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Abstract

An overview of the reconstruction problem of sum of exponentials functions from truncated
series is presented. We recall Prony’s method for univariate problems, analyse the alge-
braic properties underlying this reconstruction problem and describe an extension of Prony’s
method for sparse modeling in several variables. Applications of this method are developed.
A special attention is given to tensor decomposition problems.
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1 Introduction

In many context of applications, it is nowadays possible to recover a huge amount of information
on a phenomenon that we want to analyse. Sensors, scanners, etc. can produce a deluge of data,
which in principle should be helpful for this analysis. But too much information may destroy the
information. An important problem is to extract for this data, a structured representation which
is simpler to manipulate and understand. Recovering this underlying structure can boil down to
compute an explicit representation of a function in a given basis of a functional space. Classical
interpolation problems can be used in this framework, as well as Fourrier decomposition. Usually,
a “good” numerical approximation of the function as a linear combination of the function basis
elements is sufficient. But the choice of the function basis is very important from this perspective.
It can lead to a sparse representation which involve few non-zero coefficients or many coefficients.
To illustrate this problem, consider for instance a linear function over an intervalle of R. In the
monomial basis it is represented by two coefficients. Its description as Fourier series involves an
infinite sequence of (decreasing) Fourrier coefficients.
This raises two important problems:

e How to determine a good functional space, in which the functions we consider have a sparse
representation with few non-zero coefficients, which exhibit the main characteristics of these
functions.

e How to compute such a decomposition, using a small (if not minimal) amount of information
or measurements.

These problems known as sparse modeling have in important impact in many domains such as
Signal Processing, Image Analysis, Computer Vision, Statistics ...

Hereafter, we are going to study a specific reconstruction problem of truncated series, which
allows to treat many other sparse modeling problems. With the multi-index notation: Vo = (ay, ...,
an) € N*, Vu € C", ol = []7; ail, u* =[]}, uf and eg(z) = >, cnn Logoge = (62 =

i=1 ol
eS1:tHenzn it can be stated as follows:

Problem 1. (Reconstruction from truncated series) Given the coefficients o, of the series
ZCX
o(z)= Z Tay
aeENn

for |a| < d, recover r the number of terms, the points &1, ..., £, € C™ and the polynomial coefficients w;(z) € C|z]
such that

T

o(z)= Z wi(z) eéi(z).

i=1

1.1 Examples

Let us show in some examples how this problem can appear.
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Example 1. (Train of spikes) A train of spikes is a (complex) measure p which is a weighted sum
of Dirac measures

ILL:Z wi6& (1)
i=1

where &1, ..., & are pairwise distinct points of C, J¢, is the Dirac measure at &; and w; € C\ {0}. It
can represent for instance a sequence of impulsions over an interval of time, when &; € R.

We want to recover

e the number r of points,

e the distinct points &1, ..., &€ C,
e the weights w; eC\ {0},

from measurements of these impulsions. Classical measurements used in Signal processing are the
Fourier coefficients of the measure or its convolution with a function f:

T
ii 2 —2i7 (k)
or=g / flz)e .

If u is of the form (1), the generating series of oy, is

P
o(z)= Z Ukyzz w; f(&) e

keN =1

The decomposition problem consists in recovering the number r, the frequencies £, ..., & € C and
the weights w; f(§;) € C\ {0} from the first (Fourier) coefficients (o%),_, ,,_, of the series o(z).

Another problem, related to the previous one by Fourier transform, is the decomposition of an
exponential polynomial from its values.

Example 2. (Recovery of exponential polynomials from values) Given a function h € C*°(C) of

the form
T

xECHh(x):Z ai(z) efiv (2)

i=1

where fi, ..., fr € C are pairwise distinct, a;(x) € C[z]\ {0}, the problem consists in recovering
e the distinct frequency vectors f1,..., fre C ,
e the polynomial coefficients a;(x) € Clz]\ {0},

This problem is sometimes called blind identification in signal processing [17]. We assume
the “signal” h is the superposition of signals of a certain family, namely a product of a poly-
nomial by an exponential and we want to find its decomposition. This may be useful to identify
the number sources and some characteristics of these sources. Here is an example of a signal,
which is the superposition of several “oscillations” with different frequencies.
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This problem can also be reformulated into a truncated series reconstruction problem. By
choosing an arithmetic progression of points («) in C, for instance N, we can associate to h, the
generating series:

o)=Y ha) e T[]

aeN

where C[[z]] is the ring of formal power series in z. If h is of the form (21), then

72 =Y Y aile) &5 =3 bila) et

i=1 a€N

where & = efi and b;(z) are polynomials in z, uniquely determined by a;.
In practice, the evaluation of h may be marred by errors of measurements or by noise, the
decomposition problem consists then in computing an approximate decomposition which satisfies

T

lo(p) =Y ai (p)e!™P| <e, Vpe P,

i=1

for some given tolerance € and a set of points P C C.

1.2 A general framework

The problem of truncated series can be considered in a general context that we describe now :
e Let § be a functional space (in which “leaves the signals”).
o Let Sy,...,5,:§ = § be linear operators of § which are commuting: S;0.5;=.5;05;.
e Let AtheF—A[h] €C be a linear functional on §.

The problem of decomposition of an element h € § can be restated in terms of its generating series:

Definition 3. For h€ 3§, the generating series associated to h is

on(z) = 3 LA ()2 3)

where S*= 57" 00 Sp".
The elements in § that we are going to chose to decompose h € § are the eigenfunctions of the
operators S;. If E is an eigenfunction of S; for the eigenvalue &;, we easily check that
or(z) =e¢(z) A(E).

To find the sparse decomposition of the signal h, we consider the truncated generating series op,(2).
The following results shows that solving the truncated series problem for op(z) yields a solution
of the sparse recovery problem.
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Proposition 4. Let Sy, ..., Sy be linear operators of § which are commuting: S;jo S;=5;05;. Let
Ey, ..., E, be ezgenfunctzons of these operators: S;(E;)=¢&; ; E; with &= (&1, ..., &,n) € C™ pairwise
distznct Let A:heF—Alh) € C be a linear functional on § such that A[E;]=1.

Ifh=3"7_, wiE; then on(2) =3, cxm A[sa(h)]gzzj;:l wieg,(z).

Proof. If h=3%"_| w;E;, then S*(h)=3""_, w; S*E;)=>,_, w;&*E; and we have

i=1 1=1

= > A[S(h)] z—, Z > wit*A[E] z—, szz «Eaa, sz%

acN" i=1 a€N™ = acN”
g

The general decomposition problem consists in computing a decomposition of h as a weighted
sum of eigenfunctions, from the first coefficients of its generating series oy,.

If the map o: h € §— o4 (2) € C[[2]] is injective, then the solution o7,(2) =>"_, wieg,(2) of the
truncated series problem yields the solution of this decomposition problem in §: h= Z;zl wi B;.

Let us illustrate how the previous examples fit with this framework.
Reconstruction from Fourier coefficients. In this problem, we take

e T is the space of distributions on C.

e S:h(x)r e 2™ h(z) is the multiplication by e27¢®,

. A:h(m)H%f:f h(z) dx

We easily check that for a Dlrac measure §¢ at € [ 5 ﬂ, we have S(0¢) = £ 0¢, A[d] :% and

for any h e g, A = Tf e 2mkT dx is kth Fourier coefficient of h.

Reconstruction from values. In this problem, we take
o F=C%R),
o S:h(x)— h(x +%) the shift operator by % for Te Ry,
o A:h(x)— A[h]=h(0) the evaluation at 0,

We have S(efi®)=¢;efi® Alefi®] =1 and A[S*(h)]= h(%) Thus the series o (z) is the series given
in (3).

A more general context can be considered, replacing eigenfunctions by generalized eigenfunc-
tions:

Theorem 5. Let Si,..., S, be commuting operators of §. Let By 1,..., E1 yyseeeyy Er 1y, B 1 €
be generalized eigenfunctions of S1, ..., Sy such that for i=1,....r, j=1,...n, k=1,..., u;,
Si(Eik) =&, Bix+ Y mijr iy
k'<k
with &= (& 1, .-, &i,n) € C™ pairwise distinct. Let Ag be a linear functional on C*°(C™) and p; 1, ...,
Di, u; € Clx] such that Ag[pi,x(S)Es /] = { (1) ft’fl;“’fllse for i=1,..,r, k,k'=1,..., u;.
Ifh(z)=>;_, Z::1 wi.k B k(x), the generating series oy, is:

T

on(z) = ¥ %A[Sa(h)] 2= w(2) e (2)

aeN? i=1

where w; (2) uniquely determines the coefficients w;.y: <w,- (2) eg_(z)| Dik (x)> =W k-

Proof. O
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1.3 Previous works

The approximation of functions by a linear combination of exponentials appears in many context.
It is the basis of Fourier analysis, where infinite series are involved in the decomposition of these
functions. For “nice” functions, the coeflicients are decreasing exponentially and the series can be
approximated by a finite sum of exponential functions. This problem of finding an approximation
of a function by a finit sum of exponentials has a long history and many applications, in particular
in signal processing [13], [23].

Many works have been developed in the one dimensional case (n=1), which refers to the well-
known problem of parameter estimation for exponential sums. A first family of methods can be
classified as Prony-type methods. It goes back to the work of Gaspard-Clair-Frangois-Marie Riche
de Prony in 1795 [9], who proposed to construct a recurrence relation of minimal size for the
sequence (h(k))ren when h is a linear combination of exponential functions. To take into account
the problem of noisy data, the recurrence relation is be computed by minimization techniques
[23][chap. 1]. Another type of methods is called Pencil-matrix. Instead of computing a recurrence
relation, the generalized eigenvalues of a pencil of Hankel matrices are computed [23][chap. 1].

The survey paper [13] describes some of these minimization techniques implementing a variable
projection algorithm and their applications in various domains, including antenna analysis with
so-called MUSIC [25] or ESPRIT [24] methods.

In [5], another approach based on conjugate-eigenvalue computation and low rank Hankel
matrix approximation is proposed. The extension of this method using controlled perturbations
and called Approximate Prony Method is described in [21].

Another approach known as compressive sensing is considered for instance in [8] for one-
dimensional problems. In this approach, a large dictionary of functions is chosen and a sparse
combination with few non-zero coefficients is computed from some observation. This boils to find a
sparse solution X of an underdetermined linear system Y=A X. Such a solution, which minimizes
the Lo “norm” can be computed by L; minimization, under some hypothesis.

In the sparse reconstruction problem we are considering, the Fourrier coefficients are chosen
in a subset € of Z, which is not necessarily of the form [0, ..., 27]. If this set is “big enough” and
random (here of size >4r), it is shown in [8] that a sparse decomposition can be recovered by Ly
minimization.

Ounly recently the problem was studied in the multi-dimensional case like in [1], [22]. These
methods project the problem in one dimension by sampling data along a line and recover the
multivariate solution from projections along several directions. This approach is also used in sparse
interpolation of black box polynomials. In the methods developed in [2] [27], and further improved
in [12], the sparse polynomial is evaluated at points of the form (wf, ..., w¥) where w; are prime
numbers or primitive roots of unity of coprime order.

2 Prony’s method in one variable.

Gaspard Riche de Prony, mathematician and Engineer of the Ecole Nationale des Ponts et
Chaussées, was working on Hydraulics. To analyze the expansion of various gases, he proposed
in [9] a method to fit a sum of exponentials to equally spaced data points in order to extend
the model at intermediate points. We describe hereafter this method and will study later its
extension to multivariate decomposition problems.

Let h(z)=3""_, w;eli® be a linear combination of exponentials with distinct frequencies f; € C
and weights w; € C\ {0}.

Prony’s method performs as follows:

e Evaluate the function h at values on a grid of a certain step size %e R4

oL ::h(é) :Z w; (e%)k:Z w; EF
=1 i=1
for k€[0,...,2r —1] and &= eLTi.
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e From these values, compute the polynomial

T r—1
p@)=]] (x—&)=2"=)_ p;ai,
i=1 §=0
fi
which roots are {;=e7T, i=1,...,7 as follows. Since it satisfies the recurrence relations
r—1 T )
Vji€l0,..,r—1], Y ojripi—0ier=> wi&lp(&)=0,
i=0 i=1

it is the unique solution of the system:

oo 01 -.. Or—1 Po Or

o1 p1 Or+1

. . . . — . (4)
Or—1 O2r—2 Pr—1 O2r—1

e Compute the roots &1, ..., & of the polynomial p(z).

e To determine the weight coefficients wy, ..., wy, solve the following linear (Vandermonde)
system:
1 1 1 w1 h()
& & .. & w2y _ hy
g et gt JNw hy—1

This approach can be improved by computing the roots &q, ..., &, directly as the generalized
eigenvalues of a pencil of Hankel matrices. Namely, Equation (4) implies that

HO CX H1
op 01 ... Or_1 0 Po o1 09 ... o
01 1 4l 02 '
. -0
Or—1 02r—2 1 Pr—1 Or O2r—1

so that the generalized eigenvalues of the pencil (Hi, Hp) are the eigenvalues of the companion
matrix C), of p(z), that is, its the roots &1, ..., &. This variant of Prony’s method is also called the
pencil method in the literature.

