Super-résolution sans-grille en imagerie de fluctuation.

Bastien Laville, Laure Blanc-Féraud, Gilles Aubert

Projet Morpheme : Inria SAM, CNRS, UCA (France)

GRETSI 2022

Sommaire

État de l'art sans-grille 00000000 Reconstruction par covariance

Conclusion

Introduction

Introduction

État de l'art sans-grille

Reconstruction par covariance

Conclusion

Contexte biomédical

Objectif

Imager des structures biologiques à de petites échelles

Reconstruction par covariance

Conclusion

Contexte biomédical

Objectif

Imager des structures biologiques à de petites échelles

Limitation physique à cause de la diffraction pour des corps $<200~\rm{nm}$: convolution par la *point spread function* (PSF) du microscope

PSF h = disque d'Airy ou gaussienne.

Reconstruction par covariance

Conclusion

Contexte biomédical

Objectif

Imager des structures biologiques à de petites échelles

Limitation physique à cause de la diffraction pour des corps $<200~\rm{nm}$: convolution par la *point spread function* (PSF) du microscope

Reconstruction par exemple par microscopie de fluorescence SMLM : pile d'acquisition avec peu de fluorophores allumés par image. Défauts : beaucoup d'images ($\approx 1 \times 10^4$, ne permet pas l'imagerie de cellules vivantes).

Pile EPFL SMLM Challenge (10000 images, haute densité) :

Moyenne de la pile

Reconstruction par covariance

Pile EPFL SMLM Challenge (10000 images, haute densité) :

Reconstruction par covariance

Conclusion

Pile EPFL SMLM Challenge (10000 images, haute densité) :

Reconstruction par covariance

Conclusion

Pile EPFL SMLM Challenge (10000 images, haute densité) :

Défauts SMLM : beaucoup d'images, pas d'imagerie de cellules vivantes.

Introd	

Problème inverse, à partir d'une acquisition on reconstruit positions et amplitudes de pics.

Problème inverse, à partir d'une acquisition on reconstruit positions et amplitudes de pics.

- déconvolution sans-grille peut s'interpréter comme la « limite » d'une grille de plus en plus fine ;
- plus limité par la grille fine.

Le cas discret

- les pics reconstruits sont nécessairement sur une grille ;
- optimisation combinatoire (non-)convexe ;
- littérature fournie.

Le cas discret

- les pics reconstruits sont nécessairement sur une grille ;
- optimisation combinatoire (non-)convexe;
- littérature fournie.

Le cas sans-grille

- pas de limitation par la grille ;
- convexité mais dim infinie ;
- garanties (unicité, etc) ;
- information structurelle sur la solution ;
- domaine de recherche récent.

Reconstruction par covariance

Conclusion

État de l'art sans-grille

Positionnement :

• \mathcal{X} est un compact de \mathbb{R}^d ;

Reconstruction par covariance

Conclusion

État de l'art sans-grille

Positionnement :

- $\mathcal X$ est un compact de $\mathbb R^d$;
- comment modéliser les pics ? Par mesures de Dirac δ_x , élément de *l'ensemble des mesures de Radon finies* $\mathcal{M}(\mathcal{X})$;

Reconstruction par covariance

Conclusion

État de l'art sans-grille

Positionnement :

- $\mathcal X$ est un compact de $\mathbb R^d$;
- comment modéliser les pics ? Par mesures de Dirac δ_x , élément de *l'ensemble des mesures de Radon finies* $\mathcal{M}(\mathcal{X})$;
- dual topologique de $\mathscr{C}_0(\mathcal{X})$ pour $\langle f, m \rangle = \int_{\mathcal{X}} f \, \mathrm{d}m$. Généralisation de $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;

Conclusion

État de l'art sans-grille

Positionnement :

- $\mathcal X$ est un compact de $\mathbb R^d$;
- comment modéliser les pics ? Par mesures de Dirac δ_x , élément de *l'ensemble des mesures de Radon finies* $\mathcal{M}(\mathcal{X})$;
- dual topologique de $\mathscr{C}_0(\mathcal{X})$ pour $\langle f, m \rangle = \int_{\mathcal{X}} f \, \mathrm{d}m$. Généralisation de $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
- Banach pour la norme TV : $m\in\mathcal{M}\left(\mathcal{X}
 ight)$,

$$|m|(\mathcal{X}) \stackrel{\mathrm{def.}}{=} \sup \left(\int_{\mathcal{X}} f \,\mathrm{d}m \, \Big| \, f \in \mathscr{C}_0\left(\mathcal{X}\right), \|f\|_{\infty,\mathcal{X}} \leq 1
ight).$$

