Off-the-grid charge algorithm for curve reconstruction in inverse problems.

9th International Conference SSVM

Bastien Laville, Laure Blanc-Féraud, Gilles Aubert

22 May 2023

Morpheme team, Inria SAM, CNRS, Université Côte d'Azur

1. Introduction

- 2. Off-the-grid 101: spikes and sets
- 3. A new divergence regularisation
- 4. Numerical OG curve reconstruction
- 5. Conclusion

Introduction

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

• S_o is the source;

- $S_{\rm o}$ is the source;
- it is observed through *y*: blur Φ, noise...;

- $S_{\rm o}$ is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build **\$** from *y*?

- $S_{\rm o}$ is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build **\$** from *y*?

- S_o is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build **\$** from *y*?

Variational optimisation

• use a *prior* on S_o;

- S_o is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build \hat{S} from y?

- use a *prior* on S_o;
- among all sources **S**, penalise the ones fulfiling the prior;

- $S_{\rm o}$ is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build \hat{S} from y?

- use a *prior* on S_o;
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto \|y \Phi S\|_2^2 + \alpha R(S)$;

- S_{o} is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build \hat{S} from y?

- use a *prior* on S_o;
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto \|y \Phi S\|_2^2 + \alpha R(S)$;
- $\|y \Phi S\|_2^2$ penalises the closeness of y and the source S;

- S_{o} is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build \hat{S} from y?

- use a *prior* on S_o;
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto \|y \Phi S\|_2^2 + \alpha R(S)$;
- $\|y \Phi S\|_2^2$ penalises the closeness of y and the source S;
- R(S) regularises the problem (well-posed) and enforces more or less the prior on S w α > 0.

Source to estimate

Introducing a grid

Reconstruction \hat{S} on a grid

Reconstruction \hat{S} on a finer grid

Reconstruction \hat{S} is now **off-the-grid**

Off-the-grid 101: spikes and sets

• \mathcal{X} is a compact of \mathbb{R}^d ;

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f dm$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f dm$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
- Banach endowed with TV-norm : $m \in \mathcal{M}(\mathcal{X})$,

$$|m|(\mathcal{X}) \stackrel{\mathrm{def.}}{=} \sup\left(\int_{\mathcal{X}} f \mathrm{d}m \left| f \in \mathscr{C}_{0}(\mathcal{X}), \|f\|_{\infty, \mathcal{X}} \leq 1 \right) \right)$$

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f dm$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
- Banach endowed with TV-norm : $m\in\mathcal{M}\left(\mathcal{X}
 ight)$,

$$\|m\|(\mathcal{X}) \stackrel{\mathrm{def.}}{=} \sup\left(\int_{\mathcal{X}} f \,\mathrm{d}m \,\bigg|\, f \in \mathscr{C}_0\left(\mathcal{X}
ight), \|f\|_{\infty,\mathcal{X}} \leq 1
ight).$$

If $m = \sum_{i=1}^{N} a_i \delta_{x_i}$ a discrete measure, then $|m|(\mathcal{X}) = \sum_{i=1}^{N} |a_i|$.

• Let the source
$$m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}\right)$$
 a discrete measure:

- Let the source $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^{N} a_i \delta_{x_i} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$

- Let the source $m_{a_0,x_0} \stackrel{ ext{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in L^{2}(\mathcal{X})$ additive noise;

- Let the source $m_{a_{0},x_{0}}\stackrel{\mathrm{def.}}{=}\sum_{i=1}^{N}a_{i}\delta_{x_{i}}\in\mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in L^{2}(\mathcal{X})$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

- Let the source $m_{a_0,x_0} \stackrel{ ext{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in L^{2}(\mathcal{X})$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

We call **BLASSO** [Candès and Fernandez-Granda, 2013, Bredies and Pikkarainen, 2012] for $\lambda > 0$:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi m\|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

- Let the source $m_{a_0,x_0} \stackrel{ ext{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in L^{2}(\mathcal{X})$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

We call **BLASSO** [Candès and Fernandez-Granda, 2013, Bredies and Pikkarainen, 2012] for $\lambda > 0$:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi m\|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

One of its minimisers is a sum of Dirac, close to m_{a_0,x_0} .

• Let the source $m_{a_0,x_0} \stackrel{ ext{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}
ight)$ a discrete measure;

- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in L^{2}(\mathcal{X})$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

We call **BLASSO** [Candès and Fernandez-Granda, 2013, Bredies and Pikkarainen, 2012] for $\lambda > 0$:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi m\|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

One of its minimisers is a sum of Dirac, close to m_{a_0,x_0} .

