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Biomedical context

Aim
Image biological structures at small scales

Physical limitation due to diffraction for bodies < 200 nm: convolution
by the microscope’s point spread function.

Reconstruction e.g. by fluorescence microscopy SMLM: acquisition stack with few lit
fluorophores per image. Drawback: many images (≈ 1× 104, does not allow imaging
of living cells).
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An imagery solution: SOFI

SOFI imaging (Super-resolution optical fluctuation imaging).
Applications: imaging for localisation in fluorescence microscopy, etc.
[Dertinger10].

many fluorophores lit at the
same time;
temporal independence of the
fluorophores’ luminosity
fluctuation;
less harmful to the biological
structures studied.
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Inverse problem: from an acquisition, we reconstruct spikes’ positions
and amplitudes. Super-resolution grid problem:

off-the-grid deconvolution can be understood as the ’limit’ of an
increasingly fine grid;
not limited by the fine grid but still limited by the noise.
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Link with grid problem

min
a∈RL
‖y−ΦLa‖2

H + λ‖a‖1 (LASSO)

min
m∈M(X )

‖y−Φm‖2
H + λ‖m‖TV (BLASSO)

points points infinity of points

BLASSO is the functiunal limit of the LASSO problem for L→ +∞.
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Discrete case

the reconstructed peaks are
necessarily on the fine grid;
(Non-)convex combinatorial
optimisation;
fast numerical computation;
large literature.

Off-the-grid case

not limited by the grid;
convexity of the functional on
an infinite dimensional space;
existence and uniqueness
guarantees;
recent field of research.
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Elementary bricks :
X is a compact of Rd;
how to model spikes? Dirac measures δx, elements ofM (X ) the
space of signed Radon measures;
topological dual of C0 (X ) (= C (X )∗ here) for 〈 f , m〉 =

´
X f dm.

Generalisation of L1 (X ) since L1 (X ) ↪→M (X ) ;
Banach for the TV-norm: m ∈ M (X ),

|m|(X )
def.
= sup

(ˆ
X

f dm
∣∣∣∣ f ∈ C (X ) , ‖ f ‖∞,X ≤ 1

)
.

If m = ∑N
i=1 aiδxi is a discrete measure then |m|(X ) = ∑N

i=1 |ai|.
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BLASSO

Let ma0,x0

def.
= ∑N

i=1 aiδxi be a discrete measure,

Φ :M (X )→ L2 (X )

forward operator (e.g. Φma0,x0

def.
= ∑N

i=1 aih(x− xi) the Gaussian kernel)
and w ∈ L2 (X ) noise:

y def.
= Φma0,x0 + w.

We call BLASSO the optimisation problem [Castro12, Duval15] for
λ > 0 :

argmin
m∈M(X )

1
2
‖y−Φm‖2

L2(X ) + λ|m|(X ) (Pλ(y))

The optimisation spaceM (X ) is an infinite dimensional space, reflexive
only for weak-* topology: a difficult problem.
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Dual certificate

To solve this problem, we have the strong (Fenchel) duality:

ηλ ∈ ∂|m|(X ) ∩Φ∗y

defines a simpler dual problem to study.

Let m be a minimum of (Pλ(y)). The optimality of the measure is
characterised by this dual certificate:

ηλ =
1
λ

Φ∗(Φm− y), such that ‖η‖∞,X ≤ 1.

Conditions1 on the dual certificate + on the operator = reconstruction
guarantees.

1Non-Degenerate Source Condition e.g.
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Numerical computation

M (X ) is ’only’ a Banach space: it is then hard to use a proximal
algorithm such as [Beck09];
greedy algorithm such as the conditional gradient algorithm does
not require a Hilbertian structure;
we use its enhanced version Sliding Frank-Wolfe [Denoyelle19] but
differs in the final non-convex step.

Numerous other algorithms:

pros cons

moments method [Lasserre10] difficult nD case
conditional gradient [Bredies13] convergence guarantees difficult iteration
particle gradient flow [Chizat20] quick to compute not robust wrt noise
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Illustration of Conic Particle Gradient Flow reconstruction [Chizat20]:



DRAFT
15/33

Introduction Off-the-grid digest Dynamic off-the-grid Conclusion

Illustration of Sliding Frank-Wolfe [Denoyelle19] iterative reconstruction:
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On an EPFL SMLM Challenge stack (10000 images, high density):

Mean of stack

Off-the-grid SFW SRRF [Culley18]
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Dynamic off-the-grid



DRAFT
18/33

Introduction Off-the-grid digest Dynamic off-the-grid Conclusion

Quantities at stake

acquisition stack (images in L2 (X )) during [0, T] ;

we define y : [0, T]→ L2 (X ) the SOFI acquisition stack ;
we aim to reconstruct the dynamic measure:

t 7→ µ(t) def.
=

N

∑
i=1

ai(t)δxi ∈ L2 (0, T;M (X ))

generating a.e. t ∈ [0, T] : y(t) = Φµ(t). In the convolution case
for PSF h, Φµ(t) = ∑N

i=1 ai(t)
´
X h(x− xi)dx.

Cumulants are a tool to reconstruct the positions xi. Example :
temporal mean ȳ def.

