Gridless curve reconstruction: divergence regularisation and untangling by (sub)Riemannian metric

Bastien Laville

21th November 2023

Morpheme research team Inria, CNRS, Université Côte d'Azur 1. Off-the-grid 101: the sparse spike problem

2. Static off-the-grid curve in $\mathscr V$

3. Dynamic curve untangling: lift and (sub)-Riemannian metric

4. Conclusion

Off-the-grid 101: the sparse spike problem

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Physical limitation due to diffraction for bodies < 200 nm: convolution by the microscope's point spread function (PSF).

PSF

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Grid or gridless?

Source to estimate

Introducing a grid

Reconstruction \hat{S} on a grid

Reconstruction \hat{S} on a finer grid

Reconstruction \hat{S} is now **off-the-grid**

Grid or gridless?

Grid

- geometry constrained on the grid;
- combinatorial (non-)convex optimisation;
- well-known problems (LASSO, ...).

Grid or gridless?

Grid

- geometry constrained on the grid;
- combinatorial (non-)convex optimisation;
- well-known problems (LASSO, ...).

Off-the-grid

- brings structural prior;
- guarantees (uniqueness, support);
- convex but infinite dimensional;
- young field.

• \mathcal{X} is a compact of \mathbb{R}^d ;

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f \, \mathrm{d}m$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f \, \mathrm{d}m$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
- Banach endowed with TV-norm : $m\in\mathcal{M}\left(\mathcal{X}
 ight)$,

$$|m|(\mathcal{X}) \stackrel{\mathrm{def.}}{=} \sup\left(\int_{\mathcal{X}} f \,\mathrm{d}m \,\bigg|\, f \in \mathscr{C}_0\left(\mathcal{X}\right), \|f\|_{\infty,\mathcal{X}} \leq 1
ight).$$

If $m = \sum_{i=1}^{N} a_i \delta_{x_i}$ a discrete measure

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f \, \mathrm{d}m$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
- Banach endowed with TV-norm : $m\in\mathcal{M}\left(\mathcal{X}
 ight)$,

$$|m|(\mathcal{X}) \stackrel{\mathrm{def.}}{=} \sup\left(\int_{\mathcal{X}} f \,\mathrm{d}m \,\bigg|\, f \in \mathscr{C}_0\left(\mathcal{X}
ight), \|f\|_{\infty,\mathcal{X}} \leq 1
ight).$$

If $m = \sum_{i=1}^{N} a_i \delta_{x_i}$ a discrete measure, then $|m|(\mathcal{X}) = \sum_{i=1}^{N} |a_i|$.

• Let the source
$$m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}(\mathcal{X})$$
 a discrete measure

• Let the source $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^{N} a_i \delta_{x_i} \in \mathcal{M}(\mathcal{X})$ a discrete measure;

• $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x - x_i);$

- Let the source $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}\right)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in \mathbb{R}^p$ additive noise;

- Let the source $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}\right)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in \mathbb{R}^{p}$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

- Let the source $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}\right)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x x_i);$
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

We call **BLASSO** for $\lambda > 0$ the problem

[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi m\|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \tag{$\mathcal{P}_{\lambda}(y)$}$$

- Let the source $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}\right)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0},x_{0}} \stackrel{\text{def.}}{=} \sum_{i=1}^{N} a_{i}h(x-x_{i});$
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

We call **BLASSO** for $\lambda > 0$ the problem

[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi m\|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

One of its minimisers is a sum of Dirac, close to m_{a_0,x_0} [Duval and Peyré, 2014].

- Let the source $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0},x_{0}} \stackrel{\text{def.}}{=} \sum_{i=1}^{N} a_{i}h(x-x_{i});$
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

We call **BLASSO** for $\lambda > 0$ the problem

[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi m\|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

One of its minimisers is a sum of Dirac, close to m_{a_0,x_0} [Duval and Peyré, 2014].

Difficult numerical problem: infinite dimensional, non-reflexive. Tackled by greedy algorithm like *Frank-Wolfe* [Frank and Wolfe, 1956], *etc*.

Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit fluorophores per image.

Figure 1: Two excerpts from a SMLM stack

Stack mean

Stack mean

Off-the-grid [Laville et al., 2021]

Stack mean

Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

Stack mean

Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

SMLM drawback: a lot of images, no live-cell imaging.

Static off-the-grid curve in $\mathscr V$

Related papers

- Off-the-grid curve reconstruction through divergence regularisation: an extreme point result. SIAM Journal on Imaging Sciences (SIIMS), June 2023.
- Off-the-grid charge algorithm for curve reconstruction in inverse problems. In Springer Lecture Notes in Computer Science 14009, May 2023.
• how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;

• how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;

• BV
$$(\mathcal{X}) = \left\{ u \in L^2(\mathcal{X}) \mid "\nabla u" \in \mathcal{M}(\mathcal{X})^2 \right\};$$

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

If $u = \chi_E$,

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

If $u = \chi_E$, then $\|Du\|_{TV} = Per(E)$;

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

If $u = \chi_E$, then $\|Du\|_{TV} = Per(E)$;

- Let $\lambda >$ 0, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$\underset{u \in \mathrm{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi u\|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda \|\mathrm{D}u\|_{\mathrm{TV}} \qquad (\mathcal{S}_{\lambda}(y))$$

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

If $u = \chi_E$, then $\|Du\|_{TV} = Per(E)$;

- Let $\lambda >$ 0, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$\underset{u \in \mathrm{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \| y - \Phi u \|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda \| \mathrm{D} u \|_{\mathrm{TV}}$$
 $(\mathcal{S}_{\lambda}(y))$

One of its minimisers is a sum of level sets χ_E !