Si $m = \sum_{i=1}^{N} a_i \delta_{x_i}$ est une mesure discrète alors $|m|(\mathcal{X}) = \sum_{i=1}^{N} |a_i|.$

Soit $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i}$ une mesure discrète, $\Phi : \mathcal{M}(\mathcal{X}) \to L^2(\mathcal{X})$ opérateur d'acquisition (e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i)$ le noyau gaussien) et $w \in L^2(\mathcal{X})$ bruit additif :

$$y \stackrel{\text{def.}}{=} \Phi m_{a_0, x_0} + w.$$

Soit $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i}$ une mesure discrète, $\Phi : \mathcal{M}(\mathcal{X}) \to L^2(\mathcal{X})$ opérateur d'acquisition (e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i)$ le noyau gaussien) et $w \in L^2(\mathcal{X})$ bruit additif :

$$y \stackrel{\text{def.}}{=} \Phi m_{a_0, x_0} + w.$$

On appelle **BLASSO** le problème d'optimisation [Candes14, Duval15] pour $\lambda > 0$:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \| y - \Phi m \|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

Soit $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i}$ une mesure discrète, $\Phi : \mathcal{M}(\mathcal{X}) \to L^2(\mathcal{X})$ opérateur d'acquisition (e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i)$ le noyau gaussien) et $w \in L^2(\mathcal{X})$ bruit additif :

$$y \stackrel{\text{def.}}{=} \Phi m_{a_0, x_0} + w.$$

On appelle **BLASSO** le problème d'optimisation [Candes14, Duval15] pour $\lambda > 0$:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \| y - \Phi m \|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

Problème difficile, résolu par exemple par algorithme glouton (*Frank-Wolfe*, ...)

État de l'art sans-grille	Conclusion
00000000	

État de l'art sans-grille	Reconstruction par covariance	Conclusion
0000000		

import offgrid

```
N_ECH = 500; X_GAUCHE = 0; X_DROIT = 1
domain = offgrid.Domain2D(X_GAUCHE, X_DROIT, N_ECH, dev="cuda")
```

psf = offgrid.Kernel2D('gaussian', {'sigma_psf': 5e-2})

État de l'art sans-grille 00000●00	Reconstruction par covariance	Conclusion 000 0

import offgrid

```
N_ECH = 500; X_GAUCHE = 0; X_DROIT = 1
domain = offgrid.Domain2D(X_GAUCHE, X_DROIT, N_ECH, dev="cuda")
```

psf = offgrid.Kernel2D('gaussian', {'sigma_psf': 5e-2})

État de l'art sans-grille	Reconstruction par covariance	Conclusion
0000000		

import offgrid

```
N_ECH = 500; X_GAUCHE = 0; X_DROIT = 1
domain = offgrid.Domain2D(X_GAUCHE, X_DROIT, N_ECH, dev="cuda")
```

psf = offgrid.Kernel2D('gaussian', {'sigma_psf': 5e-2})

Output:

Computing SFW on cuda device: 100% |---> | 1/1 [00:01<00:00, 1.03it/s]

Illustration de la reconstruction par Sliding Frank-Wolfe [Denoyelle19] :

Introduction État de l'art sans-grille	Reconstruction par covariance	Conclusion	
	0000000		

Illustration de la reconstruction par Conic Particle Gradient Flow reconstruction [Chizat20] :

Reconstruction par covariance

Reconstruction par covariance

Conclusion

Une autre imagerie : SOFI

Reconstruction par covariance

Conclusion

Une autre imagerie : SOFI

Imagerie SOFI (*Super-resolution optical fluctuation imaging*) [Dertinger10].

 beaucoup de fluorophores allumés en même temps ;

Reconstruction par covariance

Conclusion

Une autre imagerie : SOFI

- beaucoup de fluorophores allumés en même temps ;
- indépendance temporelle des fluorophores.