3 Duality and Hankel operators

In this section, we consider polynomials and series with coefficients in a field K of characteristic
0. In the applications, we are going to take K=C or K=1R.

3.1 Duality

In this section, we analyze the natural isomorphism between the ring of formal power series and
the dual space of the ring of polynomials R=K][zy,...x,]. It is given by the following pairing:

]K[[Zla ) Zn]] X ]I{[.I‘l, ...an] - K

o 5 al By _ o ifa=p
(z%,2") — (2%z") {0 otherwise.



8 SECTION 3

Namely, if A € Homg(K[z], K) = R* is an element of the dual of K[x], it can be represented by
the series:
[e3 za
A(z)= gn Az )JGIK[[zl,...,zn]], (6)

so that we have (A(z)| %) = A(z®). This map A € R* — > Az®) Z—T €K[[z]] is an

aceNn»

isomorphism and any series 0(2) =3 cxn 0a =7 €K[[2]] can be interpreted as a linear form
b= Z pax® € Klx] = (0| p) = Z PoOa-
a€EACN™ a€EACN™

From now on, we identify the dual Homk (K[z], K) with K[[z]]. Using this identification, the dual

basis of the monomial basis (£%)yenn is (Z—T) . The coefficients 0, = (o] %) are called the
moments of o. o€

In this identification, we can introduce new variables y = (y1, ..., yn) and replace — by y“so
Hompy (K[xz], K) is identified with K|[[y1, ..., yn]]. This allows to extend the duality properties that
we will use to a field K which is not of characteristic 0. But the relation with differential operators
is less natural, that is why we assume that K is of characteristic 0 and use the identification (6).

If K is a subfield of a field IL, K[[z]] < L[[2]] and any element of K[z]|* can be uniquely identified
with an element of IL[x]*.

The truncation of an element o(z)=>3"

=z

e

wenn To— €K[[2]] in degree <d is 2lal<d T i U7

is denoted o(2) + ((2))?*!, that is, the class of o modulo the ideal (z1, ..., z,)?*! C K[[z]].
Among interesting elements of Hom (K [x], K) =IK][z]], we have the evaluations at points of C™:

Definition 6. The evaluation at a point £ € K™ is:
e Klzy,..vp] — K
p(x) — p(§)

which corresponds to the formal series:

Using this formalism, the series 0(z) =3 _._, w;e¢,(z) can be interpreted as a linear combination
of evaluations at the points &; which coefficients are w;, for i =1, ..., 7.
Notice that the product of z*e (z) with a monomial 2°*# € Clzy, ...z, is given by

(e @) |a?) = DL ongnaniae)

sothat o(z)=>"7_, wi(2) e, (z) can be seen as a sum of polynomial differential operators w;(9) “at”
the points &;, that we call infinitesimal operators: ¥pe Clz], (o0(2z)| p(x)) =37, wi(0)p(£).
Definition 7. For any o(z) €K[[z]], the inner product associated to o(z) on K[x]| is
(p(x), q(x)) — (p(x), ¢(2))0:= (0(2)| p(x)q(z)).

The dual space Hom(K[z], K) = K[[z]] has a natural structure of K[xz]-module, defined as

follows: Vo (z) €K[[z]], Vp(x), ¢(x) € K[x],
(p(x)xo(z)|q(x)) = (o(z)|p(zx)q(x)) = (p(x), ¢(2)).

We easily check that Vo €K[[z]],Vp, g € K[z], (pq) *oc =p*(g*0).

Example 8. Ifo(z) = >/, w; e, (z), with w; €K and § € K" and p(x)cK[z], we have
T

p(@)xo(z) = Y wip(é)e, (2). (7)

i=1
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An interesting property of this external product is that polynomials act as differentials on the
series:

Lemma 9. Vp e K[z],Vo € K[[2]], p(x) xo(z) = p(D.1, ..., Oz, )(0).

Proof. We first prove the relation for p=x; and o =2%. Let ¢;=(0,...,0,1,0,...,0) be the exponent
vector of x;. V5 € N™ we have

(xixz®|2P) = (2%|z;2%) = ! if a=B+e; and 0 otherwise
%)
x”).

= q; (2%

with the convention that z®~ =0 if o;;=0. This shows that z;xz*=q; 2%~ % =0,,(z®) as elements
of R*=K][z]].

By transitivity and bilinearity of the product *, we deduce that Vp € Klx], Vo € K][z]],
p(x)*xo(z) =p(02,..., 02, )(0). |

For a subset D C K[[z]], the inverse system generated by D is the vector space spanned by the
elements p(x) x §(z) for §(z) € D and p(x) € K[x]. By Lemma 9, the inverse system of D is the
space generated by the elements of D and all their derivative in the variables z at any order.

For an ideal I C R=K][z], we denote by I CIK[[2]] the space of linear forms o € K[[2]], such that

vpel, (o(z) | p@) 0.
Let d € N and let I, be the set of polynomials degree <d in I. We denote by IZ,;C K[[2]], the
set of linear forms o such that Vp € I¢q, (0(2) | p(x))=0.

Lemma 10. IZ;=1'+((2))%*.

This lemma says that an element of 1. %‘d is the truncation in degree <d of an element of I+

3.2 Artinian algebra
In this section, we consider an ideal I C K[x] and the associated quotient algebra A=K][x]/I.

Definition 11. The quotient algebra A is artinian if dimgk (A) < co.

Notice that if K is a subfield of a field L., dimk (K[z]/I) =dimy, (L[x]/I1) = dimp,.A ® I where
Iy, is the ideal of IL[x] generated by the element in I. Hereafter, we are going to assume that K is
algebraically closed.

Theorem 12. Let A be an artinian algebra of dimension r defined by an ideal I. Then we have
a direct sum

A=A @ D Ae,

where

o V(I)={&,..., &} CK™ with r' <r.

o I=0Q1N-NQ, is a minimal primary decomposition of I with Q; m¢,-primary,

o A =K[z]/Qi and A¢,- Ae, =0 if i#j.

The dual A* =Homg (A, K) of A is naturally identified with the sub-space

I* = {A e Ka]* = K[[2]]| ¥p € I, A(p) = O}.

As I is stable by multiplication by the variables x;, the orthogonal I+ = A* is stable by the
derivations %.

Proposition 13. Let Q be a primary ideal for the mazimal ideal m¢ of the point £ € K™ and let
Ae=K[z]/Q. Then there exists a vector space D C K[z] stable by the derivations L such that

dz;
QT =A:=D e¢(z).
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Theorem 14. Let A be an artinian algebra of dimension r with V(I)={&, ..., &} CK™. There

exists vector spaces D; CK[z] stable by derivation of dimension p; with Zzl:l w;=r, such that the
elements of A* are the elements A € K[[z]] of the form

!

M) =Y wilz) e (=),
with wi(z) eD;. =t

Definition 15. Let g be a polynomial in A. The g-multiplication operator M is defined by

Mg A — A
h s My(h)=gh.

The transpose application /\/ltg of the g-multiplication operator M is defined by

M A* A
A o ML(A)=AoM,=gxA.

Let BB be a monomial basis in A and B* its dual basis in A*. As the matrix M} of the transpose
application /\/ltg in the dual basis B* in A* is the transpose of the matrix M, of the application
M in the basis B in A, the eigenvalues are the same for both matrices.

The main property we need is the following (see e.g. [11]):

Proposition 16. Let I be an ideal of R=XK][x| and suppose that V(I)={&1, Ea, ..., €&+ }. Then

o forall ge A, the eigenvalues of Mgy and ./\/ltg are the evaluations at the polynomial g, namely
9(&1), -, 9(&),

e  The eigenvectors common to all Mtg with g€ A are - up to a scalar - the evaluations eg,, ...,
C¢

.

Remark 17. If (z°)gep is a basis of A, then the coefficient vector of the evaluation

B
z
e¢, = E ffFJF

BEB

in the dual basis of A* is [<e§i| IEB>]B€B = [SﬂﬁeB. The previous proposition says that if [M ]
is the matriz of My in the basis (2°)secp of A, then

[Mg]t [fz@],@eB:g(&) [5’?]663

If moreover the basis (mﬁ)geg contains the monomials 1, x1, xo, ..., Ty, then the root & can be
computed from the coefficient vector of any multiple ¢ eg,, ¢ € K — {0} of the evaluation eg,,
by taking the ratio of the coefficients of the monomials x4, ..., x, by the coefficient of 1. Thus
computing the common eigenvectors of all these matrices M; yield the roots & (i=1,...,7). In
practice, it is sufficient to compute the common eigenvectors of [My,]t, ..., [./\/lzn]t since we have

(Ml =g((Mz,]', ... [Ma,]).

3.3 Hankel operators

The external product x allows us to define an Hankel operator as a multiplication operator by a
dual element €K[[z]]:

Definition 18. The Hankel operator associated to an element o(z) € C[[z]] is
H, K[x] —» K]z]]
p(x) — pl@)*o(z).
Its kernel is denoted I,. We say that the series o has a finite rank r € N if rank H, =1 < co.

Example 19. If 0 = e is the evaluation at a point { € C", then He: p € K[z] — p(§) e € K][[2]]
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2

, ) is
(62 ()(EN”

Remark 20. The matrix of the operator H, in the bases (%),enn and (

a+5>)

[Hol = (0atp)apenn=((o]z a, BEN

Definition 21. For two vector spaces V,V'CK[z] and o€ (V-V')*CK][[z]], we denote by HY V"
the following map:
HYV':V = V" =homg (V',C)
p(x) — p(x)*o(z) v
It is called the truncated Hankel operator on (V,V”).

When V' =V, The truncated Hankel operator is also denoted HY .
If B={by,..., b} (resp. B’ ={bl, ..., bj.}) is a basis of V (resp. V'), then the matrix of the

operator H(‘,/’V/ in B and the dual basis of B’ is
[H7 '] = (o] bib) )r<icracicr
If B and B’ are monomial sets, we obtain the so-called truncated moment matriz of o:

[HEP'] = (0p1p)pen.pren

When n =1, this matrix is a classical Hankel matrices, which entries depend only of the sum of
the indices of the rows and columns. When n > 2, we have a similar family of structured matrices,
which rows and columns are indexed by exponents in N” and which entries depends on the sum
of the row and column indices. These structured matrices called quasi-Hankel matrices have been
studied for instance in [19].

3.4 Artinian Gorenstein algebra

In this section, we analyze the properties of artinian algebra that are obtained as quotient by the
kernel I, ={p € Clz]|pxo =0} of an Hankel operator H,. We assume that K is algebraically closed.

AsVp, qeKlx], pgxo=px(gx0o), we easily check that I, is an ideal of K[x], and we construct
the quotient algebra A, = K[z]/I,. By construction, A% = I} contains the elements p « o for all
p € K[z] and im H, C Aj. The Hankel operator H, is a map from K[xz] into Aj:

0= I, — Klz] 2% Az 8)

The variety defined by I, in K" is denoted hereafter Vi(I,) or simply V(I,) when K is
algebraically closed.

A classical result states that a quotient algebra A, =IK[x]/I, is finite dimensional, i.e. artinian
iff V(I,) is finite, that is, I, defines a finite number of (isolated) points in K.

The multiplicity of an isolated point & of V(I,) is the dimension over K of A, localized at &.

If o(z)=37_, wi(z)e,(z) then, by Lemma 9, the kernel I, is the set of polynomials p € K[z]

such that V¢ € K[x], p is a solution of the following partial differential equation:

T

3 wi(@)(pg) (&) =0.

i=1

Since Vp(x), q(x) eK[x], (p(x) + I, ¢(x) + Ir)o = (p(x), ¢(x))0s, {.,.)s induces an inner product
on A,.