Geometry encoded in off-the-grid

	0D	
Geometry	Spikes	
Space	$\mathcal{M}\left(\mathcal{X} ight)$	
Regulariser	$\left\ \cdot\right\ _{\mathrm{TV}}$	

Geometry encoded in off-the-grid

	0D	2D
Geometry	Spikes	Sets
Space	$\mathcal{M}(\mathcal{X})$	$\mathrm{BV}(\mathcal{X})$
Regulariser	$\left\ \cdot\right\ _{\mathrm{TV}}$	$\left\ \cdot\right\ _{1}+\left\ \mathbf{D}\cdot\right\ _{\mathrm{TV}}$

Geometry encoded in off-the-grid

	0D	1D	2D
Geometry	Spikes	Curves	Sets
Space	$\mathcal{M}(\mathcal{X})$?	$\mathrm{BV}(\mathcal{X})$
Regulariser	$\left\ \cdot\right\ _{\mathrm{TV}}$?	$\left\ \cdot\right\ _1 + \left\ \mathbf{D}\cdot\right\ _{\mathrm{TV}}$

• let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M} \left(\mathcal{X} \right)^{2}, \, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M} \left(\mathcal{X} \right) \right\}$ the space of *charges*, or *divergence*

vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\mathsf{div}(\cdot)\|_{\mathrm{TV}};$

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma: [0,1]
 ightarrow \mathbb{R}^2$ a 1-rectifiable parametrised Lipschitz curve,

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma : [0, 1] \to \mathbb{R}^2$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure **supported on a curve** γ if:

$$\forall \boldsymbol{g} \in \boldsymbol{C_0}(\boldsymbol{\mathcal{X}})^2, \quad \langle \boldsymbol{\mu}_{\boldsymbol{\gamma}}, \boldsymbol{g} \rangle_{\boldsymbol{\mathcal{M}}^2} \stackrel{\mathrm{def.}}{=} \int_0^1 \boldsymbol{g}(\boldsymbol{\gamma}(t)) \cdot \dot{\boldsymbol{\gamma}}(t) \, \mathrm{d}t.$$

- a curve is closed is $\gamma(0)=\gamma(1),$ open otherwise;

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma : [0, 1] \to \mathbb{R}^2$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure **supported on a curve** γ if:

$$orall oldsymbol{g} \in oldsymbol{C}_0(\mathcal{X})^2, \quad ig\langle \mu_\gamma, oldsymbol{g} ig
angle_{\mathcal{M}^2} \stackrel{ ext{def.}}{=} \int_0^1 oldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \, \mathrm{d}t.$$

- a curve is closed is $\gamma(0)=\gamma(1),$ open otherwise;
- simple if γ is an injective mapping;

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma : [0, 1] \to \mathbb{R}^2$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure **supported on a curve** γ if:

$$\forall \boldsymbol{g} \in \boldsymbol{\mathsf{C}_0}(\boldsymbol{\mathcal{X}})^{\boldsymbol{2}}, \quad \left< \boldsymbol{\mu_{\gamma}}, \boldsymbol{g} \right>_{\boldsymbol{\mathcal{M}}^{\boldsymbol{2}}} \stackrel{\text{def.}}{=} \int_0^1 \boldsymbol{g}(\boldsymbol{\gamma}(t)) \cdot \dot{\boldsymbol{\gamma}}(t) \, \mathrm{d}t.$$

- a curve is closed is $\gamma(0)=\gamma(1),$ open otherwise;
- simple if γ is an injective mapping;
- div $\mu_{\gamma} = \delta_{\gamma(0)} \delta_{\gamma(1)}$.

CROC energy

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathscr{H}}^2 + \alpha \| \boldsymbol{m} \|_{\mathscr{V}}. \tag{CROC}$$

CROC energy

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathscr{H}}^2 + \alpha \| \boldsymbol{m} \|_{\mathscr{V}}. \tag{CROC}$$

•
$$\frac{1}{2} \|y - \mathbf{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^2$$
 is the data-term;

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\Phi}\,\boldsymbol{m}\|_{\mathscr{H}}^2 + \alpha(\|\boldsymbol{m}\|_{\mathrm{TV}^2} + \|\operatorname{div}\boldsymbol{m}\|_{\mathrm{TV}}) \tag{CROC}$$

- $\frac{1}{2} \|y \mathbf{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^2$ is the data-term;
- $\|\pmb{m}\|_{\mathrm{TV}^2}$ weights down the curve length, *i.e.* $\|\pmb{\mu}_{\gamma}\|_{\mathrm{TV}^2} = \mathscr{H}_1(\gamma((0,1)));$

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\Phi}\,\boldsymbol{m}\|_{\mathscr{H}}^2 + \alpha(\|\boldsymbol{m}\|_{\mathrm{TV}^2} + \|\operatorname{div}\boldsymbol{m}\|_{\mathrm{TV}}) \tag{CROC}$$

- $\frac{1}{2} \| y \mathbf{\Phi} \boldsymbol{m} \|_{\mathcal{H}}^2$ is the data-term;
- $\|\pmb{m}\|_{\mathrm{TV}^2}$ weights down the curve length, *i.e.* $\|\pmb{\mu}_{\gamma}\|_{\mathrm{TV}^2} = \mathscr{H}_1(\gamma((0,1)));$
- $\left\|\operatorname{div} \boldsymbol{m}\right\|_{\mathrm{TV}}$ is the (open) curve counting term.

