems.
In their original article [2], Avis & Fukuda already applied it in many situations, to
enumerate such various objects as cells in an arrangement, topological orderings, or
connected induced subgraphs. In fact, it is the reference technique when designing
polynomial delay polynomial space enumeration algorithms [11, 24].

For example, this method allows us to generate in polynomial delay and polynomial
space all spanning trees of a connected graph [2]. In this case, the root solution is the
lexicographically smallest spanning tree, according to an arbitrary order on the edges.
To generate a neighbour of a solution, it suffices to add an edge and break the cycle
that has been created by removing another edge. Finally, the parent of a solution is
defined as its lexicographically smallest neighbour.

In the same article, Reverse Search has also been used to enumerate efficiently all
triangulations of a set of points in the plane: the neighbours of a solution are obtained
by “flipping” an edge, that is, exchanging diagonals in a quadrilateral.

2.2.4 Input Restricted Problem

The problem considered here is the enumeration of maximal induced subgraphs of a
graph G = (V, E), with n = |V, that verify a hereditary property P. For this problem,
Cohen, Kimelfeld & Sagiv [22] devised an interesting framework. They manage to link
the complexity of enumerating maximal induced subgraphs that verifies a hereditary
property P to the complexity of a so-called Input Restricted Problem.

Given an induced subgraph H of GG that satisfies P and an additional vertex v € V'
not in H, the Input Restricted Problem consists in asking for the list of all maximal
induced subgraphs of H + v fulfilling property P.

The idea behind this technique is a very classical one: starting from any solution of
the problem, new solutions are found from the already generated ones. This way, an
oriented supergraph of solutions is built, whose vertices are all the maximal induced
subgraphs we want to enumerate, and an arc is put from a solution S to a solution S’
if there exists a vertex v such that S’ is obtained via a maximal induced P-subgraph of
S +wv. Since the property is hereditary, it is easy to find a maximal induced P-subgraph:
it suffices to build it greedily, starting from the empty set and adding vertices in any
order. One can then explore the supergraph of solutions while constructing it and
output each new generated solution.

Suppose the Input Restricted Problem can be solved by a property-specific procedure
GENRESTRHERED(H, v), that outputs all the maximal induced P-subgraphs of H + v
for any maximal induced P-subgraph H of G and any vertex v € V not in H. Then,
Algorithm 2.3 can be used to enumerate all the maximal induced P-subgraphs. Note
that a maximal induced P-subgraph of H + v is not necessarily maximal in G: that is
why it needs to be maximised (line 7) in order to find a solution. Since the property
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under consideration is supposed to be hereditary, a greedy maximisation is well-suited
for this purpose.

Algorithm 2.3: Enumeration of the maximal induced P-subgraphs via the
Input Restricted Problem

input : A graph G

output: All maximal induced P-subgraphs of G

1 H := any maximal P-subgraph of G;

2 §:={H}; /* the set of solutions already found */;
3 Output H;

4 Call RECURSIVEGEN (G, H,S);

Function RECURSIVEGEN (G, H,S):

5 foreach v € V(G) \ V(H) do

6 foreach H' € GENRESTRHERED (H,v) do
7 Maximise H' greedily within G;

8 if H ¢ S then

9 Output H' if recursion depth is even;
10 S =SUH';

11 Call RECURSIVEGEN (G, H',S);

12 Output H' if recursion depth is odd:;

The Input Restricted Problem technique is different from the maximal independent
set generation framework. For maximal independent set generation, the technique
discussed above generates partial solutions all along the execution, and finds all the
maximal independent sets at the same time at step n. On the other hand, in the
algorithm proposed by Cohen et al. (here presented as Algorithm 2.3), when a new
partial solution is found, it is immediately maximised with a greedy maximisation
function, and outputted. This way, maximal induced subgraphs are produced all along
the execution of the algorithm.

When guarantees are known on the complexity of GENRESTRHERED, other com-
plexity guarantees can be deduced for the whole enumeration algorithm. Based on this
technique, the authors proved the following result.

Theorem 2.3 ([22]). For all hereditary or connected-hereditary properties P, the
maximal P-subgraphs can be enumerated:

o in output-polynomial time if and only if the input restricted problem can be solved
in output-polynomial time;

o in incremental-polynomial time if and only if the input restricted problem can be
solved in incremental-polynomial time;
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o with polynomial delay if the input restricted problem can be solved in polynomial
time.

The authors also prove results on space usage. In particular, for a hereditary
property P, if the input restricted problem can be solved in polynomial space, then
Algorithm 2.3 can be improved to run in polynomial space.

There are several “natural” problems for which the input restricted problem is
polynomial. Let us cite for example the maximal clique enumeration problem. Given a
maximal clique K of a graph GG and a vertex v that does not belong to K, there are only
two maximal cliques in the graph induced by K U {v}. These are K and Nk (v) U {v}
(which is a clique since all vertices are connected in K'). Therefore, the input restricted
problem has only two solutions and can be solved in time polynomial in the size of G:
Theorem 2.3 ensures that all maximal cliques of G' can be enumerated with polynomial
delay. In this case, polynomial space is achieved as well.

The approach proposed by Cohen et al. is very efficient when it can be applied.
However, it is not always the case that the input restricted problem is solvable in
polynomial time (an example will be given in Chapter 5).

2.2.5 Proximity Search

Prozimity Search has been recently introduced by Conte & Uno [26]. The main
advantage of this technique is its generality. Proximity Search was designed explicitly
for maximal subset enumeration, producing polynomial delay algorithms for a wide
range of problems [23]. It overcomes some limitations of the Input Restricted Problem
approach without giving such strong guarantees, in particular for space usage.

As several other enumeration paradigms [2, 22], Proximity Search relies on an
organised walk on the space of solutions. The general idea is very similar to the one
used with the Input Restricted Problem, or with Reverse Search: build an oriented
supergraph of solutions, whose vertices are the desired solutions of the problem, and
arcs are put between them according to a problem-specific operation that permits us
to transform a solution into some others in polynomial time. This transition function
cannot be reversed in general.

The novelty of Proximity Search is the introduction of a proximity measure between
two solutions, to provide the solution space with a metric, and be able to measure
“how close” two solutions are. In order to define the proximity measure, solutions are
considered here as ordered subsets of E. This allows us to consider the prefizes of a
solution: if S =eq,..., e, is an ordered maximal subset of E satisfying property P, the
prefixes of S are all the eq,...,e; for all © < k. Note that each solution has its own
ordering, and two different solutions can have completely unrelated orderings a priori.

Definition 2.4 (Proximity). The proximity SNT between two solutions S and T is
the longest prefix of T that is contained in S.
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This notion of proximity does not need to induce a distance in the mathematical
sense! because it is not symmetric in general, but it must satisfy the crucial property

|ISNS|=|9=S5=9"
There are three major requirements to apply Proximity Search.

e An ordering scheme, that is, a function 7 which associates to each P-subset of E
a total ordering of its elements. For a subset S C F, 7(S) is called the canonical
ordering of S.

« A function NEIGHBOURS, computing all (out-)neighbours of a given solution in
time polynomial in n. In particular, every solution must have a polynomial
number of neighbours. This neighbouring function relies on a transition operation
that, given a solution .S, can produce other, different maximal P-subsets of E. In
any case, the transition operation is highly specific to the considered problem.

¢ A maximisation function COMPLETE, taking in input a partial solution — a P-
subset of £ — and completing it into a maximal one. The use of that function
is mostly hidden in the computation of NEIGHBOURS. Therefore, the function
COMPLETE needs to be computable in polynomial time.

The goal is then to show that the super-graph of solutions is strongly connected.
To see this, it suffices to prove that for any given solution, the proximity to a target
solution can be increased at each step. More precisely, given a solution S and a target
solution S*, we want to prove that there exists another solution among the neighbours
of S that has a higher proximity with S*. This way, the search is ensured to visit every
solution at least once.

Definition 2.5 (Proximity searchable). Let us consider an enumeration problem,
together with an ordering scheme m and a polynomial-time computable neighbouring
function NEIGHBOURS. The problem is called proximity searchable if one solution can
be found in polynomial time and, given any two solutions S and S* such that S # S*,
there exists T € NEIGHBOURS(S) such that |T N S*| > |SN.S*.

Conte & Uno [26] proved that, if the problem of enumerating all maximal P-subsets
of F is proximity searchable, then Algorithm 2.4 generates each solution exactly once
and runs with polynomial delay using exponential space.

Note that being able to find one first solution in polynomial time is necessary to
get a polynomial delay algorithm. One also needs to be able to check if a subset is a
solution in polynomial time. Moreover, if exponential space is allowed, it is possible to
test in time linear in |F| if a solution S’ has already been found, using a dictionary in
which insertion and verification can be done in time polynomial in the size of 5.

'In mathematics, a function d : X x X — R>o on a set X is called a distance if it satisfies the
properties of symmetry (Vz,y € X, d(z,y) = d(y,x)), separation (Vz € X, d(x,z) = 0), and the
triangle inequality (Vz,y,z € X, d(z,y) + d(y, z) < d(z, z)).
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Algorithm 2.4: The general Proximity Search algorithm
input : A ground set F, a property P, with a polynomially computable function
NEIGHBOURS
output: All maximal subsets of F satisfying P

[y

S =g,
S := an arbitrary maximal subset of F satisfying P;
Run ENUM(S, S);

Function ENUM (S,S):

W N

4 S =8SU{S}h

5 Output S if recursion depth is even;
6 foreach S’ € NEIGHBOURS(S) do
7 | if §' ¢ S, then ENUM(S, S);

8 | Output S if recursion depth is odd;

Proximity Search has been proved efficient for many maximal subgraphs enumeration
problems. For example, it can be used to enumerate all maximal (induced or not)
bipartite subgraphs, chordal subgraphs, k-degenerate subgraphs, maximal connected
obstacle-free convex hulls, with polynomial delay [26]. We will show in detail several
more applications of the Proximity Search framework in Chapter 5.

The Proximity Search framework is well-suited for enumerating maximal subgraphs,
coping with some of the limitations of the Input Restricted Problem approach, but it
usually requires exponential space. Refinements have been proposed [24, 23], under
certain conditions on the set system, in particular to make Algorithm 2.4 run in
polynomial space. In Chapter 6, we will propose a new refinement of Proximity Search
with weaker assumptions that achieves polynomial space as well.

2.2.6 Cao’s retaliation-free paths

Recently, in a preprint of 2020 [13], Cao came up with a new technique for the
enumeration of maximal induced subgraphs. This technique, called retaliation-free
paths, appears to make the enumeration of maximal induced subgraphs possible for
several more classes of graphs. It is namely used to enumerate the maximal induced
trivially perfect subgraphs of a given graph.

The idea behind this technique is the same as in Proximity Search: it consists in
showing the strong connectivity of a supergraph of solutions. First, one has to define a
suitable, problem-specific neighbouring function, as in Proximity Search. However, Cao
manages to build paths in which the usual proximity measure is not increasing. Indeed,
the important property of retaliation-free paths is that any time an element belonging
to the target solution is removed, it is possible to make sure it will be re-introduced
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at a later step. This way, he asserts that, if the problem satisfies certain conditions
and the neighbouring function is correctly defined, there always exists a retaliation-free
path from one solution to another in the supergraph of solutions. Then, a depth-first
search on the space of solutions allows to enumerate all of them with polynomial delay.

2.3 Enumeration of maximal subgraphs and minimal
supergraphs

The problems on which we focus here are the enumeration of maximal induced P-
subgraphs, minimal P-deletions and minimal P-completions of an arbitrary graph G,
for an hereditary graph property P. These problems are defined in Chapter 1.

In some cases it is not possible, let alone meaningful, to find the optimal solution to
such a problem. Indeed, the notion of “best” solution can be hard to model in terms of
graphs, and in particular obtaining the minimum or maximum cardinality solution can
be irrelevant to the problem. It is for example the case when dealing with databases
[18], bioinformatics [12], or statistical models [27]. Therefore, it is of better use to
be able to enumerate all the maximal, or minimal, solutions: after that, the user can
choose themself which solution is the best according to their specific criteria.

When the corresponding optimisation problem is hard, enumeration can also be
used for sampling purposes. Since the computation can be stopped at any time, one
can choose the best solution among those generated up to a certain time.

All the properties we consider here must be recognisable in polynomial time. Indeed,
it can happen that the input graph G already satisfies property P. In this case, the
minimal P-completions (resp. minimal P-deletions, maximal induced P-subgraphs)
enumeration problem has only one solution, that is G itself: in other words, enumeration
generalises recognition. Thus, an output-polynomial algorithm solving our enumeration
problem must run in polynomial time when called on input G. This implies that one
must be able to determine if G fulfils P in polynomial time, as stated in the following
theorem. That is why in the present work, we are only interested in polynomial time
recognisable graph properties.

Theorem 2.6 (Folklore). If all maximal induced P-subgraphs (resp. minimal P-
completions, minimal P-deletions) can be enumerated in output-polynomial time, then
the property P can be recognised in polynomial time.

From an algorithmic point of view, the problems of enumerating maximal induced
subgraphs, minimal deletions or minimal completions are closely linked to the classical
enumeration problems presented in Section 2.1.3. In the present section, we will see
how those problems are related.
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Since the property under consideration is hereditary, the set of all induced P-
subgraphs of GG is an independent set system. Therefore, we know that in some cases
it is possible to enumerate all maximal induced P-subgraphs of G with the output-
polynomial algorithm designed by Lawler et al. [62] (see Section 2.2.2). But better
output-sensitive complexity can be achieved.

Given a graph G and a hereditary property P, one can build an hypergraph on
V(G) whose hyperedges are the sets of vertices inducing forbidden induced subgraphs
for P in GG. Then, enumerating all maximal induced P-subgraphs of G is equivalent to
enumerating all minimal transversals of this hypergraph. Indeed, a minimal transversal
of the hypergraph formed by the forbidden induced subgraphs corresponds to a minimal
set of vertices of which the removal from the original graph yields a maximal induced
subgraph satisfying the property P. Such an hypergraph is represented in Figure 2.7,
when the considered property P refers to “belonging to the class of cographs”, that is,
avoiding the four-vertex path P, as an induced subgraph.

>
\\,

Figure 2.7: From this graph that is not a cograph, one can build an hypergraph whose
hyperedges are exactly the sets of vertices inducing a P, in the graph.

It is worth noticing that some hereditary graph properties (not all of them) admit a
finite number of forbidden induced subgraphs: this is for example the case with split
graphs, cographs, and threshold graphs, but not with chordal graphs. When considering
such a property, our problem falls into a special case of the general transversals
enumeration problem, where the size of the hyperedges is bounded by a constant.

In the 1990s, Eiter & Gottlob worked on this variant of the general problem
and exhibited an incremental-polynomial algorithm for the enumeration of minimal
transversals of hypergraphs of bounded edge size [41]. Thanks to their result, it is
now straightforward to obtain an incremental-polynomial algorithm for the maximal
induced P-subgraphs enumeration problem.

If in addition the considered property is monotone, i.e. closed under edge removal,
then the maximal (non-induced) P-subgraphs, or minimal P-deletions, of G can also
be enumerated with Eiter & Gottlob’s incremental-polynomial algorithm [41], by
considering an hypergraph whose vertices are the edges of G.

As for minimal P-completions of G, provided that P is a monotone property, they
form a dependent set system of which we aim to enumerate the inclusion-wise minimal
elements. Plus, they correspond to minimal deletions of G in the complement class
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of P. In other words, if P denotes the graph property “the complement graph fulfils
property P”, then up to taking the complement, minimal P-completions of G are
exactly minimal P-deletions of G. This allows us to use the same technique as for
minimal P-deletions to obtain an incremental-polynomial enumeration algorithm.

At the moment, we know nothing about a general algorithm that could enumerate
maximal (induced) P-subgraphs or minimal P-completions of a graph G with polyno-
mial delay for any hereditary graph property P. On the other hand, neither do we
know a hereditary graph property P for which the enumeration of maximal (induced)
P-subgraphs or minimal P-completions of a graph G cannot be enumerated with
polynomial delay. This raises some interesting questions which, although motivating
our research, remain open at the end of this thesis.

Question 1. Is there a (hereditary) graph property P such that minimal P-completions,
or minimal P-deletions, cannot be enumerated with polynomial delay?

Question 2. More generally, is there a (hereditary) graph property P such that minimal
P-completions, or minimal P-deletions, cannot be enumerated in output-polynomial
time?
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Chapter 3

Split graphs

We provide in the present chapter efficient algorithms for the enumeration of minimal
split completions, deletions, and mazimal induced split subgraphs. A part of these
results (minimal split completions and deletions) appears as a joint work with Aurélie
Lagoutte, Vincent Limouzy, Arnaud Mary and Lucas Pastor in the 2020 preprint
Efficient enumeration of maximal split subgraphs and sub-cographs and related classes
[10], submitted.

Yo

the structure can be used to reduce an enumeration problem to another. In
particular, the property considered here corresponds to “belonging to the class
of split graphs”.

More precisely, we show how to link the minimal split completions to the maximal
stable sets of an auxiliary graph that can easily be found from the input graph. Split
graphs have been studied in detail in order to find one single minimal split completion
of a given graph [55].

As for maximal induced subgraphs, this class is a good example where the Input
Restricted Problem can be used to achieve polynomial delay and polynomial space.

%I@N THIS CHAPTER, we will see an example of how, for a given graph property,

3.1 Minimal split completions

In this section, our aim is to enumerate all minimal split completions of G into a
split graph, using a polynomial delay polynomial space algorithm. To do so, we
establish a link between the minimal split completions of a graph and its maximal
stable sets. However, we will see that different maximal stables sets may lead to the
same completion. To overcome this issue, we first perform a pre-processing step that



50 |

removes some unnecessary or undesired vertices from the input graph. Once the process
is completed, the bijection between both objects is established.

Recall that a minimal split completion of a graph G is an inclusion-wise minimal
split supergraph of GG on the same vertex set; that is to say a split graph H such that
V(H) = V(G), E(G) C E(H), and there exists no split graph H' = (V(G), E(H’))
such that F(G) C E(H') C E(H). The edges in E(H) \ E(G) are the fill edges of the
split completion. A graph can be seen in Figure 3.1. It is not split, but the addition of
three red edges turns it into a split graph: it is a split completion of the input graph.

Figure 3.1: The graph with the black edges is not split, but adding the three red
(curved) edges produces a split completion of it. The two circled vertices form an
inclusion-wise maximal stable set.

Let us begin with a simple observation. Since the class of split graphs is self-
complementary, we can list all maximal split deletions of G' simply by computing all
minimal split completions of the complement graph G, and then complementing the
solutions. Therefore, the same complexity results will be obtained for minimal split
deletions as well.

First, note that a split completion of G can always be obtained from a stable set.
Indeed, if S is a stable set of GG, adding all possible edges between pairs of vertices of
V'\ S makes V' \ S into a clique, and the resulting graph is a split completion H of G.
We will say that H is the split completion induced by S. In the example of Figure 3.1,
the split completion is induced by the stable set {1,6}. In the sequel we will see how
to characterise the stable sets producing minimal split completions.

Lemma 3.1. Let G = (V, E) be a graph. For any minimal split completion H of G,
there exists a split partition V = K + S of H such that S is a maximal stable set of G.

Proof. Let H be a minimal split completion of G. The graph H is split so there exists
a split partition, and H = (S + K, E + F') (where F is the set of fill edges). If S is not
a maximal stable set of H, there exists x € V such that SU {z} is a stable set of H,
and of course K \ {x} is still a clique of H. Consequently, suppose that S is a maximal
stable set of H.
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For contradiction, suppose that S is not a maximal stable set of G. There exists y
such that S U {y} is a stable set of G. As S C SU{y}, the split completion induced by
S U{y} is a split sub-completion of H, supposed to be minimal. Therefore S U {y} is a
stable set of H, that is, .S is not a maximal stable set of H: contradiction. O

Hence it is only necessary to consider (inclusion-wise) mazximal stable sets when
looking for minimal split completions. But this condition is not sufficient. Indeed, in
the example of Figure 3.1, the edge {3,5} can be removed and the resulting graph is
still a split completion (with split partition {2,4, 5,6} + {1, 3}), visible in Figure 3.2. It
shows that the split completion induced by the maximal stable set {1,6} is not minimal.
Therefore, there exist maximal stable sets that do not induce minimal split completions.
This is why we need to push our investigation further and find out which conditions
make a maximal stable set induce a minimal split completion.

Figure 3.2: Removing the edge {3,5} from the split completion of Figure 3.1 does not
break the split property.

In the following, we identify two kinds of vertices which can cause a solution to
be non-minimal or produced twice. They are true twins and redundant vertices, the
definition of which relies on nested neighbourhoods.