= 1
T

´ T
0 y(·, t)dt. One have Φma,x = ȳ where

ma,x
def.
= ∑N

i=1 āiδxi and āi is the mean of ai(·).
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Build the variational problem

Let Ry be the temporal covariance, ∀u, v ∈ X we get:

Ry(u, v) def.
=

1
T

ˆ T

0
(y(u, t)− ȳ(u)) (y(v, t)− ȳ(v)) dt

= . . . (independence of fluctuations [Dertinger10])

=
N

∑
i=1

Mi︸︷︷︸
ai variance

h(u− xi)h(v− xi)

=

ˆ
X

h(u− x)h(v− x) dmM,x (x)

= ΛmM,x(u, v).

mM,x
def.
= ∑N

i=1 Miδxi shares the same positions as µ = ∑N
i=1 ai(t)δxi , we

call Λ :M (X )→ L2 (X 2) this « covariance operator ».
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Quantities digest

Legend: dynamic part, temporal mean part ȳ and covariance Ry.
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BLASSO on cumulants
Let λ > 0,
covariance problem writes down:

argmin
m∈M(X )

Tλ(m)
def.
=

1
2

∥∥Ry −Λ(m)
∥∥2

L2(X 2)
+ λ|m|(X ) (Qλ(y))

while mean reconstruction is:

argmin
m∈M(X )

Sλ(m)
def.
=

1
2
‖ȳ−Φ(m)‖2

L2(X ) + λ|m|(X ) (Pλ(ȳ))

Let ∆ def.
= mini 6=j

∣∣xi − xj
∣∣ be the minimum separation distance

Proposition
Support of a real Radon measure in noiseless setting is reconstructed:

for (Pλ(ȳ)) if ∆ & 1, 1σ [Bendory16] ;
for (Qλ(y)) if ∆ & 1, 1σ/

√
2: better! .
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for (Pλ(ȳ)) if ∆ & 1, 1σ [Bendory16] ;
for (Qλ(y)) if ∆ & 1, 1σ/

√
2: better! .



DRAFT
22/33

Introduction Off-the-grid digest Dynamic off-the-grid Conclusion

Numerical results 1D

Implementation in an OOP module in python:
to use Radon measures, certificates, optimisation algorithm,
(Qλ(y)) et (Pλ(ȳ));
written in PyTorch + CUDA (GPU);
question of quality metrics. L2 distance is not suitable, we prefer the
flat metric (or Kantorovitch-Rubinstein metric).
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Numerical results 1D
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Figure 1: W1(ma0,x0 , ma,x) ≈ 1× 10−1 et W1(ma0,x0 , mM,x) ≈ 5× 10−3.
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Numerical 2D results SOFItool
Test on 2D tubulins from ISBI challenge 2016:

stack of 1000 acquisitions 64× 64 simulated by SOFItool;
8700 emitters scattered along the tubulins; high background noise + Poisson
noise at 4 + Gaussian noise at 1× 10−2. SNR ≈ 10 db.
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http://bigwww.epfl.ch/smlm/challenge2016/datasets/MT4.N2.HD/Data/data.html
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Numerical 2D results SOFItool
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Figure 2: Reconstruction by (Pλ(ȳ)).
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Figure 2: Reconstruction by (Qλ(y)).
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Numerical 2D results SOFItool
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Figure 2: Comparison between ground-truth and solutions of both (Pλ(ȳ)) and
(Qλ(y)).
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Figure 3:
Ground-truth Figure 4: (Qλ(y))

Figure 5: Grid:
SRRF [Culley18]

Figure 6: Grid:
SPARCOM
[Solomon18]
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Conclusion
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Take home statements

off-the-grid methods squeeze all the ’information’ out the acquisition
y: no discretisation drawback;
strong results for existence and uniqueness of BLASSO solution;
only one efficient numerical algorithm: Sliding Frank-Wolfe;
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Outlook

results only for sparse spike problem with known forward operator at
the moment: extendable to other imagery problems? (Obviously yes,
gridless compressed sensing, etc.)
theory only suited for spikes: what about other source structures?
quite costly numerical algorithms: learning approaches?
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Sliding Frank-Wolfe
Algorithm 1: Sliding Frank-Wolfe.
Entrées: Acquisition y ∈ H, nombre d’itérations K, λ > 0

1 Initialisation : m[0] = 0 N[k] = 0
2 for Récurrence pour l’étape k, 0 ≤ k ≤ K do
3 Pour m[k] = ∑N[k]

i=1 a[k]i δ
x[k]i

telle que a[k]i ∈ R, x[k]i ∈ X , trouver x[k]∗ ∈ X tel que :

x[k]∗ ∈ argmax
x∈X

∣∣∣η[k](x)
∣∣∣ où η[k](x) def.

=
1
λ

Φ∗(Φm[k] − y),

if
∣∣∣η[k](x[k]∗ )

∣∣∣ < 1 then
4 m[k] est la solution du BLASSO. Stop.
5 else
6 Calculer m[k+1/2] = ∑N[k]

i=1 a[k+1/2]
i δ

x[k+1/2]
i

+ a[k+1/2]
N[k]+1 δ

[k+1/2]
∗ telle que :

a[k+1/2]
i ∈ argmin

a∈RN[k]+1

1
2
‖y−Φx[k+1/2](a)‖2

H + λ‖a‖1

pour x[k+1/2] def.
=
(

x[k]1 , . . . , x[k]
N[k] , x[k]∗

)
.

7 Calculer m[k+1] = ∑N[k+1]

i=1 a[k+1]
i δ

x[k+1]
i

telle que :

(a[k+1]
i , x[k+1]

i ) ∈ argmax
(a,x)∈R

1
2
‖y−Φx[k+1/2](a)‖2

H + λ‖a‖1

8 end
9 end
Sortie: Mesure discrète m[k] pour k l’itération d’arrêt.
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Choice of λ

λ is the only tuning parameter in BLASSO: it drives the number N of
reconstructed spikes.

How do we choose it?
Cross-validation.
Homotopy algorithm.
experimental choice.
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