Consider the variational problem we coined *Curves Represented On Charges*:

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\Phi}\,\boldsymbol{m}\|_{\mathscr{H}}^{2} + \alpha(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}} + \|\operatorname{div}\boldsymbol{m}\|_{\mathrm{TV}})$$
(CROC)

Do curve measures minimise (CROC)?

Definition

Let X be a topological vector space and $K \subset X$. An *extreme point* x of K is a point such that $\forall y, z \in K$:

Definition

Let X be a topological vector space and $K \subset X$. An *extreme point* x of K is a point such that $\forall y, z \in K$:

$$orall \lambda \in (0,1), x = \lambda y + (1-\lambda)z$$

 $\implies x = y = z$

Definition

Let X be a topological vector space and $K \subset X$. An *extreme point* x of K is a point such that $\forall y, z \in K$:

$$orall \lambda \in (0,1), \ x = \lambda y + (1-\lambda)z$$

 $\implies x = y = z$

Ext *K* is the set of extreme points of *K*.

$$F = G + \alpha R$$

 $F = G + \alpha R$

$$\mathcal{B}^1_E$$
 is the unit-ball of R : $\mathcal{B}^1_E \stackrel{\text{def.}}{=} \{u \in E \, | \, R(u) \leq 1\}.$

$$F = G + \alpha R$$

$$\mathcal{B}^1_E$$
 is the unit-ball of R : $\mathcal{B}^1_E \stackrel{\mathrm{def.}}{=} \{u \in E \,|\, R(u) \leq 1\}.$

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of $\operatorname{Ext} \mathcal{B}^1_E$

$$F = G + \alpha R$$

$$\mathcal{B}^1_E$$
 is the unit-ball of R : $\mathcal{B}^1_E \stackrel{\mathrm{def.}}{=} \{u \in E \,|\, R(u) \leq 1\}.$

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of $\operatorname{Ext} \mathcal{B}^1_E$

Characterise Ext \mathcal{B}^1_E of the regulariser \iff outline the structure of a *minimum* of *F*.

• If $E = \mathcal{M}(\mathcal{X})$ and $R = \|\cdot\|_{\mathrm{TV}}$, then:

• If $E = \mathcal{M}(\mathcal{X})$ and $R = \left\|\cdot\right\|_{\mathrm{TV}}$, then:

 $\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_x, x \in \mathcal{X}\}.$

Extreme points in measure spaces

• If $E = \mathcal{M}(\mathcal{X})$ and $R = \left\|\cdot\right\|_{\mathrm{TV}}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_{x}, x \in \mathcal{X}\}.$$

• If
$$E = BV(\mathcal{X})$$
 and $R = \left\|\cdot\right\|_{BV}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathrm{BV}}) = \left\{ rac{1}{\operatorname{Per}(\mathcal{E})} \, \chi_{\mathcal{E}}, \, \mathcal{E} \subset \mathcal{X} ext{ is simple}
ight\}.$$

Extreme points in measure spaces

• If $E = \mathcal{M}\left(\mathcal{X}
ight)$ and $R = \left\|\cdot\right\|_{\mathrm{TV}}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_x, x \in \mathcal{X}\}.$$

• If
$$E = BV(\mathcal{X})$$
 and $R = \left\|\cdot\right\|_{BV}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathrm{BV}}) = \left\{ \frac{1}{\operatorname{Per}(\mathcal{E})} \, \chi_{\mathcal{E}}, \, \mathcal{E} \subset \mathcal{X} \text{ is simple}
ight\}.$$

• If $E = \mathscr{V}$ and $R = \|\cdot\|_{\mathscr{V}}$, then:

 $\mathsf{Ext}(\mathcal{B}_{\mathscr{V}}) = ?$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ \frac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\mathscr{V}}}, \gamma \text{ Lipschitz 1-rectifiable simple curve}
ight\}.$$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ rac{\mu_{\boldsymbol{\gamma}}}{\|\mu_{\boldsymbol{\gamma}}\|_{\mathscr{V}}}, \, \boldsymbol{\gamma} \, \mathsf{Lipschitz} \, \mathsf{1} ext{-rectifiable simple curve}
ight\}.$$

Theorem (Main result of [Laville et al., 2023b])

Let $\mathcal{B}_{\mathscr{V}}^{1} \stackrel{\text{def.}}{=} \{ \boldsymbol{m} \in \mathscr{V}, \|\boldsymbol{m}\|_{\mathscr{V}} \leq 1 \}$ the unit ball of the \mathscr{V} -norm.
Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ rac{\mu_{\boldsymbol{\gamma}}}{\|\mu_{\boldsymbol{\gamma}}\|_{\mathscr{V}}}, \, \boldsymbol{\gamma} \, \mathsf{Lipschitz} \, \mathsf{1} ext{-rectifiable simple curve}
ight\}.$$

Theorem (Main result of [Laville et al., 2023b])

Let $\mathcal{B}^1_{\mathscr{V}} \stackrel{\mathrm{def.}}{=} \{ \pmb{m} \in \mathscr{V}, \|\pmb{m}\|_{\mathscr{V}} \leq 1 \}$ the unit ball of the \mathscr{V} -norm. Then,

$$\operatorname{Ext}(\mathcal{B}^1_{\mathscr{V}}) = \mathfrak{G}.$$

Recap

- a space of measures \mathscr{V} , a new energy called CROC;

- a space of measures \mathscr{V} , a new energy called CROC;
- optimality conditions, dual certificates;

- a space of measures \mathscr{V} , a new energy called CROC;
- optimality conditions, dual certificates;
- Ext(B¹_𝒱) = 𝔅, hence CROC admits one minimiser boiling down to a **finite** sum of curves.

