Gridless curve reconstruction: divergence regularisation and untangling by (sub)Riemannian metric

Bastien Laville
21th November 2023
Morpheme research team
Inria, CNRS, Université Côte d'Azur

Table of contents

1. Off-the-grid 101: the sparse spike problem
2. Static off-the-grid curve in \mathscr{V}
3. Dynamic curve untangling: lift and (sub)-Riemannian metric
4. Conclusion

Off-the-grid 101: the sparse spike

 problem
Biomedical imaging

Objective

To image live biological structures at small scales.

Biomedical imaging

Objective

To image live biological structures at small scales.
Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Biomedical imaging

Objective

To image live biological structures at small scales.

Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Biomedical imaging

Objective

To image live biological structures at small scales.
Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Biomedical imaging

Objective

To image live biological structures at small scales.
Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Biomedical imaging

Objective

To image live biological structures at small scales.
Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Inverse problem

Grid or gridless?

Source to estimate

Grid or gridless?

Introducing a grid

Grid or gridless?

Reconstruction Ŝ on a grid

Grid or gridless?

Reconstruction Ŝ on a finer grid

Grid or gridless?

Reconstruction \hat{S} is now off-the-grid

Grid or gridless?

Grid or gridless?

Grid

- geometry constrained on the grid;
- combinatorial (non-)convex optimisation;
- well-known problems (LASSO, ...).

Grid or gridless?

Grid

Off-the-grid

- brings structural prior;
- guarantees (uniqueness, support);
- convex but infinite dimensional;
- young field.

Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};

Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};
- how to model spikes ? Through Dirac measure δ_{x}, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;

Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};
- how to model spikes ? Through Dirac measure δ_{x}, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
- topological dual of $\mathscr{C}_{0}(\mathcal{X})$ equipped with $\langle f, m\rangle=\int_{\mathcal{X}} f \mathrm{~d} m$. Generalises $\mathrm{L}^{1}(\mathcal{X})$; $\mathrm{L}^{1}(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X}) ;$

Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};
- how to model spikes ? Through Dirac measure δ_{x}, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
- topological dual of $\mathscr{C}_{0}(\mathcal{X})$ equipped with $\langle f, m\rangle=\int_{\mathcal{X}} f \mathrm{~d} m$. Generalises $\mathrm{L}^{1}(\mathcal{X})$; $\mathrm{L}^{1}(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X}) ;$
- Banach endowed with TV-norm : $m \in \mathcal{M}(\mathcal{X})$,

$$
|m|(\mathcal{X}) \stackrel{\text { def. }}{=} \sup \left(\int_{\mathcal{X}} f \mathrm{~d} m \mid f \in \mathscr{C}_{0}(\mathcal{X}),\|f\|_{\infty, \mathcal{X}} \leq 1\right)
$$

If $m=\sum_{i=1}^{N} a_{i} \delta_{x_{i}}$ a discrete measure

Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};
- how to model spikes ? Through Dirac measure δ_{x}, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
- topological dual of $\mathscr{C}_{0}(\mathcal{X})$ equipped with $\langle f, m\rangle=\int_{\mathcal{X}} f \mathrm{~d} m$. Generalises $\mathrm{L}^{1}(\mathcal{X})$; $\mathrm{L}^{1}(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X}) ;$
- Banach endowed with TV-norm : $m \in \mathcal{M}(\mathcal{X})$,

$$
|m|(\mathcal{X}) \stackrel{\text { def. }}{=} \sup \left(\int_{\mathcal{X}} f \mathrm{~d} m \mid f \in \mathscr{C}_{0}(\mathcal{X}),\|f\|_{\infty, \mathcal{X}} \leq 1\right)
$$

If $m=\sum_{i=1}^{N} a_{i} \delta_{x_{i}}$ a discrete measure, then $|m|(\mathcal{X})=\sum_{i=1}^{N}\left|a_{i}\right|$.

A LASSO equivalent for measures

- Let the source $m_{a_{0}, \chi_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right) ;$

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right) ;$
- $w \in \mathbb{R}^{p}$ additive noise;

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right) ;$
- $w \in \mathbb{R}^{p}$ additive noise;
- $y \stackrel{\text { def. }}{=} \Phi m_{a_{0}, x_{0}}+w$.

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right) ;$
- $w \in \mathbb{R}^{p}$ additive noise;
- $y \stackrel{\text { def. }}{=} \Phi m_{a_{0}, x_{0}}+w$.

We call BLASSO for $\lambda>0$ the problem
[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi m\|_{\mathbb{R}^{p}}^{2}+\lambda|m|(\mathcal{X})
$$

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right) ;$
- $w \in \mathbb{R}^{p}$ additive noise;
- $y \stackrel{\text { def. }}{=} \Phi m_{a_{0}, x_{0}}+w$.

We call BLASSO for $\lambda>0$ the problem
[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi m\|_{\mathbb{R}^{p}}^{2}+\lambda|m|(\mathcal{X})
$$

One of its minimisers is a sum of Dirac, close to $m_{a_{0}, x_{0}}$ [Duval and Peyré, 2014].

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right) ;$
- $w \in \mathbb{R}^{p}$ additive noise;
- $y \stackrel{\text { def. }}{=} \Phi m_{a_{0}, x_{0}}+w$.

