Off-the-grid curve reconstruction: bridge the gap between 0 and 2-rectifiable measures

Bastien Laville, Laure Blanc-Féraud, Gilles Aubert

15th May 2023
Morpheme team, Inria SAM,
CNRS, Université Côte d'Azur

Table of contents

1. Introduction
2. Off-the-grid review: spikes and sets
3. A new divergence regularisation
4. Off-the-grid numerical reconstruction
5. Conclusion

Introduction

Biomedical imaging

Objective

To image live biological structures at small scales.

Biomedical imaging

Objective

To image live biological structures at small scales.

Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Biomedical imaging

Objective

To image live biological structures at small scales.

Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

PSF

Biomedical imaging

Objective

To image live biological structures at small scales.

Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Biomedical imaging

Objective

To image live biological structures at small scales.
Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Biomedical imaging

Objective

To image live biological structures at small scales.
Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Problème inverse

Solve inverse problem through variational approach

- S_{0} is the source;

Solve inverse problem through variational approach

- S_{0} is the source;
- it is observed through y: blur Φ, noise...;

Solve inverse problem through variational approach

- S_{0} is the source;
- it is observed through y: blur Φ, noise...;
- how to build \hat{S} from y ?

Solve inverse problem through variational approach

- S_{0} is the source;
- it is observed through y: blur Φ, noise...;
- how to build \hat{S} from y ?

Solve inverse problem through variational approach

- S_{o} is the source;
- it is observed through y: blur Φ, noise...;
- how to build \widehat{S} from y ?

Variational optimisation

- use a prior on S_{o};

Solve inverse problem through variational approach

- S_{0} is the source;
- it is observed through y: blur Φ, noise...;
- how to build \widehat{S} from y ?

Variational optimisation

- use a prior on S_{o};
- among all sources S, penalise the ones fulfiling the prior;

Solve inverse problem through variational approach

- S_{0} is the source;
- it is observed through y: blur Φ, noise...;
- how to build \widehat{S} from y ?

Variational optimisation

- use a prior on S_{o};
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto\|y-\Phi S\|_{2}^{2}+\alpha R(S)$;

Solve inverse problem through variational approach

- S_{o} is the source;
- it is observed through y: blur Φ, noise...;
- how to build \widehat{S} from y ?

Variational optimisation

- use a prior on S_{o};
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto\|y-\Phi S\|_{2}^{2}+\alpha R(S)$;
- $\|y-\Phi S\|_{2}^{2}$ penalises the closeness of y and the source S;

Solve inverse problem through variational approach

- S_{o} is the source;
- it is observed through y: blur Φ, noise...;
- how to build \hat{S} from y ?

Variational optimisation

- use a prior on S_{o};
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto\|y-\Phi S\|_{2}^{2}+\alpha R(S)$;
- $\|y-\Phi S\|_{2}^{2}$ penalises the closeness of y and the source S;
- $R(S)$ regularises the problem (well-posed) and enforces more or less the prior on S w $\alpha>0$.

Grid or gridless?

Source to estimate

Grid or gridless?

Introducing a grid

Grid or gridless?

Reconstruction Ŝ on a grid

Grid or gridless?

Reconstruction \hat{S} on a finer grid

Grid or gridless?

Reconstruction \hat{S} is now off-the-grid

Off-the-grid review: spikes and sets

Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};

Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};
- how to model spikes? Through Dirac measure δ_{x}, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;

Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};
- how to model spikes ? Through Dirac measure δ_{x}, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
- topological dual of $\mathscr{C}_{0}(\mathcal{X})$ equipped with $\langle f, m\rangle=\int_{\mathcal{X}} f \mathrm{~d} m$. Generalises $\mathrm{L}^{1}(\mathcal{X})$; $\mathrm{L}^{1}(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X}) ;$

Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};
- how to model spikes ? Through Dirac measure δ_{x}, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
- topological dual of $\mathscr{C}_{0}(\mathcal{X})$ equipped with $\langle f, m\rangle=\int_{\mathcal{X}} f \mathrm{~d} m$. Generalises $\mathrm{L}^{1}(\mathcal{X})$; $\mathrm{L}^{1}(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X}) ;$
- Banach endowed with TV-norm : $m \in \mathcal{M}(\mathcal{X})$,

$$
|m|(\mathcal{X}) \stackrel{\text { def. }}{=} \sup \left(\int_{\mathcal{X}} f \mathrm{~d} m \mid f \in \mathscr{C}_{0}(\mathcal{X}),\|f\|_{\infty, \mathcal{X}} \leq 1\right)
$$

If $m=\sum_{i=1}^{N} a_{i} \delta_{x_{i}}$ a discrete measure, then $|m|(\mathcal{X})=\sum_{i=1}^{N}\left|a_{i}\right|$.

