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Biomedical imaging

Objective
To image live biological structures at small scales.

Physical limitation due to diffraction for bodies < 200 nm: convolution by the
microscope’s point spread function (PSF).
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Solve inverse problem through variational approach

• So is the source;

• it is observed through y: blurΦ, noise…;
• how to build Ŝ from y?

Variational optimisation

• use a prior on So;
• among all sources S, penalise the ones fulfiling the prior;
• Ŝminimises S 7→ ‖y− ΦS‖22 + αR(S);
• ‖y− ΦS‖22 penalises the closeness of y and the source S;
• R(S) regularises the problem (well‑posed) and enforces more or less the prior on S
w α > 0.
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Grid or gridless?

Source to estimate 5
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Introducing a grid 5
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Grid or gridless?

Reconstruction Ŝ on a finer grid 5
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Grid or gridless?

Reconstruction Ŝ is now off‑the‑grid 5
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Off‑the‑grid 101: spikes and sets
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Quantities

• X is a compact ofRd;

• how tomodel spikes ? Through Dirac measure δx, element of the set of Radon
measuresM (X );

• topological dual of C0 (X ) equipped with 〈f,m〉 =
´
X fdm. Generalises L1 (X ) ;

L1 (X ) ↪→ M (X );
• Banach endowed with TV‑norm : m ∈ M (X ),

|m|(X )
def.
= sup

(ˆ
X
fdm

∣∣∣∣ f ∈ C0 (X ) , ‖f‖∞,X ≤ 1
)
.

Ifm =
∑N

i=1 aiδxi a discrete measure, then |m|(X ) =
∑N

i=1 |ai|.
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A LASSO equivalent for measures

• Let the sourcema0,x0
def.
=

∑N
i=1 aiδxi ∈ M (X ) a discrete measure;

• Φ : M (X ) → Rp the acquisition operator, e.g. Φma0,x0
def.
=

∑N
i=1 aih(x− xi);

• w ∈ L2 (X ) additive noise;
• y def.

= Φma0,x0 + w.

We call BLASSO [Candès and Fernandez‑Granda, 2013, Bredies and Pikkarainen, 2012]
for λ > 0 :

argmin
m∈M(X )

1
2‖y− Φm‖2Rp + λ|m|(X ) (Pλ(y))

One of its minimisers is a sum of Dirac, close toma0,x0 .

Difficult numerical problem: infinite dimensional, non‑reflexive. Tackled by greedy
algorithm like Frank‑Wolfe [Denoyelle et al., 2019] , etc.
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Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit
fluorophores per image.

Figure 1: Two excerpts from a SMLM stack
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Results on SMLM

Stack mean

Off‑the‑grid [Laville et al., 2021] Deep‑STORM [Nehme et al., 2018]

SMLM drawback: a lot of images, no live‑cell imaging.
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2‑rectifiable measures reconstruction

• how tomodel sets measures? Through χE where E is a simple set, belonging to
BV(X ) the set of function of bounded variation;

•
• Banach endowed with BV‑norm : u ∈ BV(X ),

‖u‖BV
def.
= ‖u‖1 + ‖Du‖TV.

If u = χE, then ‖Du‖TV = Per(E);
• Let λ > 0, the adaptation of BLASSO [de Castro et al., 2021] writes down:

argmin
u∈BV(X )

1
2‖y− Φu‖2L2(X ) + λ|Du|(X ) (Sλ(y))

One of its minimisers is a sum of level sets χE!
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BV
Geometry Spikes

Curves

Sets
Space M (X )

?

BV(X )

Regulariser ‖·‖TV

?

‖·‖1 + ‖D·‖TV
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A new functional space

• letM (X )2 be the space of vector Radonmeasures;

• let V def.
=

{
m ∈ M (X )2, div(m) ∈ M (X )

}
the space of charges, or divergence

vector fields. It is a Banach equipped with ‖·‖V
def.
= ‖·‖TV2 + ‖div(·)‖TV;

• let γ : [0, 1] → Rd a 1‑rectifiable parametrised Lipschitz curve, we say thatµγ ∈ V

is a measure supported on a curve γ if:

∀g ∈ C0(X )2, 〈µγ , g〉M2
def.
=

ˆ 1

0
g(γ(t)) · γ̇(t) dt.

