Reconstruction de courbes en super-résolution sans-grille

Bastien Laville, Laure Blanc-Féraud, Gilles Aubert
30th August 2023

Morpheme research team
Inria, CNRS, Université Côte d’Azur
Table of contents

1. Introduction
2. Off-the-grid spikes
3. A new divergence regularisation
4. Off-the-grid numerical reconstruction
5. Conclusion
Introduction
Biomedical imaging

Objective
To image live biological structures at small scales.
Biomedical imaging

Objective

To image **live** biological structures at **small scales**.

Physical limitation due to **diffraction** for bodies < 200 nm: convolution by the microscope’s point spread function (PSF).
Biomedical imaging

Objective

To image live biological structures at small scales.

Physical limitation due to diffraction for bodies < 200 nm: convolution by the microscope’s point spread function (PSF).
Objective
To image **live** biological structures at **small scales**.

Physical limitation due to **diffraction** for bodies < 200 nm: convolution by the microscope’s point spread function (PSF).
Biomedical imaging

Objective

To image **live** biological structures at **small scales**.

Physical limitation due to **diffraction** for bodies < 200 nm: convolution by the microscope’s point spread function (PSF).
Biomedical imaging

Objective
To image live biological structures at small scales.

Physical limitation due to diffraction for bodies < 200 nm: convolution by the microscope’s point spread function (PSF).

Problème inverse
Grid or gridless?

\[S_0 \]

Source to estimate
Grid or gridless?

Introducing a grid

\[S_0 \]
Grid or gridless?

Reconstruction \hat{S} on a grid
Grid or gridless?

Reconstruction \(\hat{S} \) on a finer grid
Grid or gridless?

Reconstruction \hat{S} is now **off-the-grid**
Off-the-grid spikes
• \mathcal{X} is a compact of \mathbb{R}^d;
Quantities

- \mathcal{X} is a compact of \mathbb{R}^d;
- how to model spikes? Through Dirac measure δ_x, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
Quantities

- \mathcal{X} is a compact of \mathbb{R}^d;
- how to model spikes? Through Dirac measure δ_x, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
- topological dual of $\mathcal{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f \, dm$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
• \mathcal{X} is a compact of \mathbb{R}^d;

• how to model spikes? Through Dirac measure δ_x, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;

• topological dual of $C_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f \, dm$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;

• Banach endowed with TV-norm: $m \in \mathcal{M}(\mathcal{X})$,

$$|m|(\mathcal{X}) \overset{\text{def}}{=} \sup \left(\int_{\mathcal{X}} f \, dm \left| \begin{array}{c} f \in C_0(\mathcal{X}), \|f\|_{\infty,\mathcal{X}} \leq 1 \end{array} \right. \right).$$

If $m = \sum_{i=1}^{N} a_i \delta_{x_i}$ a discrete measure
Quantities

- \mathcal{X} is a compact of \mathbb{R}^d;
- how to model spikes? Through Dirac measure δ_x, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
- topological dual of $\mathcal{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f \, dm$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
- Banach endowed with TV-norm: $m \in \mathcal{M}(\mathcal{X})$,

$$|m|(\mathcal{X}) \overset{\text{def.}}{=} \sup \left(\int_{\mathcal{X}} f \, dm \bigg| f \in \mathcal{C}_0(\mathcal{X}), \|f\|_{\infty,\mathcal{X}} \leq 1 \right).$$

If $m = \sum_{i=1}^{N} a_i \delta_{x_i}$ a discrete measure, then $|m|(\mathcal{X}) = \sum_{i=1}^{N} |a_i|$.
A LASSO equivalent for measures

- Let the source $m_{a_0,x_0} \overset{\text{def.}}{=} \sum_{i=1}^{N} a_i \delta_{x_i} \in \mathcal{M} (\mathcal{X})$ a discrete measure;
A LASSO equivalent for measures

