Some developments on off-the-grid curve reconstruction: divergence regularisation, untangling by Riemannian metric

Bastien Laville – Morpheme research team (Inria, CNRS, UCA)

08th February 2024

Institut Mathématiques de Bordeaux

Table of contents

- 1. Off-the-grid 101: the sparse spike problem
- 2. Static off-the-grid curve in $\mathscr V$
- ${\it 3. Dynamic curve untangling: lift and Riemannian \, regularisation}\\$
- 4. Conclusion

problem

Off-the-grid 101: the sparse spike

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Physical limitation due to diffraction for bodies < 200 nm: convolution by the microscope's point spread function (PSF).

Objective

To image **live** biological structures at **small scales**.

Physical limitation due to diffraction for bodies < 200 nm: convolution by the microscope's point spread function (PSF).

Objective

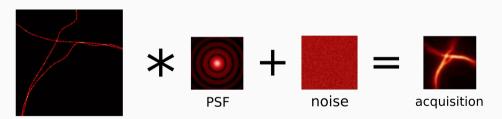
To image **live** biological structures at **small scales**.

Physical limitation due to diffraction for bodies < 200 nm: convolution by the microscope's point spread function (PSF).

Objective

To image **live** biological structures at **small scales**.

Physical limitation due to diffraction for bodies < 200 nm: convolution by the microscope's point spread function (PSF).

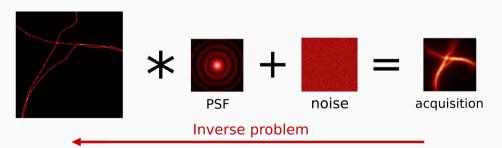


3

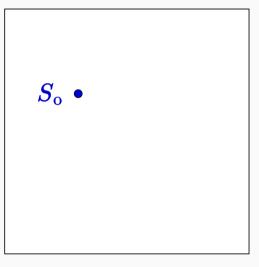
Objective

To image **live** biological structures at **small scales**.

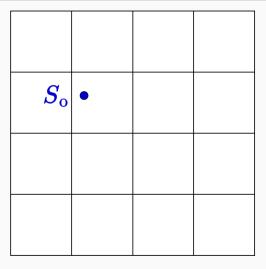
Physical limitation due to diffraction for bodies < 200 nm: convolution by the microscope's point spread function (PSF).



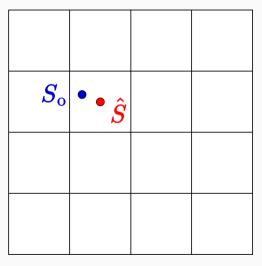
3



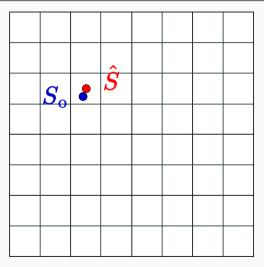
Source to estimate



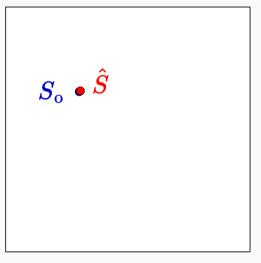
Introducing a grid



Reconstruction \hat{S} on a grid



Reconstruction \hat{S} on a finer grid



Reconstruction \hat{S} is now **off-the-grid**

• S_o is the source;

- S_o is the source;
- it is observed through y: blur Φ, noise...;

- S_o is the source;
- it is observed through y: blur Φ, noise...;
- how to build an estimate \$\hat{\mathbf{S}}\$ from \$y\$?

- S_o is the source;
- it is observed through y: blur Φ, noise...;
- how to build an estimate \$\hat{\mathbf{S}}\$ from \$y\$?

- S_o is the source;
- it is observed through y: blur Φ, noise...;
- how to build an estimate \$\hat{\mathbf{S}}\$ from \$y\$?

Variational optimisation

use a prior on S_o;

- S_o is the source;
- it is observed through y: blur Φ, noise...;
- how to build an estimate \$\hat{\mathbf{S}}\$ from \$y\$?

- use a prior on S_o;
- among all sources S, penalise the ones fulfiling the prior;

- S_o is the source;
- it is observed through y: blur Φ, noise...;
- how to build an estimate \$\hat{\mathbf{S}}\$ from \$y\$?

