Off-the-grid covariance-based super-resolution.

Bastien Laville, Laure Blanc-Féraud, Gilles Aubert

Team Morpheme: Inria SAM, CNRS, UCA (France)

ICASSP 2022

Off-the-grid dige

Dynamic off-the-grid

Conclusion

Table of contents

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
0000			

Introduction

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
Biomedic	al context		
Aim			
Image biolog	cal structures at small	scales	

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
Biomedical	context		

Aim

Image biological structures at small scales

Physical limitation due to diffraction for bodies < 200 nm: convolution by the microscope's *point spread function*.

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
Biomedica	l context		

Aim

Image biological structures at small scales

Physical limitation due to diffraction for bodies < 200 nm: convolution by the microscope's *point spread function*.

Reconstruction e.g. by fluorescence microscopy SMLM: acquisition stack with few lit fluorophores per image. Drawback: many images ($\approx 1 \times 10^4$, does not allow imaging of living cells).

On an EPFL SMLM Challenge stack (10000 images, high density):

Mean of stack

On an EPFL SMLM Challenge stack (10000 images, high density):

On an EPFL SMLM Challenge stack (10000 images, high density):

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
An imagery	solution: SOFI		

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
An imagery	solution: SOFI		

 many fluorophores lit at the same time;

Introduction	Off-the-grid digest	Dynamic o 0000000	Conclusion
An imagery s	solution:	SOFI	

- many fluorophores lit at the same time;
- temporal independence of the fluorophores' luminosity fluctuation;

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
An imagery s			000

- many fluorophores lit at the same time;
- temporal independence of the fluorophores' luminosity fluctuation;
- less harmful to the biological structures studied.

Off-the-grid diges

Dynamic off-the-grid

Conclusion

An imagery solution: SOFI

- many fluorophores lit at the same time;
- temporal independence of the fluorophores' luminosity fluctuation;
- less harmful to the biological structures studied.

Off-the-grid diges

Dynamic off-the-grid

Conclusion

An imagery solution: SOFI

- many fluorophores lit at the same time;
- temporal independence of the fluorophores' luminosity fluctuation;
- less harmful to the biological structures studied.

Off-the-grid dige

Dynamic off-the-grid

Conclusion

An imagery solution: SOFI

- many fluorophores lit at the same time;
- temporal independence of the fluorophores' luminosity fluctuation;
- less harmful to the biological structures studied.

Off-the-grid digest	Dynamic off-the-grid	Conclusion
00000		

Off-the-grid digest

Inverse problem: from an acquisition, we reconstruct spike positions and amplitudes. Super-resolution grid problem:

Inverse problem: from an acquisition, we reconstruct spike positions and amplitudes. Super-resolution grid problem:

- off-the-grid super-resolution can be understood as the 'limit' of an increasingly fine grid;
- not limited by a (fine) grid, but still limited by the noise.

Off-the-grid digest	Dynamic off-the-grid	Conclusion
00000		

Discrete case

- the reconstructed peaks are necessarily on the fine grid;
- (Non-)convex combinatorial optimisation;
- fast numerical computation;
- large literature.

Discrete case

- the reconstructed peaks are necessarily on the fine grid;
- (Non-)convex combinatorial optimisation;
- fast numerical computation;
- Iarge literature.

Off-the-grid case

- not limited by the grid;
- convexity of the functional on an infinite dimensional space;
- existence and uniqueness guarantees;
- recent field of research.

Off-the-grid digest	Dynamic off-the-grid	Conclusion
00000		

Off-the-grid digest	Dynamic off-the-grid	Conclusion
00000		

• \mathcal{X} is a compact of \mathbb{R}^d ;

Off-the-grid digest	Dynamic off-the-grid	Conclusion
000●0	0000000	00 0

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes? Dirac measures δ_x , elements of $\mathcal{M}(\mathcal{X})$ the space of signed Radon measures;

	Off-the-grid digest	Dynamic off-the-grid	Conclusion
0000	00000	0000000	00 0

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes? Dirac measures δ_x , elements of $\mathcal{M}(\mathcal{X})$ the space of signed Radon measures;
- topological dual of $\mathscr{C}(\mathcal{X})$ for $\langle f, m \rangle = \int_{\mathcal{X}} f \, \mathrm{d}m$. Generalisation of $L^{1}(\mathcal{X})$ since $L^{1}(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;