Theorem 22. Let o(z) €K][[z]]\{0}.
e rank H,=dimgk (Ay) <00, if and only if,
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with w;(z) € K[z]\ {0} and &; € K" pairwise distinct.
o Ifo(z)= Z:,:l wi(z) e, (z) with wi(z) € K[z] \ {0}, then
o the map Hy: Ay — A induced by H, is an isomorphism.
o the inner product {.,.), is non-degenerate on A, =K[x]/I,.
o the rank of H, is Z:/:l w; where p; is the dimension of the vector space spanned by
wi(2) and all its derivatives 0305 wi(z) for a= (o, ..., an) € N";

o the variety V(1) is the set of points &1, &, ..., € € K™, with multiplicity p, ..., f.
Proof. By definition of I, and by the short exact sequence
H,
0—I,— Klz] —Im(H,) =0, (10)

we have A, = K[z]/I, ~ Im(H,). If rank H, = dim (Im(H,)) = r < oo, then dim (A,) =
dim (K[z]/I,) =r and A,is an artinian algebra (of dimension r over K). By Theorem 12, it can
be decomposed as a direct sum of sub-algebras

Ar=Ae, @ DA,

where Vik(I,) ={&1, ..., &} and Ag, is a local algebra for the maximal ideal m, defining the root
& e K™ Ag, =Klx]/Q; with Q; an m¢,-primary ideal of K[x]. Moreover, we have the minimal
primary decomposition I, = Q1N N Q.

The series o(z) represents an element of the dual A% = I, which by Theorem 14 can be
decomposed as

r’

a(z):Z wi(z) e, (z) (11)
i=1
with w;(2) € C[z]. The polynomial w;(z) cannot be zero, otherwise Q; C ker H, = I,. As
I, = Q1NN Q, we deduce that I, = Q; and that o(2z) =w;(2) e, (z) =0, which contradicts the
hypothesis.

Conversely, if o(z) =>7_; wi(2) e, (z) with wi(z) € K[2]\ {0} and & € K" pairwise distinct,

we easily check that I, contains N{_; mg"“ where d; is the degree of w;(z). Thus V(I,) C{&1,..., &}

&

The ideal I, contains in particular univariate polynomials in each variable ;. Thus A, =K[x]/I,
is of finite dimension over K and rank H, < co.

Let us assume now that o(z) = Z:/: wi(z) e, (z) with w;(z) € K[2]\ {0} so that A, =K[z]/I,
is of dimension r over K.

As A, =K[x]/I, ~Im(H,), H, induces an injection from A, into A% which is of dimension
r. We deduce that H, induces an isomorphism between A, and A}, and we have the short exact
sequence:

1

0— I, — Klz] 217 A% 0.

This shows that A} is generated by elements px o for p € K[z|, that is, A} is the inverse system
generated by o.
By definition of I, if p € K[z] is such that VgeK|x]

(p(2), q())o = (pxo(2) | q(x)) =0,

then p x o(z) = 0 and p € I,. We deduce that the inner product (-, -), is non-generate on
A, =K[z]/I,.

By Theorem 14, o € A} has a decomposition of the form (9) which must coincides with the
given one: o(z)= Z:;l w;(2) egi(z). Thus A5 = A¢, @ - © Ag, where I, = Q1N NQp, A7, = QF
is the inverse system generated by w;(z) e, (z) for i=1,...,r".

The dimension of j; =dim AZ, = dim A, of the inverse system AZ, is the multiplicity of &; it
is also the dimension of the vector space spanned by w;(2z) and all its derivatives 95!+ 05 w;(2)
for a=(aq, ..., a,) € N™. We deduce that dim A, =dim A} =r= Z:/:l L.

As I, = Q1NN Q.+, we deduce that V(I,) = {&, ..., &}, which concludes the proof of this
theorem. 0
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Definition 23. The rank of an element o € K[[2]] is dimk (A,).
Definition 24. The support of o is V(I,).
A special case of interest is when the roots are simple. We characterize it as follows:

Proposition 25. Let o(z) € K][z]]. The following conditions are equivalent:
1. o(z) = Y1, w e, (z), with w; €K\ {0} and & € K" pairwise distinct.
2. The rank of H, is v and the multiplicity of the points &1, ..., & in V(1) is 1.
3. A basis of Aj is eg,, ..., €¢,.

Proof. 1=2. The dimension of the vector space spanned by w; €K\ {0} and its derivatives is 1.
By Theorem 22, the rank A, is 7=3_"_, 1 and the multiplicity of the roots &1,..., & in V(I,) is 1.
2 = 3. By Theorem 22, A} is the inverse system spanned by o. As Vp € Klz], p x 0 =
S wip(&) e, A is in the vector space spanned by eg,; ..., e¢,. As dim (A7) =r, it is a basis.
3=1. As 0 € A}, there exists w; €K such that 0 = >\, w; e, . If one of these coefficients
w; vanishes that dim (A}) <r, which is contradicting point 3. Thus w; €K\ {0}. O

In the case where all the coefficients of ¢ are in R, we can consider the following notion of
positivity:

Definition 26. An element o € R[[z]] = R[z]* is positive if Yp € R[z], (p, p)o= (0o |p?) =0. It is
denoted o = 0.

The positivity of ¢ induces the following property on its decomposition:

Proposition 27. Let o € R[[z]] of finite rank o =0 iff

o(z)= Z wi e, ()

with w; >0, & €R™.

Proof. If o(z) =), wie_ with w;>0, §€R", then clearly Vp € R[z],

3

(@ 1p) =) wip(&)=>0
and o =0. =1
Conversely suppose that Vp € R[z], (o | p?) = 0. Then p € I, iff (o | p?) =0. We check that I,
is real radical: If p?* + >, qj € I, for some k €N, p, ¢; € R[z] then

<a|p%+z q§><a|p%>+z (o 1d)=0

which implies that (o | (p¥)%) =0, (0| ¢}) =0 and p*, ¢; € I,. Let k'= (g] We have (0| (p*')?) =0,
which implies that p¥’ € I,. Iterating this reduction, we deduce that p € I,. This shows that I, is
real radical and V(I,) CR™. By Proposition 25, we deduce that o =37/, w; e, with w; €C\ {0}
and & €R"™. Let p; € R[z] be interpolation polynomials at & € R™: p;(&) =1, pi(§;) =0 for j#i.

Then (o | pf) =w; € Ry This proves that o(z) =7_, w; e, (2) with w; >0, & €R™ 0O
3.5 The support of o
In this section, we consider the problem of computing the support {&i,..., &.} of a series o =

>y wi(2) e (2) from its hankel operator.

We recall classical results on the resolution of polynomial equations by eigenvalue and eigen-
vector computation. Hereafter, A=IK[xz]/I is the quotient algebra of IK[x] by any ideal I and A*=
Homp (A, K) is the dual of A. It is naturally identified with the orthogonal I+ ={ A€ K[[2]]|Vp€ I,
(A,p)=0}. In the reconstruction problem, we will take I =I,,.
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Coming back to our decomposition problem for which A = A,K[x]/I,, we observe that by
projection and restriction, H, induces the map

Ho: Ay — AL
p(x) = p(x)*o(z).
This map is a bijection, since we quotient H, through its kernel I, and restrict it onto its image
As=T}+
Lemma 28. For any g € K[z], we have
Hywo=MYoH,=Hs0oM,. (12)

Proof. This is a direct consequence of the definitions of H gy, Ho ,Mtg and M,. O

If (bi)1<i<s and (b)1<i<s are bases of A,, then the matrix of H, in the basis (b;)1<i<s and
in the dual basis of (b))1<i<s is [Ho] = ({(o] bi(x)bj(x)))1<i, j<s- In particular, if (2°)sep and
(x?")grepr are bases of A,, its matrix in the corresponding bases is

= B+B/ ’ /:( /) :HB7B/.
Hol=(ola" " ))sen pes = 0p15), o p,=Ho

It is a submatrix of the (infinite) matrix [H,]. Conversely, we have the following property:

Lemma 29. Let B, B' C N" with |B| = |B'|. The matriz [HEZ'P'] = (gﬁw,)

is
’ BeB,B'eB’
invertible, if and only if, (2°)secp and (xP)p.cp are linearly independent in A,.

In particular, if dim A, < +o0, |B|=|B’| =dim A, and Hf’B/ is invertible, then (z°)sep and
(x7") 51 g are bases of A,.

Similarly, the matrix of H g4 in the bases (b;)1<i<s and (bf")1<i<s is
[Hoxol = ({0 (2)] g(x) bi(x) bi(x)))1<4, j<6-

If ¢ = x% the matrix Hpay, in the basis (:l:ﬂ),@eB and the dual basis of (IEB/),g/eB/ is
B,B’
(0a+ﬂ+ﬁ’)

%0

ﬁeB,B’eB'_

From this relation (12) and Proposition 16, we have the following property.

Proposition 30. If o(z)=Y"

i1 wi(2) eg,(z) with w; € C[z]\ {0} and & € C" distinct, then

o for all g € A, the generalized eigenvalues of (Hgwo, Ho ) are g(&;) with multiplicity us,
1=1..r,

o the generalized eigenvectors common to all (Hgwo, Ho ) with g € A are - up to a scalar -

Hy eg,), . 1o Hee,)-

Remark 31. If we take g = z;, then the eigenvalues are the i-th coordinates of the points &;.

3.6 The case of simple roots

In this section, we assume that o(z)=3""_| wje¢,(2) with w; eC\ {0} and & € C" distinct.
By Proposition 25, {eg,, ..., e¢.} is a basis of A}. We denote by {ug,, ..., ug, } the basis of A,

which is dual to {eg,,..., €¢, }, so that Va(x) € A,

s T

a(@)=)  (eg(2)|a(@))u, (@)=Y a(&)u,(z). (13)

i i

1=1 i=1
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From this formula, we easily verify that the polynomials ug¢,, ug,, ..., ug, are the interpolation
polynomials at the points &1, &9, ..., €., and satisfy the following relations:

° u&(&_}): { é ioftiljri;;ise.
o u&(x)2 = u{i(a’)'
o > ug(x)=1.
These relations and Proposition 16 imply the following result:
Corollary 32. If g € Clz] is separating the roots &1, ..., & (i.e. g(&)# g(§;) when i+ j), then

e the operator MY, is diagonalizable and its eigenvalues are g(&1), ..., g(&,),

e the corresponding eigenvectors of M are, up to a non-zero scalar, the interpolation poly-
nomials Ug,, ..., Ug

e the corresponding eigenvectors of /\/ltg are, up to a non-zero scalar, the evaluations eg, ..
C¢

el

In our context, we have the following property:

Proposition 33. Ifo(z)=>_, .
generalized eigenvectors of (Hgwo, Mo ) are, up to a non-zero scalar, the interpolation polynomials

Ugy, ..., Ug, .

wie, (z) and g € Clx] is separating the roots &1, ..., &y, then the

i

Proof. By the relations (12) and Corollary 32, the eigenvectors ug,, ..., ug, of M, are the
generalized eigenvectors of (H g, Ho )- O

Remark 34. If v;(x) is a generalized eigenvector of (Hu,«o, Ho) for the eigenvalue &; ;, then by
the previous proposition, it is a multiple of ug, of the form wv;(x) =v;(&;) wi(x) since wu;(&;)=1,
and we have u;(x)= %g)vz(m)

Let us recall other relations between the structured matrices involved in this eigen problem,
that will be useful to analyse the numerical behavior of the method. For more details, see e.g. [19].

Definition 35. Let 2° = (zBi)i:L__ﬂ,« be a family of monomials in A. We define the 2B-Vander-
monde matriz for the points &1, ..., €. € C™ as

Va=((eg, | )i<ij<r=(€7) 1 s
By remark 17, if 28 = (zﬁi)izlw’r is a basis of A,, then Vg is the matrix of coefficients of
e¢,, .-, €¢, in the dual basis of (27);—1 _, in A} and it is invertible. Conversely, we check that
Vg invertible implies that z71..., ..., 2P are linearly independent elements in A,. Thus, they form
a basis of A,.

.....

Proposition 36. Suppose thato(z) =,
i=
w1, ..., wr € C. Let W =diag(w, ..., w,) be the diagonal matriz associated to the weights w; and let

D,=diag(g(&1), ..., g(&)) be the diagonal matrices associated to g(&1), ..., g(&). Then we have

w; e, (z) with &1, ..., & € C" pairwise distinct and

[Ho] = VaWVj
(Haue] = VaWD, V5=V Dy WV
M) = VaDyVs

.

