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Biomedical imaging

Objective
To image live biological structures at small scales.

Physical limitation due to diffraction for bodies < 200 nm: convolution by the
microscope’s point spread function (PSF).
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• geometry constrained on the grid;
• combinatorial (non-)convex

optimisation;
• well-known problems (LASSO, . . . ).
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DRAFT
Grid or gridless?

Grid

• geometry constrained on the grid;
• combinatorial (non-)convex

optimisation;
• well-known problems (LASSO, . . . ).

Off-the-grid

• brings structural prior;
• guarantees (uniqueness, support);
• convex but infinite dimensional;
• young field.
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DRAFT
Quantities

• X is a compact of Rd;

• how to model spikes ? Through Dirac measure δx, element of the set of Radon
measures M (X );

• topological dual of C0 (X ) equipped with ⟨f ,m⟩ =
�
X f dm. Generalises L1 (X ) ;

L1 (X ) ↪→ M (X );
• Banach endowed with TV-norm : m ∈ M (X ),

|m|(X )
def.
= sup

(�
X

f dm
∣∣∣∣ f ∈ C0 (X ) , ∥f∥∞,X ≤ 1

)
.

If m =
∑N

i=1 aiδxi a discrete measure, then |m|(X ) =
∑N

i=1 |ai|.
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A LASSO equivalent for measures

• Let the source ma0,x0
def.
=

∑N
i=1 aiδxi ∈ M (X ) a discrete measure;

• Φ : M (X ) → Rp the acquisition operator, e.g. Φma0,x0
def.
=

∑N
i=1 aih(x − xi);

• w ∈ Rp additive noise;
• y def.

= Φma0,x0 + w.

We call BLASSO for λ > 0 the problem
[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

argmin
m∈M(X )

1
2∥y − Φm∥2

Rp + λ|m|(X ) (Pλ(y))

One of its minimisers is a sum of Dirac, close to ma0,x0 [Duval and Peyré, 2014].

Difficult numerical problem: infinite dimensional, non-reflexive. Tackled by greedy
algorithm like Frank-Wolfe [Frank and Wolfe, 1956] , etc.
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DRAFT
Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit
fluorophores per image.

Figure 1: Two excerpts from a SMLM stack 7
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Results on SMLM

Stack mean

Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

SMLM drawback: a lot of images, no live-cell imaging.
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• Off-the-grid curve reconstruction through divergence regularisation: an extreme
point result. SIAM Journal on Imaging Sciences (SIIMS), June 2023.

• Off-the-grid charge algorithm for curve reconstruction in inverse problems. In
Springer Lecture Notes in Computer Science 14009, May 2023.
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DRAFT
2-rectifiable measures reconstruction [de Castro et al., 2021]

• how to model sets measures? Through χE where E is a simple set, belonging to
BV(X ) the set of function of bounded variation;

•
• Banach endowed with BV-norm : u ∈ BV(X ),

∥u∥BV
def.
= ∥u∥1 + ∥Du∥TV.

If u = χE, then ∥Du∥TV = Per(E);
• Let λ > 0, the adaptation of BLASSO [de Castro et al., 2021] writes down:

argmin
u∈BV(X )

1
2∥y − Φu∥2

L2(X ) + λ∥Du∥TV (Sλ(y))

One of its minimisers is a sum of level sets χE!
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DRAFT
Desperate times call for desperate measures

• let M (X )2 be the space of vector Radon measures;

• let V
def.
=

{
m ∈ M (X )2, div(m) ∈ M (X )

}
the space of charges, or divergence

vector fields. It is a Banach equipped with ∥·∥V
def.
= ∥·∥TV2 + ∥div(·)∥TV;

• let γ : [0, 1] → R2 a 1-rectifiable parametrised Lipschitz curve, we say that µγ ∈ V

is a measure supported on a curve γ if:

∀g ∈ C0(X )2, ⟨µγ , g⟩M2
def.
=

� 1

0
g(γ(t)) · γ̇(t) dt.

• a curve is closed is γ(0) = γ(1), open otherwise;
• simple if γ is an injective mapping;
• divµγ = δγ(0) − δγ(1).

12
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DRAFT
CROC energy

Consider the variational problem we coined Curves Represented On Charges:

argmin
m∈V

1
2∥y −Φm∥2

H + α∥m∥V . (CROC)

argmin
m∈V

1
2∥y −Φm∥2

H + α(∥m∥TV2 + ∥divm∥TV) (CROC)

• 1
2∥y −Φm∥2

H is the data-term;
• ∥m∥TV2 weights down the curve length, i.e.