- a space of measures \mathscr{V} , a new energy called CROC;
- optimality conditions, dual certificates;
- Ext(B¹_𝒱) = 𝔅, hence CROC admits one minimiser boiling down to a **finite** sum of curves.

- a space of measures \mathscr{V} , a new energy called CROC;
- optimality conditions, dual certificates;
- Ext(B¹_𝒱) = 𝔅, hence CROC admits one minimiser boiling down to a **finite** sum of curves.

	0D	1D	2D
Geometry	Spikes	Curves	Sets
Space	$\mathcal{M}(\mathcal{X})$	V	$\mathrm{BV}(\mathcal{X})$
Regulariser	$\left\ \cdot\right\ _{\mathrm{TV}}$	$\left\ \cdot\right\ _{\mathrm{TV}^2} + \left\ div\cdot\right\ _{\mathrm{TV}}$	$\left\ \cdot\right\ _{1}+\left\ \mathbf{D}\cdot\right\ _{\mathrm{TV}}$

• No Hilbertian structure on measure spaces: no proximal algorithm;

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
- \hookrightarrow perfect with our latter results!

We present the Charge Sliding Frank-Wolfe algorithm.

Figure 2: The source and its noisy acquired image I

• a possible choice consists in setting $\Phi = * \nabla h$ since:

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y = like the gradient;

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y = like the gradient;
 - let *u* be the support of the curve, then we feel that:

$$\eta = \Phi^* (\Phi m - \underbrace{y}_{=\nabla I}) \simeq \Delta u$$

Figure 3: The certificate $|\eta|$ on the left, *u* on the right.

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y = like the gradient;
 - let *u* be the support of the curve, then we feel that:

$$\eta = \Phi^* (\Phi m - \underbrace{y}_{=\nabla I}) \simeq \Delta u$$

Figure 3: The certificate $|\eta|$ on the left, *u* on the right.

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y = like the gradient;
 - let *u* be the support of the curve, then we feel that:

$$\eta = \Phi^* (\Phi m - \underbrace{y}_{=\nabla t}) \simeq \Delta u$$

Figure 3: The certificate $|\eta|$ on the left, *u* on the right.

Figure 4: First step of first iteration: certificate and support of new curve estimated

Figure 4: First step of first iteration: certificate and support of new curve estimated

Amplitude optimisation

Figure 4: First iteration: second and third steps

Amplitude optimisation

Both amplitude and position optimisation

Figure 4: First iteration: second and third steps

Figure 4: Second iteration: another curve is found

Figure 4: Second iteration: another curve is found

Final results

Reconstruction [Laville et al., 2023a].

Reconstruction [Laville et al., 2023a].

polygonal works well, under peculiar circumstances;

- polygonal works well, under peculiar circumstances;
- Bézier curves holds nice regularity properties, encodes a curve with few control points

- polygonal works well, under peculiar circumstances;
- Bézier curves holds nice regularity properties, encodes a curve with few control points
- Pro: always smooth curves. Cons: prone to shortening.

Recap

• Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the *vector* operator definition;

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the vector operator definition;
- discretisation insights.

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the vector operator definition;
- discretisation insights.

Still, there is room for improvements:

- define a *scalar* operator, further enabling curve reconstruction in fluctuation microscopy;
- improve the support estimation step;
- tackle the curve crossing issue.

Dynamic curve untangling: lift and (sub)-Riemannian metric

Related paper

Dynamic off-the-grid curves untangling by the Reeds-Shepp metric: theory, algorithm and a biomedical application. **Preprint, to appear 2024.**
Follow point sources such as microbubbles moving in a medium, *e.g.* blood vessels.

...

• Let $X \stackrel{\text{def.}}{=} \mathcal{X} \times [0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?

- Let $X \stackrel{\text{def.}}{=} \mathcal{X} \times [0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?
- $\Gamma = \{ \gamma = (h, \xi), h \in C([0, 1], \mathbb{R}), \xi : [0, 1] \to \mathcal{X}, \xi_{|h \neq 0} \text{ continuous} \};$

- Let $X \stackrel{\text{def.}}{=} \mathcal{X} \times [0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?
- $\Gamma = \{\gamma = (h, \xi), h \in C([0, 1], \mathbb{R}), \xi : [0, 1] \to \mathcal{X}, \xi_{|h \neq 0} \text{ continuous}\};$
- with e_t the measurable map of evaluation at time t, $e_t(\gamma) = \gamma(t)$ i.e. $e_{t\sharp}\sigma \in \mathcal{M}(\Omega)$,