Off-the-grid digest	Dynamic off-the-grid	Conclusion
000●0	0000000	00 0

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes? Dirac measures δ_x , elements of $\mathcal{M}(\mathcal{X})$ the space of signed Radon measures;
- topological dual of $\mathscr{C}(\mathcal{X})$ for $\langle f, m \rangle = \int_{\mathcal{X}} f \, \mathrm{d}m$. Generalisation of $L^{1}(\mathcal{X})$ since $L^{1}(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
- Banach for the TV-norm: $m \in \mathcal{M}\left(\mathcal{X}
 ight)$,

$$|m|(\mathcal{X}) \stackrel{\text{def.}}{=} \sup \left(\int_{\mathcal{X}} f \, \mathrm{d}m \, \middle| \, f \in \mathscr{C}(\mathcal{X}), \|f\|_{\infty, \mathcal{X}} \leq 1 \right).$$

If $m = \sum_{i=1}^{N} a_i \delta_{x_i}$ is a discrete measure then $|m|(\mathcal{X}) = \sum_{i=1}^{N} |a_i|$.

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
BLASSO			
Let $m_{a_0,x_0} \stackrel{\text{def.}}{=}$	$\sum_{i=1}^N a_i \delta_{x_i}$ be a discre	ete measure,	

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
BLASSO			

Let $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i}$ be a discrete measure, $\Phi : \mathcal{M}(\mathcal{X}) \to L^2(\mathcal{X})$ forward operator (e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i)$ the Gaussian kernel)

Let $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i}$ be a discrete measure, $\Phi : \mathcal{M}(\mathcal{X}) \to L^2(\mathcal{X})$ forward operator (e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i)$ the Gaussian kernel) and $w \in L^2(\mathcal{X})$ noise:

$$y \stackrel{\text{def.}}{=} \Phi m_{a_0, x_0} + w.$$

Let $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i}$ be a discrete measure, $\Phi : \mathcal{M}(\mathcal{X}) \to L^2(\mathcal{X})$ forward operator (e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i)$ the Gaussian kernel) and $w \in L^2(\mathcal{X})$ noise:

$$y \stackrel{\text{def.}}{=} \Phi m_{a_0, x_0} + w.$$

We call **BLASSO** the optimisation problem [Castro12, Duval15] for $\lambda>0$:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \| y - \Phi m \|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

Let $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i}$ be a discrete measure, $\Phi : \mathcal{M}(\mathcal{X}) \to L^2(\mathcal{X})$ forward operator (e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i)$ the Gaussian kernel) and $w \in L^2(\mathcal{X})$ noise:

$$y \stackrel{\text{def.}}{=} \Phi m_{a_0, x_0} + w.$$

We call **BLASSO** the optimisation problem [Castro12, Duval15] for $\lambda>0$:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \| y - \Phi m \|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

The optimisation space $\mathcal{M}(\mathcal{X})$ is an infinite dimensional space, reflexive only for weak-* topology: a difficult problem.

Off-the-grid digest	Dynamic off-the-grid	Conclusion
00000	●000000	000

Dynamic off-the-grid

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
Quantities at	: stake		

 \bullet acquisition stack (images in $L^{2}\left(\mathcal{X}\right))$ during $\left[0,T\right]$;

the-grid digest	Dynamic off-the-grid	Conclusion
take		
	take	

- acquisition stack (images in $\mathrm{L}^{2}\left(\mathcal{X}
 ight)$) during $\left[0,T
 ight]$;
- \bullet we define $y:\left[0,T\right]\rightarrow\mathrm{L}^{2}\left(\mathcal{X}\right)$ the SOFI acquisition stack ;

	Off-the-grid digest	Dynamic off-the-grid	Conclusion
0000	00000	000000	000
Quantitie	es at stake		

- acquisition stack (images in $L^{2}\left(\mathcal{X}\right))$ during $\left[0,T\right]$;
- we define $y:[0,T]
 ightarrow \mathrm{L}^{2}\left(\mathcal{X}
 ight)$ the SOFI acquisition stack ;
- we aim to reconstruct the *dynamic* measure:

$$t \mapsto \mu(t) \stackrel{\text{def.}}{=} \sum_{i=1}^{N} a_i(t) \delta_{x_i} \in \mathrm{L}^2(0,T;\mathcal{M}(\mathcal{X}))$$