Definition 3.2 (Redundant vertices). Let G = (V, E) be a graph. A vertezv € V is
redundant if there exists u € V' such that Nu] C N|v].

Remark that, because of the strict inclusion between the closed neighbourhoods,
for every redundant vertex v there exists a vertex u which is not redundant such that
Nlu] € N[v]. The set NJu| is inclusion-wise minimal. The interest of identifying
redundant vertices is given by the following observation (a stronger version of this will
be proved in Lemma 3.3): if S is a maximal stable set of G not inducing a minimal split
completion, then S contains a redundant vertex. By the way, the stable set identified
in Figure 3.1 is a good example of this: it contains the vertex 6, which is redundant
since N[3] € N[6].

However, the converse is not necessarily true, as shown on Figure 3.3: in this graph,
2, 4, and 5 are redundant vertices. But there is in this graph a maximal stable set
S ={2,5} containing redundant vertices and still inducing a minimal split completion.
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Hence, we need to dig deeper into the subject to identify which redundant vertices
should be avoided in a stable set S in order for the induced completion to be minimal.

Figure 3.3: In this graph, the vertices 2 and 5 are redundant but the completion induced
by the stable set {2,5} (dashed edges) is minimal.

We will show that the right characterisation of minimal split completions is in fact
the following.

Lemma 3.3. Let G be a graph, let I be a mazximal stable set of G. The split completion
of G induced by I is minimal if and only if I does not contain any redundant vertex x

such that V' '\ N(x) is a stable set of G.

In order to prove Lemma 3.3, we need the following result which establishes a link
between the split partitions of a graph and those of its subgraphs. In particular it can
be used to compare two different split partitions of a split graph. This lemma will be
invoked when characterising non-minimal split completions.

Lemma 3.4 ([55, Observation 4] & Corollary). Let G = (V, E) and G' = (V, E') be two
split graphs such that E C E', and let V =1+ K and V = I' + K’ be split partitions
of G and G’ respectively. Then the following two inequalities hold:

. [K'NEK|>|K|-1;
e [I'UI< ||+ 1

First, we will try to determine which maximal stable sets are “bad” in the sense that
they fail to produce minimal split completions. To this effect, let us find a necessary
condition for a maximal stable set to induce a non-minimal split completion. This
condition is obtained by looking carefully at the redundant vertices belonging to the
considered maximal stable set. We state it as the following lemma.

Lemma 3.5. Let G = (V, E) be a graph. Let I be a mazimal stable set of G. If the
split completion of G induced by I is not minimal, there exists a redundant verter w € I
such that N(w) =V \ I.
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Proof. Let I be a maximal stable set of G, let H = (I + C, E + F') be the split
completion of G induced by I. Assume that the completion H is not minimal. Then
there exists a non-empty set of edges A C F such that H — A is a minimal split
completion of G. By Lemma 3.1 there exists a maximal stable set S of G such that
H—-A=(S+K,E+ F — A) is the split completion of G induced by S.

We have the inclusions G C H — A C H. By Lemma 3.4, |S| < [SUI| < |S]| + 1.
Because S and [ are both maximal stable sets of G we cannot have I C S, so necessarily
|SUI| =S|+ 1. Then,

IS|+1=|SUl|=|S|+|I\S]

Therefore |1\ S| = 1, and we also have |S'\ /| > 0 because S is maximal. Consequently
there exist w € V and U C V such that I = T U {w} and S = T U U, where U and
T = S N1 are disjoint stable sets of G. Figure 3.4 illustrates this situation.

Figure 3.4: A partition of V' for the split completion H and another split partition for
H — A. The vertex w is universal to C'. Edges inside S N C belong to H but not to
H— A.

All fill edges of H — A are also fill edges of H. Because w is in I, there is no fill
edge incident to w in H, so there is also no fill edge incident to win H — A. Asw € K
in H — A, this implies KNC C N(w) C (KNC)UuU =C.

Let x € U. As I is a maximal stable set of GG, the vertex = has a neighbour in
I. This neighbour is not in S because x € S. Therefore, it is in [\ S = {w}, that
is, zw € E. Besides, N[z] C K N C C Nw]. This being true for all z € U, we have
Nw)=C=V\I.

Moreover, the completion H is not minimal, so there exists y € U incident to a
fill edge of H. Hence there exists z € C' such that yz ¢ E. Then z € N[w] \ N|y|, so
Nly] € N[w| and w is redundant. O

Could it be that the necessary condition of Lemma 3.5 is in fact sufficient? The
answer to this question turns out to be positive. We will see that Lemma 3.5 admits a
converse, which can be stated as follows.



54 |

Lemma 3.6. Let G = (V, E) be a graph. Suppose that there exist a redundant vertex x
such that V '\ N(x) is a stable set of G. If I is a mazimal stable set of G containing x,
then the split completion induced by I is not minimal.

Proof. Let I be a maximal stable set of G' containing x. Necessarily I = V \ N(z)
because V' \ N(x) is a stable set.

Let H := (I + V \ I,E + F) be the split completion induced by I. Since z is
redundant, there exists y € V such that N[y] C N[z]. The vertex y is a neighbour
of x so y € V'\ I. Therefore y is made adjacent to every vertex of V' \ I in H. But
Nly] € NJz], so there exists z € V' \ I such that yz is a fill edge in H, as illustrated in
Figure 3.5.

VI I

Figure 3.5: There exists z such that zz € F and yz is a fill edge in H.

The idea is then to move x to the stable set, and y to the clique by considering
the graph H' = H — {yz € F' | z € N(z)}. We observe that H’' is a proper sub-split
completion of H. Hence H is not minimal. O

From the last two lemmas, it is now straightforward to deduce the exact characteri-
sation announced in Lemma 3.3.

Proof of Lemma 3.53. Lemma 3.5 gives one direction of implication, and Lemma 3.6
gives the other (by noticing that N(w) = V' \ I rewrites to [ =V \ N(w)). O

In the light of Lemma 3.3, the idea is now to remove from G the identified “bad”
redundant vertices, therefore building an auxiliary graph containing only the vertices
that for sure will not take part in inducing non-minimal split completions. Then, we will
only enumerate split partitions induced by maximal stable sets of this auxiliary graph.
But in order to do so, we need to ensure that maximal stable sets in this auxiliary
graph are also maximal stable sets in (G. This is the purpose of the following lemma.

Lemma 3.7. Let G = (V, E) be a graph and let R be the set of its redundant vertices.
For all R C R, the mazimal stable sets of G\ R’ are mazimal stable sets of G.

Proof. Let R" C R. Recall that R={v eV |3u eV, N[u| C N[v]}. Observe that all
maximal stable sets of G\ R are necessarily stable sets of G. We will see that they are
maximal.
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Let S be a maximal stable set of G\ R'. For contradiction, assume that S is not a
maximal stable set of G. Hence there exists v € V such that S U {v} is a stable set
of G, and v € R because otherwise S would not be maximal in G \ R’. The vertex v
is redundant so there exists u € V' \ R such that N[u| C N[v]|. This way, SU {u} is a
stable set of G and a stable set of G \ R': contradiction. O

Nevertheless, we are not yet finished. Given a graph G, we know that removing
some identified redundant vertices from G provides a graph in which every maximal
stable set gives a minimal split completion of G, and doing so we guarantee to actually
get every minimal spit completion of G. However, nothing prevents us from finding the
same solution several times. This phenomenon is illustrated in Figure 3.6, where the
stable sets are the sets of circled vertices, and the completion consists only in adding
the middle horizontal edge.

Figure 3.6: The two stable sets represented by circled vertices give the same minimal
split completion.

To solve this issue, we will characterise stable sets which give the same minimal
completion, among the ones satisfying conditions of Lemma 3.3. This time, the vertices
at which we are looking are true twins. Remark that in the graph of Figure 3.6, the top
vertex and the bottom vertex have the same closed neighbourhood. This leads us to
the following result: two distinct maximal stable sets induce the same split completion
if and only if their symmetric difference is a pair of true twins.

Lemma 3.8. Let G be a graph, let Sy and Sy be two distinct maximal stable sets of
G. Denote by Hy and Hy the split completions of G induced by S, and Sy respectively.
Define S := 51N Sy. Then Sy and Sy induce the same split completion (that is to say,
E(H,) = E(H,)) if and only if there exists a pair of true twins x1, xo € V' such that
S1=SU{x1} and Sy = S U {xs}, with Ng[z1] = Nglxe) =V \ S.

Proof. Let Ky :=V \ S; and Ky :=V \ S, be cliques in H; and Ha, respectively.
Assume S; and 53 induce the same split completion, that is to say F(H,) = E(H,).
By Lemma 3.4, we have |S;USy| = [S1|4+1 and |S;USs| = |Sa|+1. Then |S;| = |Sz| and
there exists z; € S1 \ Sz and z5 € S5 \ Sy such that S; = SU{x1} and Sy = S U {z5}.
There is no fill edge incident to x; in H;. But because x; € K5, we have K1 N Ky C
Ng(z1) C (K1 N Ks) U {xe}. Moreover z125 € E(G), otherwise S; U Sy would be a
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stable set of G containing Sy, assumed to be maximal. This implies that N[z;] = V'\ S.
By symmetry of the roles of x; and x9, it gives N[z1] = Nxo] = V'\ S, and in particular
z1 and x5 are true twins.

Conversely, if N[z] = N[zy] =V '\ S, there is no fill edge incident to x; in Hs, and
there is no fill edge incident to x5 in H;. Consequently, the only fill edges in H, and
in H; are between vertices of V' '\ S = K; N Ky. Since H; and Hs are both split, they
have the same set of fill edges, so E(H;) = E(Hs). O

Inspired by Lemmas 3.3 and 3.8, we can then construct from every graph G an aux-
iliary graph f(G). Let B = {z € V(G) | z is redundant and V' \ N(z) is a stable set}.
First remove B from G, and observe that G[V \ B] has no extra pair of true twins
compared to G itself. Then from G[V \ B], remove all but one vertex from each set
of pairwise true twins, resulting in the graph f(G) having no pair of true twins. The
auxiliary graph f(G) is not unique because of the choice between each set of true twins,
but is does not matter for the following.

Theorem 3.9. Let G be a graph. There exists a bijection between the set of all minimal
split completions of G and the set of all maximal stable sets of any auxiliary graph

f(G).

Proof. Let B as in the definition of f(G). Observe that G[V \ B] cannot contain a
redundant vertex x of which the non-neighbourhood in G[V'\ B] is a stable set, and
the same applies to f(G). Moreover, a set I C V(f(G)) is a maximal stable set of
f(G) if and only if it is a maximal stable set of G|V \ B] included in V(f(G)) (because
adding a true twin to an existing vertex in f(G) preserves the maximality of I). So, by
combining Lemmas 3.7 and 3.3, a set I C V(f(G)) is a maximal stable set of f(G) if
and only if the split completion induced by [ is a minimal split completion of G. This,
combined with the non-existence of true twins in f(G) and Lemma 3.8, ensures the
bijection. O

Procedure 3.1 produces the auxiliary graph f(G) mentioned in Theorem 3.9, con-
taining no redundant or true twin vertex v such that V' '\ N(v) is a stable set. During
Step 5, every redundant vertex will be marked, as well as all but one vertex of each set
of pairwise true twin vertices.

Theorem 3.9 ensures that we can enumerate exactly once every minimal split
completion of an input graph G by running Procedure 3.1 followed by an algorithm
that enumerates all maximal stable sets of f(G). Since Procedure 3.1 is polynomial in
time and space, the complexity of this algorithm only depends on the complexity of
the algorithm used for the enumeration of maximal stable sets. We are thus looking for
such an algorithm running in polynomial delay and polynomial space. For example,
the algorithm proposed by Tsukiyama et al. in 1977 [84] fulfils these complexity
requirements and allows us to state the following.
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Procedure 3.1: CONSTRUCTION OF THE AUXILIARY GRAPH
input: a graph G

/* Mark redundant and twin vertices */;

1 Begin with all vertices unmarked;
2 foreach unmarked z € V do
3 foreach unmarked y € N(z) do
4 if N[z] C N[y] then
5 L mark y;
/* Remove unnecessary vertices */;
6 foreach marked z € V do
7 if V' \ Ng|z] is a stable set then
8 remove x;

Theorem 3.10. Minimal split completions (resp. deletions) of a graph can be enumer-
ated with polynomial delay in polynomial space.

According to Lemma 3.1, the number of minimal split completions of a graph G is
at most the number of its maximal stable sets. It has been proven by Moon & Moser
in 1965 [66] that this number can be as large as 37/3 reached for a graph composed of
n/3 disjoint triangles as in Figure 3.7.

Figure 3.7: A graph built from n/3 disjoint triangles.

Lemma 3.3 states that there is a bijection between the minimal split completions and
the maximal stable sets of a graph G with no redundant vertex u such that V(G)\ N(u)
is a stable set. The graph presented in Figure 3.7 verifies this property. In particular,
it has 3™3 minimal split completions. From these observations we deduce the following
theorem.

Theorem 3.11. The upper bound 33 on the number of minimal split completions is
tight.

By adding a universal vertex to the graph of Figure 3.7, we obtain a graph with one
redundant vertex (the universal vertex). The number of its minimal split completions is
therefore equal to the number of maximal stable sets of the graph shown in Figure 3.7,
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that is, 3IV(@I=D/3_ Therefore, we can even consider our graph to be connected and
still have O(3"/3) minimal split completions.

Using a polynomial delay algorithm for the enumeration of the maximal stable sets
of a graph, our algorithm for the enumeration of all minimal split completions runs
in total time O(Npoly(n)), where N is the number of maximal stable sets. Therefore,
its total execution time is bounded in an input-sensitive manner by O(3"3poly(n)),
almost matching the bound of Theorem 3.10.

Corollary 3.12. There exists a polynomial delay algorithm for the enumeration of all
minimal split completions of a graph running in total time O(3"/3poly(n)).

3.2 Maximal induced split subgraphs

As it was proved in the previous section, we are able to enumerate efficiently all minimal
split completions and deletions of an input graph G. Now, can similar complexity
results be achieved for the enumeration of maximal induced subgraphs? We addressed
this question in 2019, that was independently solved by Cao in a preprint of 2020 [13]
with a similar technique: the input restricted problem is polynomial, therefore it can
be used to compute all maximal induced split subgraphs of G with polynomial delay
and polynomial space. For the sake of completeness, our results, left unpublished, are
presented in this section.

Let us begin with an observation. For G = (V, E) a graph, an induced split subgraph
of G can be constructed by considering a clique K of G and a stable set S of G \ K.
The graph G[K U S] is then a split subgraph of G with split partition K + S. The next
theorem is here to specify which cliques and stable sets have to be considered when
looking for maximal induced split subgraphs.

Theorem 3.13. Let G be a graph, and let H be a maximal induced split subgraph of G.
There exists K a mazximal clique of G and S a mazimal stable set of G\ K such that
H=G[KUS].

Proof. Since H is split, it admits a split partition C' + I where C' is a clique and [ is a
stable set. Assume that C'is not a maximal clique in G. By definition there exists an
x € V'\ C such that C' U {z} is a clique in G.

If x ¢ I, then G[CUIU{x}] is an induced split subgraph of G that strictly contains
H. This cannot happen since we assumed H maximal. Therefore z € I. In this case,
we can set K = CU{x} and S =1\ {z}. Now, any y € S is non-adjacent to x, thus
K is a maximal clique of G.

Moreover, S is a stable set of G\ K. If S were not maximal, there would exist Sy a
stable set of G\ K such that S C Sy, and H would be an induced split subgraph of
the split graph G[K U Sp|, which is excluded by maximality of H.
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Hence H = G[K U S] with K a maximal clique of G and S a maximal stable set of
G\ K. O

A maximal split subgraph can therefore be obtained by choosing a maximal clique,
and a maximal stable set of the rest of the graph. This construction is illustrated in

Figure 3.8.

Figure 3.8: The maximal induced split subgraph on the right was obtained from the
maximal clique and stable set identified in the graph on the left.

The idea now is to prove that the input restricted problem for maximal induced
split subgraphs is polynomial. To this effect, consider a maximal induced split subgraph
H of the input graph G, and a vertex v € V(G) \ V(H). Then, we upper-bound the
number of couples (K, S) such that K is a maximal clique of H +v and S is a maximal
stable set of (H + v) \ K, and show that their number is at most quadratic. Finally,
it suffices to enumerate all such couples (K, S) with an output-polynomial algorithm:
since the number of solutions is polynomial in the size of H + v, all of them will be
generated in polynomial time.

Let us have a look on what happens when we add a vertex to a maximal induced
split subgraph H of G. The following lemma links the neighbourhood of the new vertex
to the split partitions of H.

Lemma 3.14. Let H be a maximal induced split subgraph of G, and let v be a vertex
in V(G)\ V(H). Denote by (K,S) a split partition of H. Then K\ N(v) # @, and
SNN((v) #o.

Proof. Assume for contradiction that K\ N(v) = @, that is, K C N(v). Then K U {v}
is a clique in H 4+ v. Since S is a stable set in H, then the vertices of H + v can be
partitioned in two sets K U {v} and S, where K U {v} is a clique and S is a stable set.
Therefore, H 4+ v is an induced split subgraph of GG, contradicting the maximality of H.

Now, if SN N(v) = @, then S U {v} is a stable set in H + v. As before, we deduce
that H + v has a split partition (K, S U {v}), and H + v is an induced split subgraph
of G, contradicting the maximality of H. O]
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The situation described in Lemma 3.14 can be represented as in Figure 3.9, where
v is the added vertex. As stated previously, v has at least one neighbour in the stable
set and one non-neighbour in the clique.

Figure 3.9: A graph that is not split but can be turned into a split graph with split
partition K + S by removing the vertex v.

The next lemma bounds the number of maximal cliques in H + v.

Lemma 3.15. Let H be a maximal induced split subgraph of G, and let v be a vertex
in V(G)\V(H). Let n = |V (H)U{v}| be the number of vertices of H+v. Then H +v
has at most 2n maximal cliques.

Proof. The graph H is split: let (K, .S) be any split partition of the vertices of H. By
Lemma 3.14, there are exactly two maximal cliques of H + v which do not contain
vertices of S: these are K and (K N N(v)) U {v}. Then, for any vertex u € S, the only
maximal cliques of H+v that contain u are (N (u)\{v})U{u}, and (N(u)NN(v))U{u, v}
if uv € E. Therefore, there are at most 2n maximal cliques in H + v. O

Lemma 3.15 directly implies the following corollary, upper-bounding the number of
couples (K, S) where K is a maximal clique of H + v and S is a maximal stable set of

(H+v)\ K.

Corollary 3.16. Let H be a maximal induced split subgraph of G, and let v be a vertex
in V(G)\ V(H). There exists at most a quadratic number of couples (K, S) such that
K is a mazimal clique of H +v and S is a mazimal stable set of (H +v) \ K.

Proof. By Lemma 3.15, there are at most a linear number of maximal cliques in H + v.
Let K be any maximal clique of H 4 v.

If v € K, then (H +v) \ K is split (as an induced subgraph of H). Consequently, it
contains a linear number of stable sets.

Otherwise, (H +v) \ K can be written as H' +v with H’ an induced subgraph of H.
Since H is split, so is H'. Therefore, the complement of H’ + v meets the requirements
of Lemma 3.15: it contains a linear number of maximal cliques.

In other words, (H 4 v) \ K contains a linear number of maximal stable sets for
any maximal clique K of H 4 v. This concludes the proof. O
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Now, it remains to generate all such couples (K, .S) in polynomial time. It can be
achieved with two nested calls to the algorithm of Tsukiyama et al. [84], that was
already used for minimal split completions. This algorithm even runs in polynomial
space. This is why in our case, the function GENRESTRHERED used in Algorithm 2.3
can be computed in polynomial time and polynomial space.

Therefore, it is possible to use Algorithm 2.3 to enumerate all maximal induced
split subgraphs of a graph GG with polynomial delay. Due to the space complexity of
the algorithm used to solve the input restricted problem, polynomial space can also be
achieved. The result is summarised here as Theorem 3.17.

Theorem 3.17. The mazimal induced split subgraphs of an arbitrary input graph can
be enumerated with polynomial delay in polynomial space.
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Chapter 4

Extension problems

In this chapter we investigate the Flashlight Search technique, presented in Chapter 2,
and prove some hardness results on the so-called extension problem, which prevent
from finding a general enumeration algorithm based on Flashlight Search. These results
appear as a joint work with Aurélie Lagoutte, Vincent Limouzy, Arnaud Mary and
Lucas Pastor in the 2020 preprint Efficient enumeration of maximal split subgraphs
and sub-cographs and related classes [10].