- Let $X \stackrel{\text{def.}}{=} \mathcal{X} \times [0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?
- $\Gamma = \{\gamma = (h, \xi), h \in C([0, 1], \mathbb{R}), \xi : [0, 1] \to \mathcal{X}, \xi_{|h \neq 0} \text{ continuous}\};$
- with e_t the measurable map of evaluation at time t, $e_t(\gamma) = \gamma(t)$ i.e. $e_{t\sharp}\sigma \in \mathcal{M}(\Omega)$,

- Let $X \stackrel{\text{def.}}{=} \mathcal{X} \times [0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?
- $\Gamma = \{\gamma = (h, \xi), h \in C([0, 1], \mathbb{R}), \xi : [0, 1] \to \mathcal{X}, \xi_{|h \neq 0} \text{ continuous}\};$
- with e_t the measurable map of evaluation at time t, $e_t(\gamma) = \gamma(t)$ i.e. $e_{t\sharp}\sigma \in \mathcal{M}(\Omega)$,

$$\underset{\sigma \in \mathcal{M}(\Gamma)}{\operatorname{argmin}} \sum_{i=1}^{T} \|y_{t_i} - \Phi e_{t_i} \sharp \sigma \|_{\mathcal{H}} + \alpha \int_0^T \underbrace{w(\gamma)}_{=\int_0^1 \|\dot{\gamma}(t)\|_g \, \mathrm{d}t} \, \mathrm{d}\sigma(\gamma).$$

Crossing curves may be **not** optimal in the sense we cannot infere them from the certificate.

How to untangle crossing curves?

- Consider $\mathbb{S}_1 = [0, 2\pi)$ and the lifted space $\mathbb{R}^2 \times \mathbb{S}_1$ [Chambolle and Pock, 2019];
- we can separate objects with the same position but *different* local orientation.

How to untangle crossing curves?

- Consider $\mathbb{S}_1 = [0, 2\pi)$ and the lifted space $\mathbb{R}^2 \times \mathbb{S}_1$ [Chambolle and Pock, 2019];
- we can separate objects with the same position but *different* local orientation.

The separation prior is enforced by the relaxed Reeds-Shepp metric [Reeds and Shepp, 1990, Duits et al., 2018]. Let $(x, \theta) \in \mathbb{M}_2$ while $(\dot{x}, \dot{\theta}) \in T(\mathbb{M}_2)$ lies in the tangent bundle:

$$egin{aligned} \|\dot{\gamma}(t)\|_g^2 &= \|(x, heta)\|_g^2 \ &= |\dot{x}\cdot e_ heta|^2 + rac{1}{arepsilon^2}|\dot{x}\wedge e_ heta|^2 + \xi^2|\dot{ heta}|^2. \end{aligned}$$

How to untangle crossing curves?

- Consider $\mathbb{S}_1 = [0, 2\pi)$ and the lifted space $\mathbb{R}^2 \times \mathbb{S}_1$ [Chambolle and Pock, 2019];
- we can separate objects with the same position but *different* local orientation.

The separation prior is enforced by the relaxed Reeds-Shepp metric [Reeds and Shepp, 1990, Duits et al., 2018]. Let $(x, \theta) \in \mathbb{M}_2$ while $(\dot{x}, \dot{\theta}) \in T(\mathbb{M}_2)$ lies in the tangent bundle:

$$egin{aligned} &|\dot{\gamma}(t)\|_g^2 = \|(x, heta)\|_g^2 \ &= |\dot{x}\cdot e_ heta|^2 + rac{1}{arepsilon^2}|\dot{x}\wedge e_ heta|^2 + \xi^2|\dot{ heta}|^2. \end{aligned}$$

- + 0 $< \varepsilon <$ 1 enforces the planarity of the curve,
- + $\xi >$ 0 penalises the local curvature.

No lifting.

No lifting.

No lifting.

RS with $\beta = 10^{-3}$, $\varepsilon = 0.05$ and $\xi = 1$.

No lifting.

No lifting.

 a roto-translational lift R² × S¹ and a new metric regularisation with Reeds-Shepp metric;

- a roto-translational lift R² × S¹ and a new metric regularisation with Reeds-Shepp metric;
- Convincing first results;

- a roto-translational lift R² × S¹ and a new metric regularisation with Reeds-Shepp metric;
- Convincing first results;
- yet a work in progress: a

 F-convergence result for the more
 ubiquitous discretisations, test on real
 biological data (ULM), more lined up
 Riemannian optimisation, etc.

Ultrasound Localisation Microscopy (ULM)

Conclusion

• off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we propose a way to bridge the gap in off-the-grid static curve reconstruction;

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we propose a way to bridge the gap in off-the-grid static curve reconstruction;
- we studied a new way to untangle trajectories, dynamic curve reconstruction;

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we propose a way to bridge the gap in off-the-grid static curve reconstruction;
- we studied a new way to untangle trajectories, dynamic curve reconstruction;
- we believe there are connections between them two, improvements in the off-the-grid community may benefit both fields.

References i

Azais, J.-M., Castro, Y. D., and Gamboa, F. (2015).

Spike detection from inaccurate samplings.

Applied and Computational Harmonic Analysis, 38(2):177–195.

- Boyer, C., Chambolle, A., Castro, Y. D., Duval, V., de Gournay, F., and Weiss, P. (2019).
 On representer theorems and convex regularization.
 SIAM Journal on Optimization, 29(2):1260–1281.
- Bredies, K. and Carioni, M. (2019).