Difficult numerical problem: infinite dimensional, non-reflexive. Tackled by greedy algorithm like *Frank-Wolfe* [Denoyelle et al., 2019], *etc*.
Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit fluorophores per image.

Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit fluorophores per image.

Figure 1: Two excerpts from a SMLM stack

Stack mean

Stack mean

Off-the-grid [Laville et al., 2021]

Stack mean

Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

Stack mean Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

SMLM drawback: a lot of images, no live-cell imaging.

• how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;

• how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;

•
$$\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^2(\mathcal{X}) \mid " \nabla u" \in \mathcal{M}(\mathcal{X})^2 \right\};$$

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D} u\|_{\mathrm{TV}}.$$

If $u = \chi_E$,

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

If
$$u = \chi_E$$
, then $\|Du\|_{TV} = Per(E)$;

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

If $u = \chi_E$, then $\|Du\|_{TV} = Per(E)$;

- Let $\lambda >$ 0, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$\underset{u \in \mathrm{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi u\|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda |\mathrm{D}u|(\mathcal{X}) \qquad (\mathcal{S}_{\lambda}(y))$$

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

If $u = \chi_E$, then $\|Du\|_{TV} = Per(E)$;

- Let $\lambda >$ 0, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$\underset{u \in \mathrm{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi u\|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda |\mathrm{D}u|(\mathcal{X}) \qquad (\mathcal{S}_{\lambda}(y))$$

One of its minimisers is a sum of level sets χ_E !

	TV	BV
Geometry	Spikes	Sets
Space	$\mathcal{M}(\mathcal{X})$	$\mathrm{BV}(\mathcal{X})$
Regulariser	$\left\ \cdot\right\ _{\mathrm{TV}}$	$\left\ \cdot\right\ _{1}+\left\ \mathrm{D}\cdot\right\ _{\mathrm{TV}}$

	TV	BV
Geometry	Spikes	Sets
Space	$\mathcal{M}\left(\mathcal{X} ight)$	$\mathrm{BV}(\mathcal{X})$
Regulariser	$\left\ \cdot\right\ _{\mathrm{TV}}$	$\left\ \cdot\right\ _{1}+\left\ \mathrm{D}\cdot\right\ _{\mathrm{TV}}$

	TV	?	BV
Geometry	Spikes	Curves	Sets
Space	$\mathcal{M}(\mathcal{X})$?	$\mathrm{BV}(\mathcal{X})$
Regulariser	$\left\ \cdot\right\ _{\mathrm{TV}}$?	$\left\ \cdot\right\ _{1}+\left\ \mathbf{D}\cdot\right\ _{\mathrm{TV}}$

A new divergence regularisation

• let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M} \left(\mathcal{X} \right)^2, \, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M} \left(\mathcal{X} \right) \right\}$ the space of *charges*, or *divergence*

vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\mathsf{div}(\cdot)\|_{\mathrm{TV}};$

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M} (\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M} (\mathcal{X}) \right\}$ the space of *charges*, or *divergence*

vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\mathsf{div}(\cdot)\|_{\mathrm{TV}};$

- let $\gamma: [0,1]
ightarrow \mathbb{R}^d$ a 1-rectifiable parametrised Lipschitz curve,

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma : [0, 1] \to \mathbb{R}^d$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure **supported on a curve** γ if:

$$\forall \boldsymbol{g} \in \boldsymbol{C_0}(\boldsymbol{\mathcal{X}})^{\boldsymbol{2}}, \quad \langle \boldsymbol{\mu}_{\boldsymbol{\gamma}}, \boldsymbol{g} \rangle_{\boldsymbol{\mathcal{M}}^{\boldsymbol{2}}} \stackrel{\text{def.}}{=} \int_0^1 \boldsymbol{g}(\boldsymbol{\gamma}(t)) \cdot \dot{\boldsymbol{\gamma}}(t) \, \mathrm{d}t.$$

- a curve is closed is $\gamma(0)=\gamma(1),$ open otherwise;

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma : [0, 1] \to \mathbb{R}^d$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure **supported on a curve** γ if:

$$orall oldsymbol{g} \in oldsymbol{C}_0(\mathcal{X})^2, \quad ig\langle \mu_\gamma, oldsymbol{g} ig
angle_{\mathcal{M}^2} \stackrel{ ext{def.}}{=} \int_0^1 oldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \, \mathrm{d}t.$$

- a curve is closed is $\gamma(0)=\gamma(1),$ open otherwise;
- simple if γ is an injective mapping

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma : [0, 1] \to \mathbb{R}^d$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure **supported on a curve** γ if:

$$orall oldsymbol{g} \in oldsymbol{C}_0(\mathcal{X})^2, \quad ig\langle \mu_\gamma, oldsymbol{g} ig
angle_{\mathcal{M}^2} \stackrel{ ext{def.}}{=} \int_0^1 oldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \, \mathrm{d}t.$$

- a curve is closed is $\gamma(0)=\gamma(1),$ open otherwise;
- simple if γ is an injective mapping
- div $\mu_{\gamma} = \delta_{\gamma(0)} \delta_{\gamma(1)}$.