• Let the source $m_{a_0,x_0} \overset{\text{def.}}{=} \sum_{i=1}^{N} a_i \delta_{x_i} \in \mathcal{M}(\mathcal{X})$ a discrete measure;

• $\Phi : \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \overset{\text{def.}}{=} \sum_{i=1}^{N} a_i h(x - x_i)$;
A LASSO equivalent for measures

- Let the source $m_{a_0,x_0} \overset{\text{def.}}{=} \sum_{i=1}^{N} a_i \delta_{x_i} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi : \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \overset{\text{def.}}{=} \sum_{i=1}^{N} a_i h(x - x_i)$;
- $w \in \mathbb{R}^p$ additive noise;
A LASSO equivalent for measures

Let the source \(m_{a_0,x_0} \overset{\text{def.}}{=} \sum_{i=1}^{N} a_i \delta_{x_i} \in \mathcal{M}(\mathcal{X}) \) a discrete measure;

- \(\Phi : \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p \) the acquisition operator, e.g. \(\Phi m_{a_0,x_0} \overset{\text{def.}}{=} \sum_{i=1}^{N} a_i h(x - x_i) \);

- \(w \in \mathbb{R}^p \) additive noise;

- \(y \overset{\text{def.}}{=} \Phi m_{a_0,x_0} + w \).
A LASSO equivalent for measures

- Let the source $m_{a_0,x_0} \overset{\text{def.}}{=} \sum_{i=1}^{N} a_i \delta_{x_i} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi : \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \overset{\text{def.}}{=} \sum_{i=1}^{N} a_i h(x - x_i)$;
- $w \in \mathbb{R}^p$ additive noise;
- $y \overset{\text{def.}}{=} \Phi m_{a_0,x_0} + w$.

We call **BLASSO** the problem

[de Castro and Gamboa, 2012, Bredies and Pikkarainen, 2012] for $\lambda > 0$:

$$\arg\min_{m \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \|y - \Phi m\|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X})$$

($\mathcal{P}_\lambda(y)$)
A LASSO equivalent for measures

- Let the source \(m_{a_0, x_0} \) a discrete measure;
- \(\Phi : \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^p \) the acquisition operator, e.g. \(\Phi m_{a_0, x_0} = \sum_{i=1}^{N} a_i h(x - x_i) \);
- \(w \) additive noise;
- \(y \) \(\Phi m_{a_0, x_0} + w \).

We call **BLASSO** the problem

\[
\begin{aligned}
\text{argmin}_{m \in \mathcal{M}(\mathcal{X})} & \quad \frac{1}{2} \| y - \Phi m \|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \\
& \quad (\mathcal{P}_\lambda(y))
\end{aligned}
\]

One of its minimisers is a sum of Dirac, close to \(m_{a_0, x_0} \) [Duval and Peyré, 2014].
A LASSO equivalent for measures

- Let the source $m_{a_0,x_0} \overset{\text{def.}}{=} \sum_{i=1}^{N} a_i \delta_{x_i} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi : \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \overset{\text{def.}}{=} \sum_{i=1}^{N} a_i h(x - x_i)$;
- $w \in \mathbb{R}^p$ additive noise;
- $y \overset{\text{def.}}{=} \Phi m_{a_0,x_0} + w$.

We call **BLASSO** the problem

[de Castro and Gamboa, 2012, Bredies and Pikkarainen, 2012] for $\lambda > 0$:

$$\arg\min_{m \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \| y - \Phi m \|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \quad (P_\lambda(y))$$

One of its minimisers is a sum of Dirac, close to m_{a_0,x_0} [Duval and Peyré, 2014].

Difficult numerical problem: infinite dimensional, non-reflexive. Tackled by greedy algorithm like **Frank-Wolfe** [Frank and Wolfe, 1956] , etc.
Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit fluorophores per image.