Proof. If o(z) = 22:1 wj egi(z) and 2P = (zﬁi)izl r is a basis of A, then [Hgwo| =
>, wig(&) 551'*57'],&-7]-:17“_#. By an explicit computation, we check that [Hg.,] = Vi WD, Va.

Equation (12) implies that [M] = [H g.o|[Ho]| ' =V Dy Vﬁ_l. O
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Proposition 37. Let o(z) = Y/ | wie,(2). The basis {ug,,...,ue } is an orthogonal basis of

i

A for the inner product (.,.), and satisfies (ug,,1), =(c|ug,) =w; fori=1...,7.

Proof. For i, j=1..r, we have (ug,,ug,)o=(0| ug,ue,) =>",_, wrug,(éx)ue,(&). Thus

<u€i ) u€j>0 - { 0 otherwise

and {ug,, ..., ug,} is an orthogonal basis of A,. O

4 Flat extensions and decomposition algorithm

To solve the truncated series problem, we use a characterization of all possible extension of the
truncated series that have finite rank.

For a vector space V C C[z], we denote by VT the vector space VT =V 4z, V +--- +2,V. We
denote by V' a vector space such that V=V & V.

We says that V' is connected to 1, if there exists an increasing sequence of vector spaces V) C
Vi C - CVy=V such that Vo= (1) and V41 C Vﬁ. The index of an element v € V is the smallest
[ such that v € V.

We say that a set of polynomials B C C[x] is connected to 1 if the vector space (B) spanned
by B is connected to 1. In particular, a monomial set B = {x”1, ..., %"} is connected to 1 if for
all m € B, either m =1 or there exists m’ € B and ig € [1, ..., n] such that m =x; m'.

The truncated series problem is closely related to the notion of flat extension that we define now:

Definition 38. For any matriz H which is a submatriz of another matriz H', we say that H' is
a flat extension of H if rank H=rank H'.

This flat extension property can be characterized as follows:

Proposition 39. Let H be a submatriz of H' and M, M’', N be matrices such that

H’:( ]\th ]‘Jf,' ) (14)

Then, H' is a flat extension of H iff there exists matrices P, P’, such that H
M=H'P M'=HP' N=P'HP' (15)
If H and H' are symmetric, then one can take P=P’.

Proof. Suppose that H' is a flat extension of H. As rank H' =rank H, we have im M’ C im H
and there exists a matrix P’ such that M’= HP’. Similarly, there exists P such that M =H ‘P .

We deduce that
Id 0 H M’ Id -P"\ (H 0
—Pt 1d Mt N 0 Id /) \ 0 N—-MP )
which has the same rank as H. Thus N — MP'=N — PtHP'=0.
Conversely, if we have M = H'P,M'=H P’ N = P'H P’, then

7 H HP
PtH P*HP’
has clearly the same rank as H.
If H and H’ are symmetric, then using P’ = P yields the same relations as above. O

We can now give the main result, which will allow us to recover the decomposition of o. It
generalized the sparse flat extension results of [16], [6], [3] to any vector space connected to 1:
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Theorem 40. Let V, V' C K[z] be a vector space connected to 1 and o € <V~V’>*. Let BCV,
B'C V'’ connected to 1 such that BY CV, B~ c V' and H?"P" invertible. Then the following points
are equivalent:

1. rankHX’V,:ranka’B/,
2. the operators M;:= (Hf’B/)*leiff/ commute,

3. there is a unique extension & € K[[z]] which coincides with o on (V - V') and such that a
+
basis of B is a basis of Az. In this case, Iz = (keer’B )

Proof. 1=2. Let r =dim (B) = dim (B’) =rank Hf’Blsince Hf’B, is invertible. The condition
rank Hf’B/ =rank H;/’V/ =1 implies that ker H;/’B/ :kerH;/’V,. In particular we have

keker H V' o Yo' eV’ (o|kv')=0 (16)

& Yo eV (o|kb)=0 (17)

Let M;:= (Hf’Bl)f1 Hﬁfl. It is a linear operator of (B). As Hfi;g,: Hf’B,oMi, we have
vbe B, b'e B’
{o]ibb") = (o] Mi(b) V')

As rank H;/’V/:rankH<173+’3,+ :ranka’B,:r, we also have Vj=1,..., n,
(o) z;2,00") = (0| 2;bx ;") = (o] x; Mi(b) b') = (0| Mo M;(b) b').
We deduce that (o] M; o M;(b) b') = (0| M; o M;(b) b’) and the operators M;, M; commute:
M; o M;= M;o M.
2=-3. Let us define the operator
¢:Klx] — B
p — p(M)(1)
and the linear form
:Klxz] - K
p = (o p(M)(1))

+
We are going to show that ¢ extends ¢ and that I = (ker Hf’B ) As the operators M; commute,

the operator obtained by substituting the variable z; by M; in a polynomial p € K[x] is well-defined
and the kernel J of ¢ is an ideal of K[x].

We first prove that ¢ coincides with o on (V- V).

Let us prove by induction on the index that Vv € V', Vb’ € B’, (o| vb’) = (o] ¢(v) b'). If v is of
index 0, then b=1 (up to a scalar) and ¢(1) =1 so that the property is true.

Let us assume that the property is true for the elements of V' of index [ —1>0 and let ve V
of index I: there exists v; € V of index [ — 1 such that v =7} x;v;. By induction hypothesis and
the relations (16) and (17), we have Vb’ € B,

(olob) = D (olvizib) = (ol ¢(vi)aib) =) (o] Miod(vs) )

<a| (3 w09 )b> = (o] $(0) ).

%

Using relations (16) and (17), we also have
YoeV Yo' eV’ (o|vv’y= (o] d(v)v’). (18)
In a similar way, we prove that

Vbe B,Wo' € V', (o] bv') = (o] v/(M) (b)). (19)
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The property is true for v/ =1. Let us assume that it is true for the elements of V' of index—1>0
and let v’ € V' be an element of index I. There exist v{€ V' of index [ — 1 such that v'=3%" z;v].
By induction hypothesis and the relations (16) and (17), we have Vv € V|

(o) = 3 (olvlaib) =3 (o] v MiB) =3 (o] ol(M)Mi(B))

% %

<a| (3 wovtian )<b>> — (ol v/(M) ().
By the relations (18) and (19), we have Vo eV, Vo' € V',
(ovo’) = {o]v'o(M)(D) = (o] 0 /(M) 0 w(M)(1)) =(o] (v0") = (] v0).

This shows that ¢ coincides with o on (V- V).

We deduce from relation (18) that Vb € B, Vb’ € B’, (o] (b — ¢(b)) b') =0 and ¢(b) = b since
HP ‘B" is invertible. Therefore ¢ is the projection of K[x] on B along its kernel J and we have the
exact sequence

O—>J—>]K[ac]i>B—>0.

Let I, =ker Hs and A, =K[x]/I,. As J C I,, we have dimk.A, < dimkgK|[x]/J=dim B=r and B
is generating A,. Since ¢ coincides with ¢ on (B- B’) and Hf’B, is invertible, a basis of the vector
space B C K[x] is free in A,. This shows that dimk.A, =r and that J=I,.

Since B contains 1 and ¢ is the projection of K[x] on B along I, = J, we check that I, is
generated by the element x;b — ¢(x;b) for be B, i=1,...,n, that is by the elements of ker Hf+"B/.

If there is another 6’ € K[[z]] which coincides with o on (V- V'), then J C Is. and Vp € K[z],
(6" p)y={(c'] ¢(p)) = (o] #(p)) = (G| p), so that 6'= &, which proves point 3.

3=1. If 6 €K][[z]] coincides with ¢ on (V' -V’) and B is a basis of As, then

r=dim B =rank H; >rankHl¥’V :rankH;/’V >ranka’B =r

which proves point 1. ]

If only the low degree coefficients & are known, this property can be used to find an extension
of finite rank, by solving polynomial equations. We introduce a variable h, for each unknown
coefficients of o. If we suppose that V' (resp. V') is spanned by a set B (resp. B’) of monomials
connected to 1, to find if an extension o of finite rank of & is such that B is a basis of A, we use
the flat extension constraint, which yields polynomial equations in the unknown ho. As HE is a
submatrix of HE +, we have a decomposition of the form

B,B’ 0B,B’
gBtBt_ Hs H,
o [BOB' poB.OB" ]
o o

where the rows and columns of H, f B are indexed by the elements respectively in B’ and B and
the rows and columns of H?B’B/
in BT.
.. . B+ B't B,B’ . . .
By Proposition 39, the matrix H has the same rank as H_ " , if and only if, there exists
a matrix P such that

HEOP BB p=0, HIPOF _ ptHE P p=q. (20)

are indexed by B’ and a basis OB of a supplementary space of B

In these relations, the coefficients of P can also be considered as variables and the system of
equations (20) gives the condition that HZ " is a flat extension of HZ.

Each solution of this system gives a zero-dimensional ideal I, generated by ker Hf+ which
uniquely defines all the coefficients of the series o and such that rank H, =rank H2.

Remark 41. A basis of the kernel of Hf+"B/ is given by the columns of ( 7

polynomials of the form
2%~ >, Papa’

BEB

) , which represent
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for @ € 9 B. These polynomials are border relations which project monomials of 0 B on the vector

space spanned by B, modulo ker HZ " Using Theorem 40 and the characterization of border bases
in terms of commutation relations [18], [20], we can prove that they form a border basis of the ideal

generated by ker Hf+ iff rank HZ =rank Hf+ =|B|, or in other words, iff Hf+ has a flat extension.
This condition is equivalent to the commutation property of formal multiplication operators.

4.1 Computing an orthogonal basis of A,

In this section, we describe a new method to construct a basis B of A, from the knowledge of the
first terms o, of o(z). We assume that o #0.

To construct this basis B of A,, we are going to define inductively vector spaces V; as follows.
Start with Vo= (1) and compute a vector space L; of maximal dimension in V;* such that

e [;is orthogonal to Vi: (L;, Vi)e=0,

o LlﬂkerHXl+:{O}.
Then we define Vi41 = Vi + L;. If there is no such L; with dimension >0, this implies that

Vl+ =V, + K; with K; Cker H;/’+ and we stop. By theorem 40, a basis of V] yields a basis of A,.
Suppose that by, ..., b, is an orthogonal basis of Vj: (b;,0;)=0if ¢ j and (b;, b;)» #0 . Then
L; can be constructed as follows: Compute the vectors

T
xkb-,bi o
b=y~ ! ; Jbi>a> B

i=1

generating V;= in V;" and extract a maximal orthogonal family b, 1, ..., by, 4, for the inner product
(., .)o, that form a basis of L;. This can be done for instance by computing a QR decomposition
of the matrix

[(bj,5,bir,57) al1<irir<rin 1<, 57 <ne

This leads to the following algorithm:

Algorithm 1

Input: the coefficients o, of a series o € C[[z]] for « € A C N™ connected to 1.
— Let By:={1}; s:=1;r:=1; E=(2%qe4;
—  While s >0 and BT C E do

v Awkbibide gy i k=1,..., 0

— compute b; j:=xrb;—> ., mown-

— compute a maximal subset {byy1, ..., bris} of {b; ;} of orthogonal vectors for the inner
product (.,.)s;
— Bsi1:=BU{bry1, ., bpis}; TH=S5;
— If B¥¢ E then return failed.
Output: failed or success with

— a basis B={by, ..., b.} orthogonal for (.,.),.

— the relations b; j,: =z b; _22:1 %bi for j=1,...,r, k=1,...,n.

In the main loop of this algorithm, when x4 b; € (b1, ..., b,) then b; 1, =0.

Remark 42. If the polynomials b; are at most of degree d’ < d, then only the coefficients of
on(z) of degree <2d’ +1 are involved in this computation. In this case, the border basis and
the decomposition of the series ¢ as a sum of exponential polynomials can be computed from
coefficients first terms.

Remark 43. When all the coefficients are not known, ...
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Theorem 44. If Algorithm 1 oulputs with success a set B = {by, ..., b.} and the relations
bjki=2rbj—> 1, %bi, j=1l..r, k=1..n, then o coincides on (BT -BT) with a series &
such that

e rank Hz;=r;
e B s an orthogonal basis of Asz for the inner product (.,.)s;

o I; is generated by x1b; 722:1 Wbl forj=1.r k=1.n;
<:Ejb7;,bk>g

e The matriz of multiplication by xy in the basis B of As is My := (W)1<' o
° “ ILIT

Proof. Let V' =(B). By construction of B, V is connected to 1. A basis B’ of V= (B*) is formed
by the elements of B and some of the polynomials b; . Since Algorithm 1 stops with success, the
matrix of H;/+ in this basis B’ is of the form

g HZ 0
7 0 0

where HP is diagonal and invertible matrix. The kernel of HZ is generated by the polynomials
bj k-
J7kBy Theorem 40, o coincides on (V*-V*)=(B’- B’y =(B*- BT) with a series ¢ such that B
is a basis of A;=Clx|/I; and I5 = (kerH,‘;H) =(bj k)j=1..rk=1..n-
This shows that rank Hs =dim Az = |B| =r. By construction, B is orthogonal for the inner
product { .,.),, which coincides with (., .)s on (BT - B™). Thus B is also an orthogonal basis of
Ags for the inner product (., .)s.