• a curve is closed is γ(0) = γ(1), open otherwise;
• simple if γ is an injective mapping
• divµγ = δγ(0) − δγ(1).

12
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• let γ : [0, 1] → Rd a 1‑rectifiable parametrised Lipschitz curve,

we say thatµγ ∈ V

is a measure supported on a curve γ if:

∀g ∈ C0(X )2, 〈µγ , g〉M2
def.
=

ˆ 1

0
g(γ(t)) · γ̇(t) dt.

• a curve is closed is γ(0) = γ(1), open otherwise;
• simple if γ is an injective mapping
• divµγ = δγ(0) − δγ(1).
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CROC energy

Consider the variational problemwe coined Curves Represented On Charges:

argmin
m∈V

1
2‖y−Φm‖2H + α‖m‖V . (CROC)

• 1
2‖y−Φm‖2H is the data‑term;

• ‖m‖TV2 weights down the curve length, i.e.
∥∥µγ

∥∥
TV2 = H1(γ((0, 1)));

• ‖divm‖TV is the (open) curve counting term.

Do curve measures minimise (CROC)?
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Extreme points

Definition
Let X be a topological vector space and
K ⊂ X. An extreme point x of K is a point
such that ∀y, z ∈ K:

∀λ ∈ (0, 1), x = λy+ (1− λ)z
=⇒ x = y = z

Ext K is the set of extreme points of K. Ext K in red
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Link with extreme points: general setup

Let F : E → Rm, G the data‑term, R the regulariser, α > 0.

F = G+ αR

Theorem (Representer theorem)
There exists a minimiser of F which is a linear sum of extreme points of the unit‑ball of R,
ExtB1

E
def.
= {u ∈ E | R(u) ≤ 1} [Bredies and Fanzon, 2019, Duval and Peyré, 2014].

Characterise ExtB1
E of the regulariser ⇐⇒ outline the structure of aminimum of F.
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Extreme points in measure spaces

• If E = M (X ) and R = ‖·‖TV, then:

Ext(BM) = {δx, x ∈ X} .

• If E = BV(X ) and R = ‖·‖BV, then:

Ext(BBV) =

{
1

Per(E) χE, E ⊂ X is simple
}
.

• If E = V and R = ‖·‖V , then:

Ext(BV ) =?
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Main result

Let the (non‑complete) set of curve measures endowed with weak‑∗ topology:

G
def.
=

{
µγ∥∥µγ

∥∥
V

, γ Lipschitz 1‑rectifiable simple curve
}
.

Theorem (Main result of [Laville et al., 2023])

Let B1
V

def.
= {m ∈ V , ‖m‖V ≤ 1} the unit ball of the V ‑norm. Then,

Ext(B1
V ) = G.

17
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General setup in off‑the‑grid

• No Hilbertian structure onmeasure spaces: no proximal algorithm;

• we use the Frank‑Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

• it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

↪→ perfect with our latter results!

We present the Charge Sliding Frank‑Wolfe algorithm.
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Synthetic problem
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Figure 2: The source and its noisy acquired image
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Acquisition process and certificate

• a possible choice consists in settingΦ = ∗∇h since:

• µγ is vector, hence we need vector data like the gradient;
• let u be the support of the curve, thenµγ ' ∇u and:

η = Φ∗(Φm− y) ' ∆u

= ([0, 1])

6

4

2

0

2

4 = ([0, 1])

Figure 3: The certificate η on the left, u on the right.
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Amplitude and sliding steps

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Charge support

Amplitude optimisation
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Charge support

Both amplitude and position optimisation

• we optimise the amplitude a of the new estimated curve;
• we perform a sliding: we optimise on both amplitudes a and positions γ.
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Recap: iterate the algorithm
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Figure 4: First step of first iteration: certificate and support of new curve estimated
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Figure 4: Second iteration: another curve is found
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Final results
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Final results
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Take homemessages

• off‑the‑grid methods yields compelling results (yet scarcely used by applicative
researchers);

• we brought up to date the space of charges V ;
• we introduced the functional (CROC), we proved Ext(BV ) = G;
• we proposed a Charge Sliding Frank‑Wolfe for curve reconstruction.