We call BLASSO for $\lambda>0$ the problem
[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi m\|_{\mathbb{R}^{p}}^{2}+\lambda|m|(\mathcal{X})
$$

One of its minimisers is a sum of Dirac, close to $m_{a_{0}, x_{0}}$ [Duval and Peyré, 2014].
Difficult numerical problem: infinite dimensional, non-reflexive. Tackled by greedy algorithm like Frank-Wolfe [Frank and Wolfe, 1956] , etc.

Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit fluorophores per image.

Figure 1: Two excerpts from a SMLM stack

Stack mean

Results on SMLM

Results on SMLM

Stack mean

Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

Results on SMLM

SMLM drawback: a lot of images, no live-cell imaging.

Static off-the-grid curve in \mathscr{V}

Bastien Laville

Laure Blanc-Féraud

Gilles Aubert

Related papers

- Off-the-grid curve reconstruction through divergence regularisation: an extreme point result. SIAM Journal on Imaging Sciences (SIIMS), June 2023.
- Off-the-grid charge algorithm for curve reconstruction in inverse problems. In Springer Lecture Notes in Computer Science 14009, May 2023.

2-rectiffable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;

2-rectiffable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\operatorname{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid " \nabla u " \in \mathcal{M}(\mathcal{X})^{2}\right\} ;$

2-rectiffable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\mathrm{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{\mathbf{2}}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} .
$$

2-rectiffable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\operatorname{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{2}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} .
$$

If $u=\chi_{E}$,

2-rectiffable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\operatorname{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{2}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} .
$$

If $u=\chi_{E}$, then $\|\mathrm{D} u\|_{\mathrm{TV}}=\operatorname{Per}(E)$;

2-rectifiable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\operatorname{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{\mathbf{2}}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} .
$$

If $u=\chi_{E}$, then $\|\mathrm{D} u\|_{\mathrm{TV}}=\operatorname{Per}(E)$;

- Let $\lambda>0$, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$
\begin{equation*}
\underset{u \in \operatorname{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi u\|_{\mathrm{L}^{2}(\mathcal{X})}^{2}+\lambda\|\mathrm{D} u\|_{\mathrm{TV}} \tag{y}
\end{equation*}
$$

2-rectifiable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\mathrm{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{2}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} .
$$

If $u=\chi_{E}$, then $\|\mathrm{D} u\|_{\mathrm{TV}}=\operatorname{Per}(E)$;

- Let $\lambda>0$, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$
\begin{equation*}
\underset{u \in \operatorname{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi u\|_{\mathrm{L}^{2}(\mathcal{X})}^{2}+\lambda\|\mathrm{D} u\|_{\mathrm{TV}} \tag{y}
\end{equation*}
$$

One of its minimisers is a sum of level sets χ_{E} !

Geometry encoded in off-the-grid

Geometry encoded in off-the-grid

Geometry encoded in off-the-grid

Geometry encoded in off-the-grid

	0 D	1 D	2D						
Geometry	Spikes	Curves	Sets						
Space	$\mathcal{M}(\mathcal{X})$	$?$	$\mathrm{BV}(\mathcal{X})$						
Regulariser	$\\|\cdot\\|_{\mathrm{TV}}$	$?$	$\\|\cdot\\|_{1}+\\|\mathrm{D} \cdot\\|_{\mathrm{TV}}$						

$?$
χ_{E}

Desperate times call for desperate measures

- let $\boldsymbol{\mathcal { M }}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;

Desperate times call for desperate measures

- let $\boldsymbol{\mathcal { M }}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{\mathbf{2}}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{\mathrm{TV}^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;

Desperate times call for desperate measures

- let $\mathcal{M}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{\mathbf{2}}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{\mathrm{TV}}{ }^{2}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ a 1-rectifiable parametrised Lipschitz curve,

Desperate times call for desperate measures

- let $\boldsymbol{\mathcal { M }}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{2}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{\mathrm{TV}^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure supported on a curve γ if:

$$
\forall \boldsymbol{g} \in \boldsymbol{C}_{0}(\mathcal{X})^{\mathbf{2}}, \quad\left\langle\boldsymbol{\mu}_{\gamma}, \boldsymbol{g}\right\rangle_{\mathcal{M}^{2}} \stackrel{\text { def. }}{=} \int_{0}^{1} \boldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \mathrm{d} t
$$

- a curve is closed is $\gamma(0)=\gamma(1)$, open otherwise;

Desperate times call for desperate measures

- let $\boldsymbol{\mathcal { M }}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{2}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{\mathrm{TV}^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure supported on a curve γ if:

$$
\forall \boldsymbol{g} \in \boldsymbol{C}_{\mathbf{0}}(\mathcal{X})^{\mathbf{2}}, \quad\left\langle\boldsymbol{\mu}_{\gamma}, \boldsymbol{g}\right\rangle_{\mathcal{M}^{2}} \stackrel{\text { def. }}{=} \int_{0}^{1} \boldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \mathrm{d} t
$$

- a curve is closed is $\gamma(0)=\gamma(1)$, open otherwise;
- simple if γ is an injective mapping;

Desperate times call for desperate measures

- let $\boldsymbol{\mathcal { M }}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{2}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{\mathrm{TV}^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure supported on a curve γ if:

$$
\forall \boldsymbol{g} \in \boldsymbol{C}_{\mathbf{0}}(\mathcal{X})^{\mathbf{2}}, \quad\left\langle\boldsymbol{\mu}_{\gamma}, \boldsymbol{g}\right\rangle_{\mathcal{M}^{2}} \stackrel{\text { def. }}{=} \int_{0}^{1} \boldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \mathrm{d} t
$$

- a curve is closed is $\gamma(0)=\gamma(1)$, open otherwise;
- simple if γ is an injective mapping;
- $\operatorname{div} \mu_{\gamma}=\delta_{\gamma(0)}-\delta_{\gamma(1)}$.