- use a prior on S_o;
- among all sources S, penalise the ones fulfiling the prior;
- $\hat{\mathbf{S}}$ minimises $\mathbf{S} \mapsto \|\mathbf{y} \mathbf{\Phi} \mathbf{S}\|_2^2 + \alpha R(\mathbf{S})$;

- S_o is the source;
- it is observed through y: blur Φ, noise...;
- how to build an estimate \$\hat{\mathbf{S}}\$ from \$y\$?

- use a prior on S_o;
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto \|y \Phi S\|_2^2 + \alpha R(S)$;
- $||y \Phi S||_2^2$ penalises the closeness of y and the source S;

- S_o is the source;
- it is observed through y: blur Φ, noise...;
- how to build an estimate \$\hat{\mathbf{S}}\$ from \$y\$?

- use a prior on S_o;
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto ||y \Phi S||_2^2 + \alpha R(S)$;
- $||y \Phi S||_2^2$ penalises the closeness of y and the source S;
- R(S) regularises the problem (well-posed) and enforces more or less the prior on S
 w. α > 0.

• \mathcal{X} is a compact of \mathbb{R}^d ;

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x , element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes? Through Dirac measure δ_x , element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f \, \mathrm{d}m$. Generalises $\mathrm{L}^1(\mathcal{X})$; $\mathrm{L}^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes? Through Dirac measure δ_x , element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f \, \mathrm{d}m$. Generalises $\mathrm{L}^1(\mathcal{X})$; $\mathrm{L}^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
- Banach endowed with TV-norm : $m \in \mathcal{M}(\mathcal{X})$,

$$|m|(\mathcal{X}) \stackrel{\mathrm{def.}}{=} \sup \left(\int_{\mathcal{X}} f \, \mathrm{d}m \, \middle| \, f \in \mathscr{C}_0\left(\mathcal{X}\right), \|f\|_{\infty,\mathcal{X}} \leq 1 \right).$$

If $m = \sum_{i=1}^{N} a_i \delta_{x_i}$ a discrete measure

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes? Through Dirac measure δ_x , element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f \, \mathrm{d}m$. Generalises $\mathrm{L}^1(\mathcal{X})$; $\mathrm{L}^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
- Banach endowed with TV-norm : $m \in \mathcal{M}(\mathcal{X})$,

$$|m|(\mathcal{X}) \stackrel{\mathrm{def.}}{=} \sup \left(\int_{\mathcal{X}} f \, \mathrm{d}m \, \middle| \, f \in \mathscr{C}_0\left(\mathcal{X}\right), \|f\|_{\infty,\mathcal{X}} \leq 1 \right).$$

If $m = \sum_{i=1}^N a_i \delta_{x_i}$ a discrete measure, then $|m|(\mathcal{X}) = \sum_{i=1}^N |a_i|$.

• Let the source $m_{a_0,x_0}\stackrel{\mathrm{def.}}{=}\sum_{i=1}^N a_i\delta_{x_i}\in\mathcal{M}\left(\mathcal{X}\right)$ a discrete measure;

- Let the source $m_{a_0,x_0}\stackrel{\mathrm{def.}}{=}\sum_{i=1}^N a_i\delta_{x_i}\in\mathcal{M}\left(\mathcal{X}\right)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$

- Let the source $m_{a_0,x_0}\stackrel{\mathrm{def.}}{=}\sum_{i=1}^N a_i\delta_{x_i}\in\mathcal{M}\left(\mathcal{X}\right)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i)$;
- $w \in \mathbb{R}^p$ additive noise;

- Let the source $m_{a_0,x_0}\stackrel{\mathrm{def.}}{=}\sum_{i=1}^N a_i\delta_{x_i}\in\mathcal{M}\left(\mathcal{X}\right)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i)$;
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\mathrm{def.}}{=} \Phi m_{a_0,x_0} + w$.

- Let the source $m_{a_0,x_0} \stackrel{\mathrm{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}\right)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i)$;
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w$.

We call **BLASSO** for $\lambda > 0$ the problem

[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi m\|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X})$$
 $(\mathcal{P}_{\lambda}(y))$

- Let the source $m_{a_0,x_0} \stackrel{\mathrm{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}\right)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i)$;
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\mathrm{def.}}{=} \Phi m_{a_0,x_0} + w$.

We call **BLASSO** for $\lambda > 0$ the problem

[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi m\|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \tag{$\mathcal{P}_{\lambda}(y)$}$$

One of its minimisers is a sum of Dirac, close to m_{a_0,x_0} [Duval and Peyré, 2014].