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right)$;

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \xlongequal{\text { def. }} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right)$;
- $w \in \mathrm{~L}^{2}(\mathcal{X})$ additive noise;

A LASSO equivalent for measures

- Let the source $m_{a_{0}, \chi_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \xlongequal{\text { def. }} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right)$;
- $w \in \mathrm{~L}^{2}(\mathcal{X})$ additive noise;
- $y \stackrel{\text { def. }}{=} \Phi m_{a_{0}, x_{0}}+w$.

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right) ;$
- $w \in \mathrm{~L}^{2}(\mathcal{X})$ additive noise;
- $y \stackrel{\text { def. }}{=} \Phi m_{a_{0}, x_{0}}+w$.

We call BLASSO the problem
[Candès and Fernandez-Granda, 2013, Duval and Peyré, 2014] for $\lambda>0$:

$$
\begin{equation*}
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi m\|_{\mathbb{R}^{p}}^{2}+\lambda|m|(\mathcal{X}) \tag{y}
\end{equation*}
$$

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right) ;$
- $w \in \mathrm{~L}^{2}(\mathcal{X})$ additive noise;
- $y \stackrel{\text { def. }}{=} \Phi m_{a_{0}, x_{0}}+w$.

We call BLASSO the problem
[Candès and Fernandez-Granda, 2013, Duval and Peyré, 2014] for $\lambda>0$:

$$
\begin{equation*}
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi m\|_{\mathbb{R}^{p}}^{2}+\lambda|m|(\mathcal{X}) \tag{y}
\end{equation*}
$$

One of its minimisers is a sum of Dirac, close to $m_{a_{0}, x_{0}}$.

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right)$;
- $w \in \mathrm{~L}^{2}(\mathcal{X})$ additive noise;
- $y \stackrel{\text { def. }}{=} \Phi m_{a_{0}, x_{0}}+w$.

We call BLASSO the problem
[Candès and Fernandez-Granda, 2013, Duval and Peyré, 2014] for $\lambda>0$:

$$
\begin{equation*}
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi m\|_{\mathbb{R}^{p}}^{2}+\lambda|m|(\mathcal{X}) \tag{y}
\end{equation*}
$$

One of its minimisers is a sum of Dirac, close to $m_{a_{0}, x_{0}}$.
Difficult numerical problem: infinite dimensional, non-reflexive. Tackled by greedy algorithm like Frank-Wolfe [Denoyelle et al., 2019] , etc.

Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit fluorophores per image.

Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit fluorophores per image.

Figure 1: Two excerpts from a SMLM stack

Results on SMLM

Stack mean

Results on SMLM

Results on SMLM

Stack mean

Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

Stack mean

Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

SMLM drawback: a lot of images, no live-cell imaging.

2-rectiffable measures reconstruction

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;

2-rectiffable measures reconstruction

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\operatorname{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid " \nabla u^{\prime \prime} \in \mathcal{M}(\mathcal{X})^{2}\right\} ;$

2-rectifiable measures reconstruction

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\mathrm{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{2}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} .
$$

2-rectifiable measures reconstruction

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\mathrm{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{2}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} .
$$

If $u=\chi_{E}$,

2-rectifiable measures reconstruction

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\mathrm{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{2}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\begin{aligned}
& \qquad\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} . \\
& \text { If } u=\chi_{\mathrm{E}} \text {, then }\|\mathrm{D} u\|_{\mathrm{TV}}=\operatorname{Per}(E) ;
\end{aligned}
$$

2-rectifiable measures reconstruction

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\mathrm{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{2}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} .
$$

If $u=\chi_{E}$, then $\|\mathrm{D} u\|_{\mathrm{TV}}=\operatorname{Per}(E)$;

- Let $\lambda>0$, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$
\begin{equation*}
\underset{u \in \operatorname{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi u\|_{\mathrm{L}^{2}(\mathcal{X})}^{2}+\lambda\|u\|_{\mathrm{BV}} \tag{y}
\end{equation*}
$$

2-rectifiable measures reconstruction

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\mathrm{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{2}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} .
$$

If $u=\chi_{E}$, then $\|\mathrm{D} u\|_{\mathrm{TV}}=\operatorname{Per}(E)$;

- Let $\lambda>0$, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$
\begin{equation*}
\underset{u \in \operatorname{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi u\|_{\mathrm{L}^{2}(\mathcal{X})}^{2}+\lambda\|u\|_{\mathrm{BV}} \tag{y}
\end{equation*}
$$

One of its minimisers is a sum of level sets χ_{E} !