As b; =0 in As, we have 2, b; =)0, % b;, which shows that the matrix of multipli-

cation by xj in the basis B of Az is My = (%)1( L
urlo ILIIT

O

4.2 Computing the support of o

This leads to the following algorithm to compute the decomposition, if a basis of A, is known.

Algorithm 2
Input: a basis {by, ..., b.} of B CK][x], which is orthogonal for (.,.),.

— Take a generic linear form (x) =liz1+ - + [, 2n;

(Eiomlaye

— Compute the matrices Mj:( Tor 5 )1<. i
’ g \7‘7]\7.

— Compute the eigenvectors vy, ..., v, of [M,];
— Compute &;,; such that M;v; — & jv;=0for j=1,...,n,i=1,..,7;
— Compute uz(w):ﬁvz(m) where &= (&1, & n);
—  Compute (0| u;) =w;;
Output: a decomposition ¢ =3, w;eg,(z) such that Vb, b’ € B+
(o] bb’y = (5| bb).

The step which compute the interpolation polynomial u;(x) can be replace by the following
step: Let E be the coefficient matrix of the eigenvectors vi(x), ..., v.(x)and U be the coefficient

vector of 1 in the given basis of A,. Solve the system EC=U and compute u;(x)= Ci'ut(w)

4.3 Generalized Prony method

The previous algorithms, used together, give the following method which generalizes Prony’s
method to solve the reconstruction problems in several variables.
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Algorithm 3

Input: the coefficients o, of a series o € C[[z]] for o € A C N™ connected to 1.
—  Apply Algorithm 1 to find an orthogonal basis of B C (z?) for (.,.),.
— If success then

— apply Algorithm 2 to compute the decomposition ¢ = Z:Zl w; eg,(z), which coincides
with o on (BT - BY);

— check that the decomposition ¢ coincides with o on A;
Output:

— failed or

— success with a decomposition o(z) =), wieg,(z) on A.

It can be applied in the following contexts:
Sparse reconstruction of sum of exponentials. Given a function h € C*°(C") of the form
:l::(acl,...,xn)e(C”Hh(x):Z ai(z) X (21)
i=1
where fi, ..., f,. € C" are pairwise distinct, a;(x) € C[z]\ {0} and VI, ,geC", (f,g)= f1 91+ + fngn,
the problem consists in recovering
e the distinct frequency vectors fy, ..., f.€ C™ |
e the polynomial coefficients a;(x) € Clx]\ {0},
from evaluations of the function h at some points of C™. This corresponds to the following setting:
o F=C"(R"),
o S;:h(z)— h(x + ¢;) the shift operators by the elements e; of the canonical basis of C"
(i=1,...,n),
o A:h(z)— A[h]=h(0,...,0) the evaluation at the origin.
Clearly, the shift operators S; are commuting and we have Sj(e< ) &ije fix) with &=
elfiei) 50 that E; = efiX) is an eigenfunction of S; for the eigenvalue &; ; :e<f“ >. Moreover,
Ao[S¥(h)] = h(a) and op(z) is the generating series (4) associated to h.

Notice that instead of the canonical basis, we can take any basis vy, ..., v, of C™ and consider
the shift operators S;: h(x) — h(x + v;).

The linear functional A can also be replaced by any (non zero) linear functional on C*>°(C"),
for instance the integration over a compact domain Q: A[h]= [ h o @) dx. This provides degrees
of freedom in the application of the reconstruction rnethod Wthh can be interesting for solving
numerical issues. In particular, scaling variables can be used to reduce numerical overflows.

We easily check that ai(x) ef"*) are generalized eigenfunctions of the operators S; and if
h(z)=3"I_, a;(z) !> then its generating series are of the form o5,(2)=>""_, bi(2) e¢,(z) with
&=(efin, ..., efi") € C™ and by(z) € C|2] polynomial uniquely determined by a;.

To analyze the correspondance between the polynomials a;(x) and b;(z), we introduce the so-
called Macaulay basis of Clx]: V8 € N",

oio=(3)-(3)

,6( ) 61 Bn

It has the following nice property: > 5(a)e£(z):z5§’ﬁe§(z) where e (2) =" cnn ”‘%T.
Proposition 45. Let B; C N", f, € C", w; 3, € C, for i=1,..,r, f; € B; and h(z) =
Y1 > pien, Wi,p b, (@) e %) then its generating series are

z):Z Z w;, g2 eg,(z)

i=1 BEB;
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Sparse reconstruction of sum of Dirac measures. We want to decompose a signal h as a
weighted sum of Dirac measures, representing spikes: h = Z:zl w;d¢,. Consider the following space
and linear maps:
e The space § is the space of distributions on C™.
2mi, 2mi
e The operator Sj: § — § is the operator of multiplication by e "/ . Si(h) =e™ “ b for
T; € Ry. Clearly, the operators Si, ..., S, commute. Moreover, V& = (&1, ..., &) € C,

27 27

S;(8¢)=e 1 8¢ and the Dirac measure d¢ is an eigenfunction of S; for the eigenvalue e "7’

Tn
e The linear functional A is A:heF— Alh 77, e le ) IT? h(x)dx

T 271
Tﬂ j= TJ

Then A%(h):= A[S*(h)] = o Tf ™ o f Cra h( )da is the Fourier coefficient

of index a« € N™ of h. The problem of sparse recovery boils down to reconstruct the spikes at &1, ...
&- € C™ and their weighs wy, ..., w, from the first Fourier coefficients of the 81gna1. We apply the

approach described in Section 4 to the first term of the series o(2) =3 .o o L A°h] 2.

Example. We consider the function h(u1,ug) =2+ 3-2"1 242 — 3¥1. Tts associate generating series
iso=3" ne h(a) % Its (truncated) moment matrix is

5 7 5 11 13 ]

4
h(0,0) h(1,0) h(0,1) ]
[h(l,o) h(2,0) h(1,1) - b5 =1 1723
H[l,ﬂir,:cz,ﬂi%,a;m:z,a;%]: h(O 1) h(l 1) h(O 9 7 11 13 17 23 25
7 J J . 5 —1 17 —31 23 41
; ; ' 11 17 23 23 41 47

13 23 25 41 47 49

We compute By={1}, By={1,21— %, To —%xl — 4} ={bg, b1, ba}.
We have modulo ker H,:

)
) | =

—_

5
x1 by Zbo—f-bl

_ (1b,bi)e 5, 91
zb = Z Db, 160 it

= Vv lzbubig 96, 1
r1by = ; i b)a —25b1+5b2

The matrix of multiplication by 1 in B = {bg, b1, b2} is

(33 0]

! 9116 96

M, = 210
=5 215
-1 =

0 5

Its eigenvalues are [1,2, 3] and the corresponding matrix of eigenvectors is

12 3/4 —1/4
Ui=| 2/5 —9/5 7/5 |,
~1/2 1 -1/2
that is, the polynomials U(z) =[2 — % T1— % T, —1 +IE2,% T1— % xa).
By computing the Hankel matrix
2 3 -1
HEbovedhU_1 951 352 —1x3
2x1 3x2 —1x1

we deduce the weights 2, 3, —1 and the frequencies (1, 1), (2, 2), (3, 1), which corresponds to the
decomposition o = e*1 722 4 32711222 _ 221722 and h(uy, ug) = 2+3-21 T 42 — 3w,
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5 Applications

5.1 Vanishing ideal of points

We consider here the problem of computing the vanishing ideal of a given set of points &1, ...,
&€ C™, that is, the ideal of polynomials that vanish at these points.

Let us take o(2) =377 ;e (2) =2, cnn iaaz“. Its coefficients are o, :%2221 & for a e IN™.
By Theorem 22, I, is the vanishing ideal of the points &3, ..., & € C™. By applying the method
described in Section 4, we obtain

e a basis B=1{by,..., b} of orthogonal polynomials for the inner product (-, ),
e border polynomials b; ;j: =x;b; =y, _; %
vanishing ideal I,,. T

Example 46. Llet consider the points {(0, 0), (0, 1), (0, —1),(0, 1), (0, —1)}. The first terms of

coefficients o, :325:1 & for |a| <6 gives the first terms of the series:

b (1<i<r,1<j<n) generating the

=
N

2,2‘11
PR

™D

+Eps22 g

NEX
(SN
|
(SN

)&

(SN
=2}

We detail the steps of the algorithm for constructing of an orthogonal basis of A, and generators
of the vanishing ideal I:

- Bo={l},

—  By=Bf ={1,z1, 12},

— B =ByU {2}, x129,23}. As (z122,b)e =0 for all b€ B and (27, 23), = (23, 23), :§ and
(3, 1) o= (23, 1) = %, the orthogonal basis computed at this step is

2 2
By=11 2_Z2 432
2 {,561,962,1’1 57352 5}

1 1 2 2
— B;“ =ByU {x{’ — =T, x3r — FL2, 172, x1T5 — =T, s — 31'2}. The vector space orthogonal

. . . b, bi)o
to (By) in (BY) is generated by the polynomials b — Zle (<ka, bkk>>5 by for {b1, ..., b5} = Bs and
for be {x{’ — %xl, l‘%l‘g — %.1‘2, T1T2, Jrlac% — %xl, JJS — %xg}

This yields the polynomials 0By = {a3 — x1, 2319, 1122, 123, 5 — 22}. We check that
these polynomials are orthogonal to all By, so that the algorithm stops and outputs the
basis By = {1, T1, T, T3 — %, x5 — %} of A, and the border polynomials 0Bs, which give a

generating family of the vanishing ideal I, of the points: I, = (zzf — 1, X129, TH — x2).

Remark 47. The method can be extended to the computation of vanishing ideals of points
with multiplicities. Instead of taking o(2z) = >7_, e, (z), one can consider series of the form
o(z)="_, wi(z)e, (z), where w;(2) is a polynomial in C[z], which prescribes the multiplicity of
the point &; € C". Notice that only multiple points with Gorenstein local rings can be prescribed
in this way.

5.2 Signal reconstruction

We present some examples where we applied the Generalized Prony algorithm. It is implemented
in MAPLE, and used in the following exemples with a precision of 16 digits. To give an idea of its
accuracy, we compute errors at different steps. In order to compare with the results obtained in
[22] we use similar formulas. So we compute the relative error of the frequencies with the following
formula

err(ﬁ)max( o <maxz'_1,m,r Re(fi,j)—Re(éi,j)> o <maxz'_1,m,r Im(&',j)—fm(éi,jﬂ))
j=1,..,n Ti=1,..,n ’

max;=1,...,r [Re(&, ;)] max;=1,....r [Im(&, ;)|

where R e(«f,-’ ;) and I m(él ;) are respectively the real and imaginary part of the j-th coordinate

of the computed frequency &;. Analogously the relative errors of the coefficients a; is given by
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max;=1,..r |Re(a;) — Re(a;)] max;—1, . ,|Im(a;)— Im(di)|)

err(a) —max
(a) ( max;—1,..,r |[Re(a;)] ’ max;—1,...r [Im(a;)|

where R e(a;) and I m(a;) are respectively the real and imaginary part of the computed coefficients
a;. Further we determine the relative of the evaluations by

err(f(k)) = max maxy e p |[Re(f(k) — Re(f (k)| maxi—i,..., [Im(f(k)) = Im(f (k)|
max;—1,_ ., |Re(f(K)] max;—1, ., [Im(f(k))] ’

where E is a subset of N” and Re(f(k)) and I'm(f(k)) are respectively the real and imaginary

part of the computed evaluations f (k).