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{Y}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\|\boldsymbol{m}\|_{\mathscr{V}} . \tag{CROC}
\end{equation*}
$$

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\|\boldsymbol{m}\|_{\mathscr{V}} . \tag{CROC}
\end{equation*}
$$

- $\frac{1}{2}\|y-\boldsymbol{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^{2}$ is the data-term;

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\left(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}+\|\operatorname{div} \boldsymbol{m}\|_{\mathrm{TV}}\right) \tag{CROC}
\end{equation*}
$$

- $\frac{1}{2}\|y-\boldsymbol{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^{2}$ is the data-term;
- $\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}$ weights down the curve length, i.e. $\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}^{2}}=\mathscr{H}_{1}(\gamma((0,1)))$;

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\left(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}+\|\operatorname{div} \boldsymbol{m}\|_{\mathrm{TV}}\right) \tag{CROC}
\end{equation*}
$$

- $\frac{1}{2}\|y-\boldsymbol{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^{2}$ is the data-term;
- $\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}$ weights down the curve length, i.e. $\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}^{2}}=\mathscr{H}_{1}(\gamma((0,1)))$;
- $\|\operatorname{div} \boldsymbol{m}\|_{\text {TV }}$ is the (open) curve counting term.

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\left(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}+\|\operatorname{div} \boldsymbol{m}\|_{\mathrm{TV}}\right) \tag{CROC}
\end{equation*}
$$

Do curve measures minimise (CROC)?

Extreme points

Definition

Let X be a topological vector space and $K \subset X$. An extreme point x of K is a point such that $\forall y, z \in K$:

Extreme points

Definition

Let X be a topological vector space and $K \subset X$. An extreme point x of K is a point such that $\forall y, z \in K$:

$$
\begin{aligned}
\forall \lambda \in(0,1), x & =\lambda y+(1-\lambda) z \\
& \Longrightarrow x=y=z
\end{aligned}
$$

Extreme points

Definition

Let X be a topological vector space and $K \subset X$. An extreme point x of K is a point such that $\forall y, z \in K$:

$$
\begin{aligned}
\forall \lambda \in(0,1), x & =\lambda y+(1-\lambda) z \\
& \Longrightarrow x=y=z
\end{aligned}
$$

Ext K is the set of extreme points of K.

Ext K in red

Link with extreme points: the representer theorem

Let $F: E \rightarrow \mathbb{R}^{m}, G$ the data-term, R the regulariser, $\alpha>0$.

$$
F=G+\alpha R
$$

Link with extreme points: the representer theorem

Let $F: E \rightarrow \mathbb{R}^{m}, G$ the data-term, R the regulariser, $\alpha>0$.

$$
F=G+\alpha R
$$

\mathcal{B}_{E}^{1} is the unit-ball of R : $\mathcal{B}_{E}^{1} \stackrel{\text { def. }}{=}\{u \in E \mid R(u) \leq 1\}$.

Link with extreme points: the representer theorem

Let $F: E \rightarrow \mathbb{R}^{m}, G$ the data-term, R the regulariser, $\alpha>0$.

$$
F=G+\alpha R
$$

\mathcal{B}_{E}^{1} is the unit-ball of R : $\mathcal{B}_{E}^{1} \stackrel{\text { def. }}{=}\{u \in E \mid R(u) \leq 1\}$.

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of Ext \mathcal{B}_{E}^{1}

Link with extreme points: the representer theorem

Let $F: E \rightarrow \mathbb{R}^{m}, G$ the data-term, R the regulariser, $\alpha>0$.

$$
F=G+\alpha R
$$

\mathcal{B}_{E}^{1} is the unit-ball of R : $\mathcal{B}_{E}^{1} \stackrel{\text { def. }}{=}\{u \in E \mid R(u) \leq 1\}$.

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of Ext \mathcal{B}_{E}^{1}
Characterise Ext \mathcal{B}_{E}^{1} of the regulariser \Longleftrightarrow outline the structure of a minimum of F.

Extreme points in measure spaces

- If $E=\mathcal{M}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{TV}}$, then:

Extreme points in measure spaces

- If $E=\mathcal{M}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{TV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathcal{M}}\right)=\left\{\delta_{\chi}, x \in \mathcal{X}\right\}
$$

Extreme points in measure spaces

- If $E=\mathcal{M}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{TV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathcal{M}}\right)=\left\{\delta_{\chi}, x \in \mathcal{X}\right\}
$$

- If $E=\mathrm{BV}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{BV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathrm{BV}}\right)=\left\{\frac{1}{\operatorname{Per}(E)} \chi_{E}, E \subset \mathcal{X} \text { is simple }\right\}
$$

Extreme points in measure spaces

- If $E=\mathcal{M}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{TV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathcal{M}}\right)=\left\{\delta_{\chi}, x \in \mathcal{X}\right\}
$$

- If $E=\mathrm{BV}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{BV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathrm{BV}}\right)=\left\{\frac{1}{\operatorname{Per}(E)} \chi_{E}, E \subset \mathcal{X} \text { is simple }\right\}
$$

- If $E=\mathscr{V}$ and $R=\|\cdot\|_{\mathscr{V}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{V}\right)=?
$$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$
\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}, \gamma \text { Lipschitz 1-rectifiable simple curve }\right\} .
$$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:
$\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\mu_{\gamma}}{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathscr{V}}}, \gamma\right.$ Lipschitz 1-rectifiable simple curve $\}$.
Theorem (Main result of [Laville et al., 2023b])
Let $\mathcal{B}_{\mathscr{V}}^{1} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathscr{V},\|\boldsymbol{m}\|_{\mathscr{V}} \leq 1\right\}$ the unit ball of the \mathscr{V}-norm.