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathscr{H}}^2 + \alpha \| \boldsymbol{m} \|_{\mathscr{V}}. \tag{CROC}$$

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathscr{H}}^2 + \alpha \| \boldsymbol{m} \|_{\mathscr{V}}. \tag{CROC}$$

• $\frac{1}{2} \| y - \mathbf{\Phi} \boldsymbol{m} \|_{\mathcal{H}}^2$ is the data-term;

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\Phi}\,\boldsymbol{m}\|_{\mathcal{H}}^{2} + \alpha(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}} + \|\operatorname{div}\boldsymbol{m}\|_{\mathrm{TV}}) \tag{CROC}$$

- $\frac{1}{2} \| y \mathbf{\Phi} \boldsymbol{m} \|_{\mathcal{H}}^2$ is the data-term;
- $\|\pmb{m}\|_{\mathrm{TV}^2}$ weights down the curve length, *i.e.* $\|\mu_\gamma\|_{\mathrm{TV}^2} = \mathscr{H}_1(\gamma((0,1)));$

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\Phi}\,\boldsymbol{m}\|_{\mathscr{H}}^{2} + \alpha(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}} + \|\operatorname{div}\boldsymbol{m}\|_{\mathrm{TV}}) \tag{CROC}$$

- $\frac{1}{2} \| y \mathbf{\Phi} \boldsymbol{m} \|_{\mathcal{H}}^2$ is the data-term;
- $\| \pmb{m} \|_{\mathrm{TV}^2}$ weights down the curve length, *i.e.* $\| \pmb{\mu}_{\gamma} \|_{\mathrm{TV}^2} = \mathscr{H}_1(\gamma((0,1)));$
- $\|\operatorname{div} \boldsymbol{m}\|_{\mathrm{TV}}$ is the (open) curve counting term.

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\Phi}\,\boldsymbol{m}\|_{\mathscr{H}}^{2} + \alpha(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}} + \|\operatorname{div}\boldsymbol{m}\|_{\mathrm{TV}}) \tag{CROC}$$

- $\frac{1}{2} \| y \mathbf{\Phi} \boldsymbol{m} \|_{\mathcal{H}}^2$ is the data-term;
- $\| \pmb{m} \|_{\mathrm{TV}^2}$ weights down the curve length, *i.e.* $\| \pmb{\mu}_{\gamma} \|_{\mathrm{TV}^2} = \mathscr{H}_1(\gamma((0,1)));$
- $\|\operatorname{div} \boldsymbol{m}\|_{\mathrm{TV}}$ is the (open) curve counting term.

Do curve measures minimise (CROC)?

Definition

Let *X* be a topological vector space and $K \subset X$. An *extreme point x* of *K* is a point such that $\forall y, z \in K$:

Definition

Let X be a topological vector space and $K \subset X$. An *extreme point* x of K is a point such that $\forall y, z \in K$:

$$orall \lambda \in (0,1), x = \lambda y + (1-\lambda)z$$

 $\implies x = y = z$

Extreme points

Definition

Let *X* be a topological vector space and $K \subset X$. An *extreme point x* of *K* is a point such that $\forall y, z \in K$:

$$orall \lambda \in (0,1), x = \lambda y + (1-\lambda)z$$

 $\implies x = y = z$

Ext *K* is the set of extreme points of *K*.

Let $F : E \to \mathbb{R}^m$, *G* the data-term, *R* the regulariser, $\alpha > 0$.

$$F = G + \alpha R$$

Let $F : E \to \mathbb{R}^m$, *G* the data-term, *R* the regulariser, $\alpha > 0$.

$$F = G + \alpha R$$

Theorem (Representer theorem)

There exists a minimiser of F which is a linear sum of extreme points of the unit-ball of R, Ext $\mathcal{B}_{E}^{1} \stackrel{\text{def.}}{=} \{u \in E \mid R(u) \leq 1\}$ [Bredies and Fanzon, 2019, Duval and Peyré, 2014]. Let $F : E \to \mathbb{R}^m$, *G* the data-term, *R* the regulariser, $\alpha > 0$.

$$F = G + \alpha R$$

Theorem (Representer theorem)

There exists a minimiser of F which is a linear sum of extreme points of the unit-ball of R, Ext $\mathcal{B}_{E}^{1} \stackrel{\text{def.}}{=} \{u \in E \mid R(u) \leq 1\}$ [Bredies and Fanzon, 2019, Duval and Peyré, 2014].