Geometry encoded in off-the-grid

Geometry encoded in off-the-grid

	TV	BV						
Geometry	Spikes	Sets						
Space	$\mathcal{M}(\mathcal{X})$	BV (\mathcal{X})						
Regulariser	$\\|\cdot\\|_{\text {TV }}$	$\\|\cdot\\|_{1}+\\|\mathrm{D} \cdot\\|_{\text {TV }}$						

Geometry encoded in off-the-grid

Geometry encoded in off-the-grid

A new divergence regularisation

A new functional space

- let $\boldsymbol{\mathcal { M }}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;

A new functional space

- let $\mathcal{M}(\mathcal{X})^{2}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{2}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{T V^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;

A new functional space

- let $\mathcal{M}(\mathcal{X})^{2}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{2}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathcal{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{T V^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$ a 1-rectifiable parametrised Lipschitz curve,

A new functional space

- let $\boldsymbol{\mathcal { M }}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{\mathbf{2}}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{\mathrm{TV}^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure supported on a curve γ if:

$$
\forall \boldsymbol{g} \in \boldsymbol{C}_{\mathbf{0}}(\mathcal{X})^{\mathbf{2}}, \quad\left\langle\boldsymbol{\mu}_{\gamma}, \boldsymbol{g}\right\rangle_{\mathcal{M}^{2}} \stackrel{\text { def. }}{=} \int_{0}^{1} \boldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \mathrm{d} t
$$

- a curve is closed is $\gamma(0)=\gamma(1)$, open otherwise;

A new functional space

- let $\mathcal{M}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{\mathbf{2}}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{\mathrm{TV}^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure supported on a curve γ if:

$$
\forall \boldsymbol{g} \in \boldsymbol{C}_{0}(\mathcal{X})^{\mathbf{2}}, \quad\left\langle\boldsymbol{\mu}_{\gamma}, \boldsymbol{g}\right\rangle_{\mathcal{M}^{2}} \stackrel{\text { def. }}{=} \int_{0}^{1} \boldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \mathrm{d} t .
$$

- a curve is closed is $\gamma(0)=\gamma(1)$, open otherwise;
- simple if γ is an injective mapping

A new functional space

- let $\boldsymbol{\mathcal { M }}(\boldsymbol{X})^{\mathbf{2}}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{2}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{\mathrm{TV}^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure supported on a curve γ if:

$$
\forall \boldsymbol{g} \in \boldsymbol{C}_{0}(\mathcal{X})^{\mathbf{2}}, \quad\left\langle\boldsymbol{\mu}_{\gamma}, \boldsymbol{g}\right\rangle_{\mathcal{M}^{2}} \stackrel{\text { def. }}{=} \int_{0}^{1} \boldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \mathrm{d} t .
$$

- a curve is closed is $\gamma(0)=\gamma(1)$, open otherwise;
- simple if γ is an injective mapping
- $\operatorname{div} \mu_{\gamma}=\delta_{\gamma(0)}-\delta_{\gamma(1)}$.

A convex decomposition

Let the (non-complete) subset of \mathscr{V} endowed with weak-* topology:

$$
\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}, \gamma \text { Lipschitz 1-rectifiable simple curve }\right\} .
$$

A convex decomposition

Let the (non-complete) subset of \mathscr{V} endowed with weak-* topology:

$$
\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}, \gamma \text { Lipschitz 1-rectifiable simple curve }\right\} .
$$

Theorem (Smirnov Theorem A. [Smirnov, 1993])
Let $\boldsymbol{T} \in \mathscr{V}$. Then $\boldsymbol{T}=\boldsymbol{P}+\mathbf{Q}$ where \mathbf{P} is a solenoid i.e. $\operatorname{div} \mathbf{P}=0$

A convex decomposition

Let the (non-complete) subset of \mathscr{V} endowed with weak-* topology:

$$
\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}, \gamma \text { Lipschitz 1-rectifiable simple curve }\right\} .
$$

Theorem (Smirnov Theorem A. [Smirnov, 1993])

Let $\boldsymbol{T} \in \mathscr{V}$. Then $\boldsymbol{T}=\mathbf{P}+\mathbf{Q}$ where \mathbf{P} is a solenoid i.e. $\operatorname{div} \mathbf{P}=0$ and \mathbf{Q} is completely decomposable on \mathfrak{G}, i.e. there exists a Borel measure ρ s.t.:

$$
\mathbf{Q}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R}),
$$

A convex decomposition

Let the (non-complete) subset of \mathscr{V} endowed with weak-* topology:

$$
\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}, \gamma \text { Lipschitz 1-rectifiable simple curve }\right\} .
$$

Theorem (Smirnov Theorem A. [Smirnov, 1993])

Let $\boldsymbol{T} \in \mathscr{V}$. Then $\boldsymbol{T}=\mathbf{P}+\mathbf{Q}$ where \mathbf{P} is a solenoid i.e. $\operatorname{div} \mathbf{P}=0$ and \mathbf{Q} is completely decomposable on \mathfrak{G}, i.e. there exists a Borel measure ρ s.t.:

$$
\mathbf{Q}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R}), \quad\|\mathbf{Q}\|_{\mathrm{TV}^{2}}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}^{2}} \mathrm{~d} \rho(\boldsymbol{R}),
$$

A convex decomposition

Let the (non-complete) subset of \mathscr{V} endowed with weak-* topology:

$$
\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}, \gamma \text { Lipschitz 1-rectifiable simple curve }\right\} .
$$

Theorem (Smirnov Theorem A. [Smirnov, 1993])