Sparsity of solutions for variational inverse problems with finite-dimensional data.

Calculus of Variations and Partial Differential Equations, 59(1).

References ii

- Bredies, K., Carioni, M., Fanzon, S., and Romero, F. (2021).
 On the extremal points of the ball of the benamou-brenier energy. Bulletin of the London Mathematical Society.
- Bredies, K., Carioni, M., Fanzon, S., and Romero, F. (2022).
 A generalized conditional gradient method for dynamic inverse problems with optimal transport regularization.

Foundations of Computational Mathematics.

Bredies, K. and Pikkarainen, H. K. (2012).
 Inverse problems in spaces of measures.

ESAIM: Control, Optimisation and Calculus of Variations, 19(1):190–218.

References iii

Candès, E. J. and Fernandez-Granda, C. (2013).
 Towards a mathematical theory of super-resolution.

Communications on Pure and Applied Mathematics, 67(6):906–956.

📄 Chambolle, A. and Pock, T. (2019).

Total roto-translational variation.

Numerische Mathematik, 142(3):611-666.

de Castro, Y., Duval, V., and Petit, R. (2021).

Towards off-the-grid algorithms for total variation regularized inverse problems.

In *Lecture Notes in Computer Science*, pages 553–564. Springer International Publishing.

References iv

Duits, R., Meesters, S. P. L., Mirebeau, J.-M., and Portegies, J. M. (2018).
 Optimal paths for variants of the 2d and 3d reeds-shepp car with applications in image analysis.

Journal of Mathematical Imaging and Vision, 60(6):816–848.

Duval, V. and Peyré, G. (2014).

Exact support recovery for sparse spikes deconvolution.

Foundations of Computational Mathematics, 15(5):1315–1355.

Frank, M. and Wolfe, P. (1956).

An algorithm for quadratic programming.

Naval Research Logistics Quarterly, 3(1-2):95–110.
References v

- Laville, B., Blanc-Féraud, L., and Aubert, G. (2023a).
 Off-the-grid charge algorithm for curve reconstruction in inverse problems. In *Lecture Notes in Computer Science*, pages 393–405. Springer International Publishing.
- Laville, B., Blanc-Féraud, L., and Aubert, G. (2023b).
 Off-the-grid curve reconstruction through divergence regularization: An extreme point result.

SIAM Journal on Imaging Sciences, 16(2):867–885.

 Laville, B., Blanc-Féraud, L., and Aubert, G. (2021).
 Off-The-Grid Variational Sparse Spike Recovery: Methods and Algorithms. *Journal of Imaging*, 7(12):266.

References vi

- Nehme, E., Weiss, L. E., Michaeli, T., and Shechtman, Y. (2018).
 Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica, 5(4):458.
- Reeds, J. and Shepp, L. (1990).

Optimal paths for a car that goes both forwards and backwards.

Pacific Journal of Mathematics, 145(2):367–393.

📄 Smirnov, S. K. (1993).

Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows.

St. Petersburg Department of Steklov Institute of Mathematics, Russian Academy of Sciences, 5(4):206–238.

See our work and papers on https://www-sop.inria.fr/members/Bastien.Laville/

First inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\supset\mathfrak{G}$

First inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\supset\mathfrak{G}$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ and for $\lambda \in (0, 1)$:

$$rac{oldsymbol{\mu_{\gamma}}}{ig\|oldsymbol{\mu_{\gamma}}} = \lambda oldsymbol{u_1} + (1-\lambda)oldsymbol{u_2}.$$

First inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\supset\mathfrak{G}$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_1, u_2 \in \mathcal{B}^1_{\mathcal{V}}$ and for $\lambda \in (0, 1)$:

$$rac{oldsymbol{\mu}_{oldsymbol{\gamma}}}{ig\Vert_{oldsymbol{arphi}}} = \lambda oldsymbol{u_1} + (1-\lambda)oldsymbol{u_2}.$$

By Smirnov's decomposition, $u_i = \int_{\mathfrak{G}} R \, \mathrm{d} \rho_i(R)$ where ρ_i is a Borel measure.

First inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\supset\mathfrak{G}$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_1, u_2 \in \mathcal{B}^1_{\mathcal{V}}$ and for $\lambda \in (0, 1)$:

$$rac{oldsymbol{\mu}_{oldsymbol{\gamma}}}{ig\Vert_{oldsymbol{\mu}_{oldsymbol{\gamma}}}} = \lambda oldsymbol{u}_{oldsymbol{1}} + (1-\lambda)oldsymbol{u}_{oldsymbol{2}}.$$

By Smirnov's decomposition, $u_i = \int_{\mathfrak{G}} R \, \mathrm{d}
ho_i(R)$ where ho_i is a Borel measure. Also:

 u_1, u_2 has support included in μ_{γ} support, ditto for spt $R \subset$ spt μ_{γ} [Smirnov, 1993];

First inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\supset\mathfrak{G}$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_1, u_2 \in \mathcal{B}^1_{\mathcal{V}}$ and for $\lambda \in (0, 1)$:

$$rac{oldsymbol{\mu}_{oldsymbol{\gamma}}}{ig\Vert_{oldsymbol{arphi}}} = \lambda oldsymbol{u}_{oldsymbol{1}} + (1-\lambda)oldsymbol{u}_{oldsymbol{2}}.$$

By Smirnov's decomposition, $u_i = \int_{\mathfrak{G}} R \, \mathrm{d}
ho_i(R)$ where ho_i is a Borel measure. Also:

 u_1, u_2 has support included in μ_{γ} support, ditto for spt $R \subset \text{spt } \mu_{\gamma}$ [Smirnov, 1993]; moreover, each R has maximal length implying spt $R = \text{spt } \mu_{\gamma}$.