Reconstruction par covariance

Conclusion

Une autre imagerie : SOFI

- beaucoup de fluorophores allumés en même temps ;
- indépendance temporelle des fluorophores.
- moins nocif pour les structures biologiques étudiées ;

Reconstruction par covariance

Conclusion

Une autre imagerie : SOFI

- beaucoup de fluorophores allumés en même temps ;
- indépendance temporelle des fluorophores.
- moins nocif pour les structures biologiques étudiées ;

Reconstruction par covariance

Conclusion

Une autre imagerie : SOFI

- beaucoup de fluorophores allumés en même temps ;
- indépendance temporelle des fluorophores.
- moins nocif pour les structures biologiques étudiées ;

Reconstruction par covariance

Conclusion

Une autre imagerie : SOFI

- beaucoup de fluorophores allumés en même temps ;
- indépendance temporelle des fluorophores.
- moins nocif pour les structures biologiques étudiées ;

Reconstruction par covariance

Conclusion

Quantités en jeu

 \bullet on effectue des acquisitions (images dans $\mathrm{L}^{2}\left(\mathcal{X}\right)$) sur $\left[0,T\right]$;

 \bullet on effectue des acquisitions (images dans $\mathrm{L}^{2}\left(\mathcal{X}\right)$) sur $\left[0,T\right]$;

• on définit $y:\left[0,T
ight]
ightarrow\mathrm{L}^{2}\left(\mathcal{X}
ight)$ la pile d'acquisition SOFI ;

Introduction État de l'art sans-grille Reconstruction par covariance Conclusion

- $\bullet\,$ on effectue des acquisitions (images dans $\mathrm{L}^{2}\left(\mathcal{X}\right)$) sur $\left[0,T\right]$;
- on définit $y:[0,T] \to \mathrm{L}^2\left(\mathcal{X}
 ight)$ la pile d'acquisition SOFI ;
- on cherche à reconstruire une mesure dynamique :

$$t \mapsto \mu(t) \stackrel{\text{def.}}{=} \sum_{i=1}^{N} a_i(t) \delta_{x_i} \in \mathcal{L}^2\left(0, T; \mathcal{M}\left(\mathcal{X}\right)\right)$$

qui génère pour presque tout $t \in [0,T]$: $y(t) = \Phi \mu(t)$.

Introduction État de l'art sans-grille Reconstruction par covariance Conclusion

- $\bullet\,$ on effectue des acquisitions (images dans $\mathrm{L}^{2}\left(\mathcal{X}\right)$) sur $\left[0,T\right]$;
- on définit $y:[0,T] \to \mathrm{L}^2\left(\mathcal{X}
 ight)$ la pile d'acquisition SOFI ;
- on cherche à reconstruire une mesure dynamique :

$$t \mapsto \mu(t) \stackrel{\text{def.}}{=} \sum_{i=1}^{N} a_i(t) \delta_{x_i} \in \mathcal{L}^2\left(0, T; \mathcal{M}\left(\mathcal{X}\right)\right)$$

qui génère pour presque tout $t\in [0,T]$: $y(t)=\Phi\mu(t).$

Les cumulants peuvent nous aider à retrouver les positions x_i . Exemple : moyenne temporelle $\bar{y} \stackrel{\text{def.}}{=} \frac{1}{T} \int_0^T y(\cdot, t) \, \mathrm{d}t$. On a $\Phi m_{a,x} = \bar{y}$ où $m_{a,x} \stackrel{\text{def.}}{=} \sum_{i=1}^N \bar{a_i} \delta_{x_i}$.

Reconstruction par covariance

Conclusion

Construire les problèmes

Si R_y est la covariance temporelle, on a $\forall u, v \in \mathcal{X}$:

Introduction

État de l'art sans-gril

Reconstruction par covariance

Conclusion

Construire les problèmes

Si R_y est la covariance temporelle, on a $\forall u, v \in \mathcal{X}$:

$$\begin{split} R_y(u,v) &\stackrel{\text{def.}}{=} \frac{1}{T} \int_0^T \left(y(u,t) - \bar{y}(u) \right) \left(y(v,t) - \bar{y}(v) \right) \, \mathrm{d}t \\ &= \dots \quad (\text{indépendance des fluctuations [Dertinger10]}) \\ &= \sum_{i=1}^N \underbrace{M_i}_{\text{Variance de } a_i} h(u-x_i)h(v-x_i) \\ &= \int_{\mathcal{X}} h(u-x)h(v-x) \, \mathrm{d}m_{M,x}\left(x\right) \\ &= \Lambda m_{M,x}(u,v). \end{split}$$