Let $\boldsymbol{T} \in \mathscr{V}$. Then $\boldsymbol{T}=\mathbf{P}+\mathbf{Q}$ where \mathbf{P} is a solenoid i.e. $\operatorname{div} \mathbf{P}=0$ and \mathbf{Q} is completely decomposable on \mathfrak{G}, i.e. there exists a Borel measure ρ s.t.:

$$
\begin{equation*}
\mathbf{Q}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R}), \quad\|\mathbf{Q}\|_{\mathrm{TV}}{ }^{2}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}^{2}} \mathrm{~d} \rho(\boldsymbol{R}), \quad \ldots \tag{1}
\end{equation*}
$$

A convex decomposition

Theorem (Smirnov Theorem A. [Smirnov, 1993])

Let $\boldsymbol{T} \in \mathscr{V}$. Then $\boldsymbol{T}=\mathbf{P}+\mathbf{Q}$ where \mathbf{P} is a solenoid i.e. $\operatorname{div} \mathbf{P}=0$ and \mathbf{Q} is completely decomposable on \mathfrak{G}, i.e. there exists a Borel measure ρ s.t.:

$$
\begin{equation*}
\mathbf{Q}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R}), \quad\|\mathbf{Q}\|_{\mathrm{TV}}{ }^{2}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}^{2}} \mathrm{~d} \rho(\boldsymbol{R}), \tag{1}
\end{equation*}
$$

The following only holds for $d=2$:

A convex decomposition

Theorem (Smirnov Theorem A. [Smirnov, 1993])

Let $\boldsymbol{T} \in \mathscr{V}$. Then $\boldsymbol{T}=\mathbf{P}+\mathbf{Q}$ where \mathbf{P} is a solenoid i.e. $\operatorname{div} \mathbf{P}=0$ and \mathbf{Q} is completely decomposable on \mathfrak{G}, i.e. there exists a Borel measure ρ s.t.:

$$
\begin{equation*}
\mathbf{Q}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R}), \quad\|\mathbf{Q}\|_{\mathrm{TV}^{2}}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}^{2}} \mathrm{~d} \rho(\boldsymbol{R}) \tag{1}
\end{equation*}
$$

The following only holds for $d=2$:

Theorem (Khavin \& Smirnov [Khavin and Smirnov, 1998])

Let \mathbf{P} a solenoid of \mathscr{V}. It is completely decomposable on \mathfrak{G}.

A convex decomposition

Theorem (Smirnov Theorem A. [Smirnov, 1993])

Let $\boldsymbol{T} \in \mathscr{V}$. Then $\boldsymbol{T}=\mathbf{P}+\mathbf{Q}$ where \mathbf{P} is a solenoid i.e. $\operatorname{div} \mathbf{P}=0$ and \mathbf{Q} is completely decomposable on \mathfrak{G}, i.e. there exists a Borel measure ρ s.t.:

$$
\begin{equation*}
\mathbf{Q}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R}), \quad\|\mathbf{Q}\|_{\mathrm{TV}^{2}}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}^{2}} \mathrm{~d} \rho(\boldsymbol{R}) \tag{1}
\end{equation*}
$$

The following only holds for $d=2$:

Theorem (Khavin \& Smirnov [Khavin and Smirnov, 1998])

Let \mathbf{P} a solenoid of \mathscr{V}. It is completely decomposable on \mathfrak{G}.

Then any charge of \mathscr{V} for $d=2$ is completely decomposable on \mathfrak{G}.

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\|\boldsymbol{m}\|_{\mathscr{V}} . \tag{CROC}
\end{equation*}
$$

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\|\boldsymbol{m}\|_{\mathscr{V}} . \tag{CROC}
\end{equation*}
$$

- $\frac{1}{2}\|y-\Phi \boldsymbol{m}\|_{\mathcal{H}}^{2}$ is the data-term;

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\left(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}+\|\operatorname{div} \boldsymbol{m}\|_{\mathrm{TV}}\right) \tag{CROC}
\end{equation*}
$$

- $\frac{1}{2}\|y-\Phi \boldsymbol{m}\|_{\mathcal{H}}^{2}$ is the data-term;
- $\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}$ weights down the curve length, i.e. $\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}^{2}}=\mathscr{H}_{1}(\gamma((0,1)))$;

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\left(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}+\|\operatorname{div} \boldsymbol{m}\|_{\mathrm{TV}}\right) \tag{CROC}
\end{equation*}
$$

- $\frac{1}{2}\|y-\Phi \boldsymbol{m}\|_{\mathcal{H}}^{2}$ is the data-term;
- $\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}$ weights down the curve length, i.e. $\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}^{2}}=\mathscr{H}_{1}(\gamma((0,1)))$;
- $\|\operatorname{div} \boldsymbol{m}\|_{\text {TV }}$ is the (open) curve counting term.