Figure 1: Two excerpts from a SMLM stack
Results on SMLM

Stack mean
Results on SMLM

Stack mean

Off-the-grid [Laville et al., 2021]
Results on SMLM

Stack mean

Results on SMLM

Stack mean
Off-the-grid [Laville et al., 2021]
Deep-STORM [Nehme et al., 2018]

SMLM drawback: a lot of images, no live-cell imaging.
A new divergence regularisation
Geometry encoded in off-the-grid
<table>
<thead>
<tr>
<th>Geometry</th>
<th>Spikes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>$\mathcal{M}(\mathcal{X})$</td>
</tr>
<tr>
<td>Regulariser</td>
<td>$| \cdot |_{TV}$</td>
</tr>
</tbody>
</table>

Geometry encoded in off-the-grid
Geometry encoded in off-the-grid

<table>
<thead>
<tr>
<th></th>
<th>0D</th>
<th>2D<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>Spikes</td>
<td>Sets</td>
</tr>
<tr>
<td>Space</td>
<td>$\mathcal{M}(\mathcal{X})$</td>
<td>$\text{BV}(\mathcal{X})$</td>
</tr>
<tr>
<td>Regulariser</td>
<td>$|\cdot|_{\text{TV}}$</td>
<td>$|\cdot|1 + |D\cdot|{\text{TV}}$</td>
</tr>
</tbody>
</table>

δ_x

χ_E

¹[de Castro et al., 2021]
Geometry encoded in off-the-grid

<table>
<thead>
<tr>
<th></th>
<th>0D</th>
<th>1D</th>
<th>2D (^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>Spikes</td>
<td>Curves</td>
<td>Sets</td>
</tr>
<tr>
<td>Space</td>
<td>(\mathcal{M}(\mathcal{X}))</td>
<td>?</td>
<td>(\text{BV}(\mathcal{X}))</td>
</tr>
<tr>
<td>Regulariser</td>
<td>(|\cdot|_{TV})</td>
<td>?</td>
<td>(|\cdot|1 + |D\cdot|{TV})</td>
</tr>
</tbody>
</table>

\(\delta_x\) \hspace{1cm} ? \hspace{1cm} \chi_E

\(^1\)[de Castro et al., 2021]
Desperate times call for desperate measures

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
Desperate times call for desperate measures

• let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;

• let $\mathcal{V} \overset{\text{def.}}{=} \left\{ m \in \mathcal{M}(\mathcal{X})^2, \, \text{div}(m) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_\mathcal{V} \overset{\text{def.}}{=} \|\cdot\|_{\text{TV}}^2 + \|\text{div}(\cdot)\|_{\text{TV}}$;
Desperate times call for desperate measures

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathcal{V} \overset{\text{def.}}{=} \left\{ \mathbf{m} \in \mathcal{M}(\mathcal{X})^2, \text{div}(\mathbf{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_\mathcal{V} \overset{\text{def.}}{=} \|\cdot\|_{\text{TV}^2} + \|\text{div}(\cdot)\|_{\text{TV}}$;
- let $\gamma : [0, 1] \to \mathbb{R}^d$ a 1-rectifiable parametrised Lipschitz curve,
Desperate times call for desperate measures

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathcal{V} \overset{\text{def.}}{=} \left\{ m \in \mathcal{M}(\mathcal{X})^2, \nabla(m) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_\mathcal{V} \overset{\text{def.}}{=} \|\cdot\|_{TV^2} + \|\nabla(\cdot)\|_{TV}$;
- let $\gamma : [0, 1] \to \mathbb{R}^d$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_\gamma \in \mathcal{V}$ is a measure supported on a curve γ if:

$$\forall g \in C_0(\mathcal{X})^2, \quad \langle \mu_\gamma, g \rangle_{\mathcal{M}^2} \overset{\text{def.}}{=} \int_0^1 g(\gamma(t)) \cdot \dot{\gamma}(t) \, dt.$$
Desperate times call for desperate measures