Introduction

État de l'art sans-grill 00000000 Reconstruction par covariance

Conclusion

Construire les problèmes

Si R_y est la covariance temporelle, on a $\forall u, v \in \mathcal{X}$:

$$\begin{aligned} R_y(u,v) &\stackrel{\text{def.}}{=} \frac{1}{T} \int_0^T \left(y(u,t) - \bar{y}(u) \right) \left(y(v,t) - \bar{y}(v) \right) \, \mathrm{d}t \\ &= \dots \quad (\text{indépendance des fluctuations [Dertinger10]}) \\ &= \sum_{i=1}^N \underbrace{M_i}_{\text{Variance de } a_i} h(u - x_i) h(v - x_i) \\ &= \int_{\mathcal{X}} h(u - x) h(v - x) \, \mathrm{d}m_{M,x} \left(x \right) \\ &= \Lambda m_{M,x}(u,v). \end{aligned}$$

$$\begin{split} m_{M,x} \stackrel{\text{def.}}{=} \sum_{i=1}^{N} M_i \delta_{x_i} \text{ partage les mêmes positions que} \\ \mu &= \sum_{i=1}^{N} a_i(t) \delta_{x_i}, \text{ on appelle } \Lambda : \mathcal{M}(\mathcal{X}) \to \mathrm{L}^2(\mathcal{X}^2) \text{ cet } \ll \mathrm{op\acute{e}rateur de} \\ \mathrm{covariance } \gg. \end{split}$$

Reconstruction par covariance

Résumé des quantités

Légende : partie dynamique, partie moyenne temporelle \bar{y} et partie covariance temporelle R_y .

Reconstruction par covariance

Conclusion

BLASSO on cumulants

Soit $\lambda>0,$ La reconstruction par covariance s'écrit :

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} T_{\lambda}(m) \stackrel{\text{def.}}{=} \frac{1}{2} \| R_y - \Lambda(m) \|_{\mathrm{L}^2(\mathcal{X}^2)}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{Q}_{\lambda}(y))$$

Reconstruction par covariance

Conclusion

BLASSO on cumulants

Soit $\lambda>0,$ La reconstruction par covariance s'écrit :

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} T_{\lambda}(m) \stackrel{\text{def.}}{=} \frac{1}{2} \| R_y - \Lambda(m) \|_{\mathrm{L}^2(\mathcal{X}^2)}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{Q}_{\lambda}(y))$$

Reconstruction par covariance 000000000000

Résultats numériques 2D SOFItool

Test sur des filaments 2D issus du ISBI challenge 2016 :

- pile de 1000 acquisitions en 64 × 64 simulées par SOFItool ;
- 8700 émetteurs répartis sur les filaments ; bruit de fond fort + bruit de Poisson à 4 + bruit gaussien à 1×10^{-2} . SNR ≈ 10 db.

 https://documentary.org/line
 Reconstruction par covariance

 Documentary.org/line
 0000000

 Documentary.org/line
 0000000

 Documentary.org/line
 0000000

 Documentary.org/line
 0000000

 Documentary.org/line
 0000000

 Documentary.org/line
 0000000

Conclusion

Résultats numériques 2D SOFItool

Test sur des filaments 2D issus du ISBI challenge 2016 :

- pile de 1000 acquisitions en 64×64 simulées par SOFItool ;
- 8700 émetteurs répartis sur les filaments ; bruit de fond **fort** + bruit de Poisson à $4 + \text{bruit gaussien} \text{ à } 1 \times 10^{-2}$. SNR $\approx 10 \text{ db.}$

Figure 1: Vérité-terrain

Reconstruction par covariance

Conclusion

Figure 1: Vérité-terrain

Figure 2: $(\mathcal{Q}_{\lambda}(y))$

Reconstruction par covariance

Figure 1: Vérité-terrain

Figure 2: $(\mathcal{Q}_{\lambda}(y))$

Figure 3: SRRF [Culley18]

Application : paléomagnétisme, imagerie biomédicale, etc.

