Reconstruction de courbes en super-résolution sans-grille

Bastien Laville, Laure Blanc-Féraud, Gilles Aubert

30th August 2023

Morpheme research team Inria, CNRS, Université Côte d'Azur 1. Introduction

- 2. Off-the-grid spikes
- 3. A new divergence regularisation
- 4. Off-the-grid numerical reconstruction

5. Conclusion

Introduction

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Source to estimate

Introducing a grid

Reconstruction \hat{S} on a grid

Reconstruction \hat{S} on a finer grid

Reconstruction \hat{S} is now **off-the-grid**

Off-the-grid spikes

• \mathcal{X} is a compact of \mathbb{R}^d ;

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f dm$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f dm$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
- Banach endowed with TV-norm : $m\in\mathcal{M}\left(\mathcal{X}
 ight)$,

$$|m|(\mathcal{X}) \stackrel{ ext{def.}}{=} \sup\left(\int_{\mathcal{X}} f \,\mathrm{d}m \,\bigg|\, f \in \mathscr{C}_0\left(\mathcal{X}
ight), \|f\|_{\infty,\mathcal{X}} \leq 1
ight).$$

If $m = \sum_{i=1}^{N} a_i \delta_{x_i}$ a discrete measure

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f dm$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
- Banach endowed with TV-norm : $m\in\mathcal{M}\left(\mathcal{X}
 ight)$,

$$\|m\|(\mathcal{X}) \stackrel{\mathrm{def.}}{=} \sup\left(\int_{\mathcal{X}} f \,\mathrm{d}m \,\bigg|\, f \in \mathscr{C}_0\left(\mathcal{X}
ight), \|f\|_{\infty,\mathcal{X}} \leq 1
ight).$$

If $m = \sum_{i=1}^{N} a_i \delta_{x_i}$ a discrete measure, then $|m|(\mathcal{X}) = \sum_{i=1}^{N} |a_i|$.

• Let the source
$$m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}\right)$$
 a discrete measure:

- Let the source $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^{N} a_i \delta_{x_i} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$

- Let the source $m_{a_0,x_0} \stackrel{ ext{def.}}{=} \sum_{i=1}^{N} a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in \mathbb{R}^p$ additive noise;

- Let the source $m_{a_{0},x_{0}}\stackrel{\mathrm{def.}}{=}\sum_{i=1}^{N}a_{i}\delta_{x_{i}}\in\mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

- Let the source $m_{a_0,x_0} \stackrel{ ext{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

We call **BLASSO** the problem

[de Castro and Gamboa, 2012, Bredies and Pikkarainen, 2012] for $\lambda >$ 0 :

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi m\|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

- Let the source $m_{a_0,x_0} \stackrel{ ext{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

We call **BLASSO** the problem

[de Castro and Gamboa, 2012, Bredies and Pikkarainen, 2012] for $\lambda >$ 0 :

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \| y - \Phi m \|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

One of its minimisers is a sum of Dirac, close to m_{a_0,x_0} [Duval and Peyré, 2014].

- Let the source $m_{a_0,x_0} \stackrel{ ext{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

We call **BLASSO** the problem

[de Castro and Gamboa, 2012, Bredies and Pikkarainen, 2012] for $\lambda >$ 0 :

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \| y - \Phi m \|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

One of its minimisers is a sum of Dirac, close to m_{a_0,x_0} [Duval and Peyré, 2014].

Difficult numerical problem: infinite dimensional, non-reflexive. Tackled by greedy algorithm like *Frank-Wolfe* [Frank and Wolfe, 1956], *etc*.

Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit fluorophores per image.

Figure 1: Two excerpts from a SMLM stack

Stack mean

Stack mean

Off-the-grid [Laville et al., 2021]

Stack mean

Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

Stack mean Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

SMLM drawback: a lot of images, no live-cell imaging.

A new divergence regularisation

Geometry encoded in off-the-grid

	0D		
Geometry	Spikes		
Space	$\mathcal{M}\left(\mathcal{X} ight)$		
Regulariser	$\left\ \cdot\right\ _{\mathrm{TV}}$		

Geometry encoded in off-the-grid

	0D	$2D^1$
Geometry	Spikes	Sets
Space	$\mathcal{M}(\mathcal{X})$	$\mathrm{BV}(\mathcal{X})$
Regulariser	$\left\ \cdot\right\ _{\mathrm{TV}}$	$\left\ \cdot\right\ _{1}+\left\ \mathrm{D}\cdot\right\ _{\mathrm{TV}}$

¹[de Castro et al., 2021]

 δ_x
Geometry encoded in off-the-grid

¹[de Castro et al., 2021]