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathcal{V} := \left\{ m \in \mathcal{M}(\mathcal{X})^2, \text{div}(m) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\| \cdot \|_{\mathcal{V}} := \| \cdot \|_{TV^2} + \| \text{div}(\cdot) \|_{TV}$;
- let $\gamma : [0, 1] \to \mathbb{R}^d$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathcal{V}$ is a measure **supported on a curve** γ if:

 $$\forall g \in C_0(\mathcal{X})^2, \quad \langle \mu_{\gamma}, g \rangle_{\mathcal{M}^2} := \int_0^1 g(\gamma(t)) \cdot \dot{\gamma}(t) \, dt.$$

- simple if γ is an injective mapping;
Desperate times call for desperate measures

• let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;

• let $\mathcal{V} \overset{\text{def.}}{=} \left\{ m \in \mathcal{M}(\mathcal{X})^2, \text{div}(m) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathcal{V}} \overset{\text{def.}}{=} \|\cdot\|_{TV}^2 + \|\text{div}(\cdot)\|_{TV}$;

• let $\gamma : [0, 1] \to \mathbb{R}^d$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathcal{V}$ is a measure supported on a curve γ if:

$$\forall g \in C_0(\mathcal{X})^2, \quad \langle \mu_{\gamma}, g \rangle_{\mathcal{M}^2} \overset{\text{def.}}{=} \int_0^1 g(\gamma(t)) \cdot \dot{\gamma}(t) \, dt.$$

• simple if γ is an injective mapping;

• $\text{div } \mu_{\gamma} = \delta_{\gamma(0)} - \delta_{\gamma(1)}$.

Consider the variational problem we coined *Curves Represented On Charges*:

$$\text{argmin}_{m \in \mathcal{Y}} \frac{1}{2} \| y - \Phi m \|_H^2 + \alpha \| m \|_Y. \quad (1)$$

- $\| y - \Phi m \|_H^2$ is the data-term;
- $\| m \|_TV$ weights down the curve length, i.e. $\| \mu_{\gamma} \|_TV = H_1(\gamma((0;1)))$;
- $\| \text{div} m \|_TV$ is the (open) curve counting term.
CROC energy

Consider the variational problem we coined *Curves Represented On Charges*:

\[
\arg\min_{m \in \mathcal{V}} \frac{1}{2} \| y - \Phi m \|_{\mathcal{H}}^2 + \alpha \| m \|_{\mathcal{V}}. \tag{CROC}
\]

- \(\frac{1}{2} \| y - \Phi m \|_{\mathcal{H}}^2 \) is the data-term;
Consider the variational problem we coined *Curves Represented On Charges*:

\[
\underset{m \in V}{\text{argmin}} \, \frac{1}{2} \| y - \Phi m \|^2_H + \alpha (\| m \|_{TV^2} + \| \text{div} \, m \|_{TV})
\]

(CROC)

- \(\frac{1}{2} \| y - \Phi m \|^2_H \) is the data-term;
- \(\| m \|_{TV^2} \) weights down the curve length, i.e. \(\| \mu_\gamma \|_{TV^2} = \mathcal{H}_1(\gamma((0, 1))) \);
Consider the variational problem we coined *Curves Represented On Charges*:

\[
\arg\min_{m \in \mathcal{V}} \frac{1}{2} \| y - \Phi m \|_{\mathcal{H}}^2 + \alpha (\| m \|_{TV^2} + \| \text{div} m \|_{TV})
\] (CROC)

- \(\frac{1}{2} \| y - \Phi m \|_{\mathcal{H}}^2 \) is the data-term;
- \(\| m \|_{TV^2} \) weights down the curve length, \textit{i.e.} \(\| \mu_{\gamma} \|_{TV^2} = \mathcal{H}_1(\gamma((0, 1))) \);
- \(\| \text{div} m \|_{TV} \) is the (open) curve counting term.
Consider the variational problem we coined *Curves Represented On Charges*:

\[
\arg\min_{m \in \mathcal{Y}} \frac{1}{2} \| y - \Phi m \|_{\mathcal{H}}^2 + \alpha (\| m \|_{TV^2} + \| \text{div} m \|_{TV}) \quad \text{(CROC)}
\]