 $\operatorname{spt} {oldsymbol{R}} = \operatorname{spt} \mu_{{oldsymbol{\gamma}}}{oldsymbol{.}}$

$$ext{spt} \, {m extsf{R}} = ext{spt} \, {m \mu}_{m \gamma} \, ext{.} \, ext{Otherwise} \, ext{spt} \, {m extsf{R}} \subsetneq ext{spt} \, {m \mu}_{m \gamma} \, \|{m extsf{R}}\|_{ ext{TV}} < rac{egin{array}{c} \left\|{m \mu}_{m \gamma}
ight\|_{ ext{TV}}}{\left\|{m \mu}_{m \gamma}
ight\|_{m \gamma}},$$

spt
$$\mathbf{R} = \operatorname{spt} \mu_{\gamma}$$
. Otherwise spt $\mathbf{R} \subsetneq \operatorname{spt} \mu_{\gamma} \|\mathbf{R}\|_{\mathrm{TV}} < \frac{\|\mu_{\gamma}\|_{\mathrm{TV}}}{\|\mu_{\gamma}\|_{\varphi}}$, therefore,
$$\int_{\mathfrak{G}} \|\mathbf{R}\|_{\mathrm{TV}} \,\mathrm{d}\rho(\mathbf{R}) < \frac{\|\mu_{\gamma}\|_{\mathrm{TV}}}{\|\mu_{\gamma}\|_{\varphi}} \underbrace{\rho(\mathfrak{G})}_{=1} = \int_{\mathfrak{G}} \|\mathbf{R}\|_{\mathrm{TV}} \,\mathrm{d}\rho(\mathbf{R}),$$

thus ${
m spt}\, {m {\it R}} = {
m spt}\, {m \mu}_{m \gamma}$,

spt
$$\mathbf{R} = \operatorname{spt} \mu_{\gamma}$$
. Otherwise spt $\mathbf{R} \subsetneq \operatorname{spt} \mu_{\gamma} \|\mathbf{R}\|_{\mathrm{TV}} < \frac{\|\mu_{\gamma}\|_{\mathrm{TV}}}{\|\mu_{\gamma}\|_{\mathscr{V}}}$, therefore,
$$\int_{\mathfrak{G}} \|\mathbf{R}\|_{\mathrm{TV}} \,\mathrm{d}\rho(\mathbf{R}) < \frac{\|\mu_{\gamma}\|_{\mathrm{TV}}}{\|\mu_{\gamma}\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{-1} = \int_{\mathfrak{G}} \|\mathbf{R}\|_{\mathrm{TV}} \,\mathrm{d}\rho(\mathbf{R}),$$

thus $\operatorname{spt} {\it I\!\!\!R} = \operatorname{spt} {\it I\!\!\!\!\mu_{\gamma}}$,

each R is supported on a simple Lipschitz curve $\gamma_{\rm R}$.

spt
$$\mathbf{R} = \operatorname{spt} \mu_{\gamma}$$
. Otherwise spt $\mathbf{R} \subsetneq \operatorname{spt} \mu_{\gamma} \|\mathbf{R}\|_{\mathrm{TV}} < \frac{\|\mu_{\gamma}\|_{\mathrm{TV}}}{\|\mu_{\gamma}\|_{\gamma}}$, therefore,
$$\int_{\mathfrak{G}} \|\mathbf{R}\|_{\mathrm{TV}} \,\mathrm{d}\rho(\mathbf{R}) < \frac{\|\mu_{\gamma}\|_{\mathrm{TV}}}{\|\mu_{\gamma}\|_{\gamma}} \underbrace{\rho(\mathfrak{G})}_{-1} = \int_{\mathfrak{G}} \|\mathbf{R}\|_{\mathrm{TV}} \,\mathrm{d}\rho(\mathbf{R}),$$

thus $\operatorname{spt} {\it I\!\!R} = \operatorname{spt} \mu_{\gamma}$,

each R is supported on a simple Lipschitz curve $\gamma_{\rm R}$.

Hence, each $\gamma_{ extsf{R}}$ is a reparametrisation of γ yielding $extsf{R}=rac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{arphi}}$

spt
$$\mathbf{R} = \operatorname{spt} \mu_{\gamma}$$
. Otherwise spt $\mathbf{R} \subsetneq \operatorname{spt} \mu_{\gamma} \|\mathbf{R}\|_{\mathrm{TV}} < \frac{\|\mu_{\gamma}\|_{\mathrm{TV}}}{\|\mu_{\gamma}\|_{\mathscr{V}}}$, therefore,
$$\int_{\mathfrak{G}} \|\mathbf{R}\|_{\mathrm{TV}} \,\mathrm{d}\rho(\mathbf{R}) < \frac{\|\mu_{\gamma}\|_{\mathrm{TV}}}{\|\mu_{\gamma}\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{-1} = \int_{\mathfrak{G}} \|\mathbf{R}\|_{\mathrm{TV}} \,\mathrm{d}\rho(\mathbf{R}),$$

thus $\operatorname{spt} {m extsf{ extsf{R}}} = \operatorname{spt} \mu_{m \gamma}$,

each R is supported on a simple Lipschitz curve $\gamma_{\rm R}$.