∥∥µγ

∥∥
TV2 = H1(γ((0, 1)));

• ∥divm∥TV is the (open) curve counting term.

Do curve measures minimise (CROC)?

13
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DRAFT
Extreme points

Definition
Let X be a topological vector space and
K ⊂ X. An extreme point x of K is a point
such that ∀y, z ∈ K:

∀λ ∈ (0, 1), x = λy + (1 − λ)z

=⇒ x = y = z

ExtK is the set of extreme points of K. ExtK in red
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DRAFT
Link with extreme points: the representer theorem

Let F : E → Rm, G the data-term, R the regulariser, α > 0.

F = G + αR

B1
E is the unit-ball of R: B1

E
def.
= {u ∈ E |R(u) ≤ 1}.

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])
There exists a minimiser of F which is a linear sum of extreme points of ExtB1

E

Characterise ExtB1
E of the regulariser ⇐⇒ outline the structure of a minimum of F.
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DRAFT
Extreme points in measure spaces

• If E = M (X ) and R = ∥·∥TV, then:

Ext(BM) = {δx, x ∈ X} .

• If E = BV(X ) and R = ∥·∥BV, then:

Ext(BBV) =

{
1

Per(E)
χE, E ⊂ X is simple

}
.

• If E = V and R = ∥·∥V , then:

Ext(BV ) =?
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DRAFT
Main result

Let the (non-complete) set of curve measures endowed with weak-∗ topology:

G
def.
=

{
µγ∥∥µγ

∥∥
V

, γ Lipschitz 1-rectifiable simple curve
}
.

Theorem (Main result of [Laville et al., 2023b])

Let B1
V

def.
= {m ∈ V , ∥m∥V ≤ 1} the unit ball of the V -norm. Then,

Ext(B1
V ) = G.
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DRAFT
Partial conclusion

Recap

• a space of measures V , a new energy called CROC;

• optimality conditions, dual certificates;
• Ext(B1

V ) = G, hence CROC admits one minimiser boiling down to a finite sum of
curves.

0D 1D 2D
Geometry Spikes Curves Sets
Space M (X ) V BV(X )

Regulariser ∥·∥TV ∥·∥TV2 + ∥div ·∥TV ∥·∥1 + ∥D·∥TV
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DRAFT
General setup for numerical off-the-grid

• No Hilbertian structure on measure spaces: no proximal algorithm;

• we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

• it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

↪→ perfect with our latter results!

We present the Charge Sliding Frank-Wolfe algorithm.

19



DRAFT
General setup for numerical off-the-grid

• No Hilbertian structure on measure spaces: no proximal algorithm;
• we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional

on a weakly compact set;

• it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

↪→ perfect with our latter results!

We present the Charge Sliding Frank-Wolfe algorithm.

19



DRAFT
General setup for numerical off-the-grid

• No Hilbertian structure on measure spaces: no proximal algorithm;
• we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional

on a weakly compact set;
• it recovers the solution by iteratively adding and optimising extreme points of the

regulariser.

↪→ perfect with our latter results!

We present the Charge Sliding Frank-Wolfe algorithm.

19



DRAFT
General setup for numerical off-the-grid

• No Hilbertian structure on measure spaces: no proximal algorithm;
• we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional

on a weakly compact set;
• it recovers the solution by iteratively adding and optimising extreme points of the

regulariser.

↪→ perfect with our latter results!

We present the Charge Sliding Frank-Wolfe algorithm.

19



DRAFT
General setup for numerical off-the-grid

• No Hilbertian structure on measure spaces: no proximal algorithm;
• we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional

on a weakly compact set;
• it recovers the solution by iteratively adding and optimising extreme points of the

regulariser.

↪→ perfect with our latter results!

We present the Charge Sliding Frank-Wolfe algorithm.

19



DRAFT
Synthetic problem
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DRAFT
Acquisition process and certificate

• a possible choice consists in setting Φ = ∗∇h since:

• µγ is vector, hence we need vector datum y = like the gradient;
• let u be the support of the curve, then we feel that:

η = Φ∗(Φm − y︸︷︷︸
=∇I

) ≃ ∆u

= ([0, 1])

6

4

2

0

2

4 = ([0, 1])

Figure 3: The certificate |η| on the left, u on the right.
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Recap: iterate the algorithm
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Figure 4: First step of first iteration: certificate and support of new curve estimated
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Another discretisation

• polygonal works well, under peculiar
circumstances;

• Bézier curves holds nice regularity
properties, encodes a curve with few
control points

• Pro: always smooth curves. Cons:
prone to shortening.
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Another discretisation

• polygonal works well, under peculiar
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DRAFT
Numerical summary

Recap

• Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in
inverse problem;

• struggles with the vector operator definition;
• discretisation insights.