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$
\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}, \gamma \text { Lipschitz 1-rectifiable simple curve }\right\} .
$$

Theorem (Main result of [Laville et al., 2023b])

Let $\mathcal{B}_{\mathscr{V}}^{1} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathscr{V},\|\boldsymbol{m}\|_{\mathscr{V}} \leq 1\right\}$ the unit ball of the \mathscr{V}-norm. Then,

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)=\mathfrak{G}
$$

Partial conclusion

Recap

- a space of measures \mathscr{V}, a new energy called CROC;

Partial conclusion

Recap

- a space of measures \mathscr{V}, a new energy called CROC;
- optimality conditions, dual certificates;

Partial conclusion

Recap

- a space of measures \mathscr{V}, a new energy called CROC;
- optimality conditions, dual certificates;
- $\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)=\mathfrak{G}$, hence CROC admits one minimiser boiling down to a finite sum of curves.

Partial conclusion

Recap

- a space of measures \mathscr{V}, a new energy called CROC;
- optimality conditions, dual certificates;
- $\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)=\mathfrak{G}$, hence CROC admits one minimiser boiling down to a finite sum of curves.

Partial conclusion

Recap

- a space of measures \mathscr{V}, a new energy called CROC;
- optimality conditions, dual certificates;
- $\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)=\mathfrak{G}$, hence CROC admits one minimiser boiling down to a finite sum of curves.

	0 D	1 D	2 D										
Geometry	Spikes	Curves	Sets										
Space	$\mathcal{M}(\mathcal{X})$	\mathscr{V}	$\operatorname{BV}(\mathcal{X})$										
Regulariser	$\\|\cdot\\|_{\mathrm{TV}}$	$\\|\cdot\\|_{\mathrm{TV}}{ }^{2}+\\|\operatorname{div} \cdot\\|_{\mathrm{TV}}$	$\\|\cdot\\|_{1}+\\|\mathrm{D} \cdot\\|_{\mathrm{TV}}$										

General setup for numerical off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;

General setup for numerical off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;

General setup for numerical off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

General setup for numerical off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

General setup for numerical off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
\hookrightarrow perfect with our latter results!
We present the Charge Sliding Frank-Wolfe algorithm.
o
c

Synthetic problem

Figure 2: The source and its noisy acquired image /

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:
- μ_{γ} is vector, hence we need vector datum $y=$ like the gradient;

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:
- μ_{γ} is vector, hence we need vector datum $y=$ like the gradient;
- let u be the support of the curve, then we feel that:

$$
\eta=\Phi^{*}(\Phi m-\underbrace{y}_{=\nabla ।}) \simeq \Delta u
$$

Figure 3: The certificate $|\eta|$ on the left, u on the right.

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:
- μ_{γ} is vector, hence we need vector datum $y=$ like the gradient;
- let u be the support of the curve, then we feel that:

$$
\eta=\Phi^{*}(\Phi m-\underbrace{y}_{=\nabla ।}) \simeq \Delta u
$$

Figure 3: The certificate $|\eta|$ on the left, u on the right.

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:
- μ_{γ} is vector, hence we need vector datum $y=$ like the gradient;
- let u be the support of the curve, then we feel that:

$$
\eta=\Phi^{*}(\Phi m-\underbrace{y}_{=\nabla ।}) \simeq \Delta u
$$

Figure 3: The certificate $|\eta|$ on the left, u on the right.

Recap: iterate the algorithm

Figure 4: First step of first iteration: certificate and support of new curve estimated

Recap: iterate the algorithm

Figure 4: First step of first iteration: certificate and support of new curve estimated

Recap: iterate the algorithm

Amplitude optimisation

Figure 4: First iteration: second and third steps

Recap: iterate the algorithm

Amplitude optimisation

Both amplitude and position optimisation

Figure 4: First iteration: second and third steps

Recap: iterate the algorithm

Figure 4: Second iteration: another curve is found

Recap: iterate the algorithm

Figure 4: Second iteration: another curve is found

Final results

Final results

Reconstruction [Laville et al., 2023a].

Final results

Reconstruction [Laville et al., 2023a].

Another discretisation

- polygonal works well, under peculiar circumstances;

Another discretisation

- polygonal works well, under peculiar circumstances;
- Bézier curves holds nice regularity properties, encodes a curve with few control points

Another discretisation

- polygonal works well, under peculiar circumstances;
- Bézier curves holds nice regularity properties, encodes a curve with few control points
- Pro: always smooth curves. Cons: prone to shortening.

Numerical summary

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;

Numerical summary

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the vector operator definition;

Numerical summary

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the vector operator definition;
- discretisation insights.

Numerical summary

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the vector operator definition;
- discretisation insights.

Still, there is room for improvements:

- define a scalar operator, further enabling curve reconstruction in fluctuation microscopy;
- improve the support estimation step;
- tackle the curve crossing issue.

Dynamic curve untangling: lift and (sub)-Riemannian metric

Laure B.-Féraud

Gilles Aubert

Related paper

Dynamic off-the-grid curves untangling by the Reeds-Shepp metric: theory, algorithm and a biomedical application. Preprint, to appear 2024.