• let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \textbf{\textit{m}} \in \mathcal{M} \left(\mathcal{X} \right)^2, \, \mathsf{div}(\textbf{\textit{m}}) \in \mathcal{M} \left(\mathcal{X} \right) \right\}$ the space of *charges*, or *divergence*

vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\mathsf{div}(\cdot)\|_{\mathrm{TV}};$

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma: [0,1]
 ightarrow \mathbb{R}^d$ a 1-rectifiable parametrised Lipschitz curve,

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma : [0, 1] \to \mathbb{R}^d$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure **supported on a curve** γ if:

$$\forall \boldsymbol{g} \in \boldsymbol{C_0}(\boldsymbol{\mathcal{X}})^{\boldsymbol{2}}, \quad \langle \boldsymbol{\mu_{\gamma}}, \boldsymbol{g} \rangle_{\boldsymbol{\mathcal{M}}^{\boldsymbol{2}}} \stackrel{\text{def.}}{=} \int_0^1 \boldsymbol{g}(\boldsymbol{\gamma}(t)) \cdot \dot{\boldsymbol{\gamma}}(t) \, \mathrm{d}t.$$

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma : [0, 1] \to \mathbb{R}^d$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure **supported on a curve** γ if:

$$orall oldsymbol{g} \in oldsymbol{C}_0(\mathcal{X})^2, \quad \langle oldsymbol{\mu}_\gamma, oldsymbol{g}
angle_{\mathcal{M}^2} \stackrel{ ext{def.}}{=} \int_0^1 oldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \, \mathrm{d}t.$$

• simple if γ is an injective mapping;

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma : [0, 1] \to \mathbb{R}^d$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure **supported on a curve** γ if:

$$orall oldsymbol{g} \in oldsymbol{C}_{oldsymbol{0}}(oldsymbol{\mathcal{X}})^{oldsymbol{2}}, \quad \langle oldsymbol{\mu}_{oldsymbol{\gamma}}, oldsymbol{g}
angle_{oldsymbol{\mathcal{M}}^2} \stackrel{ ext{def.}}{=} \int_0^1 oldsymbol{g}(oldsymbol{\gamma}(t)) \cdot \dot{oldsymbol{\gamma}}(t) \, \mathrm{d}t.$$

- simple if γ is an injective mapping;
- div $\mu_{\gamma} = \delta_{\gamma(0)} \delta_{\gamma(1)}$.

CROC energy

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathscr{H}}^2 + \alpha \| \boldsymbol{m} \|_{\mathscr{V}}. \tag{CROC}$$

CROC energy

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathscr{H}}^2 + \alpha \| \boldsymbol{m} \|_{\mathscr{V}}. \tag{CROC}$$

•
$$\frac{1}{2} \|y - \Phi \boldsymbol{m}\|_{\mathcal{H}}^2$$
 is the data-term;

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathscr{H}}^{2} + \alpha (\| \boldsymbol{m} \|_{\mathrm{TV}^{2}} + \| \operatorname{div} \boldsymbol{m} \|_{\mathrm{TV}})$$
(CROC)

- $\frac{1}{2} \| y \Phi \boldsymbol{m} \|_{\mathcal{H}}^2$ is the data-term;
- $\|\pmb{m}\|_{\mathrm{TV}^2}$ weights down the curve length, *i.e.* $\|\mu_{\gamma}\|_{\mathrm{TV}^2} = \mathscr{H}_1(\gamma((0,1)));$

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\Phi}\,\boldsymbol{m}\|_{\mathscr{H}}^{2} + \alpha(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}} + \|\operatorname{div}\boldsymbol{m}\|_{\mathrm{TV}}) \tag{CROC}$$

- $\frac{1}{2} \|y \Phi \boldsymbol{m}\|_{\mathcal{H}}^2$ is the data-term;
- $\|\pmb{m}\|_{\mathrm{TV}^2}$ weights down the curve length, *i.e.* $\|\mu_{\gamma}\|_{\mathrm{TV}^2} = \mathscr{H}_1(\gamma((0,1)));$
- $\left\|\operatorname{div} \boldsymbol{m}\right\|_{\mathrm{TV}}$ is the (open) curve counting term.

Consider the variational problem we coined *Curves Represented On Charges*:

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\Phi}\,\boldsymbol{m}\|_{\mathscr{H}}^{2} + \alpha(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}} + \|\operatorname{div}\boldsymbol{m}\|_{\mathrm{TV}}) \tag{CROC}$$

Do curve measures minimise (CROC)?