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\left(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}+\|\operatorname{div} \boldsymbol{m}\|_{\mathrm{TV}}\right) \tag{CROC}
\end{equation*}
$$

- $\frac{1}{2}\|y-\Phi \boldsymbol{m}\|_{\mathcal{H}}^{2}$ is the data-term;
- $\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}$ weights down the curve length, i.e. $\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}^{2}}=\mathscr{H}_{1}(\gamma((0,1)))$;
- $\|\operatorname{div} \boldsymbol{m}\|_{\text {TV }}$ is the (open) curve counting term.

Do curve measures minimise (CROC)?

Extreme points

Extreme points

Definition

Let X be a topological vector space and $K \subset X$. An extreme point x of K is a point such that $\forall y, z \in K$:

Extreme points

Definition

Let X be a topological vector space and $K \subset X$. An extreme point x of K is a point such that $\forall y, z \in K$:

$$
\begin{aligned}
\forall \lambda \in(0,1), x & =\lambda y+(1-\lambda) z \\
& \Longrightarrow x=y=z
\end{aligned}
$$

Extreme points

Definition

Let X be a topological vector space and $K \subset X$. An extreme point x of K is a point such that $\forall y, z \in K$:

$$
\begin{aligned}
\forall \lambda \in(0,1), x & =\lambda y+(1-\lambda) z \\
& \Longrightarrow x=y=z
\end{aligned}
$$

Ext K is the set of extreme points of K.

Ext K in red

Link with extreme points: general setup

Let $F: E \rightarrow \mathbb{R}^{m}, G$ the data-term, R the regulariser, $\alpha>0$.

$$
F=G+\alpha R
$$

Link with extreme points: general setup

Let $F: E \rightarrow \mathbb{R}^{m}, G$ the data-term, R the regulariser, $\alpha>0$.

$$
F=G+\alpha R
$$

Theorem (Representer theorem [Bredies and Fanzon, 2019,

 Duval and Peyré, 2014])There exists a minimiser of F which is a linear sum of extreme points of the unit-ball of R, Ext $\mathcal{B}_{E}^{1} \stackrel{\text { def. }}{=}\{u \in E \mid R(E) \leq 1\}$.

Link with extreme points: general setup

Let $F: E \rightarrow \mathbb{R}^{m}, G$ the data-term, R the regulariser, $\alpha>0$.

$$
F=G+\alpha R
$$

Theorem (Representer theorem [Bredies and Fanzon, 2019, Duval and Peyré, 2014])
 There exists a minimiser of F which is a linear sum of extreme points of the unit-ball of R, Ext $\mathcal{B}_{E}^{1} \stackrel{\text { def. }}{=}\{u \in E \mid R(E) \leq 1\}$.

Characterise Ext \mathcal{B}_{E}^{1} of the regulariser \Longleftrightarrow outline the structure of a minimum of F.

Extreme points in measure spaces

- If $E=\mathcal{M}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{TV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathcal{M}}\right)=\left\{\delta_{x}, x \in \mathcal{X}\right\}
$$

Extreme points in measure spaces

- If $E=\mathcal{M}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{TV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathcal{M}}\right)=\left\{\delta_{x}, x \in \mathcal{X}\right\}
$$

- If $E=\mathrm{BV}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{BV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathrm{BV}}\right)=\left\{\frac{1}{\operatorname{Per}(E)} \chi_{E}, E \subset \mathcal{X} \text { is simple }\right\}
$$

Extreme points in measure spaces

- If $E=\mathcal{M}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{TV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathcal{M}}\right)=\left\{\delta_{x}, x \in \mathcal{X}\right\}
$$

- If $E=\mathrm{BV}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{BV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathrm{BV}}\right)=\left\{\frac{1}{\operatorname{Per}(E)} \chi_{E}, E \subset \mathcal{X} \text { is simple }\right\}
$$

- If $E=\mathscr{V}$ and $R=\|\cdot\|_{\mathscr{V}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{V}\right)=?
$$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$
\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}, \gamma \text { Lipschitz 1-rectifiable simple curve }\right\} .
$$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$
\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\boldsymbol{\gamma}}}, \gamma \text { Lipschitz 1-rectifiable simple curve }\right\} .
$$

Theorem (Main result of [Laville et al., 2023])

Let $\mathcal{B}_{\mathscr{V}}^{1} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathscr{V},\|\boldsymbol{m}\|_{\mathscr{V}} \leq 1\right\}$ the unit ball of the \mathscr{V}-norm.

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$
\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\boldsymbol{\gamma}}}, \gamma \text { Lipschitz 1-rectifiable simple curve }\right\} .
$$

Theorem (Main result of [Laville et al., 2023])

Let $\mathcal{B}_{\mathscr{V}}^{1} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathscr{V},\|\boldsymbol{m}\|_{\mathscr{V}} \leq 1\right\}$ the unit ball of the \mathscr{V}-norm. Then,

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)=\mathfrak{G}
$$

Off-the-grid numerical reconstruction

General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;

General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;

General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
\hookrightarrow perfect with our latter results!