Objective

Follow point sources such as microbubbles moving in a medium, e.g. blood vessels.

Objective

Follow point sources such as microbubbles moving in a medium, e.g. blood vessels.

Objective

Follow point sources such as microbubbles moving in a medium, e.g. blood vessels.

Objective

Follow point sources such as microbubbles moving in a medium, e.g. blood vessels.

Objective

Follow point sources such as microbubbles moving in a medium, e.g. blood vessels.

Mathematical setting [Bredies et al., 2021, Bredies et al., 2022]

- Let $\mathcal{X} \stackrel{\text { def. }}{=} \mathcal{X} \times[0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?

Mathematical setting [Bredies et al., 2021, Bredies et al., 2022]

- Let $\mathcal{X} \stackrel{\text { def. }}{=} \mathcal{X} \times[0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?
- $\Gamma=\left\{\gamma=(h, \xi), \quad h \in C([0,1], \mathbb{R}), \quad \xi:[0,1] \rightarrow \mathcal{X}, \quad \xi_{\mid h \neq 0}\right.$ continuous $\} ;$

Mathematical setting [Bredies et al., 2021, Bredies et al., 2022]

- Let $\mathcal{X} \stackrel{\text { def. }}{=} \mathcal{X} \times[0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?
- $\Gamma=\{\gamma=(h, \xi), \quad h \in C([0,1], \mathbb{R}), \quad \xi:[0,1] \rightarrow \mathcal{X}, \quad \xi \mid h \neq 0$ continuous $\} ;$
- with e_{t} the measurable map of evaluation at time $t, e_{t}(\gamma)=\gamma(t)$ i.e. $e_{t \sharp} \sigma \in \mathcal{M}(\Omega)$,

Mathematical setting [Bredies et al., 2021, Bredies et al., 2022]

- Let $\mathcal{X} \stackrel{\text { def. }}{=} \mathcal{X} \times[0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?
- $\Gamma=\{\gamma=(h, \xi), \quad h \in C([0,1], \mathbb{R}), \quad \xi:[0,1] \rightarrow \mathcal{X}, \quad \xi \mid h \neq 0$ continuous $\} ;$
- with e_{t} the measurable map of evaluation at time $t, e_{t}(\gamma)=\gamma(t)$ i.e. $e_{t \sharp} \sigma \in \mathcal{M}(\Omega)$,

Mathematical setting [Bredies et al., 2021, Bredies et al., 2022]

- Let $\mathcal{X} \stackrel{\text { def. }}{=} \mathcal{X} \times[0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?
- $\Gamma=\left\{\gamma=(h, \xi), \quad h \in C([0,1], \mathbb{R}), \quad \xi:[0,1] \rightarrow \mathcal{X}, \quad \xi_{\mid h \neq 0}\right.$ continuous $\} ;$
- with e_{t} the measurable map of evaluation at time $t, e_{t}(\gamma)=\gamma(t)$ i.e. $e_{t \sharp} \sigma \in \mathcal{M}(\Omega)$,

$$
\underset{\sigma \in \mathcal{M}(\Gamma)}{\operatorname{argmin}} \sum_{i=1}^{T}\left\|y_{t_{i}}-\Phi e_{t} \nmid \nexists \sigma\right\|_{\mathcal{H}}+\alpha \int_{0}^{T} \underbrace{w(\gamma)}_{=\int_{0}^{1}\|\hat{\gamma}(t)\|_{g} \mathrm{dt}} \mathrm{~d} \sigma(\gamma) .
$$

Crossing curves may be not optimal in the sense we cannot infere them from the certificate.

A lift to the 'roto-translational space'

How to untangle crossing curves?

- Consider $\mathbb{S}_{1}=[0,2 \pi)$ and the lifted space $\mathbb{R}^{2} \times \mathbb{S}_{1}$ [Chambolle and Pock, 2019];
- we can separate objects with the same position but different local orientation.

A lift to the 'roto-translational space'

How to untangle crossing curves?

- Consider $\mathbb{S}_{1}=[0,2 \pi)$ and the lifted space $\mathbb{R}^{2} \times \mathbb{S}_{1}$ [Chambolle and Pock, 2019];
- we can separate objects with the same position but different local orientation.

The separation prior is enforced by the relaxed Reeds-Shepp metric [Reeds and Shepp, 1990, Duits et al., 2018]. Let $(x, \theta) \in \mathbb{M}_{2}$ while $(\dot{x}, \dot{\theta}) \in T\left(\mathbb{M}_{2}\right)$ lies in the tangent bundle:

$$
\begin{aligned}
\|\dot{\gamma}(t)\|_{g}^{2} & =\|(x, \theta)\|_{g}^{2} \\
& =\left|\dot{x} \cdot e_{\theta}\right|^{2}+\frac{1}{\varepsilon^{2}}\left|\dot{x} \wedge e_{\theta}\right|^{2}+\xi^{2}|\dot{\theta}|^{2}
\end{aligned}
$$

A lift to the 'roto-translational space'

How to untangle crossing curves?

- Consider $\mathbb{S}_{1}=[0,2 \pi)$ and the lifted space $\mathbb{R}^{2} \times \mathbb{S}_{1}$ [Chambolle and Pock, 2019];
- we can separate objects with the same position but different local orientation.