Still, there is room for improvements:

• define a scalar operator, further enabling curve reconstruction in fluctuation
microscopy;

• improve the support estimation step;
• tackle the curve crossing issue.
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Dynamic curve untangling: lift and
(sub)-Riemannian metric



DRAFT
Bastien Laville Théo Bertrand João M. Machado

Laure B.-Féraud Gilles Aubert

Related paper
Dynamic off-the-grid curves untangling by the Reeds-Shepp metric: theory, algorithm
and a biomedical application. Preprint, to appear 2024.
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Objective
Follow point sources such as microbubbles moving in a medium, e.g. blood vessels.
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DRAFT
Mathematical setting [Bredies et al., 2021, Bredies et al., 2022]

• Let X def.
= X × [0, T]. How to recover the source measure ρ ∈ M(X)?

• Γ =
{
γ = (h, ξ), h ∈ C([0, 1],R), ξ : [0, 1] −→ X , ξ|h̸=0 continuous

}
;

• with et the measurable map of evaluation at time t, et(γ) = γ(t) i.e. et♯σ ∈ M(Ω),

argmin
σ∈M(Γ)

T∑
i=1

∥yti − Φeti♯σ∥H + α

� T

0
w(γ)︸︷︷︸

=
� 1

0 ∥γ̇(t)∥g dt

dσ(γ).

Crossing curves may be not optimal in the sense we cannot infere them from the
certificate.
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A lift to the ’roto-translational space’

How to untangle crossing curves?

• Consider S1 = [0, 2π) and the lifted space R2 × S1 [Chambolle and Pock, 2019];
• we can separate objects with the same position but different local orientation.

The separation prior is enforced by the relaxed Reeds-Shepp metric
[Reeds and Shepp, 1990, Duits et al., 2018]. Let (x, θ) ∈ M2 while (ẋ, θ̇) ∈ T(M2) lies in
the tangent bundle:

∥γ̇(t)∥2
g = ∥(x, θ)∥2

g

= |ẋ · eθ|2 +
1
ε2 |ẋ ∧ eθ|2 + ξ2|θ̇|2.

• 0 < ε < 1 enforces the planarity of the curve,
• ξ > 0 penalises the local curvature.
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Recap

• a roto-translational lift R2 × S1 and a
new metric regularisation with
Reeds-Shepp metric;

• Convincing first results;
• yet a work in progress: a
Γ-convergence result for the more
ubiquitous discretisations, test on real
biological data (ULM), more lined up
Riemannian optimisation, etc.

32



DRAFT
Recap

• a roto-translational lift R2 × S1 and a
new metric regularisation with
Reeds-Shepp metric;

• Convincing first results;

• yet a work in progress: a
Γ-convergence result for the more
ubiquitous discretisations, test on real
biological data (ULM), more lined up
Riemannian optimisation, etc.

1.0 0.6 0.2 0.2 0.6 1.0

1.0

0.6

0.2

0.2

0.6

1.0

Relaxed Reeds-Shepp

t=0

0.5

t=1
time

32



DRAFT
Recap

• a roto-translational lift R2 × S1 and a
new metric regularisation with
Reeds-Shepp metric;

• Convincing first results;
• yet a work in progress: a
Γ-convergence result for the more
ubiquitous discretisations, test on real
biological data (ULM), more lined up
Riemannian optimisation, etc.

Ultrasound Localisation Microscopy (ULM)

32



DRAFT
Conclusion



DRAFT
Take home messages

• off-the-grid methods yields compelling results (yet scarcely used by applicative
researchers);

• we propose a way to bridge the gap in off-the-grid static curve reconstruction;
• we studied a new way to untangle trajectories, dynamic curve reconstruction;
• we believe there are connections between them two, improvements in the

off-the-grid community may benefit both fields.
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DRAFT
Proof recipe I

First inclusion:

Ext(B1
V ) ⊃ G

Let γ a simple Lipschitz curve and µγ the measure supported on this curve. By
contradiction, let u1, u2 ∈ B1

V and for λ ∈ (0, 1):

µγ∥∥µγ

∥∥
V

= λu1 + (1 − λ)u2.

By Smirnov’s decomposition, ui =
�
G
R dρi(R) where ρi is a Borel measure. Also:

• u1, u2 has support included in µγ support, ditto for sptR ⊂ sptµγ [Smirnov, 1993];

• moreover, each R hasmaximal length implying sptR = sptµγ .
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Proof recipe II

• sptR = sptµγ .