\7,
g\

INTERESTING RESULT would be to find a general method that, given a
CA> (hereditary) graph property P and an input graph G, returns all maximal
QV? induced P-subgraphs of GG. Such a general method would also be of great
interest for the minimal P-completion and P-deletion problems. Because of its generality,
Flashlight Search (see Section 2.2.1 for an introduction) could seem appropriate for
this purpose. Moreover, this method has been successfully used on several special
cases [25, 60], when the property P is restricted, or if the graph G is constrained to a
particular graph class.

We will show in this chapter that unfortunately, Flashlight Search needs some
restrictions on the input: it cannot in general return all maximal induced P-subgraphs
of G for any P and any G with polynomial delay and polynomial space. Moreover, even
if it can provide a polynomial delay and polynomial space algorithm for the enumeration
of minimal P-deletions for some hereditary properties, we show that there are other
graph properties for which Flashlight Search is not the best tool.

More precisely, we define the extension problem (for induced subgraphs and for
deletions) as the problem that must be solved in polynomial time in order to use
Flashlight Search, and we show that this problem is NP-complete in many cases.
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4.1 Maximal induced subgraphs

Extension problem. For a hereditary graph property P, the extension problem for
mazximal induced P-subgraphs is defined as follows. Given a graph G (not satisfying P
in general) and two disjoint subsets A and B of its vertex set V', decide if there exists a
maximal induced subgraph H of G satisfying P, containing A and avoiding B.

In other words, we want that A C V(H) and BNV (H) = &. Note that we cannot
remove B from the vertex set before looking for a maximal induced P-subgraph: this
operation could lead us to a non-maximal induced P-subgraph of GG, which is not what
we are looking for.

If it were possible to solve the extension problem for P in polynomial time, then we
would be able to enumerate all maximal induced P-subgraphs of a given graph G using
Flashlight Search. Being able to decide in polynomial time if there exists a maximal
induced P-subgraph of GG containing a set of prescribed vertices and avoiding another
is exactly what is needed at each step of the algorithm. Indeed, at step ¢ of the binary
partition, the two sets of vertices are included in {ej, ..., e;}, and we have to decide
whether or not there exists a compatible solution.

Recall that a graph property P is hereditary if for all G satisfying P, all induced
subgraphs of GG also satisfy P. The hereditary property P is called non-trivial if it is
verified by infinitely many graphs and has at least one obstruction, which is a graph Jp
not satisfying P. In other words, a hereditary graph property is non-trivial if infinitely
many graphs satisfy it, and infinitely many do not.

The node-deletion problem consists in determining the minimum number of nodes
which must be deleted from a graph such that the resulting subgraph satisfies the
property P. It has been shown by Lewis & Yannakakis in 1980 [63] that for any
non-trivial hereditary property P, the node-deletion problem is NP-complete, provided
that testing for P can be performed in polynomial time. We will show here that the
same can be said about the extension problem.

Theorem 4.1. For any non-trivial hereditary graph property P, the extension problem
for mazimal induced P-subgraphs is NP-hard.

Moreover, if P can be tested in polynomial time, then the extension problem is
NP-complete.

Let us recall that “the class P” denotes in fact the class of all graphs satisfying
property P. First of all, let us observe that the class P contains all the stable sets
or all the cliques. Indeed, because P is non-trivial there exist graphs in P that have
arbitrarily many vertices. Let k € N. Then by Ramsey’s theorem, every graph in P
that is large enough (at least the so-called Ramsey number R(k,k)) contains either a,
clique or a stable set of size k. Since P is a hereditary property, it implies that this
clique or stable set of size k belongs to P. Up to considering the complement class
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P (which remains non-trivial and hereditary), we can assume that P contains all the
stable sets.

The first step is to define a preorder (a binary relation that is symmetric and
transitive) on the set of all graphs, essentially the same as the one given by Lewis &
Yannakakis [63]. This preorder will be useful in the proof of Theorem 4.1, to ensure
that the considered graph satisfies property P.

For any connected graph G and any vertex ¢ € V(G), let A°(G) be the non-increasing
sequence of the sizes of the connected components of G — c¢. If V(G) = {c}, then
A(G) = (0). Then, let \(G) be the minimum for the lexicographic order of the A(G),
that is, A(G) = I?elxn {X(G) | ce V(G)}. Let ¢(G) € V(G) be the vertex minimising
A°(@). If the minimum is reached for several vertices, take any of them (for example
the lexicographically smallest) as ¢(G). By definition, A\(G) = A“9)(G).

For any graph G with connected components Gy, ...,G;, let u(G) be the non-
increasing sequence of the A(G;) according to the lexicographic order. For con-
venience, the connected components Gi,...,G; of G will now be ordered to have
w(G) = (MGy),...,A(G})). The function p defines a prewellordering (all elements are
pairwise comparable, there is no infinite decreasing sequence for p) on the set of all
graphs.

Figure 4.1 illustrates this preorder on four connected graphs G, G2, G3 and Gj.
The vertex ¢ minimising A is identified in GG; and G3, whereas for Gy and Gy, any
vertex can be taken. Remark that in the induced preorder, p can take the same value
on several graphs: in this example, p(G2) = p(Ga) = ((4)).

Q C;YQ
C @
Gl GQ G3 G4

Figure 4.1: In this example, we have p(G1) = ((2,2,1)) whereas u(Ga) = 1(Gy) = ((4)),
and u(Gs) = ((2,1,1)). Therefore, u(G3) < u(Gy1) < p(Gz), and Gy is the smallest of
the four graphs for pu.

Equipped with this prewellordering on the set of all graphs, we are now ready to
prove Theorem 4.1.

Proof of Theorem 4.1. First, if P can be tested in polynomial time, the extension
problem is in NP. Indeed, given a subset S of vertices of the input graph G, one can
easily check in polynomial time whether G[S] satisfies P, and whether S contains A
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and avoids B. Moreover, the maximality of G[S] can be tested in polynomial time
because P is assumed to be hereditary.

As stated in the previous discussion, it is always possible to assume that the class
P contains all the stable sets.

The preorder defined by p is well-founded, so every non-empty set of graphs has a
smallest element for p. In particular, the set of all graphs that do not satisfy P has a
smallest element for p. Hence there exists a graph Jp ¢ P which is minimum for p,
that is to say u(Jp) = nlqeixn{,u(H) | H ¢ P}. Since P contains all the stable sets, the

graph Jp has at least one edge, thus at least two vertices.

Denote by Ji,...,J; the connected components of Jp. Therefore p(Jp) is the
sequence p(Jp) = (A(J1),...,A(J;)). Let J; be the largest connected component of
Ji—c(Jy). We define Jj as the subgraph of Jp induced by V (J§)U{c(J;)}. Consider also
the induced subgraph J; := Jp[V(J1) \ V(J§)]. Both graphs Jy and J| are connected,
and Jy has at least one edge. Let then d be any vertex of J; different from c¢(J;).

Before starting the reduction, let us have a look at what happens to the obstruction
Jp, and how Jy and Jj are built. An illustration of the process applied to a graph Jp
is given in Figure 4.2. This graph satisfies u(Jp) = ((4,2), (3)).

A1) = (4,2) = A°(Nh) A(J2) = (3)

Figure 4.2: An obstruction Jp and its connected components J; and J;. The two
subgraphs Jy and J; are highlighted.

The reduction is with the problem of finding a maximal stable set avoiding a set
B C V(G), whose NP-completeness has been proven by Boros et al. [7, Proposition 2].

Let G be a graph, and let B be a subset of its vertices. We build a graph G’,
using a technique similar to the one used for showing that the node-deletion problem is
NP-complete [63], as follows.

For each vertex u of G, attach a copy of J; to u by identifying ¢(J;) with u. Replace
every edge of G by a copy of Jy, identifying ¢(J;) with one endpoint and d with the
other, in any order. Finally, add .Js, ..., J; as new connected components. The graph G’
is the graph obtained this way. Figure 4.3 illustrates the transformation of a graph G
into ', using the obstruction Jp of Figure 4.2. By construction, the graph G’ contains
many copies of Jp, therefore it does not satisfy the hereditary property P.
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Figure 4.3: G transforms into G’. The set B consists here in the only square vertex,
and the set A in the smaller vertices. The circled vertices form a maximal stable set of
G not intersecting B.

Call A the set of all vertices that are in G’ but were not in G. We will show that
finding a maximal stable set of G avoiding B, or finding a maximal induced P-subgraph
of G’ which contains A and avoids B are two equivalent problems.

1. First, suppose that there exists a maximal stable set S of G which does not intersect
B. We will see that the graph H := G'[S U A| verifies u(H) < pu(Jp).

As S is a maximal stable set of G, each edge in G has at least one endpoint in V'\ S.
Hence, removing from G’ all the vertices of V(G) \ S destroys a vertex identified to
¢(Jp) or d in each copy of J;.

For each vertex s € 9, let us further observe the connected component H of H
containing s. It is composed of one copy of J] and dg(s) “truncated” copies of Jy, all
glued together by identifying either ¢(J;) or d into s (by “truncated” copy of Jy, we
mean either Jy — ¢(J;) or the connected component of Jy — d that contains ¢(J;)). It
follows A(H;) < A (Hs) < A(J1) because the truncated copies of Jy are smaller than Jy
itself.

Now, let us show that u(H) < u(Jp). Observe that the connected components
of H are precisely {H; : s € S} U{Ja,..., Ji}. We assumed that A(Jy),...,A(J;) is a
non-increasing sequence, so A(J;) < A(Jy) for all 2 <i < [

If M(J2) < A(J1) (if the inequality is strict), then since A(Hy) < A\(Jy) for all s € §
we conclude that A(C') < A(J;) for any connected component C' of H. This implies
that max{\(C) : C'is a connected component of H} < A(J;). Therefore the sequence
p(H) is lexicographically strictly smaller than u(Jp) since the first element of p(H) is
strictly smaller than the first element of u(Jp).

If u(G) was starting with a plateau, that is to say, if there exists j > 2 such that
A(J1) = A(J2) = ... = A(J;) (choose the largest such index j), then we conclude by
noticing that the sequence p(H) starts with the plateau \(J;) = ... = A(J;), which
is strictly shorter by one, and then all other values appearing in u(H) are strictly
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smaller than A(J;). Indeed, since for all s € S, A(Hs) < A(J;) and since the only other
connected components of H are copies of Js, ..., J;, the only connected components C
of H for which A\(C') = A(J;) are precisely the copies of Js, ..., J;. So only the first j — 1
elements of the sequence p(H) will have value A(J;) and then, the sequence p(H) will
be lexicographically strictly smaller than pu(Jp).

In either case, we obtain that u(H) < u(Jp). As Jp is the smallest obstruction for
P, and since by definition of p, u(H) is larger than u(K) for any subgraph K of H,
the graph H does not contain any obstruction as an induced subgraph and H € P.
Therefore H is an induced P-subgraph of G’ that contains A and does not intersect B.

2. Conversely, assume that there exists a maximal induced P-subgraph H of G’
containing A and avoiding B. Then .Jp is not an induced subgraph of H.

But every edge uv of G “induces” a copy of J; in G’ (meaning, if you take both
u, v, and a bunch of vertices of A) which together with the copies of .Js, ..., J; would
form a subgraph isomorphic to Jp. Furthermore, u and v are the only vertices of that
copy of Jp that do not belong to A. Hence, since Jp is an obstruction for P and since
H must contain all the vertices of A, H does not contain u or does not contain v. So
V(H)NV(G) is a stable set of G which does not intersect B.

So far, we have proven :

e In 1. that if S is a maximal stable set of G which does not intersect B, then
H := G'[SUA] is a P-subgraph of G’ which contains A and does not intersect B.

o In 2. that if H is a maximal P-subgraph of G’ which contains A and does not
intersect B, then S :=V(H)NV(G) is a stable set of G not intersecting B.

It remains to show that what we obtain in both cases is also maximal.

Let S be a maximal stable set of G which does not intersect B, let us prove that
H := G'[SUA] is a mazimal P-subgraph of G’ which contains A and does not intersect
B. Assume H is not maximal and let H' 2 H be a maximal P-subgraph of G’ which
contains A and does not intersect B. By 2., we know that S’ := V(H')NV(G) is a
stable set of G avoiding B. Then, observe that S = V(H)NV(G) C V(H)NV(G) = S".
Moreover, there exists v € V(H') \ V(H), consequently v ¢ A so v € V(G). Hence
ve S\ SsoS is astable set of G that avoids B and strictly contains S, contradicting
the maximality of S.

Now, let us prove that if H is a maximal P-subgraph of G’ which contains A and
does not intersect B, then S := V(H) N V(G) is a mazximal stable set of G which does
not intersect B. Let S’ O S be a maximal stable set of G avoiding B which contains
S. We will prove that S" = S. By 1. H' := G'[S" U A] is a P-subgraph of G’ which
contains A and does not intersect B. But since H = G'[S U 4], in particular H is
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contained in H’, which would contradict the maximality of H unless SUA = 5"U A.
Since AN S’ = &, this implies S’ = S. m

Hence, without any assumptions on the class P, it is not possible to enumerate
all maximal induced P-subgraphs of a graph G in polynomial delay using the simple
algorithm derived from the extension problem. This, however, does not mean that
Flashlight Search cannot be efficient at all, since the sets A and B could in fact be
assumed to have certain specific properties depending on P, and which could make the
extension problem easy to solve in special cases (see for instance [25, 60]).

4.2 Maximal edge-subgraphs

In the previous section, the extension problem for maximal induced subgraphs was
proved to be NP-hard. In the present one, we define the extension problem for maximal
edge-subgraphs. This problem is further investigated to try and determine in which
cases the extension problem for maximal edge-subgraphs is polynomial, and in which
cases it is NP-hard.

Extension problem. For a hereditary graph property P, the extension problem for
mazimal edge-subgraphs is stated as follows. Given a graph G = (V| E) and two disjoint
subsets A and B of E, does there exist a minimal P-deletion of G' containing all edges
of A and no edge of B?

As for the vertex version, it does not suffice in general to look for maximal P-edge-
subgraphs of G — B, because the P-subgraphs obtained this way may not be maximal
P-subgraphs of G.

Recall that a graph property P is said to be monotone if it is closed under edge
removal. In other words, P is monotone if for any graph G satisfying P and any edge e
of G, G — e also satisfies P.

Such a general proof as in the case of maximal induced subgraphs is hard to obtain
when considering maximal edge-subgraphs, even when the property P is assumed to be
monotone. In the sequel, we explore the “edge version” of the extension problem to
understand in which cases it can be solved by a polynomial algorithm. Three graph
classes are considered: forests, graphs without short induced cycles, and graphs without
long induced paths.

4.2.1 Forests

Forests are graphs without induced cycles. They consist in disjoint unions of trees. If
P denotes the class of forests, which is a monotone property, the extension problem
asks if there exists a maximal spanning forest of G containing A and avoiding B.
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Assume first that G is connected. In this particular case, if removing B first
disconnects GG, then the answer is no: all spanning trees of G must contain at least
one element from B. Else, B can be removed first. The set A, if it induces a forest,
can then be extended in G — B to a spanning tree of GG. In the case where G is not
connected, a (maximal) spanning forest of G is the union of spanning trees of all
connected components of GG. Therefore, the extension problem for forests is polynomial.

This simple observation has already been made in the article of Read & Tarjan [72]
introducing the Flashlight method. They use it to design a very efficient algorithm,
running in polynomial delay and polynomial space, for the enumeration of all spanning
trees of a connected graph.

Nevertheless, the extension problem for maximal edge-subgraphs is not polynomial
for all classes of graphs. In the following two sections, we exhibit two graph properties
for which this problem is NP-hard.

4.2.2 P,-free graphs

For an integer k > 3, let us denote by P the path on k vertices. We will now have a
look on the class of all graphs that do not have long paths as induced subgraphs: the
Py-free graphs. In particular, when k& = 4, the class of P,-free graphs is exactly the
class of cographs. Note that the property of being Pi-free is not monotone: a cycle of
length k is Pj-free but removing one edge from it yields a F.

In 2018, Casel et al. proved, among other results, that the extension problem with
A = @ is NP-complete in the case of maximal matchings [20]. Since maximal Ps-free
graphs correspond exactly to maximal matchings in triangle-free graphs, this result
implies that the extension problem for maximal P;-free subgraphs is NP-complete, even
in triangle-free graphs and with A = @. We extend this result in the present section,
proving the following theorem.

Theorem 4.2. The extension problem for maximal Py-free edge-subgraphs is NP-hard
for all k > 3. Moreover, it is NP-complete when k equals 3 or 4.

Before proving Theorem 4.2, let us see how maximal Ps-free edge-subgraphs can be
recognised in polynomial time.

Consider a graph G = (V, E) and an edge-subgraph S of G, identified with its edge
set (therefore S C F), since the class of P;-free graphs is stable under adding isolated
vertices. We design a procedure, running in polynomial time, to determine if S induces
a maximal Pj-free edge-subgraph of G. The procedure relies on what is called the
sandwich problem.

The sandwich problem [50] is a decision problem defined as follows. We are given
a graph property P, and two graphs G; = (V, E;) and G = (V, E3) on the same
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vertex set such that Fy C F,, which both typically do not satisfy property P. The
question is to determine whether there exists a graph G = (V, E) satisfying P such
that E1 Q E Q EQ.

A polynomial algorithm answering this question for cographs — that is, P;-free
graphs — was proposed by Golumbic, Kaplan & Shamir [50]. Such an algorithm is called
a sandwich algorithm in the sequel. The idea is now to use the sandwich algorithm for
cographs to determine if a given edge set produces a maximal P;-free edge-subgraph.

Recognising a maximal P;-free edge-subgraph in polynomial time. Consider
the graph G and its subgraph S. The “cograph property” can be tested in linear time,
so we may assume that S induces a sub-cograph of G.

At the beginning, consider G; = S and G5 = G. Since S is a cograph, the sandwich
algorithm called on (Gy,Gs) returns TRUE. Then, it suffices to try adding edges to
(1, one at a time, and call the sandwich algorithm: if it returns TRUE on (G; + e, G2)
for at least one edge e € F'\ S, it means that there exists a sub-cograph of G strictly
containing S, and S is not maximal. Else, the sandwich algorithm returns FALSE on
(G1 +e,Gs) for each e € E'\ S, and S is a maximal Pj-free edge-subgraph of G.

The sandwich algorithm for cographs being polynomial, this whole procedure also
runs in polynomial time.

Equipped with this polynomial recognition procedure, we are now ready to prove
Theorem 4.2.

Proof of Theorem 4.2. For k = 3, the result follows from the proof of Casel et al. [20]
and the previous discussion. Now, let us prove it for £ = 4.

Let G = (V, E) be a graph, and let S C E be a set of edges of G. By the previous
discussion, knowing if S is a maximal P,-free edge-subgraph of G is polynomial.
Therefore, the problem is in NP. We will now prove that the extension problem for
maximal P;-free edge-subgraphs is NP-hard.

The reduction is from 3-SAT. Begin with a 3-SAT formula, with clauses C1, ..., C,,,
and variables X, ..., X,,. Consider the graph G built from the formula as follows.

For each clause C}, build a vertex ¢;, and for each variable X;, build two vertices x;
and T; corresponding to the associated literals, linked by an edge x;7;. Now, add an
edge between z; (or 7;) and ¢; if the corresponding literal appears in clause C;. At this
step, each vertex c; is of degree 3. Finally, for all j, add a pending vertex c;- to ¢;. Call
the resulting graph G. An illustration of such a construction is given in Figure 4.4.

We define A = {z;7; | 1 <i <n} and B = {¢;c; | 1 < j < m}. These will be the
edge sets A and B considered for the extension problem.

Suppose that there exists a maximal P;-free subgraph H of G, containing A and
avoiding B. Since H is a maximal Pj-free subgraph of G, adding to H an edge of B
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Figure 4.4: The graph G obtained from a 3-SAT formula.

produces an induced P,. That is to say, each vertex c; is the endpoint of an induced Ps.
Thus, there exists ¢ such that c;x; € E(H) or ¢;7; € E(H). Without loss of generality,
suppose that c;x; € E(H) (so ¢;7; ¢ E(H)). In this case, there is no k such that
cxT; € E(H), otherwise ¢;x;T;¢; is an induced Py in H.

For all 1 < ¢ < n, at most one of x;, Z; has neighbours among {cy, ..., ¢, }. Assigning
the value 1 to the corresponding literal satisfies the formula.

Conversely, if the formula is satisfiable, there exists a maximal P,-free subgraph H
of G containing A and avoiding B. It suffices to keep only edges incident to vertices
corresponding to literals assigned the value 1. To avoid creating induced Py, keep only
one edge incident to each vertex c;. This way, each vertex c; is the endpoint of an
induced P5, and no edge of B can be added without creating a P;.