General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
\hookrightarrow perfect with our latter results!
We present the Charge Sliding Frank-Wolfe algorithm.
o
c

Synthetic problem

Figure 2: The source and its noisy acquired image

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:
- μ_{γ} is vector, hence we need vector data like the gradient;

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:
- μ_{γ} is vector, hence we need vector data like the gradient;
- let u be the support of the curve, then $\mu_{\gamma} \simeq \nabla u$ and:

$$
\eta=\Phi^{*}(\Phi m-y) \simeq \Delta u
$$

Figure 3: The certificate η on the left, u on the right.

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:
- μ_{γ} is vector, hence we need vector data like the gradient;
- let u be the support of the curve, then $\mu_{\gamma} \simeq \nabla u$ and:

$$
\eta=\Phi^{*}(\Phi m-y) \simeq \Delta u
$$

Figure 3: The certificate η on the left, u on the right.

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:
- μ_{γ} is vector, hence we need vector data like the gradient;
- let u be the support of the curve, then $\mu_{\gamma} \simeq \nabla u$ and:

$$
\eta=\Phi^{*}(\Phi m-y) \simeq \Delta u
$$

Figure 3: The certificate η on the left, u on the right.

Amplitude and sliding steps

Amplitude and sliding steps

Amplitude optimisation

- we optimise the amplitude a of the new estimated curve;

Amplitude and sliding steps

Amplitude optimisation

Both amplitude and position optimisation

- we optimise the amplitude a of the new estimated curve;
- we perform a sliding: we optimise on both amplitudes a and positions γ.

Recap: iterate the algorithm

Figure 4: First step of first iteration: certificate and support of new curve estimated

Recap: iterate the algorithm

Figure 4: First step of first iteration: certificate and support of new curve estimated

Recap: iterate the algorithm

Amplitude optimisation

Figure 4: First iteration: second and third steps

Recap: iterate the algorithm

Amplitude optimisation

Both amplitude and position optimisation

Figure 4: First iteration: second and third steps

Recap: iterate the algorithm

Figure 4: Second iteration: another curve is found

Recap: iterate the algorithm

Figure 4: Second iteration: another curve is found

Final results

Reconstruction

Final results

Reconstruction

Conclusion

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we brought up to date the space of charges \mathscr{V};

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we brought up to date the space of charges \mathscr{V};
- we introduced the functional $(C R O C)$, we proved $\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}\right)=\mathfrak{G}$;

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we brought up to date the space of charges \mathscr{V};
- we introduced the functional $(C R O C)$, we proved $\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}\right)=\mathfrak{G}$;
- we proposed a Charge Sliding Frank-Wolfe for curve reconstruction.

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we brought up to date the space of charges \mathscr{V};
- we introduced the functional $(C R O C)$, we proved $\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}\right)=\mathfrak{G}$;
- we proposed a Charge Sliding Frank-Wolfe for curve reconstruction.

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we brought up to date the space of charges \mathscr{V};
- we introduced the functional $(C R O C)$, we proved $\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}\right)=\mathfrak{G}$;
- we proposed a Charge Sliding Frank-Wolfe for curve reconstruction.

In the future: better curve estimation support, test on experimental data, curves untangling, etc.

Iteration 0

Iteration 43

Perspectives: curves untangling, inspired by dynamic off-the-grid

Bredies et. al.

Reconstruction in literature (from Duval and Tovey, 2022)

Perspectives: curves untangling, inspired by dynamic off-the-grid

Reconstruction in literature (from Duval and Tovey, 2022)

Reconstruction (WIP Laville and Théo Bertrand from CEREMADE)

References i

嗇 Bredies, K. and Fanzon, S. (2019).
An optimal transport approach for solving dynamic inverse problems in spaces of measures.

Re Candès, E. J. and Fernandez-Granda, C. (2013).
Towards a mathematical theory of super-resolution.
Communications on Pure and Applied Mathematics, 67(6):906-956.
囦 de Castro, Y., Duval, V., and Petit, R. (2021).
Towards off-the-grid algorithms for total variation regularized inverse problems.
In Lecture Notes in Computer Science, pages 553-564. Springer International Publishing.

囯 Denoyelle，Q．，Duval，V．，Peyré，G．，and Soubies，E．（2019）． The sliding frank－wolfe algorithm and its application to super－resolution microscopy．
Inverse Problems，36（1）：014001．
围 Duval，V．and Peyré，G．（2014）．
Exact support recovery for sparse spikes deconvolution．
Foundations of Computational Mathematics，15（5）：1315－1355．
目 Khavin，V．P．and Smirnov，S．K．（1998）．
Approximation and extension problems for some classes of vector fields． St．Petersburg Department of Steklov Institute of Mathematics，Russian Academy of Sciences，10（3）：507－528．

References ifi

囲 Laville, B., Blanc-Féraud, L., and Aubert, G. (2021). Off-The-Grid Variational Sparse Spike Recovery: Methods and Algorithms. Journal of Imaging, 7(12):266.

