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Biomedical imaging

Objective
To image live biological structures at small scales.

Physical limitation due to diffraction for bodies < 200 nm: convolution by the
microscope’s point spread function (PSF).
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Grid or gridless?

Reconstruction Ŝ is now off‑the‑grid 4
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Quantities

• X is a compact ofRd;

• how tomodel spikes ? Through Dirac measure δx, element of the set of Radon
measuresM (X );

• topological dual of C0 (X ) equipped with ⟨f,m⟩ =
´
X fdm. Generalises L1 (X ) ;

L1 (X ) ↪→ M (X );
• Banach endowed with TV‑norm : m ∈ M (X ),

|m|(X )
def.
= sup

(ˆ
X
fdm

∣∣∣∣ f ∈ C0 (X ) , ∥f∥∞,X ≤ 1
)
.

Ifm =
∑N

i=1 aiδxi a discrete measure, then |m|(X ) =
∑N

i=1 |ai|.
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A LASSO equivalent for measures

• Let the sourcema0,x0
def.
=

∑N
i=1 aiδxi ∈ M (X ) a discrete measure;

• Φ : M (X ) → Rp the acquisition operator, e.g. Φma0,x0
def.
=

∑N
i=1 aih(x− xi);

• w ∈ Rp additive noise;
• y def.

= Φma0,x0 + w.

We call BLASSO the problem
[de Castro and Gamboa, 2012, Bredies and Pikkarainen, 2012] for λ > 0 :

argmin
m∈M(X )

1
2∥y− Φm∥2Rp + λ|m|(X ) (Pλ(y))

One of its minimisers is a sum of Dirac, close toma0,x0 [Duval and Peyré, 2014].

Difficult numerical problem: infinite dimensional, non‑reflexive. Tackled by greedy
algorithm like Frank‑Wolfe [Frank and Wolfe, 1956] , etc.
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Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit
fluorophores per image.

Figure 1: Two excerpts from a SMLM stack 7
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Results on SMLM

Stack mean

Off‑the‑grid [Laville et al., 2021] Deep‑STORM [Nehme et al., 2018]

SMLM drawback: a lot of images, no live‑cell imaging.
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9



DR
AF
T

Geometry encoded in off‑the‑grid

0D

1D 2D

Geometry Spikes
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Regulariser ∥·∥TV

? ∥·∥1 + ∥D·∥TV
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Desperate times call for desperate measures

• letM (X )2 be the space of vector Radonmeasures;

• let V def.
=

{
m ∈ M (X )2, div(m) ∈ M (X )

}
the space of charges, or divergence

vector fields. It is a Banach equipped with ∥·∥V
def.
= ∥·∥TV2 + ∥div(·)∥TV;

• let γ : [0, 1] → Rd a 1‑rectifiable parametrised Lipschitz curve, we say thatµγ ∈ V

is a measure supported on a curve γ if:

∀g ∈ C0(X )2, ⟨µγ , g⟩M2
def.
=

ˆ 1

0
g(γ(t)) · γ̇(t) dt.

• simple if γ is an injective mapping;
• divµγ = δγ(0) − δγ(1).
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CROC energy

Consider the variational problemwe coined Curves Represented On Charges:

argmin
m∈V

1
2∥y− Φm∥2H + α∥m∥V . (CROC)

argmin
m∈V

1
2∥y− Φm∥2H + α(∥m∥TV2 + ∥divm∥TV) (CROC)

• 1
2∥y− Φm∥2H is the data‑term;

• ∥m∥TV2 weights down the curve length, i.e. ∥µγ∥TV2 = H1(γ((0, 1)));
• ∥divm∥TV is the (open) curve counting term.

Do curve measures minimise (CROC)?
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Extreme points

Definition
Let X be a topological vector space and
K ⊂ X. An extreme point x of K is a point
such that ∀y, z ∈ K:

∀λ ∈ (0, 1), x = λy+ (1− λ)z
=⇒ x = y = z

Ext K is the set of extreme points of K. Ext K in red
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Link with extreme points: the representer theorem

Let F : E → Rm, G the data‑term, R the regulariser, α > 0.

F = G+ αR

B1
E is the unit‑ball of R: B1

E
def.
= {u ∈ E | R(u) ≤ 1}.

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])
There exists a minimiser of F which is a linear sum of extreme points of ExtB1

E

Characterise ExtB1
E of the regulariser ⇐⇒ outline the structure of aminimum of F.

13
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Extreme points in measure spaces

• If E = M (X ) and R = ∥·∥TV, then:

Ext(BM) = {δx, x ∈ X} .

• If E = BV(X ) and R = ∥·∥BV, then:

Ext(BBV) =

{
1

Per(E) χE, E ⊂ X is simple
}
.

• If E = V and R = ∥·∥V , then:

Ext(BV ) =?

14
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Main result

Let the (non‑complete) set of curve measures endowed with weak‑∗ topology:

G
def.
=

{
µγ

∥µγ∥V

, γ Lipschitz 1‑rectifiable simple curve
}
.

Theorem (Main result of [Laville et al., 2023b])

Let B1
V

def.
= {m ∈ V , ∥m∥V ≤ 1} the unit ball of the V ‑norm. Then,

Ext(B1
V ) = G.
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General setup in off‑the‑grid

• No Hilbertian structure onmeasure spaces: no proximal algorithm;

• we use the Frank‑Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

• it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

↪→ perfect with our latter results!

We present the Charge Sliding Frank‑Wolfe algorithm.
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Synthetic problem
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Figure 2: The source and its noisy acquired image I

17



DR
AF
T

Synthetic problem

0.00

0.05

0.10

0.15

0.20

Figure 2: The source and its noisy acquired image I

17



DR
AF
T

Acquisition process and certificate

• a possible choice consists in settingΦ = ∗∇h since:

• µγ is vector, hence we need vector datum y = like the gradient;
• let u be the support of the curve, then we feel that:

η = Φ∗(Φm− y︸︷︷︸
=∇I

) ≃ ∆u

= ([0, 1])

6

4

2

0

2

4 = ([0, 1])

Figure 3: The certificate |η| on the left, u on the right.
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Final results
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Reconstruction [Laville et al., 2023a].
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Another discretisation

• polygonal works well, under peculiar
circumstances;

• Bézier curves holds nice regularity
properties, encodes a curve with few
control points

• Pro: always smooth curves. Cons:
prone to shortening.
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Partial conclusion

Recap
• Charge Sliding Frank‑Wofe, an algorithm designed to recover off‑the‑grid curves in
inverse problem;

• struggles with the vector operator definition;
• discretisation insights.

Still, there is room for improvements:

• define a scalar operator, further enabling curve reconstruction in fluctuation
microscopy;

• improve the support estimation step;
• tackle the curve crossing issue.
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