In the future: better curve estimation support, test on experimental data, curves
untangling, etc.
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Proof recipe I

First inclusion:

Ext(B1
V ) ⊃ G

Let γ a simple Lipschitz curve andµγ themeasure supported on this curve. By
contradiction, let u1, u2 ∈ B1

V and for λ ∈ (0, 1):

µγ∥∥µγ

∥∥
V

= λu1 + (1− λ)u2.

By Smirnov’s decomposition, ui =
´
G Rdρi(R)where ρi is a Borel measure. Also:

• u1, u2 has support included inµγ support, ditto for sptR ⊂ sptµγ

[Smirnov, 1993];
• moreover, each R hasmaximal length implying sptR = sptµγ .
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Proof recipe II

• sptR = sptµγ .

Otherwise sptR ⊊ sptµγ ‖R‖TV <

∥∥µγ

∥∥
TV∥∥µγ

∥∥
V

, therefore,

ˆ
G
‖R‖TV dρ(R) <

∥∥µγ

∥∥
TV∥∥µγ

∥∥
V

ρ(G)︸ ︷︷ ︸
=1

=

ˆ
G
‖R‖TV dρ(R),

thus sptR = sptµγ ,
• each R is supported on a simple Lipschitz curve γR.

Hence, each γR is a reparametrisation of γ yielding R =
µγ

‖µγ‖V

, eventually:

ui =
ˆ
G
Rdρi =

ˆ
G

µγ∥∥µγ

∥∥
V

dρi =
µγ∥∥µγ

∥∥
V

ρi(G)︸ ︷︷ ︸
=1

=
µγ∥∥µγ

∥∥
V

.

Contradiction, thenµγ is an extreme point.

□
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Proof recipe III

Second inclusion:

Ext(B1
V ) ⊂ G

Let T ∈ Ext(B1
V ), then there exists a finite (probability) Borel measure ρ s.t.:

T =

ˆ
G
Rdρ(R),

• either ρ is supported on a singleton ofG, then there existsµγ s.t. T =
µγ∥∥µγ

∥∥
V

• or there exists a Borel set A ⊂ Gwith arbitrary 0 < ρ(A) < 1 and:

ρ = |ρ| (A)
(

1
|ρ| (A)ρ A

)
+ |ρ| (Ac)

(
1

|ρ| (Ac)ρ Ac
)
.
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Proof recipe IV

Then,

T = |ρ| (A)
[ˆ

G

1
|ρ| (A)Rd(ρ A)(R)

]
︸ ︷︷ ︸

def.
= u1

+|ρ| (Ac)
[ˆ

G

1
|ρ| (Ac)Rd(ρ Ac)(R)

]
︸ ︷︷ ︸

def.
= u2

A is chosen (up to a neighbourhood) as a convex set, hence u1 =
´
A Rdρ(R) belongs

to A, while conversely u2 ∈ Ac, thus u1 6= u2. Eventually, thanks to Smirnov’s
decomposition:

‖u1‖V ≤
ˆ
G

1
|ρ| (A) ‖R‖V︸ ︷︷ ︸

=1

d(ρ A)(R)

≤ |ρ| (A)
|ρ| (A) = 1.
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Proof recipe IV

Then,

T = |ρ| (A)
[ˆ

G

1
|ρ| (A)Rd(ρ A)(R)

]
︸ ︷︷ ︸

def.
= u1

+|ρ| (Ac)
[ˆ

G

1
|ρ| (Ac)Rd(ρ Ac)(R)

]
︸ ︷︷ ︸

def.
= u2

A is chosen (up to a neighbourhood) as a convex set, hence u1 =
´
A Rdρ(R) belongs

to A, while conversely u2 ∈ Ac, thus u1 6= u2. Eventually, thanks to Smirnov’s
decomposition:

‖u1‖V ≤
ˆ
G

1
|ρ| (A) ‖R‖V︸ ︷︷ ︸

=1

d(ρ A)(R)

≤ |ρ| (A)
|ρ| (A) = 1.



DR
AF
T

Proof recipe V

Then u1, u2 ∈ B1
V while u1 6= u2, thus reaching a non‑trivial convex combination:

T = λu1 + (1− λ)u2,

thereby reaching a contradiction, and therefore concluding the proof.

□



DR
AF
T

Proof recipe V

Then u1, u2 ∈ B1
V while u1 6= u2, thus reaching a non‑trivial convex combination:

T = λu1 + (1− λ)u2,

thereby reaching a contradiction, and therefore concluding the proof.

□
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