Laville, B., Blanc-Féraud, L., and Aubert, G. (2023).
Off-the-grid curve reconstruction through divergence regularisation: an extreme point result.
Preprint.
目 Nehme, E., Weiss, L. E., Michaeli, T., and Shechtman, Y. (2018).
Deep-STORM: super-resolution single-molecule microscopy by deep learning. 5(4):458.

References iv

Smirnov, S. K. (1993).
Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows.
St. Petersburg Department of Steklov Institute of Mathematics, Russian Academy of Sciences, 5(4):206-238.

See our work on

https://www-sop.inria.fr/members/Bastien.Laville/

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right) \supset \mathfrak{G}
$$

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \supset \mathfrak{G}
$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}} \in \mathcal{B}_{\mathscr{Y}}^{1}$ and for $\lambda \in(0,1)$:

$$
\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}} .
$$

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \supset \mathfrak{G}
$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}} \in \mathcal{B}_{\mathscr{Y}}^{1}$ and for $\lambda \in(0,1)$:

$$
\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}} .
$$

By Smirnov's decomposition, $\boldsymbol{u}_{\boldsymbol{i}}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho_{i}(\boldsymbol{R})$ where ρ_{i} is a Borel measure.

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \supset \mathfrak{G}
$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}} \in \mathcal{B}_{\mathscr{Y}}^{1}$ and for $\lambda \in(0,1)$:

$$
\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}} .
$$

By Smirnov's decomposition, $\boldsymbol{u}_{\boldsymbol{i}}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho_{i}(\boldsymbol{R})$ where ρ_{i} is a Borel measure. Also: $\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}}$ has support included in μ_{γ} support, ditto for spt $\boldsymbol{R} \subset$ spt μ_{γ} [Smirnov, 1993];

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \supset \mathfrak{G}
$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}} \in \mathcal{B}_{\mathscr{Y}}^{1}$ and for $\lambda \in(0,1)$:

$$
\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}} .
$$

By Smirnov's decomposition, $\boldsymbol{u}_{\boldsymbol{i}}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho_{i}(\boldsymbol{R})$ where ρ_{i} is a Borel measure. Also:
$\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}}$ has support included in μ_{γ} support, ditto for spt $\boldsymbol{R} \subset$ spt μ_{γ} [Smirnov, 1993]; moreover, each R has maximal length implying spt $R=\operatorname{spt} \mu_{\gamma}$.

Proof recipe II

spt $\boldsymbol{R}=\mathrm{spt} \mu_{\gamma}$.

Proof recipe II

spt $\boldsymbol{R}=\operatorname{spt} \mu_{\gamma}$. Otherwise spt $\boldsymbol{R} \subsetneq \operatorname{spt} \mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$,

Proof recipe II

spt $\boldsymbol{R}=$ spt μ_{γ}. Otherwise spt $\boldsymbol{R} \subsetneq$ spt $\mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\mu_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$, therefore,

$$
\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R})<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R}),
$$

thus spt $R=$ spt μ_{γ},

Proof recipe II

spt $\boldsymbol{R}=$ spt μ_{γ}. Otherwise spt $\boldsymbol{R} \subsetneq$ spt $\mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$, therefore,

$$
\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R})<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R}),
$$

thus spt $\boldsymbol{R}=$ spt μ_{γ}, each R is supported on a simple Lipschitz curve γ_{R}.

Proof recipe II

spt $\boldsymbol{R}=$ spt μ_{γ}. Otherwise spt $\boldsymbol{R} \subsetneq$ spt $\mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$, therefore,

$$
\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R})<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R}),
$$

thus spt $R=$ spt μ_{γ}, each R is supported on a simple Lipschitz curve γ_{R}.

Hence, each γ_{R} is a reparametrisation of γ yielding $R=\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$

Proof recipe II

spt $\boldsymbol{R}=$ spt μ_{γ}. Otherwise spt $\boldsymbol{R} \subsetneq$ spt $\mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$, therefore,

$$
\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R})<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R}),
$$

thus spt $R=$ spt μ_{γ},
each R is supported on a simple Lipschitz curve γ_{R}.
Hence, each γ_{R} is a reparametrisation of γ yielding $R=\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$, eventually:

$$
\boldsymbol{u}_{\boldsymbol{i}}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho_{i}=\int_{\mathfrak{G}} \frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathscr{V}}} \mathrm{d} \rho_{i}=\frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} \underbrace{\rho_{i}(\mathfrak{G})}_{=1}=\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} .
$$

Contradiction, then μ_{γ} is an extreme point.