Characterise Ext \mathcal{B}_{F}^{1} of the regulariser \iff outline the structure of a *minimum* of *F*.
Extreme points in measure spaces

• If $E = \mathcal{M}(\mathcal{X})$ and $R = \|\cdot\|_{\mathrm{TV}}$, then:

 $\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_x, x \in \mathcal{X}\}.$

Extreme points in measure spaces

• If $\textit{E} = \mathcal{M}\left(\mathcal{X}
ight)$ and $\textit{R} = \left\|\cdot\right\|_{\mathrm{TV}}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_{x}, x \in \mathcal{X}\}.$$

• If
$$E = BV(\mathcal{X})$$
 and $R = \left\|\cdot\right\|_{BV}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathrm{BV}}) = \left\{ \frac{1}{\operatorname{Per}(\mathcal{E})} \chi_{\mathcal{E}}, \, \mathcal{E} \subset \mathcal{X} \text{ is simple}
ight\}.$$

Extreme points in measure spaces

• If $\textit{E} = \mathcal{M}\left(\mathcal{X}
ight)$ and $\textit{R} = \left\|\cdot\right\|_{\mathrm{TV}}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_x, x \in \mathcal{X}\}.$$

• If
$$E = BV(\mathcal{X})$$
 and $R = \|\cdot\|_{BV}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathrm{BV}}) = \left\{ \frac{1}{\operatorname{Per}(\mathcal{E})} \, \chi_{\mathcal{E}}, \, \mathcal{E} \subset \mathcal{X} \text{ is simple}
ight\}.$$

• If $E = \mathscr{V}$ and $R = \|\cdot\|_{\mathscr{V}}$, then:

 $\mathsf{Ext}(\mathcal{B}_{\mathscr{V}}) = ?$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ rac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\mathscr{V}}}, \, \gamma \, ext{Lipschitz 1-rectifiable simple curve}
ight\}.$$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ rac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\mathscr{V}}}, \, \gamma \, ext{Lipschitz 1-rectifiable simple curve}
ight\}.$$

Theorem (Main result of [Laville et al., 2023])

Let $\mathcal{B}^1_{\mathscr{V}} \stackrel{\text{def.}}{=} \{ \boldsymbol{m} \in \mathscr{V}, \| \boldsymbol{m} \|_{\mathscr{V}} \leq 1 \}$ the unit ball of the \mathscr{V} -norm.

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ rac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\mathscr{V}}}, \, \gamma \, ext{Lipschitz 1-rectifiable simple curve}
ight\}.$$

Theorem (Main result of [Laville et al., 2023])

Let $\mathcal{B}^1_{\mathscr{V}} \stackrel{\mathrm{def.}}{=} \{ \pmb{m} \in \mathscr{V}, \|\pmb{m}\|_{\mathscr{V}} \leq 1 \}$ the unit ball of the \mathscr{V} -norm. Then,

$$\operatorname{Ext}(\mathcal{B}^1_{\mathscr{V}}) = \mathfrak{G}.$$

Numerical OG curve reconstruction

• No Hilbertian structure on measure spaces: no proximal algorithm;

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
- \hookrightarrow perfect with our latter results!

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
- \hookrightarrow perfect with our latter results!

We present the Charge Sliding Frank-Wolfe algorithm.

Figure 2: The source and its noisy acquired image

• a possible choice consists in setting $\Phi = * \nabla h$ since:

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector *data* like the gradient;

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector *data* like the gradient;
 - let u be the support of the curve, then $\mu_{\gamma} \simeq
 abla u$ and:

$$\eta = \Phi^*(\Phi m - y) \simeq \Delta u$$

Figure 3: The certificate η on the left, *u* on the right.

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector *data* like the gradient;
 - let u be the support of the curve, then $\mu_{\gamma} \simeq
 abla u$ and:

$$\eta = \Phi^*(\Phi m - y) \simeq \Delta u$$

Figure 3: The certificate η on the left, *u* on the right.