Consequently, the edge extension problem for P,-free graphs is NP-complete, even
in triangle-free graphs because the graph G we built is triangle-free.

It is easy to adapt the previous reduction to show the NP-hardness of the problem
for Py-free graphs, with k > 4. It suffices to subdivide each edge x;7; into a path of
length & — 3 whose edges are all put in the set A. O]

4.2.3 Graphs without cycles of length at most &

Another class of graphs that is worth studying is the class of graphs without cycles of
length at most k, for a given k > 3, also known as graphs of girth at least k + 1, where
the girth stands for the length of the shortest cycle. This is a monotone property. For
this class of graph, it has been shown by Yannakakis in 1981 that the edge-deletion
problem is NP-complete [87]. In this case, the edge-deletion problem consists in finding
a set of edges of minimum cardinality whose removal results in a graph without cycles
of length at most k.

In the same fashion, we prove that the edge extension problem for graphs without
cycles of length at most k, that is to say, determining if there exists a maximal edge
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subgraph without cycles of length at most k, containing A and avoiding B, is also
NP-complete.

Theorem 4.3. The extension problem for mazimal edge-subgraphs without cycles of
length at most k is NP-complete for all k > 3.

Proof. First of all, checking if a set of edges induces a subgraph without cycles of length
at most k can be done in time O(n¥), where n is the number of vertices of the input
graph: it suffices to test all possible vertex subsets of size at most k. Moreover, as the
property is monotone, maximality can also be checked in polynomial time.

The reduction is from the minimal Vertex Cover extension in triangle-free graphs,
whose NP-completeness has been proven by Boros et al. [7, Proposition 2]. The minimal
Vertex Cover extension problem asks, given a graph GG and a subset S of its vertex set,
whether there exists an inclusion-wise minimal Vertex Cover of G containing .S, that
is, a subset X DO S of vertices such that each edge has at least one endpoint in X. The
original NP-completeness statement [7] does not mention the triangle-free case, but the
reduction used in the proof produces only triangle-free input graphs, which proves the
NP-completeness we need.

First, we shall prove the result for £ = 3. Let G = (V, E) be a triangle-free graph,
and let S C V. We build another graph G + ¢ by adding a universal vertex ¢ to G.
Since G is triangle-free, all triangles in G 4+ ¢ must include c¢. Moreover, for two vertices
u, v € V, the three vertices u, v, and ¢ form a triangle in G + ¢ if and only if uv € F.
Thus, there is a one-to-one correspondence between the edges of G' and the triangles of
G + c. Finally, we define A and B two subsets of edges of G + ¢ as follows: A := E(G)
and B := {cv | v € S}. An illustration of this transformation is presented in Figure 4.5.

C
A
7
T A
S o S §

G+e

Figure 4.5: Transformation of an instance of Vertex Cover extension into an instance
of the triangle-free edge extension problem. Circled vertices are vertices in S, A is the
set of edges of G (green), and B is the set of edges between ¢ and vertices of S (red).
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We will show that finding an edge extension without cycles of length (at most) 3 is
equivalent to finding a minimal Vertex Cover of G containing S, or finding a maximal
triangle-free subgraph of G + ¢ containing A and avoiding B.

Let H be a maximal triangle-free subgraph of G + ¢, containing A and avoiding B
and let X ={v eV |cv¢ E(H)}. Let us prove that X is a minimal Vertex Cover of
G containing S. Since H is triangle-free, X is a Vertex Cover of G. Indeed, for each
edge e of G there exists v € e such that cv ¢ E(H) (hence v € X), otherwise e U {c}
induces a triangle in H.

Moreover, since H does not contain any edge of B, X contains S for otherwise there
would be v € S such that cv € E(H).

Finally, since H is a maximal triangle-free subgraph of G + ¢, it is easy to see that
the Vertex Cover X is minimal in G: if there were v € X such that X \ {v} is a Vertex
Cover of GG, then all neighbours of v (except ¢) would have to be in X to cover all
the edges. So, by definition of X, there is no neighbour u of v such that cu € F(H),
hence we can add the edge cv to H without creating any triangle. This contradicts the
maximality of H.

Conversely, if we are given a minimal Vertex Cover of G containing S, then the
subgraph of G+ ¢ given by (V U{c}, AU{cv | v ¢ S}) is triangle-free, and it is maximal
in G + ¢ because the Vertex Cover is minimal in G.

This concludes the proof for k = 3.

For greater values of k, the proof can easily be adapted by subdividing each edge of
G in G + c into a path of length k& — 2 (that is, adding k — 3 new vertices on each edge),
and defining A to contain all edges of those paths. Such a transformation is illustrated
in Figure 4.6. Note that for £ > 3, the smallest cycle in the subgraph induced by A
has length at least 3(k — 2) > k, ensuring that the solutions of the extension problem
are not trivially inexistent.

Figure 4.6: Transformation for k£ = 5.
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As we have seen, in general, solving an extension problem is not easy: in the
induced case, the extension problem is NP-hard in general, and in its edge version,
there are also some situations in which it is NP-complete. Flashlight Search is efficient
to solve many enumeration problems with polynomial delay, but unfortunately the
technique is not applicable to all of our problems. Therefore, if we want to solve all the
maximal subgraphs (induced or not) enumeration problems with a general technique,
then Flashlight Search is not adapted. This is why a more sophisticated technique is

required.
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Chapter 5

Proximity Search: polynomial delay

The results presented in this chapter are obtained by applying and adapting the Prozimity
Search technique. Parts of them were obtained as a joint work with Aurélie Lagoutte,
Vincent Limouzy, Arnaud Mary and Lucas Pastor and appear in the 2020 preprint [10].
Other parts of the results in this chapter (on chordal completions) have been obtained
with Vincent Limouzy and Arnaud Mary and published in the proceedings of the 2022
ICALP conference [11].

Yo

it easy to find an elimination ordering. The idea is then to apply Proximity
Search: we will use this special, property-dependent ordering as the canonical
ordering to define the proximity between two solutions.

%I@ N THIS CHAPTER, we study some classes of graphs in which the structure makes

The first two classes that will be considered here are cographs and threshold graphs.
Both are well-studied classes of graphs for which it was not known if there exists
polynomial delay algorithms enumerating maximal (induced or not) subgraphs of an
arbitrary input graph.

Then, we focus on the class of chordal graphs. This graph class is very important
since it is closely related to graph parameters such as treecwidth and arises in many
applications. A polynomial delay algorithm running in exponential space was already
known for maximal induced chordal subgraphs and for minimal chordal deletions [23],
but the question of the existence of a polynomial delay algorithm enumerating minimal
chordal completions of a graph remained open.
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5.1 Maximal induced sub-cographs

As mentioned earlier, the class of cographs is hereditary, and cographs can be recognised
in linear time. This implies that finding one maximal induced sub-cograph of an input
graph is easy, using a greedy algorithm.

To the best of our knowledge, no polynomial delay algorithm was known for the
enumeration of maximal induced sub-cographs of a graph. The idea is to try using
Proximity Search on the class of cographs and see if it helps to enumerate them efficiently.
Plus, since cographs benefit from a twin construction ordering on their vertex set, as
stated in Section 1.1.2, we have a natural candidate for defining a canonical ordering
which could be useful in the Proximity Search framework.

If it were possible to solve the input restricted problem (see Section 2.2.4) for
maximal induced sub-cographs in polynomial time, then it would yield a polynomial
delay algorithm for their enumeration. However, we will show that in our particular
case, this problem cannot be solved in polynomial time.

Observe a graph H consisting of k disjoint edges x1y1, ..., Zryr. This graph is a
cograph. In particular, it does not contain Py as an induced subgraph (see Section 1.1.2).
Now, add a vertex v adjacent to all vertices z; for 1 < i < k, as shown in Figure 5.1.
The resulting graph H + v is not a cograph any more, since it contains several P;.
Removing one vertex among {x;,y;} for all 1 < ¢ < k produces a maximal induced
sub-cograph of H + v. This means in particular that H + v has at least 2¥ maximal
induced sub-cographs, which implies that the restricted problem has an exponential
number of solutions. Hence, the input restricted problem approach cannot be used for
the enumeration of maximal induced sub-cographs with polynomial delay. We will have
to use another technique if we want to achieve this time complexity bound.

v
.0.

Tio Tog oLk

n Yo Yk

Figure 5.1: The graph H consisting of £k disjoint edges x1y1, ..., zryx is a cograph, and
H + v has an exponential number of maximal induced sub-cographs.

Nevertheless, adding one vertex to a cograph produces only a polynomial number
of induced Pj. In this case, the results presented by Khachiyan et al. in the 2000s [61]
can be used to obtain an incremental polynomial time algorithm for the enumeration
of maximal induced sub-cographs. Since the size of the obstruction is constant, the
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algorithm of Eiter & Gottlob [41] can as well be used to achieve incremental polynomial
time complexity. We show here that this time complexity can be improved to polynomial
delay with the Proximity Search technique (see Section 2.2.5).

As it was shown by Corneil et al. [28], a characterisation of cographs is that they
can be constructed from an isolated vertex by recursively adding true or false twins to
existing vertices. From such a construction, we obtain an ordering vy, ..., v, on the
vertices of a cograph H, such that for all j € {1,...,n}, v; has at least one (true or false)
twin in Hvy, ..., v;], that we called the twin construction ordering in Section 1.1.2.

Every maximal induced sub-cograph can then be identified with an ordered set of
vertices; this is exactly what will be done in the sequel. This is why, for simplicity
of notation, we sometimes refer to a solution S as a set of vertices instead of a graph
(without introducing any ambiguity on the set of edges, since we are only considering
induced subgraphs in this section).

Let G be a graph of which we want to enumerate all maximal induced sub-cographs.
To use Proximity Search on this problem, we need:

e an ordering scheme on the maximal induced sub-cographs of G|

e a neighbouring function, enabling to generate from one maximal induced sub-
cograph S some new maximal induced sub-cographs, among which one will
provably be closer to a target solution.

Since the twin construction ordering of a cograph is in general not unique, the first
thing to do is to make it canonical. This will be done by means of an arbitrary ordering
U1, ..., u, on the vertices of G, as for many problems solved with Proximity Search [26].
According to the arbitrary ordering just defined, we will say that u; is smaller than u,
if © < j. The ordering scheme we use for maximal induced sub-cographs is defined as
follows.

Ordering scheme. For any maximal induced sub-cograph S of GG, the canonical
ordering 7(5) is the lexicographically smallest twin construction ordering of S, with
respect to the arbitrary ordering us, ..., u,. In particular, for any S, 7(.5) is a sequence
v1 ... v, of vertices of G such that v; is the smallest vertex of G' belonging to S.

It is worth mentioning that for any maximal induced sub-cograph S of G, the
canonical ordering 7(S) can be computed in polynomial time from the cotree associated
with S, even if this is not required when using the classical Proximity Search framework.

An example of a cograph with its canonical ordering is given in Figure 5.2. In this
example, the canonical ordering is 1,4, 3, 2, 5.

To build the graph of Figure 5.2, we begin with the vertex of smallest id: 1, then 4
is added as a true twin of 1, followed by 3, a false twin of 1 in the subgraph induced by
1,4, 3; after that 2 is added as a true twin of 1, and finally 5 is added as a false twin of
the vertex 4.
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Figure 5.2: An example of a cograph with its cotree; the canonical ordering is 1,4, 3, 2, 5.

Equipped with this ordering scheme, we can then define the proximity between two
maximal induced sub-cographs of GG in the usual manner: if S and S’ are two solutions,
and the canonical ordering of S is vy ... v|g, then SNS" is the longest prefix vy ... v;
of w(S’) such that {vy,...,v;} C S. In this case, |SNS’| = i. Recall that this notion of
proximity is not symmetric and that the only solution S maximising S NS’ is S’ itself.

The next step is to define the neighbouring function NEIGHBOURS that will be used
to build the solution graph. Remark that, as the class of cographs is hereditary, the
greedy COMPLETE function which adds one vertex at a time while the result is a cograph
can be used to maximise an induced sub-cograph. This maximisation function runs
in polynomial time because the recognition algorithm for cographs does so. Moreover,
it is easy to make this COMPLETE function deterministic by following the arbitrary
ordering uy, ..., Uy.

In order to be able to use Proximity Search, the cardinality of NEIGHBOURS(S)
should be polynomial in n for any solution S. We will see that the following neighbouring
function satisfies this requirement.

Definition 5.1 (Neighbouring function for maximal induced sub-cographs). Let S be
a mazimal induced sub-cograph of G. For all x ¢ S and all y € S, we define

Spy 1= COMPLETE((S \ (Na(2)ANs(y))) U{z, y}).

Then let NEIGHBOURS(S) := {vay |z ¢S, ye S}. Fach solution has at most a
quadratic number of neighbours.

The idea behind this definition of NEIGHBOURS for maximal induced sub-cographs is
to add a vertex x while making sure that  and y become twins (true or false according
to their adjacency in G) in S;,. This neighbouring function is illustrated in Figure 5.3,
where the circled vertices represent the elements of (Ng(x)ANg(y)). Two of them are
removed from S so that z and y become twins in (Ng(2)ANg(y))) U {x,y}. After that,
the induced sub-cograph is maximised.
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—>

) U{z,y} S,

Figure 5.3: lustration of the neighbouring function for maximal induced sub-cographs.
The circled vertices belong to Ng(z)ANs(y).

Now, we need to ensure that the neighbouring function that has been defined
for maximal induced sub-cographs will not generate induced subgraphs that are not
solutions to our problem. It is the purpose of the following lemma.

Lemma 5.2. For every maximal induced sub-cograph S, and for every x ¢ S, y € S,
the graph S, is a mazimal induced sub-cograph of the input graph G.

Proof. Let S := (S \ (Na(2)ANs(y))) U {z,y} and suppose that S is not a cograph.
Then there is an induced Py in S. Remark that S\ {z} is a cograph, as an induced
subgraph of the cograph S. Hence necessarily x participates to this newly-induced Pj,
and y does not because it is twin with z. But substituting = for y produces an induced
P, in S\ {z}, which is excluded. Therefore S is a cograph.

The function COMPLETE, when given an induced sub-cograph of G, returns a
maximal one. Consequently, S;  is indeed a maximal induced sub-cograph of G. [

Lemma 5.2 guarantees that the neighbouring function is well-defined and that all
neighbours of a solution are also solutions. Therefore, we can consider the supergraph
of solutions, whose vertices are the maximal induced sub-cographs of G and an arc
(S,957) exists if and only if S” € NEIGHBOURS(S). Now, it remains to show that this
supergraph of solutions is strongly connected; in other words, that every solution can
be reached from any other by increasing their proximity at each step.

Lemma 5.3. Let S and S* be two distinct maximal induced sub-cographs of a given
graph G. There exist x ¢ S and y € S such that |S,, N.S*| > [SNS*.

Proof. Denote by v1, ..., vs+| the canonical ordering of S™.

If [SNS*| =0, then v; ¢ S. Let y € S, then v; € ), and it immediately follows
Sy, VS| = 1> [SNS*.

Else, let k£ be the smallest index such that vy ¢ S (in this case, [SNS*| =k — 1).
Since vy, ..., v is a prefix of the twin construction ordering of S*, there exists ¢ < k
such that vy, and v; are twins in S*[vy, ..., v]. By minimality of k, v; is a vertex of S.

Consider S, .. It is a cograph by Lemma 5.2. It remains to show that 5] , contains
v1,...,V. For contradiction, assume that there exists j € {1,...,k — 1} such that
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v; & Sy, 0, Since {vy, ..., v} € S NS it implies that v; € Ng(vr) ANg(v;). But by
definition of the canonical ordering of S*, v; and vy are twins in G[vy,. .., vg], SO no
vertex of {v1,..., v} can be in Ng(vp) ANg(v;). Therefore, S, contains vy, ..., vy.

Consequently, |S!  NS*| >k > |SNS*. O

kUi

By Lemma 5.3, the supergraph of solutions is strongly connected. In other words, the
problem of enumerating all maximal induced sub-cographs with the twin construction
ordering scheme is proximity searchable. Then, Algorithm 2.4 can be used to enumerate
all maximal induced sub-cographs in polynomial delay. Hence, we can state the following
theorem.

Theorem 5.4. Mazximal induced sub-cographs of a graph G can be enumerated in
polynomial delay and exponential space with Proximity Search.

We also addressed the question of determining if there exists a polynomial delay
algorithm computing the minimal cograph completions — or equivalently the minimal
cograph deletions, since the class of cographs is self-complementary — of a graph G.
As proved in Chapter 4, the corresponding extension problem is NP-complete, so
Flashlight Search will not really serve our purposes. As for Proximity Search, finding
an appropriate neighbouring function on maximal edge-sub-cographs turned out to be
surprisingly difficult. In particular, when trying to adapt the transition function used
for maximal induced sub-cographs, we could not make sure that the newly generated
subgraphs were cographs. This leads to the following question.

Question 3. Can minimal cograph deletions be enumerated with polynomial delay?

5.2 Threshold graphs

In this section, Proximity Search is used to enumerate efficiently the maximal induced
threshold subgraphs of a graph G. Unlike for cographs, a good ordering scheme and a
good neighbouring function can be derived from the induced case to apply Proximity
Search on the minimal threshold deletions. This adaptation of the ordering scheme
and neighbouring function to the minimal threshold deletions problem is good news: it
implies an efficient algorithm for the enumeration of minimal threshold deletions. Plus,
as the class of threshold graphs is self-complementary, it directly implies an efficient
algorithm for the enumeration of minimal threshold completions.

5.2.1 Maximal induced threshold subgraphs

By definition, all threshold graphs can be constructed from a single isolated vertex
by adding at each step either an isolated vertex or a universal vertex, i.e. a vertex



| 83

adjacent to all other vertices of the graph [21] (see Section 1.1.2). This construction
provides an ordering vy, ..., v, on the vertices of a threshold graph H, such that for all
1 < i < n, either v; is isolated in Hvy, ..., v;], or v; is universal in Hvy, ..., v;].

Note that finding a maximal induced threshold subgraph is not hard: a greedy
algorithm adding vertices one by one while the resulting graph has the threshold
property is well-suited for this purpose. As threshold graphs can be recognised in linear
time, the greedy algorithm runs in polynomial time.

We will see how maximal induced threshold subgraphs can be enumerated with the
help of Proximity Search. First, an ordering scheme is defined for maximal induced
threshold subgraphs, relying on their construction ordering. Then, a neighbouring
function allows us to transform a solution into another. The last step is to prove that
the maximal induced threshold subgraphs enumeration problem with these ordering
scheme and neighbouring function is indeed proximity searchable.

Ordering scheme. As it was the case for cographs, sometimes several threshold
construction orderings are possible for a same threshold graph. To define a canonical
threshold construction ordering on an induced threshold subgraph S of G, it suffices to fix
an arbitrary ordering wuy, ..., u, on the vertices of G' and consider the lexicographically
smallest threshold construction ordering of S according to uy, ..., uy,.

In Figure 5.4 is represented a threshold graph. There are two possible threshold
construction orderings of this graph: 1,4,2,5,3,6 and 4,1,2,5,3,6. The lexicographi-
cally smallest is 1,4,2,5,3,6. The black vertices are added as universal, and the white
ones are added as isolated vertices.

) °6

Figure 5.4: The canonical ordering of this threshold graph is 1,4,2,5, 3, 6.

Now, let us define a neighbouring function able to produce new solutions from the
already generated ones.

Definition 5.5 (Neighbouring function for maximal induced threshold subgraphs).
Let G be a graph and let S be a mazximal induced threshold subgraph of G. For any
x € V\ S, we can define two induced subgraphs of G:

S* = coMPLETE({z} U (SN N(x))) and S. = coMPLETE({z} U (S \ N(x)))



84 |

where COMPLETE is the greedy completion function, adding vertices according to the
arbitrary ordering defined a priori, while the threshold property is satisfied.

Then, let NEIGHBOURS(S) = {S¥ |z € V\ S} U{S! | z € V' \ S}. Each solution

has a linear number of neighbours.

The neighbouring function for maximal induced threshold subgraphs is illustrated
in Figure 5.5. For a vertex z, two induced subgraphs are built: one in which z is
universal, and one in which x is isolated. In this example, after the completion step, x
is not universal nor isolated any more but the resulting graphs are maximal induced

threshold subgraphs of G.

/ COMPLETE
T

Sll

COMPLETE‘
SI

Figure 5.5: Illustration of the neighbouring function for maximal induced threshold
subgraphs.

It remains to ensure that the neighbouring function defined here only produces
maximal induced threshold subgraphs of G. This is the idea of the following lemma.

Lemma 5.6. If S is a mazimal induced threshold subgraph of a graph G, then for all
reV\S, S*and S:. are mazimal induced threshold subgraphs of G.