Hence, each γ_R is a reparametrisation of γ yielding $R = rac{\mu_\gamma}{\|\mu_\gamma\|_{\gamma}}$, eventually:

$$\boldsymbol{u}_{i} = \int_{\mathfrak{G}} \boldsymbol{R} \, \mathrm{d}\rho_{i} = \int_{\mathfrak{G}} \frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\|_{\mathscr{V}}} \, \mathrm{d}\rho_{i} = \frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\|_{\mathscr{V}}} \underbrace{\rho_{i}(\mathfrak{G})}_{=1} = \frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\|_{\mathscr{V}}}.$$

Contradiction, then μ_γ is an extreme point.

Second inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_\mathscr{V})\subset\mathfrak{G}$

Second inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\subset\mathfrak{G}$

Let $T \in Ext(\mathcal{B}^1_{\mathscr{V}})$, then there exists a finite (probability) Borel measure ρ s.t.:

$$oldsymbol{T} = \int_{\mathfrak{G}} oldsymbol{R} \, \mathrm{d}
ho(oldsymbol{R}),$$

Second inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\subset\mathfrak{G}$

Let $T \in Ext(\mathcal{B}^1_{\mathscr{V}})$, then there exists a finite (probability) Borel measure ρ s.t.:

$$oldsymbol{T} = \int_{\mathfrak{G}} oldsymbol{R} \, \mathrm{d}
ho(oldsymbol{R}),$$

either ho is supported on a singleton of \mathfrak{G} , then there exists $\overline{\mu_{\gamma}}$ s.t. $\mathcal{T}=rac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\mathscr{V}}}$

Second inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\subset\mathfrak{G}$

Let $\mathcal{T}\in\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})$, then there exists a finite (probability) Borel measure ho s.t.:

$$oldsymbol{T} = \int_{\mathfrak{G}} oldsymbol{R} \, \mathrm{d}
ho(oldsymbol{R}),$$

either ho is supported on a singleton of \mathfrak{G} , then there exists μ_{γ} s.t. $\mathcal{T}=rac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{arphi}}$

or there exists a Borel set $A \subset \mathfrak{G}$ with arbitrary 0 <
ho(A) < 1 and:

$$\rho = \left|\rho\right|\left(\mathcal{A}\right)\left(\frac{1}{\left|\rho\right|\left(\mathcal{A}\right)}\rho \, \bigsqcup{\mathcal{A}}\right) + \left|\rho\right|\left(\mathcal{A}^{c}\right)\left(\frac{1}{\left|\rho\right|\left(\mathcal{A}^{c}\right)}\rho \, \bigsqcup{\mathcal{A}}^{c}\right)$$

$$\mathbf{T} = |\rho| (A) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A)} \mathbf{R} \operatorname{d}(\rho \, \sqsubseteq \, A)(\mathbf{R}) \right]}_{\overset{\text{def.}}{=} u_{1}} + |\rho| (A^{c}) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A^{c})} \mathbf{R} \operatorname{d}(\rho \, \bigsqcup A^{c})(\mathbf{R}) \right]}_{\overset{\text{def.}}{=} u_{2}}$$

$$\mathbf{T} = |\rho| (A) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A)} \mathbf{R} d(\rho \sqcup A)(\mathbf{R}) \right]}_{\stackrel{\text{def}}{=} \mathbf{u}_{1}} + |\rho| (A^{c}) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A^{c})} \mathbf{R} d(\rho \sqcup A^{c})(\mathbf{R}) \right]}_{\stackrel{\text{def}}{=} \mathbf{u}_{2}}$$

A is chosen (up to a neighbourhood) as a convex set, hence $u_1 = \int_A R \, d\rho(R)$ belongs to A, while conversely $u_2 \in A^c$, thus $u_1 \neq u_2$.

A is chosen (up to a neighbourhood) as a convex set, hence $u_1 = \int_A R \, d\rho(R)$ belongs to A, while conversely $u_2 \in A^c$, thus $u_1 \neq u_2$. Eventually, thanks to Smirnov's decomposition:

$$egin{aligned} \|oldsymbol{u}_1\|_{\mathscr{V}} &\leq \int_{\mathfrak{G}} rac{1}{|
ho|\left(A
ight)} rac{\|oldsymbol{\mathcal{R}}\|_{\mathscr{Y}}}{\displaystyle = 1} \operatorname{d}(
ho ldsymbol{ar{L}} A)(oldsymbol{\mathcal{R}}) \ &\leq rac{|
ho|\left(A
ight)}{|
ho|\left(A
ight)} = 1. \end{aligned}$$

Then $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ while $u_1 \neq u_2$, thus reaching a non-trivial convex combination:

 $\mathbf{T} = \lambda \mathbf{u_1} + (1 - \lambda) \mathbf{u_2},$

Then $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ while $u_1 \neq u_2$, thus reaching a non-trivial convex combination:

 $oldsymbol{T} = \overline{\lambda oldsymbol{u_1} + (1 - \overline{\lambda}) oldsymbol{u_2}},$

thereby reaching a contradiction, and therefore concluding the proof.