5.2.1 Wave identification

We consider the following function
100

f(lL', t) _ est-i—’ip(w—ct) Z

j=—100

with the following parameters a =83, c=1, s=—0.7460264, p=0.81158387 and ¢ =0.62944737.
We apply our algorithm for exact sampled data. For this example we increase the number of
terms r.

ez’j(w—ct)
alll ’

r | err(§) | err(a) | err(f(k))
5 | 5.1e2 | 1.1e4 1.4 e-4
7 | 14e2 | 2.3e8 4.3 e-8
9 | 20e1 | 1.3e4 4.1 e-4
11 | 41e2 | 59e4 3.2e3

Table 1. Results of Subsection 4

5.2.2 Random exponential sum with complex parameters

We consider the following bivariate exponential sum

T
flz,y) :Z a; e¥® el with a;, b;, ¢; € C
1=1

with following parameters randomly generated

0.6297120613009013 + 0.9555907644952910 %
0.9051083390162390 + 0.9483566987256117 %
a=] 0.1344470799676359 + 0.5459438888208842 ¢ |,
0.8976760983341069 + 0.2829282544897074 1
0.8084292126653153 + 0.1055895968994213 1

0.7942748595110241 4 0.9503025778650449 7
0.4856681357483844 4 0.7863631829683633 ¢
b=] 0.9480236092780866 + 0.9074208146852858 ¢ |,
0.9611809261254034 4 0.4233260569737495 ¢
0.1644608200439973 4 0.1490486118546710 ¢

0.6751604517606180 4 0.1777629540553305 ¢
0.9253133828023995 4+ 0.6523683323740055 ¢
c=| 0.8421467197514015 4 0.3943824791434848 7
0.04499744500270576 + 0.7382698187624178 %
0.6526258851734551 4 0.752585327966 7668 7

We apply our algorithm for exact sampled data and for noisy sampled data. The latter are obtained
by adding a term of noise f(k)+ 107%ey where ey is uniformly distributed in [~1,1]. Exact data
are denoted by d =oco. For this example we do not use a transformation basis as the relative error
of the evaluations is of order 10711,
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4] err(§) err(a) | err(f(k))
oo | 1.7e10 | 8.4 e-10 4.8 e-11

12 | 3.4e9 2.5 e8 1.2 e-10
10 | 2.0 e-7 1.9 e-6 1.8 e-9
8 1.6 e-5 9.1e5 1.2 e-7
6 1.7 e-3 1.0 e-2 1.8 e-5

Table 2. Results of bivariate case in Subsection 5.2.2

We consider the following trivariate exponential sum

T
flx,y,2)= Z a; e Ttz with a;, b, ¢;, d; € C
im1

with following parameters randomly generated

0.1047954252652496 + 0.4547217545523811 1
0.1568681336284075 + 0.5182230436603275 %
0 0.5212168456149980 + 0.6460116628581090 %
0.7179908005195055 + 0.6564131478501410¢ |’
0.8111961502377006 + 0.7943239638453534 1

0.8117855827824322 + 0.9635150636685853 1

0.3931190462772609 + 0.4184634785721712 ¢
0.1799208408566254 + 0.5263383138981300
0.1405075874550185 4 0.4012726152013042 ¢
0.09180041856173574 + 0.06926175558649576 7 |’
0.8188075194940048 4 0.7972971037703914 ¢
0.4337436737077925 4 0.8247521479822881

0.9743824498915707 + 0.3427035451229425 1
0.02517738312329857 + 0.4898938852557034 7
0.4330181468437458 + 0.2041560344921151 ¢
0.2961443983624806 + 0.3749615452544262 1
0.6254138920063022 + 0.1140920180300905
0.6537226931542330 + 0.1738250417163629 7

0.4243789027086317 + 0.6970767807829078 1
0.2737370378705848 4 0.3054258497378242
0.7331009336066566 + 0.9733914171404590 %
0.06162345772717674 + 0.4193892222303290 %
0.9119253990398325 + 0.9338822445913956 1
0.9425978554821725 + 0.5469134831905478 1

d=

We apply our algorithm for exact sampled data and for noisy sampled data. The latter are obtained
by adding a term of noise f(k) -+ 107%e) where ey is uniformly distributed in [~1,1]. Exact data
are denoted by d =oco. For this example we do not use a transformation basis as the relative error
of the evaluations is of order 10~%.

0 | err(&) | err(a) | err(f(k))
oo | 1.1e-8 | 54e-7 2.3 e-8
12 | 49e-7 | 146 1.3 e-8
10 | 1.1e5 | 24 e-5 4.2 e-9
8 | 94e3 | 14e2 4.8 e-7
6 | 1.0e1 | 4.7e-1 3.0 e-5

Table 3. Results of the trivariate case in Subsection 5.2.2
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5.2.3 Recovering signal parameters.

We consider the following bivariate exponential sum taken from [22]

T
fla,y)=> aje'tirtew)
j=1

with following parameters generated

1+i 0.1 1.2
2+3i 0.19 1.3
5—6i 0.3 1.5

L o2=i | | 03 | __| 03
1+i | —01 | 1.2
2+3i ~0.19 0.35
5—6i ~0.3 ~15
0.2 ~0.3 0.3

We apply our algorithm for exact sampled data and for noisy sampled data. The latter are obtained
by adding a term of noise f(k)+ 107 e where ey is uniformly distributed in [~1,1]. Exact data
are denoted by d =o0. For this example we need transformation basis as coefficients in ¢ are equal.

5 | err(&) | err(a) | err(f(k))
0o | 79e6 | 1.3 e4 1.6 e-5

12 | 1.1e5 | 1.8 e4 6.3 e-5
10 | 3.7e4 | 6.5e4 1.4 e-5
8 | 5.9e2 | 84e2 7.8 e-5
6 | 4.0e1 [ 1.7e-1 5.0 e-5

Table 4. Results of Subsection 5.2.3

5.3 Sparse interpolation

The problem of sparse polynomial interpolation consists in recovering the monomials in the support
of the polynomial and their non-zero coefficients, from the evaluation of the polynomial at some
points. From an algorithmic point of view, methods which are sensitive to the number of terms in
this decomposition are considered in this problem. We consider a sparse polynomial

p(T1y ey Tn) = Z Wq T® (22)

acA

with the support A C Z" of size r and w, € C\ {0}. We want to recover the number r of terms,
the support A and the coefficients wy.

Reformulation. Several algorithms have been proposed to solve this sparse polynomial recon-
struction problem. In [2] or [27], the evaluations h(k) = p(w}, ..., wk) for conveniently chosen
w1,y wn €C and k=0, ...,27 — 1 are used to recover the exponents a € A and the coeflicients w,.
By solving a Hankel system or applying Prony’s method, the roots wit--ws™ and the coefficients
w, are recovered. In the case of exact arithmetic as in [2] or [27], by choosing co-prime numbers

w; € Z, one can recover the exponents aq, ..., a, from the value wi*---w;". In the extension [12] of
27

this method to approximate arithmetic, the values w; are roots of unity of the form ™’ where the

Qan

orders m; € N, are coprime so that the exponents ay, ..., a, can also be recovered from wi*---wy™.

We generalize this approach further, by transforming the sparse polynomial p into an exponen-
tial polynomial and by applying the method described in Section 4: We consider the exponential
function

h(:]?h s xn) :p(elfl-'ﬂl"r!]l’ " efnwn-i-gn) _ § Wy 91814+ gnan efl(llﬂ?l‘f’"“f’fnanmn’
a€A
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for conveniently chosen fi, ..., € C\ {0}, g1, ...,gn € C. In particular, the values of gy, ...,g, € C
can be chosen (at random) so that (0, ..., 0) #0.
To recover the decomposition, we apply the method described in Section 4 to the first coeffi-

cients o, = h(ay, ..., ap) :p(elflaﬁ'gl, vy ef"""+g") with |a| < d of the series

z“ Z
gh(z): E O-O‘J: waeg1a1+ +9gn an e(flal-,--~ fnan)(z).
aeNn ’ a€A

This yields the points (f1 a1, ..., fnan) and the weights w, €919 +9nan for g € A, from which we
deduce the decomposition (22).

Example. The new method that we describe can be applied to this case. We illustrate it on the
following example

p(x,y,2)= (0.79+0.089) zy? 2+ (0.51 +0.937) 5 y10 27 + (—0.25 — 0.094) 230 325 212
+(0.26 4+ 0.99 1) 2100 40 23 4 (—0.7+0.31 §)2%0 o0 120,

We recover the (; ; with a relative error of order 1073, the a; with a relative error of 10712 and
the evaluations h(k) with a relative error of order 1072,

6 Tensor decomposition

In this section, we consider more specifically the problem of tensor decomposition and analyze the
decomposition method in this context.

6.1 Symmetric tensors

We consider an homogeneous polynomial T'(z, ..., ) € S = Clxo, ..., xs] = C[€] of degree d € N.
Hereafter, the n+ 1 variables of homogeneous polynomials will be denoted & = (xy, ..., z,) and the
ring of polynomials in these variables S = Clz, ..., ] = C[€]. The vector space spanned by the
polynomials of degree d is denoted Sy. For a homogeneous ideal I C S, we denote by I;=1N Sy its

degree d component. The dual space of S is S* = C[[z, ..., zn]] = C[[Z]]-

The (symmetric) tensor decomposition problem consists, given T' € Sy, in finding the least
number r of linear forms /1, ..., . and non-zero weights wy, ..., w, € C such that

D0,y 0n) = 5 w3 L0, oy )" (23)
=1

Such a decomposition of T" is sometimes called a Waring decomposition of T', after the work of the
mathematician Edward Waring who studied a similar problem of decomposition of integers as a
sum of powers of prime numbers.

Definition 48. The minimal number r of terms in such a decomposition of T € Sy is called the
rank of T.

By setting x¢=1, this problem is equivalent to the decomposition of the polynomial T'(1, 1, ...,
xn) of degree <d, as a sum of d-th power of polynomials of degree <1 in the variables x = (z1, ..., ).

We say that a Waring decomposition of T' € S; is an affine decomposition if for all the linear
forms l;(xo, 1, ..., Tn) = &i,0To+ & 121 + -+ + &inTn, We have & g=1fori=1,...,r.

By a generic change of variables and by scaling the linear forms /;(« ), an affine decomposition
can always be constructed over C.

6.1.1 Sparse decomposition of tensors

The tensor decomposition problem can be transformed into an exponential polynomial decompo-
sition problem, using the following inner-product:
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Definition 49. (Apolar product) For two polynomials f:Z\cd:d fa e, g:Z‘a‘:d JaTYE Sy,

we define
(foaha= 3 fasa (D)7

la|=d
where (i) —_

apgl-ap!”

For any polynomial f = Z‘a|<d fax® € Clx]<q of degree <d in the variables x = (x4, ..., Tp),
let f™(zo, ..., Tn) = Z‘a|<d Famod—lelz{t 28" € Sy be its homogenization in .

The apolar product defined on homogenous polynomials can be specialized for polynomials of
degree <d: vfzz\oqu fax, g:ngd Jax® € Clx]| <4,

(f,9)a=(f"9")a= > faga (‘%)_1,

a
la|<d

where & = (ag, 1, ..., o) € N1 for a = (g, ..., ap,) € N with || <d .
We have the following invariance property:

Lemma 50. Let T, T’ €Sy and G €Sl,,+1 a change of coordinates of determinant 1. Then
(T, The={(G-T,G-T')q

where G-T is the tensor T after the change of coordinates by G.
Another interesting property of this apolar product is the following:

Lemma 51. For any linear form l(€)=loxo+ liz1+ - +Ip x, and any homogeneous polynomial
f(ili) € C[£]d7 we have <f7 l((l_? )d>d: f(lO,lla ER) ln)

Proof. We check the property for the monomials ® with |a| = d and deduce the lemma by
linearity. O

Using the apolar product, we can associate to any 7" € Sy the element of Clz]%,
T f S C[:E]gdH <T, fh>d

Its associated element in the dual space C[[z]] is denoted T™*(z). It is in fact a polynomial in z of
degree <d.
We can also associate to T € .54 the element of S}

T feSi— <T, f>d

For 0<i<d, let H%dii: S;— Si_; be the truncated Hankel operator associated to T™: Vf € S;
Hp N (f): g€ Sa—i> (T, fg)a€ C.

Example 52. For T := (Z) 280 2% with ag + -+ + o = d, we check that T% = ——— 1. ;%7

N 1 aqlap!
T =

Qn
apl-ap! :

n

Zoaou..z
Lemma 53. T(2)=) , ., Tx ()@ iff T*(2) = X o <cq Ta 2y € Clz].
Proof. If =37, Tu (9yx, then for « € N™ with |o| <d, we have
(@)= (T a5 "e") =(T,2%)a=Ts,

which proves that 7"(z) =3, <, T*(wa)%T:Z\a|<d Td%c;e Clz]. O
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This construction allows us to reformulate the problem of decomposition of T as a truncated
series problem:

Proposition 54. A tensor T(x)= Z‘a|<d ( )m has an affine Waring decomposition

T

= Z Wi $0 + fz 121+ + fz n-rn) (24)
1=1

with w1, ..., wr € C\ {0}, &, ..., & € C* iff T*(z) = Z‘a|<d Ts %C: coincides with the series
Yo wieg(2) up to degree d.