Do curve measures minimise (CROC)?
Extremepoints

Definition
Let X be a topological vector space and $K \subset X$. An extremepoint x of K is a point such that $\forall y, z \in K$:

$\forall \lambda \in (0; 1); x = \lambda y + (1 - \lambda) z \Rightarrow x = y = z$

Ext_K is the set of extremepoints of K.

12
Definition

Let X be a topological vector space and $K \subset X$. An *extreme point* x of K is a point such that $\forall y, z \in K$:

$$\forall \alpha \in (0; 1); x = \alpha y + (1 - \alpha) z \Rightarrow x = y = z$$

Ext_K is the set of extreme points of K.

Extreme points

Definition

Let X be a topological vector space and $K \subset X$. An *extreme point* x of K is a point such that $\forall y, z \in K$:

$$\forall \lambda \in (0, 1), \quad x = \lambda y + (1 - \lambda)z \quad \implies \quad x = y = z$$
Definition

Let X be a topological vector space and $K \subseteq X$. An **extreme point** x of K is a point such that $\forall y, z \in K$:

$$\forall \lambda \in (0, 1), x = \lambda y + (1 - \lambda)z \implies x = y = z$$

$\text{Ext } K$ is the set of extreme points of K.

Ext K in red
Let $F : E \to \mathbb{R}^m$, G the data-term, R the regulariser, $\alpha > 0$.

$$F = G + \alpha R$$
Let $F : E \to \mathbb{R}^m$, G the data-term, R the regulariser, $\alpha > 0$.

$$F = G + \alpha R$$

B_1^E is the unit-ball of R: $B_1^E \overset{\text{def.}}{=} \{ u \in E \mid R(u) \leq 1 \}$.
Link with extreme points: the representer theorem

Let $F : E \rightarrow \mathbb{R}^m$, G the data-term, R the regulariser, $\alpha > 0$.

$$F = G + \alpha R$$

B^1_E is the unit-ball of R: $B^1_E \overset{\text{def.}}{=} \{u \in E \mid R(u) \leq 1\}$.

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of $\text{Ext } B^1_E$.
Link with extreme points: the representer theorem

Let $F : E \rightarrow \mathbb{R}^m$, G the data-term, R the regulariser, $\alpha > 0$.

$$ F = G + \alpha R $$

B^1_E is the unit-ball of R: $B^1_E \overset{\text{def.}}{=} \{ u \in E \mid R(u) \leq 1 \}$.

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of $\text{Ext } B^1_E$

Characterise $\text{Ext } B^1_E$ of the regulariser \iff outline the structure of a *minimum* of F.
• If $E = \mathcal{M}(\mathcal{X})$ and $R = \|\cdot\|_{TV}$, then:

\[\text{Ext}(\mathcal{B}(\mathcal{M}(\mathcal{X}))) = \{x; x \in \mathcal{X}\} \]

• If $E = \mathcal{BV}(\mathcal{X})$ and $R = \|\cdot\|_{BV}$, then:

\[\text{Ext}(\mathcal{B}(\mathcal{BV}(\mathcal{X}))) = \text{Per}(E); E \subset \mathcal{X} \text{ is simple} \]

• If $E = \mathcal{V}$ and $R = \|\cdot\|_{V}$, then:

\[\text{Ext}(\mathcal{B}(\mathcal{V})) = ? \]
Extreme points in measure spaces

- If $E = \mathcal{M}(\mathcal{X})$ and $R = \|\cdot\|_{TV}$, then:

$$\text{Ext}(\mathcal{B}_\mathcal{M}) = \{\delta_x, x \in \mathcal{X}\}.$$
Extreme points in measure spaces