Proof. Let G be a graph and let S be a maximal induced threshold subgraph of G.
It suffices to show that G[{z} U (S N Ng(x))] and G[{z} U (S \ Ng(z))] are threshold
graphs. After that, the greedy COMPLETE function will extend them into maximal
induced threshold subgraphs of G.

We know that S induces a threshold graph. Moreover, (SN Ng(z)) and (S'\ Ng(x))
are subsets of S, and since the threshold property is hereditary, they induce threshold
subgraphs of S. Now, x is universal to (S N Ng(z)) so in particular, it is universal
in G[{z} U (SN Ng(x))]. As the class of threshold graphs is stable under adding a
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universal vertex, we immediately deduce that G[{z}U (SN Ng(z))] is a threshold graph.
Similarly, z is isolated in G[{z} U (S\ Ng(z))], and since the class of threshold graphs is
stable under adding an isolated vertex, then G[{z} U (S \ Ng(x))] is a threshold graph.

Consequently, S* and S¢ are maximal induced threshold subgraphs of G. O

As before, once we know that all neighbours of a solution are also solutions, it allows
us to consider the supergraph of solutions induced by the function NEIGHBOURS. Let
us prove that this supergraph of solutions is strongly connected: this way, the problem
is proximity searchable and Algorithm 2.4 can be used to enumerate efficiently the
maximal induced threshold subgraphs.

Lemma 5.7. Let S and S* be two mazimal induced threshold subgraphs of a graph G.
There exists x € V such that either |S*N.S*| > |SNS*| or |SLNS* > [SNSH.

Proof. Let vy, ..., s+ be the canonical ordering of S*. Let k = [S 1 .S*| be the smallest
index such that vgy ¢ S (if v; ¢ S, then k = 0). By definition of k, we know that
Vk+1 ¢ S.

Since vy, . .., V41 is a prefix of S*, in particular {vq, ..., v} € S* and the induced
subgraph G[{vi,...,vgs1}] is threshold because S* is. Moreover, by definition of the
canonical ordering, we know that vy is either isolated or universal in G[{vy, ..., vgi1}].

Assume that vy is isolated in G[{v1, ..., vk41}]. In particular, since we are dealing
with induced subgraphs, it implies {vq,..., v} € S*\ N(vgy1). Therefore, Sf)kﬂ
contains {vy,...,v41}, and |S;, | N S*[ > [SNS*.

Similarly, if vgyq is universal in G[{vy,...,vr41}], the same reasoning implies the
inequality |S§fk+1ﬁ5*| > |SNS*. O

From these two lemmas, we deduce that maximal induced threshold subgraphs are
proximity searchable, hence the following theorem.

Theorem 5.8. Maximal induced threshold subgraphs of a graph G can be enumerated
in polynomial delay and exponential space with Prozimity Search.

In fact, it has been proved recently that the input restricted problem for maximal
induced threshold subgraphs is polynomial [13]. This allows us to use the algorithm
proposed by Cohen et al. [22] (see Section 2.2.4) to enumerate the maximal induced
threshold subgraphs with polynomial delay in polynomial space.

However, being able to enumerate the maximal induced threshold subgraphs with
Proximity Search has not become totally pointless. Knowing a suitable ordering scheme
for the maximal induced subgraphs problem will help us determine one for the minimal
deletions problem, as we will see in the next section.
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5.2.2 Minimal threshold deletions

Minimal threshold deletions can also be enumerated with the help of Proximity Search.
Since the class of threshold graphs is stable under complement, it is equivalent to
enumerate minimal threshold completions as well.

Recall that a minimal threshold deletion of GG is a maximal threshold subgraph S
of G. Since threshold graphs are closed under adding isolated vertices, it immediately
follows that any minimal threshold deletion S satisfies V' (S) = V(G). Hence, there will
never be any ambiguity on the vertex set, so S will often be used to denote both the
subgraph and its set of edges F(S) C E(G).

Finding one minimal threshold deletion. It has been proved that the class of
threshold graphs is sandwich-monotone [56]. This means in particular that between
two threshold deletions S and T of G such that T" C S, there exists a sequence of
single-edge additions allowing to go from 7" to S. But the edgeless graph T := (V, @)
is a threshold subgraph of G: therefore it is a threshold deletion of G such that any
minimal threshold deletion S satisfies T' C S. Based on this observation, we will show
how to find a minimal threshold deletion of G in polynomial time.

Since the edgeless graph is a threshold deletion, it is possible to start from the
edgeless graph and try adding one edge at a time while the threshold property is
satisfied. We stop when no more edge can be added without breaking the threshold
property. Because threshold graphs are sandwich-monotone, we are sure that this
procedure will stop only when a maximal threshold edge-subgraph, that is, a minimal
threshold deletion of G, is found. Moreover, the threshold property is testable in linear
time. Consequently, finding a minimal threshold deletion is possible in polynomial time
with this technique.

As in Section 5.2.1, in order to use Proximity Search we need to define an ordering
scheme on the solutions (here, on the edges, not on the vertices), and a neighbouring
function to go from one solution to some others. The ordering scheme will be adapted
from the maximal induced threshold subgraphs case as follows.

Ordering scheme. Let S be a minimal threshold deletion of G. The idea is to order
the edges of S in such a way that when a new vertex v; is added in the threshold
construction ordering, all the edges incident to v; in S[{v1, ..., v;}| are consecutive and
follow the threshold construction ordering. More formally, we consider the sequence
((vji)i<j)j<n, Where vy, ..., v, is the canonical (i.e. lexicographically smallest) threshold
construction ordering of S. In fact, we can think of it as adding all edges incident to v;
in S[{vy,...,v;}] at the same time.

The proximity between two minimal threshold deletions S and S* is then — as usual —
the longest prefix of the canonical ordering of S* included in S.
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Since threshold graphs are sandwich-monotone, it is possible to derive a polynomial
COMPLETE function for threshold graphs, trying to add one edge at a time while the
resulting subgraph is threshold, and stopping when no more edge can be added without
breaking the threshold property. Such a completion function returns a maximal induced
threshold edge-subgraph, by definition of being sandwich-monotone.

Then, to transform a solution into another, the technique will be to choose a vertex
and try to make it universal. We define the following neighbouring function.

Definition 5.9 (Neighbouring function for minimal threshold deletions). Let G be
a graph and let S be a minimal threshold deletion of G. For a vertex x of G, we
will bwild a graph S, in which x is universal in the construction ordering. We define
Eq(z) :={zt |t € Ng(x)}, and consider the following sets of edges of G:

1. Ey(z) = Eg(z);
2. for each v € Ng(z), Ey(v) := {vw | w € Ng(v) N Ng(z)} U {va};

3. for every other verter v, E,(v) == @.

veV
solution has a linear number of neighbours.

Let S, :== COMPLETE ( U Ex(v)>, and define NEIGHBOURS(S) := {S, | z € V}. Each

The neighbouring function for minimal threshold deletions is illustrated in Figure 5.6.
The vertex = is made universal by adding some edges and removing others. In this
example, after the completion step, x is not universal any more but the resulting graph
is a minimal threshold deletion of G.

——p
COMPLETE
o

T Tr =

Sa

Figure 5.6: Illustration of the neighbouring function for minimal threshold deletions.

As before, we need to ensure that only solutions will be computed by NEIGHBOURS.

Lemma 5.10. If S is a minimal threshold deletion of a graph G, then for allx € V,
Sz 18 a minimal threshold deletion of G.

Proof. Let x € V. Tt suffices to show that S := | E,(v) is a threshold graph.
veV
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In S, all non-neighbours of x are isolated vertices. Besides, adjacencies between
vertices of Ng(z) have not been modified from S. Moreover, since S is a threshold
graph, S[Ng(x)] is also a threshold graph; the addition of x as a universal vertex in
S[N¢(z)U{x}] implies that S[Ng(xz) U{z}] is also a threshold graph. Therefore, as the
union of a threshold graph and isolated vertices is a threshold graph, S is a threshold
graph.

It is then possible to apply the polynomial COMPLETE function to build 5’1, which
is a minimal threshold deletion of G. O]

Once we know that all neighbours of a solution are also solutions, we can consider
the supergraph of solutions. Let us prove that this supergraph of solutions is strongly
connected.

Lemma 5.11. Let S and S* be two minimal threshold deletions of a graph G. There
exists x € V' such that |S, N S*| > [SNS*|.

Proof. Let vy,...,v, be the threshold construction ordering of S*, and consider the
associated edge canonical ordering.

Let viv; be the first edge of S* which does not appear in S.

By definition, the neighbours of vy in Svk are all the neighbours of v, in G. Necessarily,
we have the inclusion Ng«(vg) C Ngvk (vg). Hence any edge incident to v in S* is also

present in Svk.

Moreover, if an edge v;v; with j < k is present in S, then it is also present in S
by definition of v,v; as the first edge of S* which does not appear in S. Since vgv;
is an edge of S*, it means that v, is universal in S*[vy, ..., vx]. Therefore every edge
v;jv; with j < k appearing in S* is an edge joining two neighbours of v, in G: it is not
removed by the transition operation, so it appears in gvk.

Hence S, satisfies |S,, 1.S*| > |S 7 .5%. O

From these two lemmas, we deduce that minimal threshold deletions are proximity
searchable, hence the following theorem.

Theorem 5.12. Minimal threshold deletions (resp. completions) of a graph G can be
enumerated in polynomial delay and exponential space with Proximity Search.

In the case of threshold deletions, it was possible to adapt the canonical ordering
and neighbouring function of the maximal induced threshold subgraphs case, in order
to apply Proximity Search. Advantage was taken from the “sandwich-monotonicity” of
threshold graphs. In fact, being sandwich-monotone (or equivalently, strongly accessible)
is a very powerful property, as we will see in the next section.
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5.3 Minimal chordal completions

Chordal completions were first introduced in the 1970s as a tool for solving large sparse
systems of linear equations [74, 75]. This was inspired by an algorithm known as the
Elimination Game, proposed by Parter in 1961 and introducing the link between sparse
matrix computation and graphs [70]. More precisely, minimal chordal completions are
used to compute efficiently what is called the fill-in in sparse matrix factorisation. In
fact, finding a perfect elimination ordering of a chordal graph corresponds to finding an
ordering for the Gaussian elimination of its adjacency matrix [68]. Chordal completions
are still used nowadays for this purpose, as they provide indeed a very powerful tool
[27]. However, this is far from being the only reason for minimal chordal completions
to be interesting.

Being able to compute a tree-decomposition of a graph is useful in many situations.
For example, one may want to compute the treewidth (minimum size of a bag minus
one) since it appears as a parameter in many optimisation problems [73]. But other
parameters depend on finding a tree-decomposition, e.g. the so-called tree-independence
number [34]. And the notion of being optimal for a tree-decomposition hugely depends
on which parameter has to be optimised (the largest size of a bag, the smallest size
of a stable set in a bag, the largest diameter of a bag...) [18, 34]. This is why finding
inclusion-wise minimal chordal completions is in some situations even more relevant
than finding a minimum-cardinality one (which is NP-complete anyway [86]). Moreover,
as the notion of “good” minimal chordal completion is not always easy to model, the
enumerative approach makes a lot of sense. This way, one can generate a bunch of
minimal chordal completions and choose which one best suits the problem according to
their own criteria.

For all these reasons, it is interesting to be able to generate efficiently minimal
chordal completions of a graph. For further reference about minimal chordal completions
(from another viewpoint than enumeration), we refer the reader to the very complete
survey by Heggernes [54].

The question of enumerating all minimal chordal completions of a given graph has
been addressed in 2017 by Carmeli, Kenig & Kimelfeld [17], who proposed a highly
non-trivial algorithm. Their algorithm runs in incremental polynomial time; its total
complexity is quadratic in the number of solutions, and to avoid duplication of solutions,
requires exponential space. The algorithm is based on a result by Parra & Scheffler
[69], linking the minimal triangulations of a graph to the maximal stable sets of an
auxiliary graph. In a later version of their paper, Carmeli et al. even proved that, under
the Exponential Time Hypothesis, their approach could not be improved to achieve
polynomial delay [18]. This intractability result also holds for the exponential space.

In the paper of Carmeli et al. [17, 18] and at a Dagstuhl seminar [8], it was left as
an open problem whether a polynomial delay or a polynomial space algorithm for the
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enumeration of minimal chordal completions could be obtained. Here, we answer this
question concerning the time complexity. As for the space usage, it will be treated in
Chapter 6.

The other two problems concerning chordal graphs, namely the maximal induced
chordal subgraphs and the minimal chordal deletions enumeration, have been addressed
by Conte et al. in the light of Proximity Search [23]. Both were proved to admit
a polynomial delay algorithm, as well as the maximal induced connected chordal
subgraphs problem. However, they could not manage to adapt Proximity Search to the
minimal chordal completions enumeration.

In the sequel, we exhibit a polynomial delay and exponential space algorithm
relying on Proximity Search to list all minimal chordal completions of a graph. First,
Section 5.3.1 is devoted to the definition of an ordering scheme that will suit to minimal
chordal completions. Then in Section 5.3.2, we introduce the neighbouring function
and prove that the problem is proximity searchable. As a consequence, we obtain a
polynomial delay algorithm for the enumeration of minimal chordal completions.

5.3.1 Ordering scheme for chordal completions

When looking for an ordering scheme for chordal completions, a property that turns
out to be crucial is that of being sandwich-monotone (as it was the case for threshold
deletions). It has been proved by Rose, Tarjan & Lueker that the class of chordal
graphs is sandwich-monotone [75]. This immediately implies that for any two chordal
completions F; and F; of G, if F} C F5 there exists a sequence of single-edge removals
that permits to go from F;, to Fj. It rephrases as the following lemma.

Lemma 5.13 ([75, Lemma 2]). Chordal graphs are sandwich-monotone. In particular,
for any graph G, the chordal completions of G are sandwich-monotone.

The general idea is then to use the “sandwich-monotonicity” of chordal completions
to derive a suitable ordering scheme. Then, we will use this ordering scheme in order
to apply Proximity Search.

The Proximity Search framework has been designed to enumerate the inclusion-wise
mazimal sets of a set system. However, the same framework could as well be applied
to the enumeration of inclusion-wise minimal sets of a set system, by considering the
complements of the solutions. It is the approach we adopt for the enumeration of
minimal chordal completions.

To this effect, we will not work directly with the edge sets of the completions but
rather with the sets of their non-edges. For the input graph G = (V, E), let us denote by
E° the set of its non-edges G, that is to say, £ = (‘2/) \ E. Here, a chordal completion
is identified with its set of fill edges. In other words, we call a chordal completion of
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G a set F' C E° such that the graph (V, F U F) is chordal. The set of all chordal
completions of G is denoted by F, and the set of all minimal chordal completions of G
is denoted by Fiin.

Moreover, we consider for any completion F its complement F', defined as F := E°\ F.
The goal of this section is to apply Proximity Search to the set F := {F | F' € F} in
order to enumerate its maximal elements. That is to say, the set we want to enumerate

with Proximity Search is F .y := max(F) = {F | F € Fuin}-

From now on, the elements of E° (the non-edges of G) are assumed to be arbitrarily
ordered. The following definitions are similar to the ones given in the paper by Conte
et al. [24] but are defined on F instead of F.

Let F' be a chordal completion of G and X be any subset of £°. The set X can be
seen as the set from which removing elements is allowed. We define:

CANDIDATES(F, X) :={ec€ XNF: F\{e} € F}
CANDIDATES(F) := CANDIDATES(F, F)

¢(F, X) := min(CANDIDATES(F, X))

¢(F) := min(CANDIDATES(F))

where the minimum is taken according to the arbitrary ordering on the elements of E*.
Now, given a chordal completion F' and a set X C E°, we denote by DEL(F, X) the
chordal completion included in F' by iteratively removing ¢(F, X) from F' at each step,
until CANDIDATES(F, X) it empty. Finally, we define DEL(F) := DEL(F, F'). Note
that, for any F'; X, computing DEL(F, X) corresponds to the following procedure.

Function 5.1: DEL(F, X)

1 while CANDIDATES(F, X) # () do
2 L remove ¢(F, X) from F;

3 return F

Determining if CANDIDATES(F, X) is empty or computing ¢(F, X) is not hard: it
suffices to try to remove one edge at a time, following the arbitrary order set at the
beginning, until one edge is found whose removal leaves the graph chordal, or until all
edges have been tested. This can be done in polynomial time because chordality can
be tested in linear time [82]. Then, Function 5.1 consists in a polynomial number of
calls to this procedure. Consequently, DEL(F, X) is computable in polynomial time.

In fact, Function 5.1 has another advantage, stated as the following remark.

Remark 5.14. By Lemma 5.13, if F € F then DEL(F) € Fpm. That is to say, DEL
can be used to turn a chordal completion into a minimal one in a canonical way.
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Furthermore, note that E€ is a chordal completion of G: it corresponds to the clique
completion. This immediately implies, by Remark 5.14, that £ can be turned into a
minimal chordal completion in a deterministic manner. As a result, a minimal chordal
completion of G can be found in polynomial time by computing DEL(E®).

Before going further, let us have a look on how the Function DEL is used to find a
minimal chordal completion of a graph. In the example of Figure 5.7, the input graph
G is a Cg, that is, a cycle on six vertices named a, b, ¢, d, e, f. At first, all the possible
fill edges are added. Then, the fill edges are considered in lexicographic order; at each
step we try to remove the lexicographically smallest fill edge whose removal does not
create a chordless Cy. In this example, at the moment the edge bf is considered, its
removal creates a chordless Cj.

a a a a a
f b f b f b f b f b
e Cc e C e C e Cc e C
d d d d d
a a a a
f b f b f b f b
e c e C e C e C
d d d d

Figure 5.7: How to use the Function DEL to compute a minimal chordal completion of
a Cg. The chordal completion {bf, cf,df} is minimal.

But the fact that E° is a chordal completion of G has even stronger implications, as
stated in the following lemma.

Lemma 5.15. If F is a minimal chordal completion of G, then DEL(E, F) = F.

Proof. By Remark 5.14, it holds DEL(E®, F) € Fum, and F' C DEL(E®, F). As a result,
since the only minimal solution containing F' is F itself, then DEL(E®, F) = F. O]

In the light of Lemma 5.15, we will now be able to define a suitable ordering on the
solutions. Indeed, the procedure followed to compute DEL(E¢, F') provides an ordering
on the elements of F' by considering the order in which the elements of F' are removed to
obtain F'. From this ordering, we can define for any chordal completion F' the canonical
ordering CAN(F) := s1, ..., S7 of I as follows:

o s1:=c(EF);
o forall 1 <i<|F|, sit1:=c(E°\ {s1,...,s:}, F).
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Canonical ordering. For a set F' and its canonical ordering CAN(F) := s, ..., S(F|

we define F' as the ith prefix of I, that is, the set of elements {s, ...,Asi} C F, and we

set F' := E°\ F'. By definition of CANDIDATES(E®, F), any prefix F' of this ordering
belongs to F. In other words, F' denotes the chordal completion of G, not necessarily
minimal, obtained by removing the ith prefix of CAN(F) from the clique completion.

This ordering will be used to measure the proximity between two solutions in order
to call the Proximity Search algorithm for minimal chordal completions. Note that it
can be computed in polynomial time for any solution, the complexity being essentially
this of calling Function DEL.

We now define the notion of proximity between two solutions that will be used in
the sequel. For F} and F, two minimal completions of G, let CAN(Fy) = fi, ..., fx be
the canonical ordering of F,. The proximity F} N F, between Fy and F; is defined as
the largest @ < k such that {fi, ..., f;} € Fi. The notion defined here corresponds to the
standard proximity measure that is usually adopted when using the Proximity Search
framework [10, 24, 26] and it is not symmetric in general.

Note that the proximity is defined here on the set of elements of E° (that is to say,
non-edges of G) which do not belong to the chordal completion. Since we are working
on both the completions and their complements, by a slight abuse of language, when
we speak about the proximity between two minimal completions, we actually mean the
proximity between their complement sets.

5.3.2 Polynomial delay algorithm

We show in this section that the ordering scheme CAN defined above is proximity
searchable. Since the idea is to consider the complement sets of minimal completions
rather than the completions themselves, we will seek to maximise the set of common
non-edges between two minimal completions in order to increase the proximity. So, we
actually show that CAN is a proximity searchable ordering scheme of F.

The first goal is to define a suitable neighbouring function on the class of chordal
graphs. Any solution must have a polynomial number of neighbours, each of them
being computable in polynomial time in order to guarantee the polynomial delay when
applying Proximity Search.

Given a chordal graph H and an edge e = {x,y} € E(H), the flip operation
FLiP(H,e) consists in removing e from H, and turning the common neighbourhood
of z and y into a clique. More formally, if H' = FrLiP(H,e), then V(H') = V(H) and
E(H'") = (E(H)\{e})U{uv | u,v € Ny(x) N Ng(y)}. The flip operation is illustrated
in Figure 5.8.