The separation prior is enforced by the relaxed Reeds-Shepp metric [Reeds and Shepp, 1990, Duits et al., 2018]. Let $(x, \theta) \in \mathbb{M}_{2}$ while $(\dot{x}, \dot{\theta}) \in T\left(\mathbb{M}_{2}\right)$ lies in the tangent bundle:

$$
\begin{aligned}
\|\dot{\gamma}(t)\|_{g}^{2} & =\|(x, \theta)\|_{g}^{2} \\
& =\left|\dot{x} \cdot e_{\theta}\right|^{2}+\frac{1}{\varepsilon^{2}}\left|\dot{x} \wedge e_{\theta}\right|^{2}+\xi^{2}|\dot{\theta}|^{2}
\end{aligned}
$$

- $0<\varepsilon<1$ enforces the planarity of the curve,
- $\xi>0$ penalises the local curvature.

A first example

Frame 1

A first example

Frame 8

A first example

Frame 20

A first example

No lifting.

A first example

No lifting.

RS with $\beta=10^{-3}, \varepsilon=0.05$ and $\xi=1$.

Other phantoms

No lifting.

Other phantoms

No lifting.

RS with $\beta=10^{-3}, \varepsilon=0.05$ and $\xi=1$.

Other phantoms

Other phantoms

No lifting.

RS with $\beta=10^{-3}, \varepsilon=0.05$ and $\xi=1$.

Other phantoms

Other phantoms

No lifting.

RS with $\beta=10^{-3}, \varepsilon=0.05$ and $\xi=1$.

Recap

- a roto-translational lift $\mathbb{R}^{2} \times \mathbb{S}^{1}$ and a new metric regularisation with Reeds-Shepp metric;

Recap

- a roto-translational lift $\mathbb{R}^{2} \times \mathbb{S}^{1}$ and a new metric regularisation with Reeds-Shepp metric;
- Convincing first results;

Recap

- a roto-translational lift $\mathbb{R}^{2} \times \mathbb{S}^{1}$ and a new metric regularisation with Reeds-Shepp metric;
- Convincing first results;
- yet a work in progress: a Γ-convergence result for the more ubiquitous discretisations, test on real biological data (ULM), more lined up

Ultrasound Localisation Microscopy (ULM) Riemannian optimisation, etc.

Conclusion

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we propose a way to bridge the gap in off-the-grid static curve reconstruction;

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we propose a way to bridge the gap in off-the-grid static curve reconstruction;
- we studied a new way to untangle trajectories, dynamic curve reconstruction;

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we propose a way to bridge the gap in off-the-grid static curve reconstruction;
- we studied a new way to untangle trajectories, dynamic curve reconstruction;
- we believe there are connections between them two, improvements in the off-the-grid community may benefit both fields.

References i

(in Azais, J.-M., Castro, Y. D., and Gamboa, F. (2015).
Spike detection from inaccurate samplings.
Applied and Computational Harmonic Analysis, 38(2):177-195.
盏 Boyer, C., Chambolle, A., Castro, Y. D., Duval, V., de Gournay, F., and Weiss, P. (2019). On representer theorems and convex regularization.
SIAM Journal on Optimization, 29(2):1260-1281.
圊 Bredies, K. and Carioni, M. (2019).
Sparsity of solutions for variational inverse problems with finite-dimensional data.

Calculus of Variations and Partial Differential Equations, 59(1).
(in Bredies, K., Carioni, M., Fanzon, S., and Romero, F. (2021).
On the extremal points of the ball of the benamou-brenier energy.
Bulletin of the London Mathematical Society.
Bredies, K., Carioni, M., Fanzon, S., and Romero, F. (2022).
A generalized conditional gradient method for dynamic inverse problems with optimal transport regularization.
Foundations of Computational Mathematics.
R Bredies, K. and Pikkarainen, H. K. (2012).
Inverse problems in spaces of measures.
ESAIM: Control, Optimisation and Calculus of Variations, 19(1):190-218.

References ifi

E- Candès, E. J. and Fernandez-Granda, C. (2013).
Towards a mathematical theory of super-resolution.
Communications on Pure and Applied Mathematics, 67(6):906-956.
E. Chambolle, A. and Pock, T. (2019).

Total roto-translational variation.
Numerische Mathematik, 142(3):611-666.
围 de Castro, Y., Duval, V., and Petit, R. (2021).
Towards off-the-grid algorithms for total variation regularized inverse problems.
In Lecture Notes in Computer Science, pages 553-564. Springer International Publishing.

References iv

囲 Duits，R．，Meesters，S．P．L．，Mirebeau，J．－M．，and Portegies，J．M．（2018）．
Optimal paths for variants of the 2d and 3d reeds－shepp car with applications in image analysis．
Journal of Mathematical Imaging and Vision，60（6）：816－848．
軎 Duval，V．and Peyré，G．（2014）．
Exact support recovery for sparse spikes deconvolution．
Foundations of Computational Mathematics，15（5）：1315－1355．
圊 Frank，M．and Wolfe，P．（1956）．
An algorithm for quadratic programming．
Naval Research Logistics Quarterly，3（1－2）：95－110．

嗇 Laville, B., Blanc-Féraud, L., and Aubert, G. (2023a). Off-the-grid charge algorithm for curve reconstruction in inverse problems. In Lecture Notes in Computer Science, pages 393-405. Springer International Publishing.
固 Laville, B., Blanc-Féraud, L., and Aubert, G. (2023b). Off-the-grid curve reconstruction through divergence regularization: An extreme point result.
SIAM Journal on Imaging Sciences, 16(2):867-885.
Raville, B., Blanc-Féraud, L., and Aubert, G. (2021). Off-The-Grid Variational Sparse Spike Recovery: Methods and Algorithms. Journal of Imaging, 7(12):266.