- If $E = \mathcal{M}(\mathcal{X})$ and $R = \|\cdot\|_{TV}$, then:
 \[
 \text{Ext}(\mathcal{B}_\mathcal{M}) = \{\delta_x, x \in \mathcal{X}\}.
 \]

- If $E = \mathcal{BV}(\mathcal{X})$ and $R = \|\cdot\|_{BV}$, then:
 \[
 \text{Ext}(\mathcal{B}_\mathcal{BV}) = \left\{\frac{1}{\text{Per}(E)} \chi_E, E \subset \mathcal{X} \text{ is simple}\right\}.
 \]
Extreme points in measure spaces

- If $E = \mathcal{M}(\mathcal{X})$ and $R = \|\cdot\|_{TV}$, then:
 \[
 \text{Ext}(\mathcal{B}_\mathcal{M}) = \{\delta_x, x \in \mathcal{X}\}.
 \]

- If $E = \mathcal{BV}(\mathcal{X})$ and $R = \|\cdot\|_{BV}$, then:
 \[
 \text{Ext}(\mathcal{B}_{\mathcal{BV}}) = \left\{ \frac{1}{\text{Per}(E)} \chi_E, E \subset \mathcal{X} \text{ is simple} \right\}.
 \]

- If $E = \mathcal{V}$ and $R = \|\cdot\|_\mathcal{V}$, then:
 \[
 \text{Ext}(\mathcal{B}_\mathcal{V}) = ?
 \]
Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathcal{G} \overset{\text{def.}}{=} \left\{ \frac{\mu_\gamma}{\|\mu_\gamma\|_\gamma}, \gamma \text{ Lipschitz 1-rectifiable simple curve} \right\}.$$
Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathcal{G} \overset{\text{def.}}{=} \left\{ \frac{\mu_\gamma}{\|\mu_\gamma\|_\gamma}, \gamma \text{ Lipschitz 1-rectifiable simple curve} \right\}.$$

Theorem (Main result of [Laville et al., 2023b])

Let $B^1_\mathcal{V} \overset{\text{def.}}{=} \{ m \in \mathcal{V}, \| m \|_\mathcal{V} \leq 1 \}$ the unit ball of the \mathcal{V}-norm.
Let the (non-complete) set of curve measures endowed with weak-\(^\ast\) topology:

\[
\mathcal{G} \overset{\text{def.}}{=} \left\{ \frac{\mu_{\gamma}}{\| \mu_{\gamma} \|_{\mathcal{Y}}} \right\}, \; \gamma \text{ Lipschitz } 1\text{-rectifiable simple curve}
\]

Theorem (Main result of [Laville et al., 2023b])

Let \(B_{\mathcal{Y}}^1 \overset{\text{def.}}{=} \{ m \in \mathcal{Y}, \| m \|_{\mathcal{Y}} \leq 1 \} \) the unit ball of the \(\mathcal{Y} \)-norm. Then,

\[
\text{Ext}(B_{\mathcal{Y}}^1) = \mathcal{G}.
\]
Off-the-grid numerical reconstruction
• No Hilbertian structure on measure spaces: no proximal algorithm;

General setup in off-the-grid
General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
• No Hilbertian structure on measure spaces: no proximal algorithm;
• we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
• it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
• No Hilbertian structure on measure spaces: no proximal algorithm;
• we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
• it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

⇒ perfect with our latter results!
General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

→ perfect with our latter results!