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector *data* like the gradient;
 - let u be the support of the curve, then $\mu_{oldsymbol{\gamma}}\simeq
 abla u$ and:

$$\eta = \Phi^*(\Phi m - y) \simeq \Delta u$$

Figure 3: The certificate η on the left, *u* on the right.

Amplitude and sliding steps

Amplitude and sliding steps

Amplitude optimisation

• we optimise the amplitude *a* of the new estimated curve;

Amplitude and sliding steps

Amplitude optimisation

Both amplitude and position optimisation

- we optimise the amplitude *a* of the new estimated curve;
- we perform a *sliding*: we optimise on both amplitudes a and positions γ .

Figure 4: First step of first iteration: certificate and support of new curve estimated

Figure 4: First step of first iteration: certificate and support of new curve estimated

Amplitude optimisation

Figure 4: First iteration: second and third steps

Amplitude optimisation

Both amplitude and position optimisation

Figure 4: First iteration: second and third steps

Figure 4: Second iteration: another curve is found

Figure 4: Second iteration: another curve is found

Final results

Reconstruction

Reconstruction

Final results

Reconstruction (splines discretisation)

Conclusion

off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we brought up to date the space of charges \mathscr{V} ;
- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we brought up to date the space of charges \mathscr{V} ;
- we introduced the functional (CROC), we proved $Ext(\mathcal{B}_{\mathscr{V}}) = \mathfrak{G}$;

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we brought up to date the space of charges \mathscr{V} ;
- we introduced the functional (CROC), we proved $\mathsf{Ext}(\mathcal{B}_{\mathscr{V}}) = \mathfrak{G};$
- we proposed a Charge Sliding Frank-Wolfe for curve reconstruction.

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we brought up to date the space of charges \mathscr{V} ;
- we introduced the functional (CROC), we proved $\mathsf{Ext}(\mathcal{B}_{\mathscr{V}}) = \mathfrak{G};$
- we proposed a Charge Sliding Frank-Wolfe for curve reconstruction.

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we brought up to date the space of charges \mathscr{V} ;
- we introduced the functional (CROC), we proved $Ext(\mathcal{B}_{\mathscr{V}}) = \mathfrak{G};$
- we proposed a Charge Sliding Frank-Wolfe for curve reconstruction.

In the future: better curve estimation support, test on experimental data, curves untangling, *etc*.

Bredies, K. and Fanzon, S. (2019).

An optimal transport approach for solving dynamic inverse problems in spaces of measures.

Bredies, K. and Pikkarainen, H. K. (2012).

Inverse problems in spaces of measures.

ESAIM: Control, Optimisation and Calculus of Variations, 19(1):190–218.

Candès, E. J. and Fernandez-Granda, C. (2013).
 Towards a mathematical theory of super-resolution.
 Communications on Pure and Applied Mathematics, 67(6):906–956.

References ii

de Castro, Y., Duval, V., and Petit, R. (2021).

Towards off-the-grid algorithms for total variation regularized inverse problems.

In *Lecture Notes in Computer Science*, pages 553–564. Springer International Publishing.

Denoyelle, Q., Duval, V., Peyré, G., and Soubies, E. (2019).
 The sliding frank-wolfe algorithm and its application to super-resolution microscopy.

Inverse Problems, 36(1):014001.

References iii

Duval, V. and Peyré, G. (2014).

Exact support recovery for sparse spikes deconvolution.

Foundations of Computational Mathematics, 15(5):1315–1355.

 Laville, B., Blanc-Féraud, L., and Aubert, G. (2021).
 Off-The-Grid Variational Sparse Spike Recovery: Methods and Algorithms. *Journal of Imaging*, 7(12):266.

Laville, B., Blanc-Féraud, L., and Aubert, G. (2023).
 Off-the-grid curve reconstruction through divergence regularisation: an extreme point result.

Preprint.

- Nehme, E., Weiss, L. E., Michaeli, T., and Shechtman, Y. (2018).
 Deep-STORM: super-resolution single-molecule microscopy by deep learning. 5(4):458.
- Smirnov, S. K. (1993).

Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows.

St. Petersburg Department of Steklov Institute of Mathematics, Russian Academy of Sciences, 5(4):206–238.

