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Biomedical context

Aim
Image biological structures at small scales

Physical limitation due to diffraction for bodies < 200 nm: convolution
by the microscope’s point spread function.

Reconstruction e.g. by fluorescence microscopy SMLM: acquisition stack with few lit
fluorophores per image. Drawback: many images (≈ 1 × 104, does not allow imaging
of living cells).
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On an EPFL SMLM Challenge stack (10000 images, high density):

Mean of stack

Off-the-grid Deep-STORM
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An imagery solution: SOFI

SOFI imaging (Super-resolution optical fluctuation imaging).
Applications: imaging for localisation in fluorescence microscopy, etc.
[Dertinger10].

many fluorophores lit at the
same time;
temporal independence of the
fluorophores’ luminosity
fluctuation;
less harmful to the biological
structures studied.
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Off-the-grid digest
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Inverse problem: from an acquisition, we reconstruct spike positions and
amplitudes. Super-resolution grid problem:

off-the-grid super-resolution can be understood as the ’limit’ of an
increasingly fine grid;
not limited by a (fine) grid, but still limited by the noise.
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Discrete case

the reconstructed peaks are
necessarily on the fine grid;
(Non-)convex combinatorial
optimisation;
fast numerical computation;
large literature.

Off-the-grid case

not limited by the grid;
convexity of the functional on
an infinite dimensional space;
existence and uniqueness
guarantees;
recent field of research.
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Elementary bricks :
X is a compact of Rd;
how to model spikes? Dirac measures δx, elements of M (X ) the
space of signed Radon measures;
topological dual of C (X ) for ⟨f , m⟩ =

´
X f dm. Generalisation of

L1 (X ) since L1 (X ) ↪→ M (X ) ;
Banach for the TV-norm: m ∈ M (X ),

|m|(X )
def.
= sup

(ˆ
X

f dm

∣∣∣∣ f ∈ C (X ) , ∥f∥∞,X ≤ 1
)

.

If m =
∑N

i=1 aiδxi is a discrete measure then |m|(X ) =
∑N

i=1 |ai|.
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BLASSO

Let ma0,x0
def.
=

∑N
i=1 aiδxi be a discrete measure,

Φ : M (X ) → L2 (X )

forward operator (e.g. Φma0,x0
def.
=

∑N
i=1 aih(x − xi) the Gaussian

kernel) and w ∈ L2 (X ) noise:

y
def.
= Φma0,x0 + w.

We call BLASSO the optimisation problem [Castro12, Duval15] for
λ > 0 :

argmin
m∈M(X )

1
2∥y − Φm∥2

L2(X ) + λ|m|(X ) (Pλ(y))

The optimisation space M (X ) is an infinite dimensional space, reflexive
only for weak-* topology: a difficult problem.
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Dynamic off-the-grid
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Quantities at stake

acquisition stack (images in L2 (X )) during [0, T ] ;

we define y : [0, T ] → L2 (X ) the SOFI acquisition stack ;
we aim to reconstruct the dynamic measure:

t 7→ µ(t)
def.
=

N∑
i=1

ai(t)δxi ∈ L2 (0, T ; M (X ))

generating a.e. t ∈ [0, T ] : y(t) = Φµ(t). In the convolution case
for PSF h, Φµ(t) =

∑N
i=1 ai(t)

´
X h(x − xi) dx.

Cumulants are a tool to reconstruct the positions xi. Example :
temporal mean ȳ

def.
= 1

T

´ T
0 y(·, t) dt. One have Φma,x = ȳ where

ma,x
def.
=

∑N
i=1 āiδxi and āi is the mean of ai(·).
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Build the variational problem

Let Ry be the temporal covariance, ∀u, v ∈ X we get:

Ry(u, v)
def.
=

1
T

ˆ T

0
(y(u, t) − ȳ(u)) (y(v, t) − ȳ(v)) dt

= . . . (independence of fluctuations [Dertinger10])

=
N∑

i=1
Mi︸︷︷︸

ai variance

h(u − xi)h(v − xi)