Proof recipe III

Second inclusion:

$\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \subset \mathfrak{G}$

Proof recipe III

Second inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \subset \mathfrak{G}
$$

Let $\boldsymbol{T} \in \operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)$, then there exists a finite (probability) Borel measure ρ s.t.:

$$
\boldsymbol{T}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R}),
$$

Proof recipe III

Second inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \subset \mathfrak{G}
$$

Let $\boldsymbol{T} \in \operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)$, then there exists a finite (probability) Borel measure ρ s.t.:

$$
\boldsymbol{T}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R}),
$$

either ρ is supported on a singleton of \mathfrak{G}, then there exists μ_{γ} s.t. $T=\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$

Proof recipe III

Second inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \subset \mathfrak{G}
$$

Let $\boldsymbol{T} \in \operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)$, then there exists a finite (probability) Borel measure ρ s.t.:

$$
\boldsymbol{T}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R})
$$

either ρ is supported on a singleton of \mathfrak{G}, then there exists μ_{γ} s.t. $T=\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$ or there exists a Borel set $A \subset \mathfrak{G}$ with arbitrary $0<\rho(A)<1$ and:

$$
\rho=|\rho|(A)\left(\frac{1}{|\rho|(A)} \rho\llcorner A)+|\rho|\left(A^{c}\right)\left(\frac{1}{|\rho|\left(A^{c}\right)} \rho\left\llcorner A^{c}\right) .\right.\right.
$$

Proof recipe IV

Then,

$$
\boldsymbol{T}=|\rho|(A) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|(A)} \boldsymbol{R} \mathrm{d}(\rho\llcorner A)(\boldsymbol{R})]\right.}_{\text {def } \cdot \boldsymbol{u}_{\mathbf{1}}}+|\rho|\left(\boldsymbol{A}^{c}\right) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|\left(A^{c}\right)} \boldsymbol{R} \mathrm{d}\left(\rho\left\llcorner A^{c}\right)(\boldsymbol{R})\right]\right.}_{\text {def. } \cdot \boldsymbol{u}_{\mathbf{2}}}
$$

Proof recipe IV

Then,

$$
\boldsymbol{T}=|\rho|(A) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|(A)} \boldsymbol{R} \mathrm{d}(\rho\llcorner A)(\boldsymbol{R})]\right.}_{\text {def } \cdot \boldsymbol{u}_{\mathbf{1}}}+|\rho|\left(\boldsymbol{A}^{c}\right) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|\left(A^{c}\right)} \boldsymbol{R} \mathrm{d}\left(\rho\left\llcorner A^{c}\right)(\boldsymbol{R})\right]\right.}_{\text {def. } \cdot \boldsymbol{u}_{\mathbf{2}}}
$$

A is chosen (up to a neighbourhood) as a convex set, hence $\boldsymbol{u}_{\mathbf{1}}=\int_{A} \boldsymbol{R} \mathrm{~d} \rho(\boldsymbol{R})$ belongs to A, while conversely $\boldsymbol{u}_{\mathbf{2}} \in A^{C}$, thus $\boldsymbol{u}_{\mathbf{1}} \neq \mathbf{u}_{\mathbf{2}}$.

Proof recipe IV

Then,

$$
\boldsymbol{T}=|\rho|(A) \underbrace{\boldsymbol{u}_{\mathbf{1}}}_{\text {deff. }}\left[\int_{\mathfrak{G}} \frac{1}{|\rho|(A)} \boldsymbol{R} \mathrm{d}(\rho\llcorner A)(\boldsymbol{R})]\right] \quad|\rho|\left(A^{c}\right) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|\left(A^{c}\right)} \boldsymbol{R} \mathrm{d}\left(\rho\left\llcorner A^{c}\right)(\boldsymbol{R})\right]\right.}_{\text {def. } \cdot \boldsymbol{u}_{\mathbf{2}}}
$$

A is chosen (up to a neighbourhood) as a convex set, hence $\boldsymbol{u}_{1}=\int_{A} \boldsymbol{R} \mathrm{~d} \rho(\boldsymbol{R})$ belongs to A, while conversely $\boldsymbol{u}_{\mathbf{2}} \in A^{c}$, thus $\boldsymbol{u}_{\mathbf{1}} \neq \mathbf{u}_{\mathbf{2}}$. Eventually, thanks to Smirnov's decomposition:

$$
\begin{aligned}
\left\|\boldsymbol{u}_{\mathbf{1}}\right\|_{\mathscr{V}} & \leq \int_{\mathfrak{G}} \frac{1}{|\rho|(A)} \underbrace{\|\boldsymbol{R}\|_{\mathscr{V}}}_{=1} \mathrm{~d}(\rho\llcorner A)(\boldsymbol{R}) \\
& \leq \frac{|\rho|(A)}{|\rho|(A)}=1 .
\end{aligned}
$$

Proof recipe V

Then $u_{1}, u_{2} \in \mathcal{B}_{\mathscr{V}}^{1}$ while $u_{1} \neq u_{2}$, thus reaching a non-trivial convex combination:

$$
\boldsymbol{T}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}}
$$

Proof recipe V

Then $u_{1}, u_{\mathbf{2}} \in \mathcal{B}_{\mathscr{V}}^{1}$ while $u_{1} \neq \boldsymbol{u}_{\mathbf{2}}$, thus reaching a non-trivial convex combination:

$$
\boldsymbol{T}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}},
$$

thereby reaching a contradiction, and therefore concluding the proof.