See our work on https://www-sop.inria.fr/members/Bastien.Laville/

First inclusion: $\operatorname{Ext}(\mathcal{B}^1_{\operatorname{\mathscr{V}}}) \supset \mathfrak{G}$

First inclusion: $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}}) \supset \mathfrak{G}$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ and for $\lambda \in (0, 1)$:

$$rac{oldsymbol{\mu}_{oldsymbol{\gamma}}}{ig\Vert oldsymbol{\mu}_{oldsymbol{\gamma}} ig\Vert_{arphi}} = \lambda oldsymbol{u}_{oldsymbol{1}} + (1-\lambda)oldsymbol{u}_{oldsymbol{2}},$$

First inclusion: $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}}) \supset \mathfrak{G}$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ and for $\lambda \in (0, 1)$:

$$rac{oldsymbol{\mu}_{oldsymbol{\gamma}}}{ig\Vert oldsymbol{\mu}_{oldsymbol{\gamma}} ig\Vert_{arphi}} = \lambda oldsymbol{u}_{oldsymbol{1}} + (1-\lambda)oldsymbol{u}_{oldsymbol{2}}.$$

By Smirnov's decomposition, $m{u_i} = \int_{\mathfrak{G}} m{R} \, \mathrm{d}
ho_i(m{R})$ where ho_i is a Borel measure.

First inclusion: $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}}) \supset \mathfrak{G}$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ and for $\lambda \in (0, 1)$:

$$rac{oldsymbol{\mu}_{oldsymbol{\gamma}}}{ig\Vert oldsymbol{\mu}_{oldsymbol{\gamma}}} = \lambda oldsymbol{u}_{oldsymbol{1}} + (1-\lambda)oldsymbol{u}_{oldsymbol{2}}.$$

By Smirnov's decomposition, $m{u}_{m{i}}=\int_{\mathfrak{G}}m{R}\,\mathrm{d}
ho_{m{i}}(m{R})$ where $ho_{m{i}}$ is a Borel measure. Also:

 μ_1,μ_2 has support included in μ_γ support, ditto for ${
m spt}\, R\subset {
m spt}\, \mu_\gamma$ [Smirnov, 1993];

First inclusion: $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}}) \supset \mathfrak{G}$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ and for $\lambda \in (0, 1)$:

$$rac{oldsymbol{\mu}_{oldsymbol{\gamma}}}{ig\Vert oldsymbol{\mu}_{oldsymbol{\gamma}}} = \lambda oldsymbol{u}_{oldsymbol{1}} + (1-\lambda)oldsymbol{u}_{oldsymbol{2}}.$$

By Smirnov's decomposition, $m{u_i} = \int_{\mathfrak{G}} m{R} \, \mathrm{d}
ho_i(m{R})$ where ho_i is a Borel measure. Also:

 u_1, u_2 has support included in μ_γ support, ditto for spt $R \subset \text{spt } \mu_\gamma$ [Smirnov, 1993]; moreover, each R has maximal length implying spt $R = \text{spt } \mu_\gamma$.

 $\operatorname{spt} {oldsymbol{\mathcal{R}}} = \operatorname{spt} \mu_{{oldsymbol{\gamma}}}.$

$$\operatorname{spt} {m{ extsf{R}}} = \operatorname{spt} {m{\mu}_{m{\gamma}}}$$
. Otherwise $\operatorname{spt} {m{ extsf{R}}} \subsetneq \operatorname{spt} {m{ extsf{\mu}_{\gamma}}} \|{m{ extsf{R}}}\|_{\operatorname{TV}} < rac{\left\| {m{\mu}_{\gamma}}
ight\|_{\operatorname{TV}}}{\left\| {m{ extsf{\mu}_{\gamma}}}
ight\|_{\mathscr{Y}}}$,

spt
$$\mathbf{R} = \operatorname{spt} \mu_{\gamma}$$
. Otherwise spt $\mathbf{R} \subsetneq \operatorname{spt} \mu_{\gamma} \|\mathbf{R}\|_{\operatorname{TV}} < \frac{\|\mu_{\gamma}\|_{\operatorname{TV}}}{\|\mu_{\gamma}\|_{\mathscr{V}}}$, therefore,
$$\int_{\mathfrak{G}} \|\mathbf{R}\|_{\operatorname{TV}} d\rho(\mathbf{R}) < \frac{\|\mu_{\gamma}\|_{\operatorname{TV}}}{\|\mu_{\gamma}\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1} = \int_{\mathfrak{G}} \|\mathbf{R}\|_{\operatorname{TV}} d\rho(\mathbf{R}),$$