Proof. By Lemma 53, if T(€)=3",_, w; (wo+ & 121+ + & ntn) =3, wizmgd (‘f)&f‘ T,
then

which coincides with the series 0(2) =" _\» aa% =>""_, wieg,(z) up to degree d. The reverse

implication is also true, by Lemma 53. O

In other words, if 7' € S; has an affine decomposition of the form (23), then T* coincides on
Clx]<q with the element of the dual space C[[z]] of C[x]:

r
= Z Wi efi(z)
1=1

We will write it T%(z) =0 (z) + ((2))4+L.

The method described in the previous section to recover a sparse decomposition of a truncated
series can therefore be applied here. If the number of terms r is small enough compared to the size
of the sequence moments, this yields directly a decomposition of the tensor 7'

6.1.2 Examples

Example 55. Let T(zq,71) =24+ 1223 21 + 6 23 ac% +12z0 23 + 1. Then we have

Zi‘
T*(=z )—1+3Z1+ +33'

We apply Prony’s method and compute the kernel of

(131
H<313)'

It contains (—1,0,1) which corresponds to the polynomial 22 — 1. The roots of this polynomial are
+1. Thus the decomposition is of the form T'(xg, 1) =a (zo+x1)* +b (20 — z1)*. By expansion and
identification of the coefficients, we find that a +b=1,4a —4b=12. This yields a=2,b=—1 and
the decomposition is

T(zo,, 1) =2 (w0 + 21)* — (w0 — 21)*.

Example 56. Let
T(xo, 1, 22) = 3af+16 23z +24 2323 — 8 xoat —32 2t + 24 2 o+ 120 2B ) 2o + 192 2 27 29 +
88 3 1o + 72 x0z2+264 xox1 3+ 240 22 23+ 96 zo 3 + 184 21 25 + 48 23,

The associated dual element is

4

2
Z1 22 z1
T +24 37 7321+

T()73+4zl+622+4—+102122+12 2122 422212

2! 2!
A

'72 '+16

3!

2
21 ) 21 25 z1 22
3l + 40 5191 + 46 3] +48

22
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It coincides with the first terms of the generating series of example 47. The application of the
generalized Prony method yields the points (1,1),(2,2),(3,1) and the weights 2, 3, -1. Therefore,
the decomposition of T is

T (wo, x1,72) =2 (w0 + 21+ x2)* + 3 (20 + 221 + 222)* — (w0 + 321+ 22)".

6.1.3 Apolar ideals

We have seen that if T'€ S; has a rank r, then after a generic of coordinates, it has an affine Waring
decomposition of the form (24). Using the apolarity property, Proposition 54, the polynomials p
of degree <d which vanish at the points &, ..., & € C™ satisfies the equation (T™*| p) =0. Their
homogenization p” in degree d satisfy (T', p)q= (T*|p) =0.

This naturally leads us to the study of ideals I C S which are the homogenization of the
vanishing ideal of a set of points and such that (T', I;)4=0. First we introduce the notion of apolar
ideal associated to a tensor:

Definition 57. Let T € S¢. We define the apolar ideal of T as the homogeneous ideal of S generated
by S and by the polynomials g € S* (0 <i <d) such that {(gh,T)q=0 for all h € S~ It is
denoted (T+) and called the ideal apolar to T.

Remark 58. By definition, (T);=ker H:* " for 0<i <d.
Example 59. For T:=z5° - 22" with ag+ - + ay, = d, we check that (TF) = (z§°t, ..., 2o 1.

This apolar ideal provides a simple characterization of the ideals which degree-d component is
apolar to T"

Lemma 60. For any ideal I C S, (I4,T)3=0 if and only if I C (T+).

Proof. Clearly, if I C (f+) then I;C (f1)q so that (T, 1;)4=0.

Let us prove the reverse inclusion. By definition of the apolar ideal J := (f*), we have J;:
Sk=Ji—k,V0<i<d,0<k<i. We also have I3: Sy D Ij_k,¥0<k <d. The hypothesis (T, I;)4=0
implies that I; C Jg. We deduce that I; C J;, V0 <i <d. Since Jg+1 = Sq+1, we have the inclusion
IcJ=(fb). O

For any homogeneous ideal I C S, let hg/r:n € N+ dim S, /I, be the Hilbert function of S/I.
We have the following simple relation.

Lemma 61. If I C (T), then for n€N, hs/r(n) = hgruy(n).

The tensor decomposition problem can then be reformulated in terms of apolarity as follows
via the well known Apolarity Lemma (cf. [15, Lemma 1.15]).
Proposition 62. Let T € S¢ be a symmetric tensor. The following are equivalent:

e T has a decomposition of size <r,

e there exits an ideal I C S such that I C (TL) with I is saturated, defining r simple points.
Proof. Suppose that T has a decomposition of size r: T(x) = 22:1 wi (&,omo + &1 + - +

&i ny)?% Then consider the homogeneous ideal I of polynomials vanishing at the points &;=[&; o: -+
&in)€P™ i=1,...,s. By apolarity, for all g € I,

(T,9)a=)_ wig(&)=0.
1
so that I is a saturated ideal, defining r simple points and with I C (7).

Conversely, suppose that I is an ideal of S satisfying (a), (b), (¢). By a change of variables,
we can assume that the simple points of P" defined by I are of the form &; = [1: &1 &n) €P™
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The ideal I’ of R obtained by substituting o = 1 in [ is the vanishing ideal of the points
&=(& 15, &,n) €C™ As (T, 14)q=0, we have (T*| I£4) =0 and by Lemma 10, T* is the truncation
in degree <d of an element of (I')*.

As (I')* is the vector space spanned by eg,, ..., e¢,, there exists wy, ..., w, € C such that

T'(2)=)_ wiee +((2))"""

By Proposition 54, this implies that
r

T(i) = Z Wi (300 + gi,lml + -+ g'i,n-rn)d

1=1

and T has a decomposition of size <r. O

This proposition provides a characterization for the decomposition of a tensor, which is inde-
pendent of any choice of coordinates.

6.2 Generalized decomposition

Definition 63. A generalized affine decomposition of size r of T € S¢ is a decomposition of the form

m

T(2) =Y wil2)ec(z) + ((2) ! (25)

i=1
where & € C™ and w;(z) are polynomials in Clz|, such that the sume of the dimension r; of the

vector spaces spanned by 0 (wi(z)ee,(z)) for a € N™ isr.

)

This decomposition generalizes the affine Waring decomposition of Definition 7, since when

w;i(z) =w; € C are constant polynomials, we have the decomposition

T

T*(z)= Z wieg, + () iff T(x) = Z w;i (To+ & 11+ + & nn)
i=1

i=1

Definition 64. The minimal v such that T has a generalized decomposition of size r is called the
generalized rank of T. It is denoted ry(T).

Notice that the size of a generalized affine decomposition does not depend on the coordinate
system and is invariant by a generic affine transformation.
This allows us to check that the generalized rank is sub-additive:

Lemma 65. For any T, T' € Sq, ro(T+T") <rg(T) +ry(T").

Proof. If after a generic change of variables, each dual element 7% and 7"* has a decomposition
of the form (25) of size respectively 74(T") and ry(T”), then there is a (generic) change of variables
for which, both have such a decomposition. The sum of these decompositions yields a generalized
decomposition of size <ry(T) + ry(T”) for the tensor T' + T”, which proves that r¢(T + T") <
ro(T) 4+ 1ry,(T). O

Example 66. Let T'(zq,x1) = zoxile Clzo, z1]. After the change of variables xo = z1, T1 = o,
we obtain the tensor T (zq, z1) :xg’lzl such that

T"(z) = 21=21€0(2) + ((2))T.

Thus the generalized rank of zoz{ ™' is 2 (since it cannot be 1). Notice that

.1
T= Ehi% a((% +ex)? —af)
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that is a limit of tensors T, = Eid((xl +ex0)? — xf) of rank 2.

Example 67. The polynomial T'=z3 21 + 28 22 is a sum of two tensors T = 3 21 and Th =z z».
From the Example 66, we have rg(T1) = r4(72) = 2. The sub-additivity of the rank implies that
r¢(T) < 4. Moreover, we are in a case of a polynomial of border rank 4 and rank 7 (as described
in [4, Theorem 44]). In this case ry(f) =4=r.(f) <r(f)="7.

Example 68. For a monomial T'=x{° - z;," with g+ -+ + ay, = d, we have

1
T = il 2z,
The inverse system spanned by z{*' -+ zp™ is of dimension (a1 +1) X -+ X (a, +1). Assuming that
Q= max; «;, the previous decomposition is a generalized decomposition of minimal size (according
to Corollary 7 and Example 7). Therefore we have

ozn,) _ H:L:O (a’i + 1)
n max; (Oéi + 1)

o

rg (xo e

In order to relate the generalized rank to a usual rank, we introduce the following definition:

Definition 69. A tensor T € Sy has a flat extension of rank r if there exists u € S1 and Te Sm+m’

with m = max {7“, (g]},m':max{r -1, Lg]} such that

m,m’ __
e rankH:'" =,
o Mt —d T T

This definition says that by a change of variables such that u =z, T* is the truncation in degree
<d of T" € (K[x] <m+m/)* and rankHlj’{L””, =

Lemma 70. Let d>r and E C Sy such that Sq/E is of dimension r. Then for a generic change
of coordinates g€ PG L (n+1), Sq/g- E has a monomial basis of the form xog B with B C Sq_1.
Moreover, B is connected to 1.

Proof. Let > be the lexicographic ordering such that 2> -+ > x,. By [10][Theorem 15.20, p. 351],
after a generic change of coordinates, the initial J of the ideal I = (E) for > is Borel fixed. That
is, if x;x* € J then xa* € J for j > 1.

To prove that there exists a subset B of monomials of degree d — 1 such that x¢ B is a basis of
Sd/Id, we show that Jy+x¢ Sq_1=3S54. Let ‘]L/i: (Jd+:]30 Sd71)/.’E0 Sq_1, Stli: Sd/xo Sq_1 :]K[.’El, ey
,@n)qg and L= (J:xp). Then we have the exact sequence

0— Sy_1/La_1-384/Ja— S4)J},

where i, is the multiplication by z. Let us denote by s = dim Sy and q(k) = s, — r for k € N.
Suppose that dim S}/.Jj >0, then dim Lg—1>sq—1—r=¢q (d—1). As d >r and r is the Gotzmann
regularity of g, by [14, (2.10), p. 66] we have dim Sy Lq—1 > q(d). As J is Borel fixed, i.e. xgp€J
implies x; p € J for i >0, we have S1 Ly—1 C J, so that dim J; > dim S1 Lq—1> ¢(d) = sq—r. This
implies that dim Sy/Jy=dim Sy/I;=dim S4/FE < r, which contradicts the hypothesis on E. Thus
Ji+x9S4-1=254.

Let B’ be the complement of J; in the set of monomials of degree d. The sum Sy=Jg+ x9 Sq_1
shows that B’ =xy B for some subset B of monomials of degree d — 1.

As Jg is Borel fixed and different from Sy, its complement B’ contains zd. Similarly we check
that if 2§° -+ 23" € B with oy =+ =ay,_1=0 and o, #0 then z§°™" ag*~! 44! - 20" € B’. This
shows that B’ = B is connected to 1. O

A generalized decomposition can be characterized algebraically in a way similar to the classical
decomposition and by this flat extension property:
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Proposition 71. Let T € S¢ be a symmetric tensor. The following points are equivalent:
1. T has a generalized decomposition of size <r,
2. There exits an ideal I C S such that I C (T+) and I is saturated, zero dimensional, of degree r,

3. T has a flat extension of rank <r.

Proof. 2 = 1. Supposed that I is an ideal of S such that I C (T) with I is saturated, zero
dimensional, of degree r. By a change of variables, we can assume that the points of P" defined
by I are of the form &;=[1:&; 1:-: & n) € P™

By dehomogenization (setting zo=1), we obtained an ideal I’ such that A= R/I’ is of dimension
r. It is defining the points & = (& 1, ..., & n) € C™ with multiplicity r;.