generating a.e. $t\in [0,T]$: $y(t)=\Phi\mu(t).$

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
Quantitie	s at stake		

- acquisition stack (images in $\mathrm{L}^{2}\left(\mathcal{X}
 ight)$) during $\left[0,T
 ight]$;
- we define $y:[0,T] \to \mathrm{L}^2\left(\mathcal{X}
 ight)$ the SOFI acquisition stack ;
- we aim to reconstruct the *dynamic* measure:

$$t \mapsto \mu(t) \stackrel{\text{def.}}{=} \sum_{i=1}^{N} a_i(t) \delta_{x_i} \in \mathrm{L}^2(0,T;\mathcal{M}(\mathcal{X}))$$

generating a.e. $t \in [0,T]$: $y(t) = \Phi \mu(t)$. In the convolution case for PSF h, $\Phi \mu(t) = \sum_{i=1}^{N} a_i(t) \int_{\mathcal{X}} h(x-x_i) \, \mathrm{d}x$.

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
	s at stake	0-0000	

- acquisition stack (images in $\mathrm{L}^{2}\left(\mathcal{X}
 ight)$) during $\left[0,T
 ight]$;
- we define $y:[0,T] \to \mathrm{L}^2\left(\mathcal{X}
 ight)$ the SOFI acquisition stack ;
- we aim to reconstruct the dynamic measure:

$$t \mapsto \mu(t) \stackrel{\text{def.}}{=} \sum_{i=1}^{N} a_i(t) \delta_{x_i} \in \mathrm{L}^2(0,T;\mathcal{M}(\mathcal{X}))$$

generating a.e. $t \in [0,T]$: $y(t) = \Phi \mu(t)$. In the convolution case for PSF h, $\Phi \mu(t) = \sum_{i=1}^{N} a_i(t) \int_{\mathcal{X}} h(x-x_i) \, \mathrm{d}x$.

Cumulants are a tool to reconstruct the positions x_i . Example : temporal mean $\bar{y} \stackrel{\text{def.}}{=} \frac{1}{T} \int_0^T y(\cdot, t) \, \mathrm{d}t$. One have $\Phi m_{a,x} = \bar{y}$ where $m_{a,x} \stackrel{\text{def.}}{=} \sum_{i=1}^N \bar{a}_i \delta_{x_i}$ and \bar{a}_i is the mean of $a_i(\cdot)$.

Introduction	Off-the-grid digest	Dynamic off-the-grid 00●0000	Conclusion
Build the	variational p	roblem	

Let R_y be the temporal covariance, $\forall u, v \in \mathcal{X}$ we get:

Introduction Off-the-grid digest Dynamic off-the-grid Conclusion

Let R_y be the temporal covariance, $\forall u, v \in \mathcal{X}$ we get:

$$R_{y}(u,v) \stackrel{\text{def.}}{=} \frac{1}{T} \int_{0}^{T} \left(y(u,t) - \bar{y}(u) \right) \left(y(v,t) - \bar{y}(v) \right) \, \mathrm{d}t$$

$$= \dots \quad (\text{independence of fluctuations [Dertinger10]})$$

$$= \sum_{i=1}^{N} \underbrace{M_{i}}_{a_{i} \text{ variance}} h(u - x_{i})h(v - x_{i})$$

$$= \int_{\mathcal{X}} h(u - x)h(v - x) \, \mathrm{d}m_{M,x}(x)$$

$$= \Lambda m_{M,x}(u,v).$$

Introduction Off-the-grid digest Dynamic off-the-grid Conclusion

Let R_y be the temporal covariance, $\forall u, v \in \mathcal{X}$ we get:

$$\begin{aligned} R_y(u,v) &\stackrel{\text{def.}}{=} \frac{1}{T} \int_0^T \left(y(u,t) - \bar{y}(u) \right) \left(y(v,t) - \bar{y}(v) \right) \, \mathrm{d}t \\ &= \dots \quad \text{(independence of fluctuations [Dertinger10])} \\ &= \sum_{i=1}^N \underbrace{M_i}_{a_i} h(u-x_i)h(v-x_i) \\ &= \int_{\mathcal{X}} h(u-x)h(v-x) \, \mathrm{d}m_{M,x}\left(x\right) \\ &= \Lambda m_{M,x}(u,v). \end{aligned}$$

 $m_{M,x} \stackrel{\text{def.}}{=} \sum_{i=1}^{N} M_i \delta_{x_i}$ shares the same positions as $\mu = \sum_{i=1}^{N} a_i(t) \delta_{x_i}$, we call $\Lambda : \mathcal{M}(\mathcal{X}) \to L^2(\mathcal{X}^2)$ this « covariance operator ».