Definition

Let *X* be a topological vector space and $K \subset X$. An *extreme point x* of *K* is a point such that $\forall y, z \in K$:

Definition

Let X be a topological vector space and $K \subset X$. An *extreme point* x of K is a point such that $\forall y, z \in K$:

$$\forall \lambda \in (0, 1), x = \lambda y + (1 - \lambda)z$$

 $\implies x = y = z$

Definition

Let X be a topological vector space and $K \subset X$. An *extreme point* x of K is a point such that $\forall y, z \in K$:

$$orall \lambda \in (0,1), x = \lambda y + (1-\lambda)z$$

 $\implies x = y = z$

Ext K is the set of extreme points of K.

$$F = G + \alpha R$$

$$F = G + \alpha R$$

$$\mathcal{B}^1_E$$
 is the unit-ball of R : $\mathcal{B}^1_E \stackrel{\text{def.}}{=} \{u \in E \,|\, R(u) \leq 1\}.$

$$F = G + \alpha R$$

 \mathcal{B}^1_E is the unit-ball of R: $\mathcal{B}^1_E \stackrel{\text{def.}}{=} \{u \in E \,|\, R(u) \leq 1\}.$

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of $\operatorname{Ext} \mathcal{B}_F^1$

$$F = G + \alpha R$$

$$\mathcal{B}^1_E$$
 is the unit-ball of R : $\mathcal{B}^1_E \stackrel{\mathrm{def.}}{=} \{u \in E \,|\, R(u) \leq 1\}.$

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of $\operatorname{Ext} \mathcal{B}^1_E$

Characterise Ext \mathcal{B}^1_E of the regulariser \iff outline the structure of a *minimum* of *F*.

• If $E = \mathcal{M}(\mathcal{X})$ and $R = \|\cdot\|_{\mathrm{TV}}$, then:

Extreme points in measure spaces

• If $E = \mathcal{M}(\mathcal{X})$ and $R = \|\cdot\|_{\mathrm{TV}}$, then:

 $\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_x, x \in \mathcal{X}\}.$

Extreme points in measure spaces

• If $\textit{E} = \mathcal{M}\left(\mathcal{X}
ight)$ and $\textit{R} = \left\|\cdot\right\|_{\mathrm{TV}}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_{x}, x \in \mathcal{X}\}.$$

• If
$$E = BV(\mathcal{X})$$
 and $R = \left\|\cdot\right\|_{BV}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathrm{BV}}) = \left\{ \frac{1}{\operatorname{Per}(\mathcal{E})} \, \chi_{\mathcal{E}}, \, \mathcal{E} \subset \mathcal{X} \text{ is simple}
ight\}.$$

Extreme points in measure spaces

• If $\textit{E} = \mathcal{M}\left(\mathcal{X}
ight)$ and $\textit{R} = \left\|\cdot\right\|_{\mathrm{TV}}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_x, x \in \mathcal{X}\}.$$

• If
$$E = BV(\mathcal{X})$$
 and $R = \|\cdot\|_{BV}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathrm{BV}}) = \left\{ \frac{1}{\operatorname{Per}(\mathcal{E})} \, \chi_{\mathcal{E}}, \, \mathcal{E} \subset \mathcal{X} \text{ is simple}
ight\}.$$

• If $E = \mathscr{V}$ and $R = \|\cdot\|_{\mathscr{V}}$, then:

 $\mathsf{Ext}(\mathcal{B}_{\mathscr{V}}) = ?$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ rac{\mu_{\boldsymbol{\gamma}}}{\|\mu_{\boldsymbol{\gamma}}\|_{\mathscr{V}}}, \, \boldsymbol{\gamma} \, \mathsf{Lipschitz} \, \mathsf{1} ext{-rectifiable simple curve}
ight\}.$$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ rac{\mu_{\boldsymbol{\gamma}}}{\|\mu_{\boldsymbol{\gamma}}\|_{\mathscr{V}}}, \, \boldsymbol{\gamma} \, \mathsf{Lipschitz} \, \mathsf{1} ext{-rectifiable simple curve}
ight\}.$$

Theorem (Main result of [Laville et al., 2023b])

Let $\mathcal{B}^1_{\mathscr{V}} \stackrel{\text{def.}}{=} \{ \boldsymbol{m} \in \mathscr{V}, \| \boldsymbol{m} \|_{\mathscr{V}} \leq 1 \}$ the unit ball of the \mathscr{V} -norm.

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ rac{\mu_{\boldsymbol{\gamma}}}{\|\mu_{\boldsymbol{\gamma}}\|_{\mathscr{V}}}, \, \boldsymbol{\gamma} \, \mathsf{Lipschitz} \, \mathsf{1} ext{-rectifiable simple curve}
ight\}.$$

Theorem (Main result of [Laville et al., 2023b])

Let $\mathcal{B}^1_{\mathscr{V}} \stackrel{\mathrm{def.}}{=} \{ \pmb{m} \in \mathscr{V}, \|\pmb{m}\|_{\mathscr{V}} \leq 1 \}$ the unit ball of the \mathscr{V} -norm. Then,

$$\operatorname{Ext}(\mathcal{B}^1_{\mathscr{V}}) = \mathfrak{G}.$$

Off-the-grid numerical reconstruction

• No Hilbertian structure on measure spaces: no proximal algorithm;

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
- \hookrightarrow perfect with our latter results!