As (T, 13)q=0, we have (T*| I<4) =0 and by Lemma 10, T* is the truncation in degree <d of
an element of (I’)*. By Theorem 14, T* is the truncation in degree <d of an element of (I’)* = A*
of the form

!

o(2) =Y wi(2)e(2)

for some points & € C™ and some polynomials w;(z) € C[z], i=1...r".

Moreover the inverse system spanned by ¢ is included in (I’)* = A* and its dimension is
<r = dim (A). This shows that the sum of the dimensions r; of the vector spaces spanned by
0¢ (wi(2z)eg,(z)) for a« € N™ is <r and T has a generalized decomposition of size <r.

1=-3. If T €S, has a generalized decomposition of size <r, then after a change of coordinates,
we have T*(z) =Y1" | wi(z)ee,(2) + ((2))?*! with & € C" and w;(z) € C[z] such that the sum of
the dimensions r; of the vector spaces spanned by 0 (w;(2)eg,(z)) for a € N™ is r.

Let 0 =3"" wi(z)eg, and let I, =ker H, be the associated ideal in R= C[z]. By Theorem 22,

As=R/I] is artinian of dimension r. Let m=max {7“, fg] },m':max {r -1, Lg] } and T € Syt

be the unique element such that 7" =31 wi(2) e (z)+ ((z))™+m'+1 Then

, / Rem,Re,,
rank H7""™ =rank H, <"""<™ Crank H, <7

and T truncated in degree <d coincides is o truncated in degree <d, that is, 7. Thus T is a flat
extension of rank <r of T". This proves point 1.

3 = 2. Suppose that T is a flat extension of rank <r of T. Let E := ker(H?’m/) and
F:= Ker(H%”/’m) and k <r the rank of H;d_i. As H;?/’m = (H%”’m/)t, the quotients S,,/F and
Sm+/F are of dimension k. By Lemma 70, after a generic change of coordinates we may assume

that there exists a family B (resp. B’) of k monomials of S, (resp. S,,/) such that zo B (resp.
xo B’) is a basis of S,,,/E (resp. Sp,//F) and that

B C Rgm—1(resp. B'C R¢mr—1)

are connected to 1. Notice then that

B,B’ _ yrzoB,zoB’
HT* —HT

is an invertible matrix of size k x k. As the monomials of B (resp. B’) arein R¢p,—1 (resp. Rgm/—1),
the sets of BY (resp. B'") is a subset of Re,, (resp. Rep/) and

4 Rem,Re,, ’
k::ranqug’ﬁ:rankHi,fm < /:rankH;?’m.

By Theorem 40, there exists a linear form o € R* which extends T such that dim (R/I,) =k where
I, =ker H,. By Theorem 22, there exists & € C™ and w;(z) € C[z] such that

m

T'(2) =" wil2)eg(2) + ((2)4+

i=1

with the sum of the dimensions r; of the vector spaces spanned by 0¢(w;(2)e¢,(z)) for a € N* <r.
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This shows that T has a generalized rank <r. As T is the truncation of T in degree <d, it
also has a generalized rank <r. This proves point 2. O

Remark 72. The generalized rank of a tensor is related to the additive decomposition of binary
forms and coincides with the scheme length introduced in [15]. It coincides also with the cactus
rank used in [7].

6.3 Decomposition of tensors

The flat extension property leads to the following algorithm to compute the decomposition.

Algorithm 4
Input: T € .5,.

— Make a generic change of variables and substitute zo=1;
— Apply the Generalized Prony Algorithm 3 to the sequence T%;
— If success then stop and output the affine decomposition of T
—  Otherwise set r: =r¢+1 where rg is the maximal size of an orthogonal basis in Algorithm 3;
—  While not success do
— Choose a monomial set B of size r + 1, connected to 1;
— Solve the commutation relations for the matrices associated to B;
— Apply Generalized Prony method to reconstruct the decomposition;

— If the roots are simple then stop with success := true else set r:=r+1;

Output: The decomposition T = 22:1 w;i (To+ & 11+ + & nTn)?

Example 73. We consider the following ternary cubic:
T(xo, 21, T2) := x3 1 + To 23.

We set g =1. The matrix of the truncated Hankel operator in degree <3 is

1 1

0 - 0 0 0 — 0 0 0 0

) 3 3

3 0 0 0 0 0  haoo h31,0 h220 PR30

1

0 0 3 0 0 0  hsi1,0 he20 hi,30 hoao
0 0 0 h4o0,0 h31,0 h220 hso00 ha10 k320 haso
0 0 0  hsi,0 he20o hi30 hai1,0 320 h2so hiao |
1

3 0 0  h220 hi,30 hoao h320 h2so hi40 hoso
0 hao0 hsi1o0 hso0 haio hsz20 heoo hsi0 hazo hsso
0 hs1,0 ha2,0 ha1,0 h320 h230 hsi10 ha20 h3 30 h240
0 hoo2o hi3o h320 h23,0 hiao haoo h33zo hoa0 his0
|0 hi13.0 hoao h23o hi,40 hoso P30 hoao hiso hoeo |

where the h; ;i are the unknown moments.

Starting with the rank 3, we compute the commutation relations and solve them using algebraic
solvers. The rank is increased until a solution is found. This happens for r =5 and B = (1, z1, 2,
2%, x3). We compute the matrices Hy, H; and Hy corresponding to B,z B, x2B:

0 13 0 0 0 /3 0 0 0 0 o 0 1/3 0 0

1/3 0 0 0 0 0 0 0 hs.0,0 h3,1,0 0 0 0 hz 1,0 h2,2,0
0 0 1/3 0 o || o o 0 hsio haoo || 1/3 0 0 hoso hiso
0 0 0 ha0,0 h31,0 0  h4,0,0 h3,1,0 hs,0,0 ha,1,0 0 hsz 1,0 h2,2,0 ha1,0 h3 2,0
0 0 0 hsz 1,0 h220 0 hz,1,0 h2,2,0 ha,1,0 h3,2,0 0 h220 hi,3,0 h32o0 h23o0
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If we form the matrix equation
M; M; —M;M;=Hy "HHy 'Hy —Hy "HoHy ' Hy =0,

then we have a system of 8 non-trivial equations in 8 unknowns. The unknowns are
{h4,0,0, h3,1,0, h2,2,0, 113,05 15,0,0, Pa, 1,0, Pi3,2,0, P2,3,0}-

It turns out that the system is not zero dimensional, and that we can choose (randomly) the values
of five of these variables. We take h4,00=0,hs31,0=2,h220=2,h1,30=0,hs,0,0=0,h4,1,0=1,
h32,0=1, ha3,0=1. The matrices of multplication by z1, z2 are repectively:

|'0000 6] |'0006 6]
100 0 O 001 0 O
Mi={000 6 6 |,Ma=|100 6 6
0101/2 0 000 0 1
001 0 1/2 011 1/21/2

The eigenvectors of M are

[1.0,3.013881550, 3.805799635,9.083481997, 11.47022931],

[1.0,0.8835710415 4 1.470912711 7, —0.7256326469 — 0.1728474157 i, —1.382886418 + 2.599311752 4, —0.3869045326 — 1.220065254 1],
[1.0,0.8835710415 — 1.470912711 4, —0.7256326469 + 0.1728474157 i, —1.382886418 — 2.599311752 4, —0.3869045326 + 1.220065254 1],
[1.0, —1.890511816 4 0.6949025162 4, —0.9272671689 + 1.404829646 i, 3.091145419 — 2.627442836 i, 0.7767898835 — 3.300207334 1],
[1.0, —1.890511816 — 0.6949025162 4, —0.9272671689 — 1.404829646 i, 3.091145419 + 2.627442836 i, 0.7767898835 + 3.300207334 1]

The second and third coordinates of these eigenvectors are the coordinates of the points &; of
the exponentials. We recover the weights by solving a linear system. This yields the decomposition:

T:= 0.008034037278 (x4 3.013881550 z1 + 3.805799635 x5)3

+(0.03600262077 — 0.03860608482 i) (xo + (0.8835710415 + 1.470912711 i) &1 — (0.7256326469 + 0.1728474157 i) x5)>
+(0.03600262077 + 0.03860608482 i) (xo + (0.8835710415 — 1.470912711 i) 1 — (0.7256326469 — 0.1728474157 i) x2)3
—(0.04001963941 — 0.01395131919 i) (o — (1.890511816 — 0.6949025162 i) x1 — (0.9272671689 — 1.404829646 i) x2)3
—(0.04001963941 4 0.01395131919 4) (z¢ — (1.890511816 + 0.6949025162 4) x1 — (0.9272671689 + 1.404829646 i) x2)>

This shows that the rank of 7" is 5, which is the maximal rank of a ternary cubic.

6.4 Geometry of tensor decomposition

The set Hilb,(IP") of zero-dimensional saturated ideals of S of degree r is known as the Hilbert
scheme of r points. It has a structure of Scheme and can be defined by quadratic equations of
degree 2 in the Pliicker coordinates of the Grassmannian Gr,.(S;) C P(A"S}).

Tensor decomposition is related to the following incidence variety:

W, = {(T', I) € P(S4) x Hilb,(P")| (T, Is)q=0}.

By Proposition 71, its projection on the first component P(Sy) is the set G, = m1(W,.) of tensors
with a generalized rank <r. Let K, =G, be the closure of G, in IP(Sy).

The following example from W. Buczyriska and J. Buczynski [26] shows that G, is not neces-
sarily closed.

Example 74. The following polynomial
T =232+ 623233 (x0+21)% 24.
is the limit of tensors of rank <5:

T.=(ro+ex2)®+6(v1+ex3)® =3 (vo+ 21 +exs)® +3 (20 +2 1) — (0 + 3 71)3

We easily check that limeHO%Tez T. But its generalized rank is not <5.
An explicit computation of (T+) yields the following Hilbert function for hp vy =1[1,5,5,1,

0,...]. Let us prove, by contradiction, that there is no saturated ideal I C (T) of degree <5.

Suppose on the contrary that I is such an ideal. Then hgr/r(n) > hp/rry(n) for all n € N. As
hr/1(n) is an increasing function of n € N with hp,(p1y(n) <hg/1(n) <5, we deduce that hr,r=[1,
55,5, ...].
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This shows that I; = {0} and Iy = (T+)a. As I is saturated, (I2: (o, ..., ¥4))1 = I1 = {0} since
hgyr+)(1) =5. But an explicit computation of ((TF): (2o, ..., 24)) gives (z2, 3, 24). We obtain a
contradiction, so that there is no saturated ideal of degree <5 such that I C (7). We deduce that
rg(T) > 6.

The Hilbert Scheme Hilb,(P") contains the open set Hilb!*d(IP") of ideals I defining r simple
points. Its closure, denoted Hilb$™°*®(IP"), is the set of smoothable ideals of Hilb,(IP™), that is
the schemes which are the limit of simple points.

The set of tensors of rank <r is the projection R, = m; (W, NPP(S,) x Hilbl*d(P™)). Its closure
3, =R, is the set of tensors of border rank <r.

The projection S, =1 (W, NIP(Sy) x HilbS™R(PP)) is the set of tensors of smoothable rank <r.

We the following inclusions

RTCETCS’)"CQTCICT‘

These inclusions can be strict. However for » small compared to d, these varieties behave nicely:

Theorem 75. For integers r, d, m, m’ such that d >r, we have

X :87"7 Gr=K,.

Proof. For d>r, Hilb,.(IP™) can be defined by the intersection of quadrics with the Grassmannian
G,(S}) in P(A"S}). The corresponding elements in G,.(Sy) are the linear space Ij. The condition
(T, I)g =0 is equivalent to T € IF, or to the equation T* A IF = 0. This shows that W, is a
projective variety and its projection G, =m(W,) is closed. We deduce that K, =G, = G,.

As W, NTP(Sy) x Hilb§™ooth(IP") is also a projective variety, we have

S, =m (W, NP(Sy) x Hilbmeoh(P7)) = 7y (W, NP (S) x HilbX*4(P")) =R, =%, O

Theorem 76. For integers r, d, m, m’' such that d>2r, m= (ﬁ,m': LQJ , we have

2 2
g?':ICT' :CT
where C, = {T € 5% rank H™ < r}.

Proof. Whend>2r, m:max{r, [g}}:(g],m’:max{rfl, ng}: LgJ, m+m’=dand T € Sy

has a flat extension of size <r iff rank H;“m/ < r. By Proposition 71, this implies G, = C,, which
is closed. Thus G, =K, =C,. O
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