We present the Charge Sliding Frank-Wolfe algorithm.
Synthetic problem

Figure 2: The source and its noisy acquired image
Figure 2: The source and its noisy acquired image I
Acquisition process and certificate

- a possible choice consists in setting $\Phi = \ast \nabla h$ since:

![Figure 3: The certificate \mid on the left, u on the right.](image-url)
• a possible choice consists in setting $\Phi = \ast \nabla h$ since:
 • μ_γ is vector, hence we need vector datum $y = \text{like the gradient}$;
• a possible choice consists in setting $\Phi = \star \nabla h$ since:
 • μ_γ is vector, hence we need vector datum $y = \text{like the gradient}$;
 • let u be the support of the curve, then we feel that:

$$\eta = \Phi^*(\Phi m - y) \approx \Delta u$$

Figure 3: The certificate $|\eta|$ on the left, u on the right.
Acquisition process and certificate

- A possible choice consists in setting $\Phi = \ast \nabla h$ since:
 - μ_γ is vector, hence we need vector datum $y = \nabla I$ like the gradient;
 - let u be the support of the curve, then we feel that:

$$\eta = \Phi^* (\Phi m - y) \simeq \Delta u$$

![Figure 3](image_url)

Figure 3: The certificate $|\eta|$ on the left, u on the right.
Acquisition process and certificate

• a possible choice consists in setting $\Phi = * \nabla h$ since:
 • μ_γ is vector, hence we need vector datum $y = \nabla I$ like the gradient;
 • let u be the support of the curve, then we feel that:

\[
\eta = \Phi^*(\Phi m - y |\nabla I|) \simeq \Delta u
\]

Figure 3: The certificate $|\eta|$ on the left, u on the right.
Final results

Reconstruction [Laville et al., 2023a].
Reconstruction [Laville et al., 2023a].
Another discretisation

- polygonal works well, **under peculiar circumstances**;
Another discretisation

- polygonal works well, **under peculiar circumstances**;
- Bézier curves holds nice regularity properties, encodes a curve with few control points.
Another discretisation

- polygonal works well, **under peculiar circumstances**;
- Bézier curves holds nice regularity properties, encodes a curve with few control points
- Pro: always smooth curves. Cons: prone to shortening.
Conclusion
<table>
<thead>
<tr>
<th>Recap</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;</td>
</tr>
</tbody>
</table>
Partial conclusion

Recap

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;</td>
<td></td>
</tr>
<tr>
<td>• struggles with the vector operator definition;</td>
<td></td>
</tr>
</tbody>
</table>
Recap

- Charge Sliding Frank-Woge, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the *vector* operator definition;
- discretisation insights.
Partial conclusion

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the vector operator definition;
- discretisation insights.

Still, there is room for improvements:

- define a scalar operator, further enabling curve reconstruction in fluctuation microscopy;
- improve the support estimation step;
- tackle the curve crossing issue.

Towards off-the-grid algorithms for total variation regularized inverse problems.
In Lecture Notes in Computer Science, pages 553–564. Springer International Publishing.

Exact reconstruction using beurling minimal extrapolation.

Exact support recovery for sparse spikes deconvolution.
An algorithm for quadratic programming.

Laville, B., Blanc-Féraud, L., and Aubert, G. (2023a).
Off-the-grid charge algorithm for curve reconstruction in inverse problems.

Laville, B., Blanc-Féraud, L., and Aubert, G. (2023b).
Off-the-grid curve reconstruction through divergence regularization: An extreme point result.
SIAM Journal on Imaging Sciences, 16(2):867–885.

Recap: iterate the algorithm

Figure 4: First step of first iteration: certificate and support of new curve estimated
Recap: iterate the algorithm

\[\Gamma = \gamma([0, 1]) \]

\[\Gamma = \gamma([0, 1]) \]

Figure 4: First step of first iteration: certificate and support of new curve estimated
Recap: iterate the algorithm

Amplitude optimisation

Figure 4: First iteration: second and third steps
Recap: iterate the algorithm

Amplitude optimisation

Both amplitude and position optimisation

Figure 4: First iteration: second and third steps
Recap: iterate the algorithm

Figure 4: Second iteration: another curve is found
Recap: iterate the algorithm

Figure 4: Second iteration: another curve is found