Off-the-grid dige

Dynamic off-the-grid

Quantities digest

Legend: dynamic part, temporal mean part \bar{y} and covariance R_y .

BLASSO on cumulants

Let $\lambda > 0$, covariance problem writes down:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} T_{\lambda}(m) \stackrel{\text{def.}}{=} \frac{1}{2} \| R_y - \Lambda(m) \|_{\mathrm{L}^2(\mathcal{X}^2)}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{Q}_{\lambda}(y))$$

Dynamic off-the-grid

BLASSO on cumulants

Let $\lambda>0,$ covariance problem writes down:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} T_{\lambda}(m) \stackrel{\text{def.}}{=} \frac{1}{2} \| R_y - \Lambda(m) \|_{\mathrm{L}^2(\mathcal{X}^2)}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{Q}_{\lambda}(y))$$

Dynamic off-the-grid

Let $\Delta \stackrel{\mathrm{def.}}{=} \min_{i
eq j} |x_i - x_j|$ be the *minimum* separation distance

Proposition

Support of a real Radon measure in noiseless setting is reconstructed:

- if $\Delta \gtrsim 1, 1\sigma$ [Bendory16] for mean-based reconstruction;
- if Δ ≥ 1, 1σ/√2 for covariance-based reconstruction (Q_λ(y)):
 better!.

Test on 2D tubulins from ISBI challenge 2016:

- stack of 1000 acquisitions 64×64 simulated by SOFItool;
- 8700 emitters scattered along the tubulins; high background noise + Poisson noise at $4 + \text{Gaussian noise at } 1 \times 10^{-2}$. SNR $\approx 10 \text{ db.}$

Introduction Off-the-grid digest Dynamic off-the-grid Conclusion 0000 00000 00000 0000 0000 Numerical 2D results SOFItool Conclusion 0000 0000 0000

Test on 2D tubulins from ISBI challenge 2016:

- stack of 1000 acquisitions 64×64 simulated by SOFItool;
- 8700 emitters scattered along the tubulins; high background noise + Poisson noise at $4 + \text{Gaussian noise at } 1 \times 10^{-2}$. SNR $\approx 10 \text{ db.}$

Figure 1: Ground-truth

Figure 2: $(\mathcal{Q}_{\lambda}(y))$

Figure 3: SRRF [Culley18]

Off-the-grid digest	Dynamic off-the-grid	Conclusion
		•0 0

Conclusion

Off-the-grid digest 00000	Dynamic off-the-grid 0000000	Conclusion ○● ○

Take home statements:

- off-the-grid methods squeeze all the 'information' out of the acquisition y: no discretisation drawback;
- allow performing structural assumption on the minimiser;
- strong results for existence and uniqueness of BLASSO solution;
- one efficient numerical algorithm: Sliding Frank-Wolfe.

Off-the-grid digest	Dynamic off-the-grid	Conclusion
00000	0000000	○●○

Take home statements:

- off-the-grid methods squeeze all the 'information' out of the acquisition y: no discretisation drawback;
- allow performing structural assumption on the minimiser;
- strong results for existence and uniqueness of BLASSO solution;
- one efficient numerical algorithm: Sliding Frank-Wolfe.

Outlook:

- spikes moving in position w.r.t time: *tracking* problem;
- theory only suited for spikes and sets: what about other source structures (e.g. curves)?

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
Bibliography	1		

- Vohann de Castro and Fabrice Gamboa. *Exact reconstruction using Beurling minimal extrapolation*. Journal of Mathematical Analysis and Applications, Elsevier BV, 2012, 395, 336-354
- Quentin Denoyelle, Vincent Duval, Gabriel Peyré, Emmanuel Soubies. *The Sliding Frank-Wolfe Algorithm and its Application to Super-Resolution Microscopy*. Inverse Problems, IOP Publishing, In press.
- Lenaic Chizat, Francis Bach. On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport. Advances in Neural Information Processing Systems (NIPS), Dec 2018, Montréal, Canada.
- Tamir Bendory, Shai Dekel, Arie Feuer, Robust recovery of stream of pulses using convex optimization, Journal of Mathematical Analysis and Applications, Volume 442, Issue 2, 2016.