thus $\operatorname{spt} {m {\it R}} = \operatorname{spt} \mu_{m \gamma}$,

$$\begin{aligned} \operatorname{spt} \mathbf{\textit{R}} &= \operatorname{spt} \boldsymbol{\mu}_{\gamma}. \text{ Otherwise spt} \, \mathbf{\textit{R}} \subsetneq \operatorname{spt} \boldsymbol{\mu}_{\gamma} \left\| \mathbf{\textit{R}} \right\|_{\mathrm{TV}} < \frac{\left\| \boldsymbol{\mu}_{\gamma} \right\|_{\mathrm{TV}}}{\left\| \boldsymbol{\mu}_{\gamma} \right\|_{\mathscr{V}}}, \text{ therefore,} \\ & \int_{\mathfrak{G}} \left\| \mathbf{\textit{R}} \right\|_{\mathrm{TV}} \mathrm{d}\rho(\mathbf{\textit{R}}) < \frac{\left\| \boldsymbol{\mu}_{\gamma} \right\|_{\mathrm{TV}}}{\left\| \boldsymbol{\mu}_{\gamma} \right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{-1} = \int_{\mathfrak{G}} \left\| \mathbf{\textit{R}} \right\|_{\mathrm{TV}} \mathrm{d}\rho(\mathbf{\textit{R}}), \end{aligned}$$

thus $\operatorname{spt} {\it R} = \operatorname{spt} \mu_{\gamma}$, each $\it R$ is supported on a simple Lipschitz curve $\gamma_{\it R}$.

$$\begin{aligned} \operatorname{spt} \mathbf{\textit{R}} &= \operatorname{spt} \boldsymbol{\mu}_{\gamma} \text{. Otherwise spt} \, \mathbf{\textit{R}} \subsetneq \operatorname{spt} \boldsymbol{\mu}_{\gamma} \left\| \mathbf{\textit{R}} \right\|_{\mathrm{TV}} < \frac{\left\| \boldsymbol{\mu}_{\gamma} \right\|_{\mathrm{TV}}}{\left\| \boldsymbol{\mu}_{\gamma} \right\|_{\mathscr{V}}}, \text{therefore,} \\ & \int_{\mathfrak{G}} \left\| \mathbf{\textit{R}} \right\|_{\mathrm{TV}} \mathrm{d}\rho(\mathbf{\textit{R}}) < \frac{\left\| \boldsymbol{\mu}_{\gamma} \right\|_{\mathrm{TV}}}{\left\| \boldsymbol{\mu}_{\gamma} \right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{-1} = \int_{\mathfrak{G}} \left\| \mathbf{\textit{R}} \right\|_{\mathrm{TV}} \mathrm{d}\rho(\mathbf{\textit{R}}), \end{aligned}$$

thus spt $R = \operatorname{spt} \mu_{\gamma}$, each R is supported on a simple Lipschitz curve γ_R . Hence, each γ_R is a reparametrisation of γ yielding $R = \frac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\infty}}$

spt
$$\mathbf{R} = \operatorname{spt} \boldsymbol{\mu}_{\gamma}$$
. Otherwise spt $\mathbf{R} \subsetneq \operatorname{spt} \boldsymbol{\mu}_{\gamma} \| \mathbf{R} \|_{\operatorname{TV}} < \frac{\| \boldsymbol{\mu}_{\gamma} \|_{\operatorname{TV}}}{\| \boldsymbol{\mu}_{\gamma} \|_{\mathscr{V}}}$, therefore,
$$\int_{\mathfrak{G}} \| \mathbf{R} \|_{\operatorname{TV}} d\rho(\mathbf{R}) < \frac{\| \boldsymbol{\mu}_{\gamma} \|_{\operatorname{TV}}}{\| \boldsymbol{\mu}_{\gamma} \|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1} = \int_{\mathfrak{G}} \| \mathbf{R} \|_{\operatorname{TV}} d\rho(\mathbf{R}),$$

thus $\operatorname{spt} R = \operatorname{spt} \mu_\gamma$, each R is supported on a simple Lipschitz curve γ_R .

Hence, each γ_R is a reparametrisation of γ yielding $R=rac{\mu_\gamma}{\|\mu_\gamma\|_{\gamma'}}$, eventually:

$$\boldsymbol{u}_{\boldsymbol{i}} = \int_{\mathfrak{G}} \boldsymbol{R} \, \mathrm{d} \rho_{\boldsymbol{i}} = \int_{\mathfrak{G}} \frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\|_{\mathscr{V}}} \, \mathrm{d} \rho_{\boldsymbol{i}} = \frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\|_{\mathscr{V}}} \underbrace{\rho_{\boldsymbol{i}}(\mathfrak{G})}_{=1} = \frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\|_{\mathscr{V}}}.$$

Contradiction, then μ_γ is an extreme point.