Corollaire (AMS)

Soit $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ m \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(m) \in \mathcal{M}(\mathcal{X}) \right\}$, le problème CROC admet comme minimiseur une combinaison linéaire finie de courbes :

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\Phi}\,\boldsymbol{m}\|_{\mathcal{H}}^2 + \alpha \left(\|\boldsymbol{m}\|_{\mathrm{TV}^2} + \|\operatorname{div}\boldsymbol{m}\|_{\mathrm{TV}}\right).$$
(CROC)

Reconstruction par covariance

Corollaire (AMS)

Soit $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ m \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(m) \in \mathcal{M}(\mathcal{X}) \right\}$, le problème CROC admet comme minimiseur une combinaison linéaire finie de courbes :

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\Phi}\,\boldsymbol{m}\|_{\mathcal{H}}^2 + \alpha \left(\|\boldsymbol{m}\|_{\mathrm{TV}^2} + \|\operatorname{div}\boldsymbol{m}\|_{\mathrm{TV}}\right). \tag{CROC}$$

Conclusion

Reconstruction par covariance

Conclusion

Les nouvelles approches

- approche sans-grille en imagerie SOFI de microscopie fluorescente, reconstruction par covariance ;
- econstruction sans-grille de courbes AMS

Reconstruction par covariance

Conclusion

Les nouvelles approches

- approche sans-grille en imagerie SOFI de microscopie fluorescente, reconstruction par covariance ;
- econstruction sans-grille de courbes AMS
- Dans le futur :
 - étoffer le paquet *python* sans-grille à destination des biologistes (accélération *PyKeOps* ?) ;

Les nouvelles approches

- approche sans-grille en imagerie SOFI de microscopie fluorescente, reconstruction par covariance ;
- econstruction sans-grille de courbes AMS

Dans le futur :

- étoffer le paquet *python* sans-grille à destination des biologistes (accélération *PyKeOps* ?) ;
- implémentation numérique de CROC/AMG avec une version de *(Sliding) Frank-Wolfe* ;

Les nouvelles approches

- approche sans-grille en imagerie SOFI de microscopie fluorescente, reconstruction par covariance ;
- econstruction sans-grille de courbes AMS

Dans le futur :

- étoffer le paquet *python* sans-grille à destination des biologistes (accélération *PyKeOps* ?) ;
- implémentation numérique de CROC/AMG avec une version de *(Sliding) Frank-Wolfe* ;
- reconstruction de Diracs dynamiques à partir d'acquisitions vidéos réelles (*tracking*).

Publications pour approfondir :

- 'Off-the-grid curve reconstruction through divergence regularisation: an extreme point result'. Bastien Laville, Laure Blanc-Féraud, Gilles Aubert. Prépublication avril 2022.
- 'Off-the-grid covariance-based super-resolution microscopy'. Bastien Laville, Laure Blanc-Féraud, Gilles Aubert. IEEE ICASSP 2022. DOI : 10.1109/ICASSP43922.2022.9746845

Disponibles également sur : https: //www-sop.inria.fr/members/ Bastien.Laville/ ou https: //cv.archives-ouvertes.fr/ bastien-laville.

Conclusion

Bibliographie I

- Yohann de Castro and Fabrice Gamboa. *Exact reconstruction using Beurling minimal extrapolation*. Journal of Mathematical Analysis and Applications, Elsevier BV, 2012, 395, 336-354
- Quentin Denoyelle, Vincent Duval, Gabriel Peyré, Emmanuel Soubies. *The Sliding Frank-Wolfe Algorithm and its Application to Super-Resolution Microscopy*. Inverse Problems, IOP Publishing, In press.
- Lenaic Chizat, Francis Bach. On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport. Advances in Neural Information Processing Systems (NIPS), Dec 2018, Montréal, Canada.
- Tamir Bendory, Shai Dekel, Arie Feuer, Robust recovery of stream of pulses using convex optimization, Journal of Mathematical Analysis and Applications, Volume 442, Issue 2, 2016.