References vi

(in Nehme, E., Weiss, L. E., Michaeli, T., and Shechtman, Y. (2018).
Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica, 5(4):458.

Reeds, J. and Shepp, L. (1990).
Optimal paths for a car that goes both forwards and backwards.
Pacific Journal of Mathematics, 145(2):367-393.
R Smirnov, S. K. (1993).
Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows.
St. Petersburg Department of Steklov Institute of Mathematics, Russian Academy of Sciences, 5(4):206-238.

See our work and papers on
https://www-sop.inria.fr/members/Bastien.Laville/

Proof recipe I

First inclusion:
$\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \supset \mathfrak{G}$

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right) \supset \mathfrak{G}
$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}} \in \mathcal{B}_{\mathscr{V}}^{1}$ and for $\lambda \in(0,1)$:

$$
\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}}
$$

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right) \supset \mathfrak{G}
$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}} \in \mathcal{B}_{\mathscr{W}}^{1}$ and for $\lambda \in(0,1)$:

$$
\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}}
$$

By Smirnov's decomposition, $\boldsymbol{u}_{\boldsymbol{i}}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho_{i}(\boldsymbol{R})$ where ρ_{i} is a Borel measure.

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \supset \mathfrak{G}
$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}} \in \mathcal{B}_{\mathscr{V}}^{1}$ and for $\lambda \in(0,1)$:

$$
\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}=\lambda \boldsymbol{u}_{1}+(1-\lambda) \boldsymbol{u}_{2} .
$$

By Smirnov's decomposition, $\boldsymbol{u}_{i}=\int_{\mathscr{G}} \boldsymbol{R} \mathrm{d} \rho_{i}(\boldsymbol{R})$ where ρ_{i} is a Borel measure. Also:
$\boldsymbol{u}_{1}, \boldsymbol{u}_{\mathbf{2}}$ has support included in μ_{γ} support, ditto for spt $\boldsymbol{R} \subset$ spt μ_{γ} [Smirnov, 1993];

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \supset \mathfrak{G}
$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}} \in \mathcal{B}_{\mathscr{V}}^{1}$ and for $\lambda \in(0,1)$:

$$
\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}=\lambda \boldsymbol{u}_{1}+(1-\lambda) \boldsymbol{u}_{2} .
$$

By Smirnov's decomposition, $\boldsymbol{u}_{i}=\int_{\mathscr{G}} \boldsymbol{R} \mathrm{d} \rho_{i}(\boldsymbol{R})$ where ρ_{i} is a Borel measure. Also:
$\boldsymbol{u}_{1}, \boldsymbol{u}_{\mathbf{2}}$ has support included in μ_{γ} support, ditto for spt $\boldsymbol{R} \subset$ spt μ_{γ} [Smirnov, 1993]; moreover, each R has maximal length implying spt $R=\operatorname{spt} \mu_{\gamma}$.

Proof recipe II

spt $\boldsymbol{R}=\mathrm{spt} \mu_{\gamma}$.

Proof recipe II

spt $\boldsymbol{R}=$ spt μ_{γ}. Otherwise spt $\boldsymbol{R} \subsetneq$ spt $\mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$,

Proof recipe II

$$
\begin{aligned}
& \text { spt } \boldsymbol{R}=\text { spt } \mu_{\gamma} . \text { Otherwise spt } \boldsymbol{R} \subsetneq \text { spt } \mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} \text {, therefore, } \\
& \qquad \int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R})<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{E})}_{=1}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R}),
\end{aligned}
$$

thus spt $R=$ spt μ_{γ},

Proof recipe II

spt $\boldsymbol{R}=\operatorname{spt} \mu_{\gamma}$. Otherwise spt $\boldsymbol{R} \subsetneq \operatorname{spt} \mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$, therefore,

$$
\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R})<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R}),
$$

thus spt $R=\operatorname{spt} \mu_{\gamma}$,
each R is supported on a simple Lipschitz curve γ_{R}.

Proof recipe II

spt $\boldsymbol{R}=\operatorname{spt} \mu_{\gamma}$. Otherwise spt $\boldsymbol{R} \subsetneq \operatorname{spt} \mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$, therefore,

$$
\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R})<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R}),
$$

thus spt $R=\operatorname{spt} \mu_{\gamma}$,
each R is supported on a simple Lipschitz curve γ_{R}.
Hence, each γ_{R} is a reparametrisation of γ yielding $R=\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\mathcal{V}}}$

Proof recipe II

spt $\boldsymbol{R}=\operatorname{spt} \mu_{\gamma}$. Otherwise spt $\boldsymbol{R} \subsetneq \operatorname{spt} \mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\mu_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$, therefore,

$$
\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R})<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R})
$$

thus spt $R=\operatorname{spt} \mu_{\gamma}$,
each R is supported on a simple Lipschitz curve γ_{R}.
Hence, each γ_{R} is a reparametrisation of γ yielding $R=\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\gamma}}$, eventually:

$$
\boldsymbol{u}_{\boldsymbol{i}}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho_{i}=\int_{\mathfrak{G}} \frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathscr{V}}} \mathrm{d} \rho_{i}=\frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} \underbrace{\rho_{i}(\mathfrak{G})}_{=1}=\frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} .
$$

Contradiction, then μ_{γ} is an extreme point.