Second inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\subset\mathfrak{G}$

Second inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\subset\mathfrak{G}$

Let $T \in Ext(\mathcal{B}^1_{\mathscr{V}})$, then there exists a finite (probability) Borel measure ρ s.t.:

$$oldsymbol{T} = \int_{\mathfrak{G}} oldsymbol{R} \, \mathrm{d}
ho(oldsymbol{R}),$$

Second inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\subset\mathfrak{G}$

Let $T \in \operatorname{Ext}(\mathcal{B}^1_{\mathscr{V}})$, then there exists a finite (probability) Borel measure ho s.t.: $T = \int_{\mathfrak{G}} R \, \mathrm{d}
ho(R),$

either ρ is supported on a singleton of \mathfrak{G} , then there exists μ_{γ} s.t. $T = \frac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\mathscr{V}}}$

Second inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\subset\mathfrak{G}$

Let $T \in \operatorname{Ext}(\mathcal{B}^1_{\mathscr{V}})$, then there exists a finite (probability) Borel measure ho s.t.: $T = \int_{\mathfrak{K}} R \, \mathrm{d}
ho(R),$

either ho is supported on a singleton of \mathfrak{G} , then there exists μ_{γ} s.t. $\mathcal{T} = \frac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\mathscr{V}}}$ or there exists a Borel set $A \subset \mathfrak{G}$ with arbitrary 0 <
ho(A) < 1 and:

$$\rho = \left|\rho\right|\left(A\right)\left(\frac{1}{\left|\rho\right|\left(A\right)}\rho \, \bigsqcup{A}\right) + \left|\rho\right|\left(A^{\mathsf{c}}\right)\left(\frac{1}{\left|\rho\right|\left(A^{\mathsf{c}}\right)}\rho \, \bigsqcup{A^{\mathsf{c}}}\right).$$

$$\mathbf{T} = |\rho| (A) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A)} \mathbf{R} d(\rho \sqcup A)(\mathbf{R}) \right]}_{\stackrel{\text{def.}}{=} \mathbf{u}_{1}} + |\rho| (A^{c}) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A^{c})} \mathbf{R} d(\rho \sqcup A^{c})(\mathbf{R}) \right]}_{\stackrel{\text{def.}}{=} \mathbf{u}_{2}}$$

$$\mathbf{T} = |\rho| (A) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A)} \mathbf{R} d(\rho \sqcup A)(\mathbf{R}) \right]}_{\stackrel{\text{def.}}{=} \mathbf{u}_{1}} + |\rho| (A^{c}) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A^{c})} \mathbf{R} d(\rho \sqcup A^{c})(\mathbf{R}) \right]}_{\stackrel{\text{def.}}{=} \mathbf{u}_{2}}$$

A is chosen (up to a neighbourhood) as a convex set, hence $u_1 = \int_A R \, d\rho(R)$ belongs to A, while conversely $u_2 \in A^c$, thus $u_1 \neq u_2$.

$$\mathbf{T} = |\rho| (A) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A)} \mathbf{R} d(\rho \sqcup A)(\mathbf{R}) \right]}_{\overset{\text{def.}}{=} \mathbf{u}_{1}} + |\rho| (A^{c}) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A^{c})} \mathbf{R} d(\rho \sqcup A^{c})(\mathbf{R}) \right]}_{\overset{\text{def.}}{=} \mathbf{u}_{2}}$$

A is chosen (up to a neighbourhood) as a convex set, hence $u_1 = \int_A R \, d\rho(R)$ belongs to A, while conversely $u_2 \in A^c$, thus $u_1 \neq u_2$. Eventually, thanks to Smirnov's decomposition:

$$egin{aligned} \|oldsymbol{u_1}\|_{\mathscr{V}} &\leq \int_{\mathfrak{G}} rac{1}{|
ho|\left(A
ight)} rac{\|oldsymbol{\mathcal{R}}\|_{\mathscr{Y}}}{\displaystyle = 1} \operatorname{d}(
ho igstarrow A)(oldsymbol{\mathcal{R}}) \ &\leq rac{|
ho|\left(A
ight)}{|
ho|\left(A
ight)} = 1. \end{aligned}$$

Then $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ while $u_1 \neq u_2$, thus reaching a non-trivial convex combination:

 $\mathbf{T} = \lambda \mathbf{u_1} + (1 - \lambda) \mathbf{u_2},$

Then $u_1, u_2 \in \mathcal{B}^1_{\mathcal{V}}$ while $u_1 \neq u_2$, thus reaching a non-trivial convex combination:

 $\mathbf{T} = \lambda \mathbf{u_1} + (1 - \lambda) \mathbf{u_2},$

thereby reaching a contradiction, and therefore concluding the proof.