- Let the source $m_{a_0,x_0} \stackrel{\mathrm{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}\right)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i)$;
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\mathrm{def.}}{=} \Phi m_{a_0,x_0} + w$.

We call **BLASSO** for $\lambda > 0$ the problem

[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

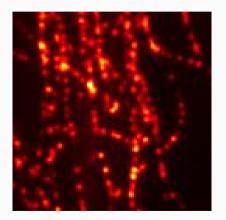
$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi m\|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \tag{$\mathcal{P}_{\lambda}(y)$}$$

One of its minimisers is a sum of Dirac, close to m_{a_0,x_0} [Duval and Peyré, 2014].

Difficult numerical problem: infinite dimensional, non-reflexive. Tackled by greedy algorithm like *Frank-Wolfe* [Frank and Wolfe, 1956], *etc*.

Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit fluorophores per image.



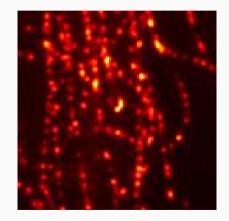
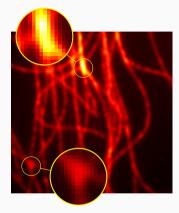
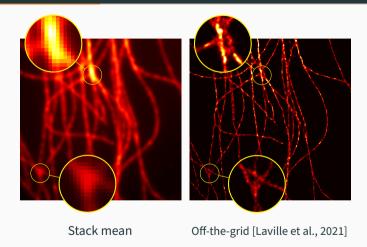
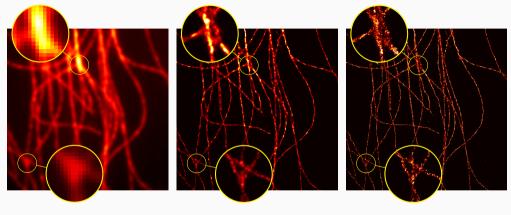


Figure 1: Two excerpts from a SMLM stack



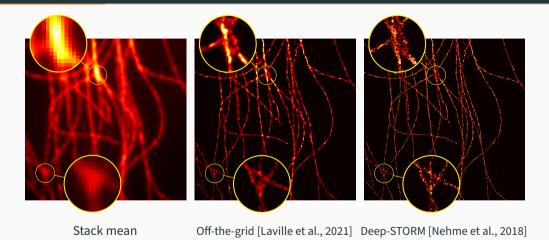
Stack mean





Stack mean

Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]



MIM drawback: a lot of images, no live cell imaging

SMLM drawback: a lot of images, no live-cell imaging.

Static off-the-grid curve in $\mathscr V$

Laure Blanc-Féraud

Gilles Aubert

Related papers

- Off-the-grid curve reconstruction through divergence regularisation: an extreme point result. SIAM Journal on Imaging Sciences (SIIMS), June 2023.
- Off-the-grid charge algorithm for curve reconstruction in inverse problems. In Springer Lecture Notes in Computer Science 14009, May 2023.

• how to model sets measures? Through χ_E where E is a **simple set**, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of *bounded variation*;

- how to model sets measures? Through χ_E where E is a **simple set**, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of *bounded variation*;
- BV(\mathcal{X}) = $\left\{u \in L^2(\mathcal{X}) \mid "\nabla u" \in \mathcal{M}(\mathcal{X})^2\right\};$

- how to model sets measures? Through χ_E where E is a **simple set**, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of *bounded variation*;
- BV(\mathcal{X}) = $\left\{ u \in L^2(\mathcal{X}) \mid Du \in \mathcal{M}(\mathcal{X})^2 \right\}$;
- Banach endowed with BV-norm : $u \in \mathrm{BV}(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_{1} + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

- how to model sets measures? Through χ_E where E is a **simple set**, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of *bounded variation*;
- BV(\mathcal{X}) = $\left\{ u \in L^2(\mathcal{X}) \mid Du \in \mathcal{M}(\mathcal{X})^2 \right\}$;
- Banach endowed with BV-norm : $u \in \mathrm{BV}(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_{1} + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

If
$$u = \chi_E$$
,

- how to model sets measures? Through χ_E where E is a **simple set**, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of *bounded variation*;
- BV(\mathcal{X}) = $\left\{ u \in L^2(\mathcal{X}) \mid Du \in \mathcal{M}(\mathcal{X})^2 \right\}$;
- Banach endowed with BV-norm : $u \in \mathrm{BV}(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_{1} + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

If
$$u = \chi_E$$
, then $\|Du\|_{\mathrm{TV}} = \mathsf{Per}(E)$;