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
- \hookrightarrow perfect with our latter results!

We present the Charge Sliding Frank-Wolfe algorithm.

Figure 2: The source and its noisy acquired image I
• a possible choice consists in setting $\Phi = * \nabla h$ since:

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y = like the gradient;

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y = like the gradient;
 - let *u* be the support of the curve, then we feel that:

$$\eta = \Phi^* (\Phi m - \underbrace{y}_{=\nabla t}) \simeq \Delta u$$

Figure 3: The certificate $|\eta|$ on the left, *u* on the right.

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y = like the gradient;
 - let *u* be the support of the curve, then we feel that:

$$\eta = \Phi^* (\Phi m - \underbrace{y}_{=\nabla t}) \simeq \Delta u$$

Figure 3: The certificate $|\eta|$ on the left, *u* on the right.

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y = like the gradient;
 - let *u* be the support of the curve, then we feel that:

$$\eta = \Phi^* (\Phi m - \underbrace{y}_{=\nabla t}) \simeq \Delta u$$

Figure 3: The certificate $|\eta|$ on the left, *u* on the right.

Final results

Reconstruction [Laville et al., 2023a].

Reconstruction [Laville et al., 2023a].

polygonal works well, under peculiar circumstances;

- polygonal works well, under peculiar circumstances;
- Bézier curves holds nice regularity properties, encodes a curve with few control points

- polygonal works well, under peculiar circumstances;
- Bézier curves holds nice regularity properties, encodes a curve with few control points
- Pro: always smooth curves. Cons: prone to shortening.

Conclusion

Recap

• Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the *vector* operator definition;

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the vector operator definition;
- discretisation insights.

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the vector operator definition;
- discretisation insights.

Still, there is room for improvements:

- define a *scalar* operator, further enabling curve reconstruction in fluctuation microscopy;
- improve the support estimation step;
- tackle the curve crossing issue.

References i

Boyer, C., Chambolle, A., Castro, Y. D., Duval, V., de Gournay, F., and Weiss, P. (2019).
 On representer theorems and convex regularization.
 SIAM Journal on Optimization, 29(2):1260–1281.

Bredies, K. and Carioni, M. (2019).

Sparsity of solutions for variational inverse problems with finite-dimensional data.

Calculus of Variations and Partial Differential Equations, 59(1).

Bredies, K. and Pikkarainen, H. K. (2012).

Inverse problems in spaces of measures.

ESAIM: Control, Optimisation and Calculus of Variations, 19(1):190–218.

References ii

de Castro, Y., Duval, V., and Petit, R. (2021).

Towards off-the-grid algorithms for total variation regularized inverse problems.

In *Lecture Notes in Computer Science*, pages 553–564. Springer International Publishing.

de Castro, Y. and Gamboa, F. (2012).

Exact reconstruction using beurling minimal extrapolation.

Journal of Mathematical Analysis and Applications, 395(1):336–354.

📄 Duval, V. and Peyré, G. (2014).

Exact support recovery for sparse spikes deconvolution.

Foundations of Computational Mathematics, 15(5):1315–1355.

References iii

Frank, M. and Wolfe, P. (1956).

An algorithm for quadratic programming.

Naval Research Logistics Quarterly, 3(1-2):95–110.

- Laville, B., Blanc-Féraud, L., and Aubert, G. (2023a).
 Off-the-grid charge algorithm for curve reconstruction in inverse problems.
 In *Lecture Notes in Computer Science*, pages 393–405. Springer International Publishing.
- Laville, B., Blanc-Féraud, L., and Aubert, G. (2023b).
 Off-the-grid curve reconstruction through divergence regularization: An extreme point result.

SIAM Journal on Imaging Sciences, 16(2):867–885.

- Laville, B., Blanc-Féraud, L., and Aubert, G. (2021).
 Off-The-Grid Variational Sparse Spike Recovery: Methods and Algorithms. *Journal of Imaging*, 7(12):266.
- Nehme, E., Weiss, L. E., Michaeli, T., and Shechtman, Y. (2018).
 Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica, 5(4):458.

Figure 4: First step of first iteration: certificate and support of new curve estimated

Figure 4: First step of first iteration: certificate and support of new curve estimated

Amplitude optimisation

Figure 4: First iteration: second and third steps

Amplitude optimisation

Both amplitude and position optimisation

Figure 4: First iteration: second and third steps

Figure 4: Second iteration: another curve is found

Figure 4: Second iteration: another curve is found