Since H is chordal, the removal of e can create several chordless C, of which e was
the only chord. We will see that completing the common neighbourhood of x and y
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Frip

Figure 5.8: The flip operation on e = {x,y}. The common neighbourhood of z and y
is turned into a clique.

into a clique adds the missing chords to all these Cy4. In other words, the flip operation
preserves the class of chordal graphs, as stated next.

Lemma 5.16. Let H be a chordal graph, and e = {x,y} be an edge of H. Then the
graph H' := FLIP(H,€) is also chordal.

Proof. Assume (for contradiction) that H' contains a chordless cycle C of length ¢ > 3.

Suppose C contains only edges of H. Since H is chordal, it does not contain long
induced cycles. Then necessarily C'is a Cy of H of which e was the unique chord, for
otherwise there would be an induced cycle of length at least 4 (either C' or a cycle made
from e and edges of C) in the chordal graph H. By definition, the flip operation adds
an edge between the other two vertices of C', meaning that C' has a chord in H’. This
cannot happen.

Therefore, C' contains an edge €' = {z,t} added by the flip operation (i.e. €’ is an
edge of H' but not of H). Since C' contains the edge €, it does not contain any other
fill edge added by the flip operation, otherwise a chord of C' would also be added by the
flip. Plus, we assumed that e’ is added by the flip operation, so necessarily both z and
t belong to Ny (x) N Ng(y). Therefore, P := C — {¢'} is a z — t path of H’', disjoint
from z, y, and ¢’. Remark that P is an induced path of H since it contains only edges
of H, that is, z and ¢ are in the same connected component of H \ {x,y}, as illustrated
in Figure 5.9 (left).

Claim 5.17. FEvery vertex of P is in Ny(z) N Ng(y).

Proof. Suppose that there exists a vertex s of P which is not a neighbour of z. We will
show that there exists in H a chordless cycle containing s and z.

As s is not a neighbour of z, and z is by hypothesis, there exists ¢ € N(x) a vertex
of P that is between z and s, and closest to s on P. Similarly, let » € N(x) be a vertex
of P that is between ¢ and s, and closest to s.

The g — r subpath of P induced by all vertices between ¢ and r is therefore a
chordless path of H of which all internal nodes are non-neighbours of z. It follows that
adding x to this ¢ — r subpath creates a chordless cycle of length at least 4 in H. The
chordless cycle is highlighted on Figure 5.9 (right). This is excluded, so all vertices of
P are neighbours of x in H.



| 95

Figure 5.9: There is a z — ¢ path P in H’, disjoint from ¢’. On the right, the vertices g,
s, r and x belong to a chordless cycle of H. The edge xs does not belong to the graph.

By symmetry in  and y, we also deduce that all vertices of P are neighbours of v.
The claim is proved: every vertex of P is in Ny (z) N Ny(y). O

By the previous Claim, the flip operation turns the cycle C' into a clique. Hence C
has length 3, a contradiction. O]

When dealing with chordal completions, the notation of the flip operation will be
slightly adapted: for F' € F, and e € F (e is always chosen among the fill edges of
the completion), we will omit G in our notation and write FLIP(F,e) instead of, for
example, FLIP(G U Fe).

From Lemma 5.16, we are then able to deduce the following equivalent in terms of
chordal completions.

Lemma 5.18. Let F' be a chordal completion of a graph G. If F € Fm, and e € F,
then FLIP(F,e) € F. That is to say, FLIP(F,e) is a chordal completion of G.

Proof. The only edge that is in F' but not in FLIP(F,e) is e. Since e € F', it implies
that all edges of G are still in Gpp(re). As FLIP(F, e) is chordal by Lemma 5.16, in
particular it is a chordal completion of G. O

We are now ready to explain the neighbouring function used to enumerate Fy.
Observe that FLIP(F|e) is a chordal completion of G that is not necessarily minimal. It
needs to be minimised with Function DEL in order to become a solution of our problem.

Neighbouring function. Given F' € F;, and e € F, we define the successor of F
according to e as the minimal completion SUCC(F,e) := DEL(FLIP(F,e)). We now
define the neighbours of a solution F' as NEIGHBOURS(F') := {Succ(F, f)|f € F}.

As a corollary of Remark 5.14 and Lemma 5.18, SUCC(F, e) € Fiuin. Observe that
each solution has a polynomial number of neighbours since | NEIGHBOURS(F')| < |F|.
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Now that the neighbouring function is properly defined, it is easy to notice that
it can be computed in polynomial time. However, it remains to prove that minimal
chordal completions are proximity searchable. To achieve this we need to prove that
the supergraph of solutions defined by the relation NEIGHBOURS is strongly connected.
This will allow us to use Proximity Search on the set of minimal chordal completions of
a graph G.

Lemma 5.19. Let Fy and F; be two minimal chordal completions of a graph G. Let
fis-- o, fo = CAN(Fy) and let i := Fy N F,. Then the following statements hold:

1. fi+1 ¢ ﬁl;

2. SUCC(Fl, fi-‘,—l) ﬁE > 1.

Proof. 1. By definition of i as the length of the largest prefix of CAN(F3) included in
Iy, it holds fiyy ¢ Fi.

2. Let F' := FrIp(F}, fiy1), we will show that F” increases the proximity with Fj
by proving the inclusion {fi, ..., fiy1} € F’. Since SUCC(FY, fi11) C F’, it implies that
{fl; e fi-‘rl} - SUCC(Fl, fi—l—l): and ﬁnally SUCC(Fl, fi+1) ﬁﬁg =1+ 1.

First, notice that by definition of FLIP, f;11 ¢ F’. Let  and y be the two endpoints
of fiy1. Assume for contradiction that an edge f;, j < ¢ is added when completing

Ney, () N Ng,,, (y) into a clique. As stated earlier, the notation ' is used to denote
the set {f1, ..., fis1}, which is included in F5, and Fi ™ represents the associated chordal
completion.

Let v and v be the two endpoints of f;. Then z,u,y,v forms a Cy of which f; 1,
was the unique chord in G,. By definition of CAN(F}), the (i + 1)th prefix F3' is
a chordal completion of GG, and since neither the chords f; nor f;;; belong to it, at
least one of the edges xu, uy, yv or vx does not belong to Fit! since otherwise z, u,y, v
would form a chordless Cy in F3*'. Assume without loss of generality that zu ¢ F3*'.
Since EHl = {f1,..., fiz1}, there exists ¢ < i such that xu = f,. But then we have
found an edge f, ¢ F with ¢ < i, which contradicts the assumption F; N Fy = 1.

Consequently, SUCC(F}, fiy1) N Fy > i. O

As a consequence, since the polynomially computable function Succ is able to
increase the proximity between two solutions, the ordering scheme defined by CAN
is proximity searchable. More formally, the set of minimal chordal completions of a
graph G, with the ordering scheme CAN and the function NEIGHBOURS defined on F
by NEIGHBOURS(F) := {X | X € NEIGHBOURS(F')} is proximity searchable.

Therefore, Algorithm 2.4 can be used to enumerate Fp. or equivalently Fiin
with polynomial delay. Yet, applying Proximity Search usually gives polynomial delay
with exponential space: to avoid duplication it is necessary to store all the generated
solutions in a lookup table. Each newly generated solution is then searched in the
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table in polynomial time. The complexity results achieved so far on minimal chordal
completions are summarised in the following Theorem.

Theorem 5.20. There exists a polynomial-delay algorithm for the enumeration of
minimal chordal completions of a graph, running in exponential space.

Remark that, to prove minimal chordal completions are proximity searchable, we
needed in the proof of Lemma 5.19 a special property satisfied by the ordering scheme
CAN. Indeed, in order for the proof to be correct, the prefixes of a solution must induce
partial solutions, here non-necessarily minimal chordal completions of GG. In the present
case, this property is intimately linked with the “sandwich-monotonicity” of chordal
completions. Although this requirement seems in a sense quite natural, it is not always
satisfied: for example, the ordering scheme we used for minimal threshold deletions
does not have this property.

Proximity Search can be used on all the problems we considered in this chapter.
This powerful technique allows us to enumerate maximal induced sub-cographs and
threshold subgraphs, as well as minimal threshold and chordal completions with a
remarkable efficiency. The main drawback of Proximity Search is that in general it uses
exponential space: one must store all generated solutions in order to determine if the
newly found one has already been generated in the past.

The next goal is to find a general technique able to achieve both polynomial delay
and polynomial space for many enumeration problems. This is why in the next chapter,
we will expose a new technique that allows us to achieve polynomial space for all the
problems we solved here with Proximity Search, and many others.

e
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Chapter 6

Proximity Search extensions

In this chapter, we reduce the space usage of some enumeration problems solved with
Proximity Search. To this effect, we propose some extensions of the framework. Parts
of the results of this chapter appear as joint work with Vincent Limouzy and Arnaud
Mary in the proceedings of the 2022 ICALP conference [11].

Yo

@ = HE PROXIMITY SEARCH FRAMEWORK has proved efficient concerning the enu-
%Ig meration of maximal (induced or not) subgraphs satisfying a property P.

However, this technique presents some limitations, in particular on the space
usage of the algorithms based on it. This is why the present chapter is dedicated to
the formulation of some extensions of the Proximity Search framework.

First, we formalise the idea that was used to derive an ordering scheme for minimal
threshold deletions from the one used for maximal induced threshold subgraphs in
Chapter 5. In fact, we show that having an ordering on the elements of a solution is
not strictly necessary: it is possible to add a bunch of elements at the same time while
keeping a good notion of proximity.

Then, in the light of the general framework newly defined, we introduce a new
method called Canonical Path Reconstruction, aiming to reduce the space usage of
Proximity Search on several enumeration problems. This technique consists in the
polynomial-time computation of a function PARENT with which it is possible to define a
spanning arborescence on the supergraph of solutions in the manner of Reverse Search.

In Sections 6.1 and 6.2, we set ourselves in the more general framework of set
systems, where Proximity Search is meant to be applied. The name set system simply
denotes a family of subsets — often denoted by F — of a ground set U.

In fact, induced subgraphs and graph deletions, as well as graph completions (even
if this last case is a little bit less obvious) correspond to particular set systems. An
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induced subgraph can be seen as a set of vertices of the input graph, and a graph
deletion — provided the graph property under consideration is closed under adding
isolated vertices, which is always the case for the graph properties studied in this thesis —
can be seen as a set of edges. There is an obvious bijection between the set of all
(induced or not) P-subgraphs, for a property P, and the family of all sets of vertices
(resp. edges) inducing P-subgraphs.

What we enumerate with Proximity Search are the inclusion-wise maximal elements
of a set system. Sometimes, the set system is closed under inclusion (as for induced
subgraphs satisfying a hereditary property), but in general it is not the case. Think for
example about the minimal chordal completions of a graph, for which the corresponding
set system is not hereditary:.

Therefore, considering the elements of a solution one by one may not be the most
accurate approach: sometimes, it is better to add a set of elements and to treat it
as a whole, than to split it arbitrarily to fit an element-by-element framework. For
this reason, we introduce in the next section a generalisation of the Proximity Search
technique.

6.1 General set proximity

In certain cases, we are not able to define an interesting ordering on the elements
of a solution, e.g. when dealing with maximal edge-subgraphs that satisfy a certain
property. Recall when Proximity Search has been applied to enumerate minimal
threshold deletions in Chapter 5: the canonical ordering was adapted from the induced
subgraphs case to simulate the simultaneous addition of several edges. In this situation,
as in some others, we would prefer to build a solution by adding at each step not one
element but a bunch of elements all at the same time.

However, this cannot be done directly with Proximity Search since this method
precisely relies on the encoding of solutions as ordered sequences of elements. To cope
with this limitation, we propose here a generalisation of Proximity Search. Instead
of considering an ordering on the elements of the ground set, we define an ordering
scheme as an ordered sequence of disjoint subsets of the ground set.

Let us consider a set system F on a ground set U. We are interested in enumerating
the set Fax Of all inclusion-wise maximal elements of F.

Definition 6.1 (Set-ordering scheme). A set-ordering scheme II of F is a function
that associates to each F' € F an ordered partition 11(F) = Fy, ..., Ex of F' such that
for any F € F and any i < k, there exists a family T; (depending on Ey, ..., E;_1) of
subsets of U, called admissible sets, with E; € T;.
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In particular, being a partition of F' means that U, F; = F, and for any i # 7,
E;NE; = &. Interestingly, this new notion of ordering scheme could even be considered
on set systems that are not accessible!, but satisfy weaker conditions.

With this definition of a set-ordering scheme, an ordering scheme in the usual sense
(defined in Section 2.2.5) is a set-ordering scheme where at step i, the sets E;, j < 1,
are in fact the singletons {v,}, and we have 7; = {{v} | v & {v1,...,vi_1}}.

Ordering schemes can possess some nice properties. For example, it often happens
that for a given (set-)ordering scheme, all prefixes of a solution induce partial solutions,
that is, non-necessarily maximal elements of the family F. Note that this property
is automatically satisfied when dealing with hereditary set systems, as a prefix is in
particular a subset. This corresponds to the “natural” property that was used in
the proof of Lemma 5.18 when showing that the enumeration of minimal chordal
completions was indeed proximity searchable. It is called the prefix property and is
in fact a typical requirement for Proximity Search-based techniques such as canonical
reconstruction [23].

Definition 6.2 (Prefix property). A set-ordering scheme I of F has the prefix property
if for any F € F with II(F) = Ey, ..., Ey, for any i <k,

UE eF.

j=1

In other words, all prefizes of TI(F') induce partial solutions (non-necessarily maximal

elements of F).

When the ordering scheme for threshold deletion was adapted from the induced
subgraphs case, the principle was the following. We considered a solution S as a set of
edges, and started from the edgeless graph on V(G). Then, we simulated the addition
of a new vertex v, by adding all edges between v and the v;, ¢ < k, at the same time
(in an arbitrary order). In fact, it corresponds to this new notion of set-ordering scheme.

At step k, the set T, of admissible sets is the collection of all neighbourhoods in
{v1,...,vk_1} of the remaining vertices, that is,

T ={R C {vw | w € Ng(v) N{v1,...,0p1}} | v&{vr,...,0p1}}.

Then, Ey = {vyw | w € Ng(vg) N{vy,...,v_1}}. Moreover, the graph on V(G) with
edge set F1 U...U Fj obtained at step k is a threshold graph, since it corresponds to
the graph induced in S (a threshold graph) by {vy,..., v}, plus some isolated vertices.

LA quite weak assumption on a set system: it is accessible if for any non-empty member of the family,
there exists an element that can be removed while staying in the family, or in more mathematical terms,
VX eF, X#0, FJxe X, X\ {z} € F. All the set systems corresponding to sandwich-monotone
graph properties are accessible.
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Therefore, adapting the usual ordering scheme to threshold deletions produces in fact a
set-ordering scheme having the prefix property.

In fact, one can go further. When deriving the set-ordering scheme on threshold
deletions, what was actually used is that the class is hereditary and closed under adding
isolated vertices. Therefore, such a set-ordering scheme can be constructed for other
graph properties, e.g. for cograph deletions. We state the following observation.

Observation 6.3. For a hereditary graph class P, closed under adding isolated vertices,
with a “usual” ordering scheme for induced P-subgraphs, a set-ordering scheme with
the prefix property can always be derived for P-deletions.

We have seen that set-ordering schemes extend the classical notion of ordering
scheme. Let us now look at how the other aspects of Proximity Search are adapted in
the general set framework. In particular, the new notion of set-ordering scheme implies
a new definition of the proximity on solutions seen as ordered partitions rather than
sequences.

Proximity. Given two sets F' and F’ € Fya, with [I(F') = Ey, ..., E, the prozimity
FNF' between I and F” is the largest index i < k such that E; C Fforall j <14, or
in other terms, U;Zl E; CF.

With this definition, the proximity is not a set any more (as it was the case in
the original Proximity Search), but a number. When the sets FE; are singletons, this
new proximity corresponds to the cardinality of the “classical” proximity. In practice,
this does not change a lot from the classical framework, since Proximity Search is
about increasing the proximity, which means “increasing the number of elements in
the proximity” if the proximity is defined as a set. Therefore, using the corresponding
number to define the proximity does not lose any useful information compared to the
usual definition.

For simplicity of notation, we keep the same symbol N as before to denote the
proximity. This is why, unlike in Chapter 5, for any two solutions F' and F’, the
neighbouring function will not increase |F' N F’| but simply F N F".

In fact, with this newly defined proximity notion, the definition of a proximity
searchable ordering scheme remains almost the same. The only real difference lies in the
definition of the proximity function used in practice. We recall here what it means for
a problem to be proximity searchable, according to the definition given in the original
paper [26].

Definition 6.4 (Proximity searchable). An enumeration problem is called proximity
searchable if one solution can be computed in polynomial time, and there exists a
prozimity function N and a polynomial-time-computable function NEIGHBOURS such
that for any two solutions F', F* € Fyax, there exists F' € NEIGHBOURS(F') satisfying
F'OF*>FNFE~.
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Therefore, our framework corresponds to a more general case of Proximity Search
than the one usually considered.

By definition, a polynomial-time computable function NEIGHBOURS, able to increase
the proximity to a target solution, induces a path between any two solutions in F.x.
This guarantees that the supergraph of solutions is strongly connected — provided that
the neighbouring function is well-chosen — and that the solution space can be explored
in a DF'S manner with Algorithm 2.4. This can be stated as follows, as an analogous of
the original Proximity Search theorem [26].

Theorem 6.5 (Set Proximity Search). For a given enumeration problem, if there ezists
a set-ordering scheme and a polynomial-time-computable function NEIGHBOURS able
to increase the proximily to a target solution, then the enumeration problem admits a
polynomial delay enumeration algorithm.

The novelty of our approach is to measure the proximity according to an ordering
scheme on element sets, and not just single elements. In particular, with this definition,
the set of all known proximity searchable problems is enlarged. In this sense, the general
set proximity framework extends the usual Proximity Search.

Now that the framework is set up, it is time to see which improvements can be
made in order to achieve better space complexity.

6.2 Canonical path reconstruction

In this section, we consider a set system F on the ground set U, and we assume that
the problem of enumerating the set F.x of all maximal elements of F is proximity
searchable. In particular, this means that there exists II a set-ordering scheme on
F, a function NEIGHBOURS able to increase the proximity to a target solution, and
Fy € Frax a “reference solution” that can be found in polynomial time. The goal is to
design a new Proximity Search-based technique achieving polynomial space.

Some work has already been done about the space complexity of enumeration with
Proximity Search. In the original Proximity Search paper [23], the authors present
a technique that allows them to enumerate the maximal elements of a set system,
provided this set system is commutable, that is, satisfies the following definition.

Definition 6.6 (Commutable set system). A set system F is called commutable if it
is strongly accessible and satisfies the commutable property. Formally, a commutable
set system satisfies the following two conditions.

strongly accessible: VXY € F, X CVY, Jye Y\ X, XU{y} e F;

commutable property: VXY € F, X CY, Va,beY \ X,
(XU{a} e FINXU{b} € F) = X U{a,b}eF.
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Intuitively, being commutable means that if two elements can be added separately
while staying in the family, then both can be added at the same time. This requirement,
however, is quite strong: many set systems are not commutable. For example, although
threshold graphs are strongly accessible (see Section 5.2), the commutable property is
not satisfied by threshold graphs, as illustrated in Figure 6.1.

S A S S Y
G GU{a} G U {b} G U{a,b} GU{a,b, e}

Figure 6.1: The set of threshold graphs is not commutable. In this illustration, G
is threshold, G U {a} and G U {b} are also threshold, but G U {a,b} is not (while
G U{a,b,e} is).

By definition, commutable set systems are in particular strongly accessible (but
we have just seen that the converse is not true). Moreover, hereditary set systems
are commutable. A summary of the inclusions between the different properties of set
systems is presented in Figure 6.2.

Accessible

Accessible

Commutable

Hereditary

Figure 6.2: Summary of the inclusions between the different properties of set systems.

The idea now is to translate the Reverse Search arborescence into our general set
proximity framework, and determine under which conditions this arborescence actually
exists.

Since the problem under consideration is assumed to be proximity searchable, for
any F' € Fax, there exists a path from F{y to F' in the supergraph of solutions. It is then
possible to consider a function NEXT which for any two solutions F and F™* in Fay,
chooses deterministically a solution F” € NEIGHBOURS(F') such that F' N F* > F N F*.