=

ˆ
X

h(u − x)h(v − x) dmM ,x (x)

= ΛmM ,x(u, v).

mM ,x
def.
=

∑N
i=1 Miδxi shares the same positions as µ =

∑N
i=1 ai(t)δxi ,

we call Λ : M (X ) → L2 (
X 2)

this « covariance operator ».
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Quantities digest

Legend: dynamic part, temporal mean part ȳ and covariance Ry.
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BLASSO on cumulants

Let λ > 0,
covariance problem writes down:

argmin
m∈M(X )

Tλ(m)
def.
=

1
2∥Ry − Λ(m)∥2

L2(X 2) + λ|m|(X ) (Qλ(y))

Let ∆ def.
= mini ̸=j |xi − xj | be the minimum separation distance

Proposition
Support of a real Radon measure in noiseless setting is reconstructed:

if ∆ ≳ 1, 1σ [Bendory16] for mean-based reconstruction;
if ∆ ≳ 1, 1σ/

√
2 for covariance-based reconstruction (Qλ(y)):

better!.
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Numerical 2D results SOFItool
Test on 2D tubulins from ISBI challenge 2016:

stack of 1000 acquisitions 64 × 64 simulated by SOFItool;
8700 emitters scattered along the tubulins; high background noise + Poisson
noise at 4 + Gaussian noise at 1 × 10−2. SNR ≈ 10 db.
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http://bigwww.epfl.ch/smlm/challenge2016/datasets/MT4.N2.HD/Data/data.html
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Figure 1: Ground-truth Figure 2: (Qλ(y)) Figure 3: SRRF [Culley18]
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Conclusion
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Take home statements:
off-the-grid methods squeeze all the ’information’ out of the
acquisition y: no discretisation drawback;
allow performing structural assumption on the minimiser;
strong results for existence and uniqueness of BLASSO solution;
one efficient numerical algorithm: Sliding Frank-Wolfe.

Outlook:
spikes moving in position w.r.t time: tracking problem;
theory only suited for spikes and sets: what about other source
structures (e.g. curves)?
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Sliding Frank-Wolfe
Algorithm 1: Sliding Frank-Wolfe.
Entrées: Acquisition y ∈ H, nombre d’itérations K, λ > 0

1 Initialisation : m[0] = 0 N [k] = 0
2 for Récurrence pour l’étape k, 0 ≤ k ≤ K do
3 Pour m[k] =

∑N [k]

i=1 a
[k]
i δ

x
[k]
i

telle que a
[k]
i ∈ R, x

[k]
i ∈ X , trouver x

[k]
∗ ∈ X tel que :

x
[k]
∗ ∈ argmax

x∈X

∣∣∣η[k](x)∣∣∣ où η[k](x)
def.
=

1
λ

Φ∗(Φm[k] − y),

if
∣∣∣η[k](x[k]

∗ )
∣∣∣ < 1 then

4 m[k] est la solution du BLASSO. Stop.
5 else
6 Calculer m[k+1/2] =

∑N [k]

i=1 a
[k+1/2]
i δ

x
[k+1/2]
i

+ a
[k+1/2]
N [k]+1 δ

[k+1/2]
∗ telle que :

a
[k+1/2]
i ∈ argmin

a∈RN [k]+1

1
2

∥∥y − Φx[k+1/2](a)
∥∥2

H + λ∥a∥1

pour x[k+1/2] def.
=

(
x
[k]
1 , . . . , x

[k]

N [k] , x
[k]
∗

)
.

7 Calculer m[k+1] =
∑N [k+1]

i=1 a
[k+1]
i δ

x
[k+1]
i

telle que :

(a
[k+1]
i , x

[k+1]
i ) ∈ argmax

(a,x)∈R

1
2

∥∥y − Φx[k+1/2](a)
∥∥2

H + λ∥a∥1

8 end
9 end

Sortie: Mesure discrète m[k] pour k l’itération d’arrêt.
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