Proof recipe III

Second inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right) \subset \mathfrak{G}
$$

Proof recipe III

Second inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{Y}^{1}\right) \subset \mathfrak{G}
$$

Let $T \in \operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)$, then there exists a finite (probability) Borel measure ρ s.t.:

$$
\boldsymbol{T}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R}),
$$

Proof recipe III

Second inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{Y}^{1}\right) \subset \mathfrak{G}
$$

Let $T \in \operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)$, then there exists a finite (probability) Borel measure ρ s.t.:

$$
\boldsymbol{T}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R})
$$

either ρ is supported on a singleton of \mathfrak{G}, then there exists μ_{γ} s.t. $T=\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$

Proof recipe III

Second inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \subset \mathfrak{G}
$$

Let $T \in \operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right)$, then there exists a finite (probability) Borel measure ρ s.t.:

$$
\boldsymbol{T}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R})
$$

either ρ is supported on a singleton of \mathfrak{G}, then there exists μ_{γ} s.t. $T=\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$ or there exists a Borel set $A \subset \mathfrak{G}$ with arbitrary $0<\rho(A)<1$ and:

$$
\rho=|\rho|(A)\left(\frac{1}{|\rho|(A)} \rho\llcorner A)+|\rho|\left(A^{c}\right)\left(\frac{1}{|\rho|\left(A^{c}\right)} \rho\left\llcorner A^{c}\right) .\right.\right.
$$

Proof recipe IV

Then,

$$
\boldsymbol{T}=|\rho|(\boldsymbol{A}) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|(A)} \boldsymbol{R} \mathrm{d}(\rho\llcorner A)(\boldsymbol{R})]\right.}_{\text {def. } \cdot \boldsymbol{u}_{\mathbf{1}}}+|\rho|\left(\boldsymbol{A}^{c}\right) \underbrace{\left[\boldsymbol{u}_{\mathbf{2}}\right.}_{\text {def } \cdot} \frac{1}{\left[\frac{1}{|\rho|\left(A^{c}\right)} \boldsymbol{R} \mathrm{d}\left(\rho\left\llcorner A^{c}\right)(\boldsymbol{R})\right]\right.}
$$

Proof recipe IV

Then,

$$
\boldsymbol{T}=|\rho|(\boldsymbol{A}) \underbrace{\left[\int_{\mathfrak{S}} \frac{1}{|\rho|(A)} \boldsymbol{R} \mathrm{d}(\rho\llcorner A)(\boldsymbol{R})]\right.}_{\text {def } \cdot \boldsymbol{u}_{\mathbf{1}}}+|\rho|\left(\boldsymbol{A}^{c}\right) \underbrace{\left[\int_{\mathbf{E}} \frac{1}{|\rho|\left(A^{c}\right)} \boldsymbol{R} \mathrm{d}\left(\rho\left\llcorner\boldsymbol{A}^{c}\right)(\boldsymbol{R})\right]\right.}_{\substack{\text { def } \\=}}
$$

A is chosen (up to a neighbourhood) as a convex set, hence $\boldsymbol{u}_{1}=\int_{A} \boldsymbol{R} \mathrm{~d} \rho(\boldsymbol{R})$ belongs to A, while conversely $u_{2} \in A^{c}$, thus $u_{1} \neq \boldsymbol{u}_{2}$.

Proof recipe IV

Then,

$$
\boldsymbol{T}=|\rho|(A) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|(A)} \boldsymbol{R} \mathrm{d}(\rho\llcorner A)(\boldsymbol{R})]\right.}_{\text {diff } \cdot \boldsymbol{u}_{\mathbf{1}}}+|\rho|\left(\boldsymbol{A}^{c}\right) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|\left(A^{c}\right)} \boldsymbol{R} \mathrm{d}\left(\rho L A^{c}\right)(\boldsymbol{R})\right]}_{\text {def }}
$$

A is chosen (up to a neighbourhood) as a convex set, hence $\boldsymbol{u}_{1}=\int_{A} \boldsymbol{R} \mathrm{~d} \rho(\boldsymbol{R})$ belongs to A, while conversely $\boldsymbol{u}_{\mathbf{2}} \in A^{c}$, thus $\boldsymbol{u}_{\mathbf{1}} \neq \boldsymbol{u}_{\mathbf{2}}$. Eventually, thanks to Smirnov's decomposition:

$$
\begin{aligned}
\left\|\boldsymbol{u}_{\mathbf{1}}\right\|_{\mathscr{V}} & \leq \int_{\mathfrak{G}} \frac{1}{|\rho|(A)} \underbrace{\|\boldsymbol{R}\|_{\mathscr{V}}}_{=1} \mathrm{~d}(\rho\llcorner A)(\boldsymbol{R}) \\
& \leq \frac{|\rho|(A)}{|\rho|(A)}=1 .
\end{aligned}
$$

Proof recipe V

Then $u_{1}, u_{2} \in \mathcal{B}_{y}^{1}$ while $u_{1} \neq u_{2}$, thus reaching a non-trivial convex combination:

$$
\boldsymbol{T}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}}
$$

Proof recipe V

Then $u_{1}, u_{2} \in \mathcal{B}_{y}^{1}$ while $u_{1} \neq u_{2}$, thus reaching a non-trivial convex combination:

$$
\boldsymbol{T}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}},
$$

thereby reaching a contradiction, and therefore concluding the proof.