The deterministic choice of the solution increasing the proximity with F™* can be
seen as the following procedure. First, define a preference order, denoted by <ngxr, on
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the set of neighbours of the current solution. Then, select the minimum one according
to <npxr- The typical — but not mandatory — choice for Function NEXT will be to
select the lexicographically smallest (according to an arbitrary ordering on the ground
set) such solution F’, that is, <ngxr = <jex-

Remark that for any two solutions F' and F* € Fyax, NEXT(F, F’*) can be com-
puted in polynomial time. Indeed, to compute NEXT(F, F*), it suffices to compute
NEIGHBOURS(F'), and for each solution F” in NEIGHBOURS(F'), compute the proximity
between F’ and F™* and check whether F” is smaller than the current best candidate
for the ordering <ngxr (notice that we do not need to compute II(F”)).

Let f denote the size of a largest solution, and N be the complexity of the (poly-
nomial) Function NEIGHBOURS. Then the two required computations can be done in
O(f), and since | NEIGHBOURS(F')| < N, the Function NEXT can be computed in time

O(fN).

Canonical path. Equipped with this function NEXT, we can now define for any
solution F' € F, .« the canonical path of F' as the sequence Fy, ..., F}, = F of solutions
such that for each 1 < i <k, F; = NEXT(F;_1, F).

In particular, with the definition we gave for Function NEXT, the solutions F; on
the canonical path of F' get closer and closer to F' as i increases. This can be restated
as the following observation.

Observation 6.7. Let F' € F.. and let Fy, ... Fy be its canonical path. Then for
anyi<j<k, ;NF>FNF.

If the solutions on the canonical path of F' are closer and closer to F', then in
particular, there cannot be too many solutions on this canonical path. Their number
is bounded by the number of elements in F', plus one if the root solution Fy had no
common element with F'. This can be formulated as the immediate following Corollary,
ensuring that canonical paths are of polynomial size.

Corollary 6.8. If F' € Fpax, then its canonical path is of length at most |F|+ 1.

Note that the canonical path is not necessarily the path that is followed when
exploring the supergraph of solutions with Algorithm 2.4. A solution could be found
in a totally different way. In fact, except for Fj_;, the other ancestors of F' in the
exploration arborescence may not be part of its canonical path. For instance, there is
no reason for Fj_; to be generated from Fj_5 in the enumeration process. However,
the canonical path is uniquely determined for each solution F' # Fj. This will help us
define a suitable parent-child relation over F,., which does not require the system to
be commutable, in order to obtain a polynomial space algorithm.
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Parent relation. In the context of canonical path reconstruction, the parent of
a solution F' # F,, denoted PARENT(F'), is defined as the last solution before F'
in its canonical path. In other words, if the canonical path of F' is the sequence
Fy, ..., Fx = F, then PARENT(F') = F},_;. With this PARENT function, we can define
the set CHILDREN(F) = {F” € NEIGHBOURS(F') | PARENT(F") = F'} of children of a
solution F'.

Note that, in order to achieve polynomial delay, it is necessary to be able to compute
the parent of any solution (except F that does not have a parent) in polynomial time.
With our definition, this is in fact the case: for any solution F', its parent PARENT(F')
can be computed in polynomial time, provided that NEIGHBOURS and the ordering II
can be computed in polynomial time. The complexity of computing the parent of a
solution is detailed in Lemma 6.9.

Lemma 6.9. The function PARENT can be computed in time O(p + f?N) where f is
a mazimum size of a solution in Fmax, N is the complexity of function NEIGHBOURS
and p is the time needed to compute II.

Proof. To compute PARENT(F'), we first need to compute II(F') and then to compute
the canonical path of F. By Corollary 6.8, the path is of length at most |F|, so we only
need to call |F| times the function NEXT. As mentioned previously, this last function
can be computed in time O(fN'), whence the result. ]

For any solution F', since the computation of CHILDREN(F') is done by computing
first the set NEIGHBOURS(F') and then filtering it according to the function PARENT,
we obtain the following complexity for the function CHILDREN.

Corollary 6.10. The function CHILDREN can be computed in time O(p+ f>N?) where
[ is a mazimum size of a solution in Fax, N is the complexity of function NEIGHBOURS
and p is the time needed to compute I1.

The parent relation induces a spanning subgraph of the supergraph of solutions.
However, if we are not lucky enough, it can happen that this relation induces cycles.
Indeed the canonical path of a solution is not necessarily the same as the canonical
path of its parent. In particular, this implies, if we decide to explore the supergraph of
solutions by following only the transitions authorised by the function PARENT, some
solutions could never be attained. Such a situation is illustrated in Figure 6.3, where
the three solutions P, ), and R are the parent of each other. They cannot be reached
from Fy by following the parent relation. Therefore, if no further assumption is made
on the problem, nothing can be said about the space complexity of Proximity Search
with canonical path reconstruction.

Logically, our goal is now to find out under which assumptions the function
CHILDREN induces an arborescence on the solution space. Then, using a technique
similar to Reverse Search, it will be possible to follow the arborescence to enumerate
Fmax With polynomial delay and polynomial space.
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Figure 6.3: The parent relation induces a cycle in the supergraph of solutions. Three
solutions have disjoint canonical paths but they are the parent of each other. In this
situation, the solutions P, (), and R cannot be obtained by following the parent relation
starting from Fj.

Prefixes. Given F' € F, F = E,..., E), we define F the ith prefix of II(F) as
Fi = FE,, ... E; for all i < k. For each i, we need to be able to compute the family
T; of admissible sets in polynomial time. This set family 7; is specific to the problem
under consideration, but since it is used when computing II, it must be computable in
polynomial time. Then, we define Fi™ as the set of all admissible sets R € 7; such that

A crucial tool that was needed to achieve polynomial delay polynomial space
enumeration for strongly accessible set systems [24] is the existence of a prefix closed
ordering scheme. Due to the rigidity it implies, the prefix closed property helps to make
sure to follow the “right path” when exploring the supergraph of solutions. This notion
can easily be translated in the context of set-ordering schemes.

Definition 6.11 (Prefix closed). A set-ordering scheme is said to be prefix closed if it has
the prefix property, and for any F € F with II(F) = E,, ..., Ex and for any i < k there
exists a preference relation <p: over F'" such that Eiyy = min. {X € Fit | X C F}.

Remark that the so-called preference relation associated with a prefix £ does not
need to be a total ordering on F i™In fact, the important property is the existence of
a unique minimal element in F’ " for < Fi-

This means in particular that with a prefix closed ordering scheme, the next element
is uniquely determined by the given prefix. Being prefix closed makes the (set-)ordering
scheme easier to compute in polynomial time. Moreover, the existence of a preference
relation can be used to derive an ordering on all solutions.

Total ordering on the solution set. For a prefix closed set-ordering scheme II, it is
possible to define a total ordering <y over Fp.« in the following way. Let Fi, Fy € Frax,
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with II(Fy) = Ds,..., Dy, II(Fy) = Ey, ..., E; and let j > 0 be the largest index such
that the jth prefix of F; and F; is the same, that is, Ff =Di,....D;=FE,...,E; = sz
Let us denote by L the largest common prefix of I and F5, that is, L := Ff = FQJ (note
that the set L is not necessarily equal to F} N F5, the largest prefix of F, contained in
Fy, since its elements can appear in any order in Fy). Then Fy <y Fy if Dy <p Ejy.

From now on, we will assume that the problem under consideration admits a prefix
closed ordering scheme. Therefore, our problem becomes the enumeration of all maximal
elements of a set system F, with a suitable, polynomial-time computable neighbouring
function NEIGHBOURS and a prefix closed ordering scheme II. We consider the functions
PARENT and CHILDREN as defined previously.

We will see in what follows that being prefix closed is indeed the right notion to
achieve polynomial space with canonical path reconstruction.

First, let us begin with a series of two technical lemmas. In general, nothing can
be said about the canonical paths of two different solutions. However, if a solution F
shares a common prefix with another solution on its canonical path, then it is possible
to prove that they also share their canonical paths. It is the purpose of the following
lemma.

Lemma 6.12. Let F' € Fpax with II(F) = Ey, ..., Ey; let Fy, ..., F} be its canonical
path and let i < k. If By, ..., Ep~p is a prefiv of II(F;), then the canonical path of F;
18 F(), cvey -Fz

Proof. Since F; € Fpax, in particular it has a canonical path. Consider Ty, ..., T} the
canonical path of F;. First, by definition we have Ty = Fy. Now, let 7 < ¢ be such that
To,...,T; = Fy, ..., F;. We will prove that I, = T}, implying by induction the
equality Ty, ..., T, = Fy, ..., F;.

By Observation 6.7, since j < i we know that F; N F < F,NF, so there exists
r < F;NF such that By, U...UE, C F; and E, 41 \ F; # @. By hypothesis, we know
that E, ..., B, is a prefix of II(F}). Hence it follows r = F;NF = F;NF, < F;NF.

Recall that Function NEXT is a deterministic function choosing among the neigh-
bours of the current solution, one that increases the proximity to the target solution.
In other words, NEXT puts a preference order <ypxr on the neighbours, and selects the
minimum according to <ypxr-

Using this notation, we can then write

Fj1 = NEXT(F}, F) = rr;ng{F' € NEIGHBOURS(F}) | By U...UE, 1} C F'}

by definition of Function NEXT
= min{F’ € NEIGHBOURS(T}) | EyU...UE,1; C F'} = NEXT(T}, F}) = Tj1

<NEXT

since T; = F} and since Fy, ..., E,4 is a prefix of F;.
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Therefore, Fy = T and for any j < ¢ such that F; = T}, we have Fj;; = Tj;;. This
implies in turn 14, ...,7T; = I}, ..., F; and the lemma is proven. O

The next technical lemma links the proximity between two solutions to the total
order that was defined according to II on the set of all solutions. This order will be
crucial in the sequel, namely when proving that the function CHILDREN induces an
acyclic relation on the solution space.

Lemma 6.13. Let Fl,FQ e F with H(Fl) = Dl, c ,Dg and H(Fg) = El, Ce ,Ek.
Assume furthermore that there exists j < £ such that for any i < j, D; C Fy. Then one
of the two possibilities holds:

1. F5 <q Fy;
2. D;=FE; foralli<j.

Proof. Suppose that there exists ¢ < j such that D; # E; (otherwise the second case
holds), and let us consider the smallest such i. Then F;~' = Fi~!. Denote by L this
common prefix, that is, L := F/"' = Fi~'. Moreover, we know that D; C F, and
D; € L*. Since II is prefix closed, it implies F; <; D;, hence Fy <y F}. O

With the last two lemmas, we are now ready to prove the Function CHILDREN
induces an arborescence on the solution set Fy.«, since we assumed that the ordering
scheme IT is prefix closed.

Theorem 6.14. If the ordering scheme 11 is prefir closed, then CHILDREN defines a
spanning arborescence on Fmax rooted at Fy.

Proof. The supergraph of solutions defined by Function CHILDREN is the directed
graph on Fa with arc set {(F}, F;) | F; € CHILDREN(F;)}. We will show that this
supergraph of solutions is an arborescence.

Since each solution F' € Frax \ {Fo} has only one in-neighbour PARENT(F), it is
sufficient to show that for all F' € F,., there exists a path from Fj to F'. Let us denote
by R(Fy) C Fax the set of all sets F' € Frax for which there exists a path from Fj to
F.

Assume for contradiction that R(Fy) # Fmax and let F':= min_ (Fpax \ R(Fp)).
Let II(F) = Ey, ..., E; and let Fy,. .., Fy be the canonical path of F'. Now, consider
the smallest index i* < k such that Fj« ¢ R(Fp). If i* = k then F,_; € R(F}) and since
Fi—1 = PARENT(F), F would belong to CHILDREN(F}_;) and then F' would belong to
R(Fy). Hence, assume i* < k.

Let j := F;-NF. By minimality of F with respect to <y, we have F <y Fj-.
Therefore, Fj« <y F' does not hold (since Fj« # F'). Hence by Lemma 6.13, since
Ei1U...UE; C F;« by definition of the proximity, the jth prefix of II(F-) is Ey, ..., Ej.
Now, by Lemma 6.12, the canonical path of Fj« is Fy, ..., Fj«, thus F;« has F;«_; as
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its parent. By minimality of i*, we know that Fj«_; € R(Fp) and since in addition
F;« € CHILDREN(Fj«_1), we deduce F}" € R(Fp), leading to a contradiction. O

It is somehow counter-intuitive to observe that the canonical path of a solution is
not necessarily part of the final arborescence rooted at Fjy. This canonical path is only
computed to find the last solution in the path before F' to define it as the parent of
F. What we proved is that while the so-defined parent-child relation does not exactly
follow the canonical paths, it still forms a spanning arborescence on the solution set
rooted at Fy.

Now that we have an arborescence on the solution set, the idea is to explore it
in a depth-first manner. The most suited algorithm is undoubtedly Reverse Search,
explicitly designed for this purpose.

Observe that the naive implementation of Algorithm 2.2 (see Section 2.2.3) may
use exponential space, since the height of the recursion tree might be exponential.
Indeed,the recursion tree corresponds to the arborescence defined by the parent-child
relation and we are not able to guarantee that its height is polynomial. However,
since the functions PARENT and CHILDREN are computable in polynomial time, we
do not need to store the state of each recursion call. The classical trick introduced by
Tsukiyama et al. in 1977 [84] and formalised by Avis & Fukuda in 1996 [2] as part of
the Reverse Search algorithm is to use the function PARENT to perform the backtrack
operation on the fly. Indeed, this function is able to navigate backward in the tree,
removing the need of keeping in memory all recursion calls. Thus, the algorithm only
needs to keep in memory the current solution, and not the whole set of all the solutions
that have already been found.

Therefore, Theorem 6.14 implies that, when the set-ordering scheme is both proximity
searchable and prefix closed, it is possible to use the canonical path reconstruction
method to enumerate JF,., efficiently. This rephrases as the following theorem.

Theorem 6.15. Let F be a set system with a polynomially computable function
NEIGHBOURS and a prefix closed ordering scheme. If the enumeration of all maximal
elements of F is proximity searchable, then Fax can be enumerated with polynomial
delay and polynomial space.

6.3 Applications of canonical path reconstruction

In the present section, we take interest on some problems for which canonical path
reconstruction provides an efficient, polynomial space algorithm. This is for example the
case for minimal chordal completions, whose ordering scheme is naturally prefix closed.
However, it can be successfully applied to other problems. For example, a polynomial
delay algorithm was known for the enumeration of maximal induced chordal subgraphs
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[23], but this algorithm runs with exponential space. We exhibit here a prefix closed
ordering scheme for this problem, allowing us to use canonical path reconstruction,
therefore reducing the space complexity of the maximal induced chordal subgraphs
enumeration problem.

6.3.1 Minimal chordal completions in polynomial space

In Chapter 5, we proved that minimal chordal completions are proximity searchable
with the canonical ordering CAN (see page 93), thus there exists a polynomial delay
algorithm for their enumeration. We would like to make the enumeration process work
in polynomial space, since this could lead to an algorithm that is more usable in practice.
To achieve this space complexity, a first idea would be to use the Proximity Search
technique developed for commutable set systems [24], when the ordering is prefix closed.

As stated earlier, chordal completions form a strongly accessible set system since
they are sandwich-monotone, and so are their complements. However, the set of
chordal completions is not a commutable set system, and neither is the set of their
complements. Take for example the completion H of a P, containing an edge e joining
the two endpoints, and the two chords a and b, as shown in Figure 6.4. The P, given
by H \ {a,b, e} is chordal. Plus, both graphs H \ {a} and H \ {b} are chordal, whereas
H \ {a, b} is not.

[ ]
H H\ {a} H\ {b} H\{a,b}  H\{a,be}

Figure 6.4: Chordal completions of an arbitrary graph (here a Pj) are not a commutable
set system.

Therefore, we cannot try to enumerate the minimal chordal completions of a graph
in polynomial space with this technique. Instead, we will prove the problem satisfies
the conditions of Theorem 6.15. With canonical path reconstruction, it will be possible
to define a suitable parent-child relation in order to organise the space of solutions in
an arborescence. This way, the enumeration of minimal chordal completions of a graph
will need only polynomial space.

Neighbouring function and ordering scheme. For this enumeration problem, we
use the same neighbouring function (based on the FLIP operation) and ordering scheme
(namely, CAN) as in Section 5.3. It is stated in Theorem 5.20 that the minimal chordal
completions enumeration problem, with the corresponding neighbouring function and
the ordering scheme CAN, is proximity searchable.



112 |

To guarantee we are in the conditions of Theorem 6.15, it remains only to prove
that the ordering scheme CAN is prefix closed. This will not be very difficult since CAN
has been built this way.

Lemma 6.16. The ordering scheme CAN defined in Section 5.3.1 is prefix closed.

Proof. By construction, CAN uses a preference relation on the non-elements of a partial
solution, that is just the arbitrary ordering of £ among the candidates. Moreover,
since the chordal completions of a graph are sandwich-monotone, it follows immediately
that the ordering scheme CAN has the prefix property.

Therefore, CAN is straightforwardly prefix closed. O

Now, we are sure all requirements of Theorem 6.15 are satisfied. Therefore, it is
possible to define for each solution F' # Fj its parent PARENT(F') as the last solution
before F' in its canonical path, as in Section 6.2. The parent of a solution is computable
in polynomial time by lemma 6.9. We deduce the following result.

Theorem 6.17. The minimal chordal completions of a graph can be enumerated with
polynomial delay in polynomial space.

6.3.2 Maximal induced chordal subgraphs

In this section, we show that the canonical path reconstruction framework can be used
on other problems that were known to admit a polynomial delay algorithm, but for which
the existence of such an algorithm running in polynomial space was unknown. This is
for example the case with two enumeration problems concerning chordal subgraphs: the
enumeration of maximal induced chordal subgraphs and maximal connected induced
chordal subgraphs. Both problems have been studied by Conte et al. in the light of the
Proximity Search framework. Unless stated otherwise, any mention of their work in
this section refers in fact to the original Proximity Search paper [23].

Here we consider the problem of listing maximal induced chordal subgraphs of a
graph G. In the following, we assume that vertices of G are arbitrarily ordered. Since
we work with induced subgraphs, the solutions will be seen as sets of vertices of G.

It is possible to enumerate maximal induced chordal subgraphs with polynomial
delay, using the classical Proximity Search [23]. However, the algorithm obtained
this way uses exponential space. We will see that the canonical path reconstruction
framework can be used to reduce the space complexity of the problem.

Neighbouring function. The neighbouring function used by Conte et al., that we
will use as well, is defined as follows. For a solution S C V, choose a vertex v of
V'\ S, and choose a maximal clique @ in Ng(v) N G[S]. Then, add v to the solution
and remove all neighbours of v in S that are not in @ (that is, remove Ng(v) \ @
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from the solution). This yields an induced chordal subgraph of G. It remains only to
complete greedily the newly obtained solution into a maximal one denoted S, ¢. The
neighbouring function for induced chordal subgraphs is illustrated in Figure 6.5.

— > —
v w COMPLETE @

S Su,Q
Figure 6.5: Illustration of the neighbouring function for induced chordal subgraphs.

With the neighbouring function just defined, the set of neighbours of the solution S
is defined as NEIGHBOURS(S) := {S, ¢ | v ¢ S, @ maximal clique in Ng(v)NS}. Since
S is chordal, it has a linear number of cliques [46, 49], so there are a polynomial number
of choices for (). Therefore each solution has a polynomial number of neighbours, and
the authors proved that this neighbouring function is proximity searchable.

Ordering scheme. It remains to find a suitable ordering on the elements of a solution.
Recall that a perfect elimination ordering (PEO, defined page 19) of a graph is an
ordering vy, ..., v, of the vertices such that at each step 4, the vertex v; is simplicial (its
neighbourhood is a clique) in the subgraph induced by {v;,...,v,}, and chordal graphs
are characterised by the existence of a PEO. In the original Proximity Search paper,
the authors proved that all ordering schemes that produce reverse perfect elimination
orderings of solutions are proximity searchable. We exhibit here such an ordering
scheme which, in addition, is prefix closed.

Indeed, the ordering scheme that was previously used to prove the existence of a poly-
nomial delay algorithm for maximal induced chordal subgraphs fails to be prefix closed.
More precisely, this ordering scheme consists in computing the entire lexicographically
minimal perfect elimination ordering of the solution before reversing it. Consequently,
if S is a maximal induced chordal subgraph with its reverse lexicographically minimal
PEQO, the ordering <g, of its ¢th prefix is not well defined in general. On the other
hand, the “natural” greedy ordering, that can easily be computed on any solution, is
prefix closed by definition but fails to be proximity searchable.