- how to model sets measures? Through χ_E where E is a **simple set**, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of *bounded variation*;
- BV(\mathcal{X}) = $\left\{ u \in L^2(\mathcal{X}) \mid Du \in \mathcal{M}(\mathcal{X})^2 \right\}$;
- Banach endowed with BV-norm : $u \in \mathrm{BV}(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_{1} + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

If $u = \chi_E$, then $\|Du\|_{TV} = Per(E)$;

• Let $\lambda >$ 0, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$\underset{u \in \mathrm{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi u\|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda \|\mathrm{D}u\|_{\mathrm{TV}} \tag{S_{\lambda}(y)}$$

- how to model sets measures? Through χ_E where E is a **simple set**, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of *bounded variation*;
- BV(\mathcal{X}) = $\left\{ u \in L^2(\mathcal{X}) \mid Du \in \mathcal{M}(\mathcal{X})^2 \right\}$;
- Banach endowed with BV-norm : $u \in \mathrm{BV}(\mathcal{X})$,

$$||u||_{\text{BV}} \stackrel{\text{def.}}{=} ||u||_1 + ||Du||_{\text{TV}}.$$

If $u = \chi_E$, then $\|Du\|_{TV} = Per(E)$;

• Let $\lambda >$ 0, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$\underset{u \in \mathrm{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi u\|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda \|\mathrm{D}u\|_{\mathrm{TV}} \tag{S_{\lambda}(y)}$$

One of its minimisers is a sum of level sets χ_E !

	0D	
Geometry	Spikes	
Space	$\mathcal{M}\left(\mathcal{X} ight)$	
Regulariser	$\left\ \cdot \right\ _{\mathrm{TV}}$	

	0D	2D
Geometry	Spikes	Sets
Space	$\mathcal{M}\left(\mathcal{X} ight)$	$\mathrm{BV}(\mathcal{X})$
Regulariser	$\left\ \cdot \right\ _{\mathrm{TV}}$	$\left\ \cdot \right\ _1 + \left\ \mathbf{D} \cdot \right\ _{\mathrm{TV}}$

$$\chi_E$$

	0D	1D	2D
Geometry	Spikes	Curves	Sets
Space	$\mathcal{M}\left(\mathcal{X} ight)$?	$\mathrm{BV}(\mathcal{X})$
Regulariser	$\left\ \cdot \right\ _{\mathrm{TV}}$?	$\left\ \cdot \right\ _1 + \left\ \mathrm{D} \cdot \right\ _{\mathrm{TV}}$

$$\delta_x$$

$$\chi_E$$

• let $\mathcal{M}\left(\mathcal{X}\right)^2$ be the space of vector Radon measures;

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\mathrm{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M} \left(\mathcal{X} \right)^{2}, \, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M} \left(\mathcal{X} \right) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\mathrm{def.}}{=} \|\cdot\|_{\mathrm{TV}^{2}} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\mathrm{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M} \left(\mathcal{X} \right)^{2}, \, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M} \left(\mathcal{X} \right) \right\}$ the space of *charges*, or *divergence vector fields*. It is a Banach equipped with $\left\| \cdot \right\|_{\mathscr{V}} \stackrel{\mathrm{def.}}{=} \left\| \cdot \right\|_{\mathrm{TV}^{2}} + \left\| \operatorname{div}(\cdot) \right\|_{\mathrm{TV}}$;
- let $\gamma:[0,1] o \mathbb{R}^2$ a 1-rectifiable parametrised Lipschitz curve,

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\mathrm{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M} \left(\mathcal{X} \right)^{2}, \, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M} \left(\mathcal{X} \right) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\left\| \cdot \right\|_{\mathscr{V}} \stackrel{\mathrm{def.}}{=} \left\| \cdot \right\|_{\mathrm{TV}^{2}} + \left\| \operatorname{div}(\cdot) \right\|_{\mathrm{TV}}$;
- let $\gamma:[0,1]\to\mathbb{R}^2$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_\gamma\in\mathscr{V}$ is a measure **supported on a curve** γ if:

$$orall oldsymbol{g} \in oldsymbol{\mathsf{C_0}(\mathcal{X})^2}, \quad raket{\mu_{\gamma}, oldsymbol{g}}_{\mathcal{M}^2} \stackrel{ ext{def.}}{=} \int_0^1 oldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \, \mathrm{d}t.$$

• a curve is closed is $\gamma(0)=\gamma(1),$ open otherwise;