Introduction	Off-the-grid digest	Dynamic off-the-grid	Conclusion
Bibliography	П		

- A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Amir Beck and Marc Teboulle, SIAM J. IMAGING SCIENCES, 2009.
- Marguerite Frank et Philip Wolfe, « An algorithm for quadratic programming », Naval Research Logistics Quarterly, vol. 3, 1956.
- J. B. Lasserre, « Moments, positive polynomials and their applications », Imperial College Press Optimization Series, vol. 1, pp. xxii+361, 2010
- K. Bredies and H. K. Pikkarainen, « Inverse problems in spaces of measures », ESAIM Control Optim. Calc. Var., vol. 19, no. 1, pp. 190-218, 2013.
- Lenaic Chizat, Francis Bach. On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport. Advances in Neural Information Processing Systems (NIPS), Dec 2018, Montréal, Canada.

Introduction	Off-the-grid digest	Dynamic off-the-grid	
Bibliography	Ш		

- Lenaic Chizat. Sparse Optimization on Measures with Over-parameterized Gradient Descent. 2020
- Candès, Emmanuel & Fernandez-Granda, Carlos. (2014). Towards a Mathematical Theory of Super-Resolution. Communications on Pure and Applied Mathematics. 67. 10.1002/cpa.21455.
- Vincent Duval, Gabriel Peyré. Exact Support Recovery for Sparse Spikes Deconvolution. Foundations of Computational Mathematics, Springer Verlag, 2015, 15 (5), pp.1315-1355.
- Thomas Dertinger, Ryan Colyer, Robert Vogel, Jörg Enderlein, and Shimon Weiss, "Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI)," Opt. Express 18, 18875-18885 (2010)
- Culley S, Tosheva KL, Matos Pereira P, Henriques R. SRRF: Universal live-cell super-resolution microscopy. Int J Biochem Cell Biol. 2018;101:74-79. doi:10.1016/j.biocel.2018.05.014

Oren Solomon, Maor Mutzafi, Mordechai Segev, and Yonina C. Eldar, "Sparsity-based super-resolution microscopy from correlation information," Opt. Express 26, 18238-18269 (2018)

Sliding Frank-Wolfe

Algorithm 1: Sliding Frank-Wolfe. **Entrées:** Acquisition $u \in \mathcal{H}$, nombre d'itérations $K, \lambda > 0$ 1 Initialisation : $m^{[0]} = 0 N^{[k]} = 0$ 2 for Récurrence pour l'étape $k, 0 \le k \le K$ do $\text{Pour } m^{[k]} = \sum_{i=1}^{N^{[k]}} a^{[k]}_i \delta_{x^{[k]}} \text{ telle que } a^{[k]}_i \in \mathbb{R}, \, x^{[k]}_i \in \mathcal{X} \text{, trouver } x^{[k]}_* \in \mathcal{X} \text{ tel que } :$ 3 $x_*^{[k]} \in \operatorname*{argmax}_{\leftarrow \leftarrow \vee} \left| \eta^{[k]}(x) \right| \qquad \mathsf{ou} \quad \eta^{[k]}(x) \stackrel{\text{def.}}{=} \frac{1}{\chi} \Phi^*(\Phi m^{[k]} - y),$ if $\left|\eta^{[k]}(x_{*}^{[k]})\right| < 1$ then $m^{[k]}$ est la solution du BLASSO. Stop. else Calculer $m^{[k+1/2]} = \sum_{i=1}^{N^{[k]}} a_i^{[k+1/2]} \delta_{\boldsymbol{\tau}^{[k+1/2]}} + a_{N^{[k]+1}}^{[k+1/2]} \delta_*^{[k+1/2]}$ telle que : $a_i^{[k+1/2]} \in \underset{a \in \mathbb{R}^{N^{[k]+1}}}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi_{x^{[k+1/2]}}(a)\|_{\mathcal{H}}^2 + \lambda \|a\|_1$ pour $x^{[k+1/2]} \stackrel{\text{def.}}{=} (x_1^{[k]}, \dots, x_{s^{[k]}}^{[k]}, x_s^{[k]}).$ Calculer $m^{[k+1]} = \sum_{i=1}^{N^{[k+1]}} a^{[k+1]}_i \delta_{x^{[k+1]}}$ telle que : 7 $(a_i^{[k+1]}, x_i^{[k+1]}) \in \underset{(a,x) \in R}{\operatorname{argmax}} \frac{1}{2} \|y - \Phi_{x^{[k+1/2]}}(a)\|_{\mathcal{H}}^2 + \lambda \|a\|_1$ end 9 end **Sortie:** Mesure discrète $m^{[k]}$ pour k l'itération d'arrêt.