If G’ = G[S] is an induced chordal subgraph of G, we consider 7(G’) = z1, ...,z
the ordering of G’ such that x; = min(S) and for each i < k, ;41 is the smallest among
vertices of maximum degree in {xy,...,2;}. In other words, we select at each step
a vertex which has a maximum number of neighbours in the set of vertices already
chosen. It has been proven by Tarjan & Yannakakis [82] that this procedure known as
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Maximum Cardinality Search (MCS for short), and presented here as Algorithm 6.1,
produces a reverse perfect elimination ordering whenever G’ is chordal.

Algorithm 6.1: Maximum Cardinality Search (MCS)[82]
input :A graph G = (V,FE)
output : A reverse PEO of G if G is chordal

1 Begin with all vertices unnumbered.
2 foreach vertex v € V do

3 L weight(v) := 0;
4 fori=1tondo
5 Find the unnumbered vertex u of maximum weight (break ties with smallest
vertex id);
V; = Uy

foreach unnumbered v € Ng(v;) do
L weight(v) := weight(v) + 1;

9 return vy,...,vp;

To illustrate how Algorithm 6.1 works, let us have a look on the example of Figure 6.6.
The graph is chordal and has vertices a, b, ¢, d, e, and f. At first, the algorithm selects
the vertex of smallest id, a. Then, weights are put on the neighbours of a, symbolised
by dots on the picture. At each step, the algorithm selects the vertex of largest weight
and increases the weights of its neighbours, until all vertices have been eliminated.
In this example, the graph is chordal and the ordering returned by Algorithm 6.1 is
abedcf, which is indeed the reverse of a PEO.

Since the ordering scheme produced by Maximum Cardinality Search, called here
MCS-ordering scheme, is the reverse of a perfect elimination ordering on chordal graphs,
it follows [23] that our problem is proximity searchable. This rephrases as the following
lemma.

Lemma 6.18. The problem of enumerating mazimal induced chordal subgraphs with
the previously defined neighbouring function and the MCS-ordering scheme is prozimity
searchable.

In order to apply Theorem 6.15, we need our ordering scheme to be prefix closed.
This will allow us to use canonical path reconstruction with the guarantee that every
solution is outputted exactly once, therefore using only polynomial space. That is what
we will do when proving the following lemma.

Lemma 6.19. The MCS-ordering scheme is prefix closed.
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Figure 6.6: Example of an execution of Algorithm 6.1 on a chordal graph. The weights
on the vertices are symbolised by dots.

Proof. Let G be a graph. A maximal chordal subgraph Sy of G' can be found by
applying a greedy algorithm adding vertices one by one while the resulting induced
subgraph is chordal.

First, the MCS-ordering scheme has the prefix property. Indeed, the property of
being chordal is hereditary, therefore any prefix of the canonical ordering of a solution
is an induced subgraph of this solution, that is, a chordal graph.

Then, since the property of being chordal is hereditary, in particular it is also strongly
accessible, and the set of candidates X for any partial solution X is well-defined and
non-empty unless X is a maximal induced chordal subgraph of GG. Let us consider a
(non-maximal) set of vertices X which induces a chordal subgraph of G. By definition,
the elements of X are the vertices x € V(G) \ X such that G[X U {x}] is chordal.

We give an ordering <y of X in the following manner. We say that z <x y if
either [N(z)NX| > |[N(y)NX]| or N(x)NX = N(y)NX and = < y. This way, vertices
of large degree in X are ordered first and the ties are broken according to the arbitrary
ordering of the vertices. In other words, the vertices of X' are ordered by considering
the lexicographic order of the tuple (n — |N(x) N X|,z), with x € X,

Equipped with this ordering of X' for any subset of vertices inducing a chordal
subgraph, it is straightforward to see that the MCS-ordering scheme satisfies Defini-
tion 6.11. O

We are now able to use Proximity Search on the set of maximal induced chordal
subgraphs of G, and ensure that the ordering we consider is prefix closed. Therefore
our setting satisfies the requirements for Theorem 6.15. Hence, for each solution S
different from the root solution Sy, it is possible to compute in polynomial time the
canonical path of S. The parent PARENT(SS) of S is then defined as the last solution
before S on its canonical path, as in Section 6.2. This implies the following result.
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Theorem 6.20. Mazimal induced chordal subgraphs can be enumerated with polynomial
delay in polynomial space.

6.3.3 Maximal connected induced chordal subgraphs

In fact, the MCS-ordering scheme is also prefix closed when considering maximal
connected induced chordal subgraphs. It has been proved by Conte et al. that — with
the appropriate neighbouring function they provide — the problem of enumerating
maximal connected induced chordal subgraphs with any ordering scheme corresponding
to the reverse of a perfect elimination ordering is proximity searchable. Moreover,
by definition the MCS-ordering scheme also has the prefix property for connected
induced chordal subgraphs. Therefore, the proof of Lemma 6.19 also holds in the case
of connected induced chordal subgraphs. As a consequence, the same result holds for
maximal connected induced chordal subgraphs.

Theorem 6.21. Mazximal connected induced chordal subgraphs can be enumerated with
polynomial delay in polynomial space.



Conclusion

@cg HE ULTIMATE GOAL of a thesis on the subject would be to find a general
%Ig technique, applicable to the most possible graph classes, for the enumeration
of minimal completions, minimal deletions, maximal induced subgraphs that
belong to the considered class. If such a general technique does not exist for all
(hereditary) classes of graphs, then a natural question arises: which graph classes admit
an efficient (e.g. polynomial delay) enumeration algorithm for minimal completions
(resp. deletions) or maximal induced subgraphs, and which ones do not?
Neither of these questions is an easy task. In this thesis, advances have been made
concerning the theoretical knowledge of the minimal completions, minimal deletions,
and maximal induced subgraphs enumeration problems.

Many efficient techniques already exist for enumeration purposes, and they are
often well suited to the problems we considered here, in particular to maximal induced
subgraphs enumeration. For some graph classes, such as split graphs, cographs, and
threshold graphs, the existence of a polynomial delay algorithm enumerating maximal
induced subgraphs was still unknown. We showed that these three problems could be
solved efficiently using existing techniques, by relying on the structural characterisations
of graphs in those three classes.

For split graphs, the input restricted problem introduced by Cohen, Kimelfeld &
Sagiv [22] proved its efficiency regarding both time and space. For the enumeration
of maximal induced sub-cographs and threshold subgraphs, we managed to apply the
more recent Proximity Search technique proposed by Conte & Uno [26], and exhibited
non-trivial polynomial delay, exponential space algorithms for these two problems.

When it comes to minimal completions and deletions, it seems even harder in general
to find a suitable way to apply an existing technique. However, in certain cases, the
properties satisfied by the graphs in the considered class allow us to link the minimal
completions with other structures for which the complexity of enumeration is known.
It is the case with minimal split completions: due to the many properties satisfied
by split graphs, it is in fact equivalent to enumerate the (inclusion-wise) maximal
stable sets of a modified graph. Fortunately, the last problem has been known to be
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solvable with polynomial delay in polynomial space for a long time [84]. An efficient
algorithm for the enumeration of minimal split completions (and deletions since the
class is self-complementary) follows immediately. Nevertheless, there is obviously no
reason for such a correspondence to be found for any class of graphs.

In general, the assumptions for using an existing enumeration technique that yields
good complexity results (Reverse Search, input restricted problem) are quite restrictive.
Despite Flashlight Search to achieve good complexity results very simply, we showed in
Chapter 4 that it cannot be used as a general technique for the enumeration of maximal
induced subgraphs in a prescribed class P. Indeed, the associated extension problem is
NP-hard when no further assumption is made on P.

Therefore, other options have to be considered: newer, less known techniques seem
promising. We have seen in particular in Chapter 5 that Proximity Search turns up
useful when enumerating maximal induced sub-cographs and threshold subgraphs. In
fact, Proximity Search can also be used for minimal deletions enumeration problems.
For example, it allows us to enumerate all minimal threshold deletions (and completions)
with polynomial delay, whereas the class of threshold graphs is not monotone — the
counterpart of hereditary for edge problems.

Although threshold graphs are not monotone, they still possess an interesting
property: they are sandwich-monotone. This property makes the computation of
a minimal deletion and the completion process into a minimal deletion easier when
applying Proximity Search. However, it is quite a strong requirement, and it is not
satisfied by all graph classes: for example cographs, trivially perfect graphs, Ps-free
graphs, are not sandwich-monotone.

Polynomial sandwich algorithms [50] have been briefly mentioned in this thesis:
when they exist — it is the case for cographs, trivially perfect graphs, and Ps-free graphs
[50][10, v1] —, a polynomial-time computable completion function can be found even if
the class is not sandwich-monotone. This could be useful to apply Proximity Search to
many new problems. We leave as an open question the minimal deletions enumeration
problems into the three aforementioned classes. Alongside that, further investigation on
sandwich problems appears to be another interesting path to follow for future research.

Question 4. Can minimal deletions of a graph into cographs, trivially perfect graphs,
or Ps-free graphs be enumerated with polynomial delay (with or without the help of
Proximity Search)?

Finally, the question of how efficiently it is possible to enumerate the minimal
chordal completions of a graph has been a hot topic in research for at least the last
decade [18, 8]. The best algorithm up to date was proposed in 2017 and has incremental
delay. We were interested in this problem and we proved Proximity Search can also
be used to enumerate the minimal chordal completions with polynomial delay. Our
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approach consisted in considering the complements of the chordal completions to define
the proximity measure, which — to the best of our knowledge — had never been done
previously.

Then, to be useful in practice, an efficient algorithm should only use polynomial
space. That is why we considered the question of space usage for minimal chordal
completions. Thanks to the sandwich monotonicity of chordal graphs, we were able
to prove the existence of a polynomial delay, polynomial space algorithm. For this
purpose, we introduced a parent relation between two solutions, permitting to explore
the solution space without keeping in memory all the solutions already found.

Generalising this approach gave rise to a new extension of Proximity Search to
obtain polynomial space: canonical path reconstruction. The requirements of this
technique are weaker than those of the other Proximity Search-based polynomial space
enumeration techniques [23]. Consequently, our framework can be applied to a wider
range of problems, guaranteeing polynomial delay and polynomial space under weaker
assumptions. Some of the problems that were solved at the beginning with Proximity
Search satisfy in fact those requirements, one of which is the class being sandwich-
monotone. For example, our technique directly gives an algorithm listing the maximal
induced (connected or not) chordal subgraphs of a graph in polynomial space.

The results about polynomial delay enumeration algorithms mentioned in this thesis
are summarised in Table 7.1.

Graph Maximal induced Minimal Minimal
class P subgraphs P-deletions P-completions
Split PDelay, PSPACE PDelay, PSPACE PDelay, PSPACE
graphs Cao [13] / Theorem 3.17 Theorem 3.10 Theorem 3.10
input restricted problem self-complementarity ad hoc bijection
Section 3.2 Section 3.1 Section 3.1
Cographs PDelay
Theorem 5.4 OPEN OPEN
Prozimity Search
Section 5.1
Threshold PDelay, PSPACE PDelay PDelay
graphs Cao [13] Theorem 5.12 Theorem 5.12
input restricted problem Prozimity Search self-complementarity
Section 5.2.2 Section 5.2.2
Chordal PDelay, PSPACE PDelay PDelay, PSPACE
graphs Conte et al. [23] & Theorem 6.20 Conte et al. [23] Theorem 6.17
canonical path reconstruction Proximity Search canonical path reconstruction
Section 6.3.2 Sections 5.3 and 6.3.1

Table 7.1: Known complexities of the maximal induced subgraphs, minimal comple-
tions and deletions enumeration problems studied in this thesis. PDelay stands for
“polynomial delay” and PSPACE for “polynomial space”.

When considering the maximal subgraphs and minimal supergraphs, other classes of
interest include — but are not limited to — triangle-free graphs (which may be a candidate
for the non-existence of a polynomial delay algorithm), perfect graphs, and planar
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graphs. To the best of our knowledge, no polynomial delay algorithm for maximal
induced subgraphs is known in any of those classes.

In fact, all the Proximity Search-based techniques currently used rely heavily on
solution orderings. We proved that it is possible to relax the notion of ordering
scheme, introducing set-ordering schemes. With set-ordering schemes, solutions are not
seen as ordered subsets of the ground set any more, but rather as ordered partitions.
This extension of the “usual” Proximity Search technique could help to find some
new problems to which Proximity Search can be applied, implying the existence of
a polynomial delay algorithm. If moreover the problems satisfy the requirements for
canonical path reconstruction, then polynomial space will be achieved as well.

General set proximity makes it natural to think about some minimal deletions
problems as derived from the corresponding maximal induced subgraphs problems.
This was for example the case when Proximity Search was applied to enumerate the
minimal threshold deletions of a graph. Naturally, the following question arises.

Question 5. In which cases can an algorithm enumerating the minimal deletions be
derived from the mazximal induced subgraphs enumeration with the help of general set
prozimity?

Minimal completions and deletions are not the only interesting objects that can be
enumerated in graphs. Potential Maximal Cliques of a graph were introduced in the
early 2000s [9, 83] as the sets of vertices inducing a clique in some minimal chordal
completion. Due to their links with chordal completions and minimal separators, they
are a powerful tool for the computation of treewidth and minimum fill-in. Currently, the
best algorithm known for their enumeration [9] is quadratic in the number of solutions
and uses exponential space. For applications, it would be interesting to be able to
generate them more efficiently. This brings us to a problem that has been open for
twenty years.

Question 6. Is it possible to generate all Potential Mazimal Cliques of a given graph
with polynomial delay, or in polynomial space?



Contributions

Contributions on enumeration

The results presented in this thesis gave rise to the following two articles, one of
which is published [11] and the other one is submitted to a specialised journal [10].

o Efficient enumeration of maximal split subgraphs and sub-cographs
and related classes, with Aurélie Lagoutte, Vincent Limouzy, Arnaud Mary
and Lucas Pastor, preprint on ArXiv arXiv:2007.01031, 2020. Submitted to
Discrete Applied Mathematics.

e Polynomial delay algorithm for minimal chordal completions, with Vin-
cent Limouzy and Arnaud Mary, in 49th International Colloquium on Automata,
Languages, and Programming (ICALP 2022). Schloss Dagstuhl-Leibniz-Zentrum
fiir Informatik, 2022.

Contributions on other subjects

Other results have been obtained during my PhD, that have not been presented
in the present manuscript but gave rise to two papers, submitted to or published in
specialised journals. They are about graph theory but do not concern enumeration.

Connected greedy colourings First, a project took place with the AlCoLoCo
working group in Clermont-Ferrand about connected greedy colourings of graphs.

Given a graph G and a vertex ordering o : vy ...v, of V(G), the “first-fit” greedy
colouring algorithm gives colours to all vertices of G in order ¢ by assigning to each
vertex the smallest colour unused in its neighbourhood. By restricting this procedure
to vertex orderings that are connected, we obtain connected greedy colourings.


https://arxiv.org/abs/2007.01031
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For some graphs, connected greedy colourings use at most x(G) colours (that is, the
minimum feasible number of colours). However, it is not always the case: sometimes
there does not exist any connected greedy colouring using less than x(G) + 1 colours.
A graph G with this last property is called ugly. The question we worked on was the
following: for a given graph class, does it contain ugly graphs? We partially answered
it for perfect graphs and K -minor-free graphs, proving that no perfect graph is ugly,
and no K -minor-free graph is ugly.

These results appear in the preprint [4]

o Connected greedy colourings of perfect graphs and other classes: the
good, the bad and the ugly, with Laurent Beaudou, Oscar Defrain, Flo-
rent Foucaud, Aurélie Lagoutte, Vincent Limouzy and Lucas Pastor, on ArXiv
arXiv:2110.14003, 2021. Submitted for publication.

Locating-dominating sets in oriented graphs The other project was realised
with a team constituted during the annual French graph meeting JGA 2020.

Given an oriented graph D = (V, A) on n vertices, a dominating set is a set S of
vertices of D such that any vertex in V' \ S has at least one in-neighbour in S. A set L
is locating if for any two vertices u, v in V'\ L, the in-neighbourhoods of u and v are
different sets — permitting to differentiate u and v. We were interested in knowing the
maximum size of a minimum set that is both locating and dominating.

It was already known [44] that for tournaments, that is, orientations of complete
graphs, such a set can contain at most [n/2] vertices. We extended this result to a
larger class of oriented graphs. An oriented graph is a local tournament if the in- and
out-neighbourhoods of any vertex induce tournaments. It is of course the case for
tournaments, but this class contains way more oriented graphs; for example, oriented
cycles are local tournaments.

We proved that any connected local tournament on n vertices has a locating-
dominating set of size at most [n/2].

We also proved a conjecture of Foucaud, Heydarshahi & Parreau [44] in a special
case: when the oriented graph has no twins nor quasi-twins — for oriented graphs, two
vertices sharing the same open (resp. closed) in-neighbourhood —, and has a vertex
from which any other can be reached. In this case, we proved that the oriented graph
has a locating-dominating set of size at most %”, and that this bound is tight, meeting
the value that was previously conjectured.

These results can be found in the article [5]
e Locating-dominating sets in local tournaments, with Thomas Bellitto,

Benjamin Lévéque and Aline Parreau, Discrete Applied Mathematics, 337:14-24,
2023.


https://arxiv.org/abs/2110.14003
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Summary

This thesis is about graph theory and more specifically enumeration algorithms for
subgraphs or supergraphs. The problem we consider is the following: given a graph G
and a graph property P, can we find an efficient algorithm generating exactly once all
the inclusion-wise maximal (induced or not) subgraphs of G that satisfy the property
P? We are interested as well in inclusion-wise minimal supergraphs of G — called
minimal completions of G — verifying P. Efficient algorithms, running with polynomial
delay in polynomial space, are obtained for some of these problems when P describes
the classes of split graphs, cographs, threshold graphs and chordal graphs.

The thesis is organised as follows. First, the principal existing enumeration tech-
niques are presented. Then, we are interested in the split property, for which we give a
polynomial delay polynomial space algorithm enumerating minimal completions and
deletions (maximal non-induced subgraphs). We are then interested in the well known
Flashlight Search technique and show that it cannot be used to enumerate efficiently
the maximal subgraphs in any class. After that, the recent Proximity Search technique
is applied to the enumeration of maximal induced sub-cographs, maximal induced
threshold subgraphs and minimal deletions into threshold graphs. This way, we obtain
polynomial delay exponential space algorithms. This technique is also successfully
applied to the enumeration of minimal completions into chordal graphs, for which the
existence of a polynomial delay algorithm was an open problem. Finally, a generalisation
of Proximity Search is proposed, and a new technique based on Proximity Search for
polynomial delay polynomial space algorithms is introduced. We apply this technique
to most of the problems solved in this thesis via Proximity Search, therefore reducing
their space complexity.



Résumé

Cette these porte sur la théorie des graphes et plus particulierement les algorithmes
d’énumération de sous-graphes ou sur-graphes. Le probleme auquel on s’intéresse est
le suivant : étant donné un graphe quelconque G et une propriété de graphes P,
peut-on trouver un algorithme efficace qui génére une et une seule fois tous les sous-
graphes maximaux pour l'inclusion (induits ou non) de G qui vérifient la propriété
P ? De méme, on s’intéresse aussi aux sur-graphes de G minimaux pour l'inclusion
— appelés complétions minimales de G' — qui vérifient P. Des algorithmes efficaces, a
délai polynomial en espace polynomial, sont obtenus pour certains de ces problémes
lorsque P décrit la classe des graphes split, des cographes, des graphes threshold et des
graphes cordaux.

La these se décompose de la maniere suivante. D’abord, les principaux algorithmes
d’énumeération existants sont présentés. Puis on s’intéresse a la propriété split, pour
laquelle on donne un algorithme a délai polynomial en espace polynomial pour 1I'énu-
mération des complétions minimales et délétions minimales (sous-graphes maximaux
non induits). On s’intéresse ensuite & une technique d’énumération existante appelée
Flashlight Search et on montre qu’elle ne peut étre utilisée pour énumérer efficacement
les sous-graphes maximaux dans n’importe quelle classe. Apres cela, la récente tech-
nique de Prozimity Search est appliquée a I’énumération des sous-graphes maximaux
induits dans la classe des cographes, des sous-graphes threshold maximaux induits et
des délétions minimales en graphe threshold. Nous obtenons ainsi des algorithmes a
délai polynomial en espace exponentiel. Cette technique est aussi appliquée avec succes
a I’énumération des complétions minimales en graphe cordal, pour lesquelles 1'existence
d’un algorithme a délai polynomial était un probleme ouvert. Enfin, une généralisation
de la technique de Prozximity Search est proposée, et une nouvelle technique fondée sur
le Prozimity Search pour des algorithmes a délai polynomial en espace polynomial est
introduite. Nous appliquons cette technique a la plupart des problemes résolus dans
cette these via Proximity Search, ce qui réduit leur complexité en espace.
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