Otherwise sptR ⊊ sptµγ ∥R∥TV <

∥∥µγ

∥∥
TV∥∥µγ

∥∥
V

, therefore,

�
G

∥R∥TV dρ(R) <

∥∥µγ

∥∥
TV∥∥µγ

∥∥
V

ρ(G)︸ ︷︷ ︸
=1

=

�
G

∥R∥TV dρ(R),

thus sptR = sptµγ ,

• each R is supported on a simple Lipschitz curve γR.

Hence, each γR is a reparametrisation of γ yielding R =
µγ

∥µγ∥V

, eventually:

ui =
�
G

R dρi =

�
G

µγ∥∥µγ

∥∥
V

dρi =
µγ∥∥µγ

∥∥
V

ρi(G)︸ ︷︷ ︸
=1

=
µγ∥∥µγ

∥∥
V

.

Contradiction, then µγ is an extreme point.

□
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Proof recipe III

Second inclusion:

Ext(B1
V ) ⊂ G

Let T ∈ Ext(B1
V ), then there exists a finite (probability) Borel measure ρ s.t.:

T =

�
G

R dρ(R),

• either ρ is supported on a singleton of G, then there exists µγ s.t. T =
µγ∥∥µγ

∥∥
V

• or there exists a Borel set A ⊂ G with arbitrary 0 < ρ(A) < 1 and:

ρ = |ρ| (A)
(

1
|ρ| (A)

ρ A
)
+ |ρ| (Ac)

(
1

|ρ| (Ac)
ρ Ac

)
.
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Then,

T = |ρ| (A)
[�

G

1
|ρ| (A)

R d(ρ A)(R)
]

︸ ︷︷ ︸
def.
= u1

+|ρ| (Ac)

[�
G

1
|ρ| (Ac)

R d(ρ Ac)(R)
]

︸ ︷︷ ︸
def.
= u2

A is chosen (up to a neighbourhood) as a convex set, hence u1 =
�

A R dρ(R) belongs to A,
while conversely u2 ∈ Ac, thus u1 ̸= u2. Eventually, thanks to Smirnov’s decomposition:

∥u1∥V ≤
�
G

1
|ρ| (A)

∥R∥V︸ ︷︷ ︸
=1

d(ρ A)(R)

≤ |ρ| (A)
|ρ| (A)

= 1.



DRAFT
Proof recipe IV

Then,

T = |ρ| (A)
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R d(ρ A)(R)
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︸ ︷︷ ︸
def.
= u1

+|ρ| (Ac)
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1
|ρ| (Ac)

R d(ρ Ac)(R)
]

︸ ︷︷ ︸
def.
= u2

A is chosen (up to a neighbourhood) as a convex set, hence u1 =
�

A R dρ(R) belongs to A,
while conversely u2 ∈ Ac, thus u1 ̸= u2.

Eventually, thanks to Smirnov’s decomposition:

∥u1∥V ≤
�
G

1
|ρ| (A)

∥R∥V︸ ︷︷ ︸
=1

d(ρ A)(R)

≤ |ρ| (A)
|ρ| (A)

= 1.



DRAFT
Proof recipe IV

Then,

T = |ρ| (A)
[�

G

1
|ρ| (A)

R d(ρ A)(R)
]

︸ ︷︷ ︸
def.
= u1

+|ρ| (Ac)

[�
G

1
|ρ| (Ac)

R d(ρ Ac)(R)
]

︸ ︷︷ ︸
def.
= u2

A is chosen (up to a neighbourhood) as a convex set, hence u1 =
�

A R dρ(R) belongs to A,
while conversely u2 ∈ Ac, thus u1 ̸= u2. Eventually, thanks to Smirnov’s decomposition:

∥u1∥V ≤
�
G

1
|ρ| (A)

∥R∥V︸ ︷︷ ︸
=1

d(ρ A)(R)

≤ |ρ| (A)
|ρ| (A)

= 1.



DRAFT
Proof recipe V

Then u1, u2 ∈ B1
V while u1 ̸= u2, thus reaching a non-trivial convex combination:

T = λu1 + (1 − λ)u2,

thereby reaching a contradiction, and therefore concluding the proof.

□



DRAFT
Proof recipe V

Then u1, u2 ∈ B1
V while u1 ̸= u2, thus reaching a non-trivial convex combination:

T = λu1 + (1 − λ)u2,

thereby reaching a contradiction, and therefore concluding the proof.

□
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