Reconstruction par covariance

Conclusion

Bibliographie II

- A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Amir Beck and Marc Teboulle, SIAM J. IMAGING SCIENCES, 2009.
- Marguerite Frank et Philip Wolfe, « An algorithm for quadratic programming », Naval Research Logistics Quarterly, vol. 3, 1956.
- J. B. Lasserre, « Moments, positive polynomials and their applications », Imperial College Press Optimization Series, vol. 1, pp. xxii+361, 2010
- K. Bredies and H. K. Pikkarainen, « Inverse problems in spaces of measures », ESAIM Control Optim. Calc. Var., vol. 19, no. 1, pp. 190-218, 2013.
- Lenaic Chizat, Francis Bach. On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport. Advances in Neural Information Processing Systems (NIPS), Dec 2018, Montréal, Canada.

Bibliographie III

- Lenaic Chizat. Sparse Optimization on Measures with Over-parameterized Gradient Descent. 2020
- Candès, Emmanuel & Fernandez-Granda, Carlos. (2014). Towards a Mathematical Theory of Super-Resolution. Communications on Pure and Applied Mathematics. 67. 10.1002/cpa.21455.
- Vincent Duval, Gabriel Peyré. Exact Support Recovery for Sparse Spikes Deconvolution. Foundations of Computational Mathematics, Springer Verlag, 2015, 15 (5), pp.1315-1355.
- Thomas Dertinger, Ryan Colyer, Robert Vogel, Jörg Enderlein, and Shimon Weiss, "Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI)," Opt. Express 18, 18875-18885 (2010)
- Culley S, Tosheva KL, Matos Pereira P, Henriques R. SRRF: Universal live-cell super-resolution microscopy. Int J Biochem Cell Biol. 2018;101:74-79. doi:10.1016/j.biocel.2018.05.014

Bibliographie IV

 Oren Solomon, Maor Mutzafi, Mordechai Segev, and Yonina C. Eldar, "Sparsity-based super-resolution microscopy from correlation information," Opt. Express 26, 18238-18269 (2018)

Sliding Frank-Wolfe

Algorithm 1: Sliding Frank-Wolfe. **Entrées:** Acquisition $u \in \mathcal{H}$, nombre d'itérations $K, \lambda > 0$ 1 Initialisation : $m^{[0]} = 0 N^{[k]} = 0$ 2 for Récurrence pour l'étape $k, 0 \le k \le K$ do $\text{Pour } m^{[k]} = \sum_{i=1}^{N^{[k]}} a^{[k]}_i \delta_{x^{[k]}} \text{ telle que } a^{[k]}_i \in \mathbb{R}, \, x^{[k]}_i \in \mathcal{X} \text{, trouver } x^{[k]}_* \in \mathcal{X} \text{ tel que } :$ 3 $x_*^{[k]} \in \operatorname*{argmax}_{\sim} \left| \eta^{[k]}(x) \right| \qquad \mathsf{ou} \quad \eta^{[k]}(x) \stackrel{\text{def.}}{=} \frac{1}{\lambda} \Phi^*(\Phi m^{[k]} - y),$ if $\left|\eta^{[k]}(x_{*}^{[k]})\right| < 1$ then $m^{[k]}$ est la solution du BLASSO. Stop. else Calculer $m^{[k+1/2]} = \sum_{i=1}^{N^{[k]}} a_i^{[k+1/2]} \delta_{\boldsymbol{\tau}^{[k+1/2]}} + a_{N^{[k]+1}}^{[k+1/2]} \delta_*^{[k+1/2]}$ telle que : $a_i^{[k+1/2]} \in \underset{a \in \mathbb{R}^{N^{[k]+1}}}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi_{x^{[k+1/2]}}(a)\|_{\mathcal{H}}^2 + \lambda \|a\|_1$ pour $x^{[k+1/2]} \stackrel{\text{def.}}{=} (x_1^{[k]}, \dots, x_{s^{[k]}}^{[k]}, x_s^{[k]}).$ Calculer $m^{[k+1]} = \sum_{i=1}^{N^{[k+1]}} a^{[k+1]}_i \delta_{x^{[k+1]}}$ telle que : 7 $(a_i^{[k+1]}, x_i^{[k+1]}) \in \underset{(a,x) \in R}{\operatorname{argmax}} \frac{1}{2} \|y - \Phi_{x^{[k+1/2]}}(a)\|_{\mathcal{H}}^2 + \lambda \|a\|_1$ end 9 end **Sortie:** Mesure discrète $m^{[k]}$ pour k l'itération d'arrêt.