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\mathrm{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M} \left(\mathcal{X} \right)^{2}, \, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M} \left(\mathcal{X} \right) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\left\| \cdot \right\|_{\mathscr{V}} \stackrel{\mathrm{def.}}{=} \left\| \cdot \right\|_{\mathrm{TV}^{2}} + \left\| \operatorname{div}(\cdot) \right\|_{\mathrm{TV}}$;
- let $\gamma:[0,1]\to\mathbb{R}^2$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_\gamma\in\mathscr{V}$ is a measure **supported on a curve** γ if:

$$orall oldsymbol{g} \in oldsymbol{\mathsf{C_0}(\mathcal{X})^2}, \quad raket{\mu_{\gamma}, oldsymbol{g}}_{\mathcal{M}^2} \stackrel{ ext{def.}}{=} \int_0^1 oldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \, \mathrm{d}t.$$

- a curve is closed is $\gamma(0) = \gamma(1)$, open otherwise;
- simple if γ is an injective mapping;

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\mathrm{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M} \left(\mathcal{X} \right)^{2}, \, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M} \left(\mathcal{X} \right) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\mathrm{def.}}{=} \|\cdot\|_{\mathrm{TV}^{2}} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma:[0,1]\to\mathbb{R}^2$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_\gamma\in\mathscr{V}$ is a measure **supported on a curve** γ if:

$$orall oldsymbol{g} \in oldsymbol{\mathsf{C_0}(\mathcal{X})^2}, \quad raket{\mu_{\gamma}, oldsymbol{g}}_{\mathcal{M}^2} \stackrel{ ext{def.}}{=} \int_0^1 oldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \, \mathrm{d}t.$$

- a curve is closed is $\gamma(0)=\gamma(1),$ open otherwise;
- simple if γ is an injective mapping;
- div $\mu_{\gamma} = \delta_{\gamma(0)} \delta_{\gamma(1)}$.

Consider the variational problem we coined *Curves Represented On Charges*:

$$\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathcal{H}}^2 + \alpha \| \boldsymbol{m} \|_{\mathscr{V}}. \tag{CROC}$$

Consider the variational problem we coined *Curves Represented On Charges*:

$$\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathcal{H}}^2 + \alpha \| \boldsymbol{m} \|_{\mathscr{V}}. \tag{CROC}$$

• $\frac{1}{2}||y - \Phi m||_{\mathcal{H}}^2$ is the data-term;

Consider the variational problem we coined *Curves Represented On Charges*:

$$\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathcal{H}}^2 + \alpha (\| \boldsymbol{m} \|_{\mathrm{TV}^2} + \| \operatorname{div} \boldsymbol{m} \|_{\mathrm{TV}}) \tag{CROC}$$

- $\frac{1}{2}||y \Phi m||_{\mathcal{H}}^2$ is the data-term;
- $\| \pmb{m} \|_{\mathrm{TV}^2}$ weights down the curve length, *i.e.* $\| \pmb{\mu}_{\gamma} \|_{\mathrm{TV}^2} = \mathscr{H}_1(\gamma((0,1)));$

Consider the variational problem we coined *Curves Represented On Charges*:

$$\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathcal{H}}^2 + \alpha (\| \boldsymbol{m} \|_{\mathrm{TV}^2} + \| \operatorname{div} \boldsymbol{m} \|_{\mathrm{TV}}) \tag{CROC}$$

- $\frac{1}{2}||y \Phi m||_{\mathcal{H}}^2$ is the data-term;
- $\| \pmb{m} \|_{\mathrm{TV}^2}$ weights down the curve length, *i.e.* $\| \pmb{\mu}_{\gamma} \|_{\mathrm{TV}^2} = \mathscr{H}_1(\gamma((0,1)));$
- $\|\operatorname{div} {\it m}\|_{\mathrm{TV}}$ is the (open) curve counting term.

Consider the variational problem we coined *Curves Represented On Charges*:

$$\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathcal{H}}^2 + \alpha (\| \boldsymbol{m} \|_{\mathrm{TV}^2} + \| \operatorname{div} \boldsymbol{m} \|_{\mathrm{TV}}) \tag{CROC}$$

Do curve measures minimise (CROC)?

Definition

Let X be a topological vector space and $K \subset X$. An extreme point x of K is a point such that $\forall y, z \in K$:

Definition

Let X be a topological vector space and $K \subset X$. An extreme point x of K is a point such that $\forall y, z \in K$:

$$\forall \lambda \in (0,1), x = \lambda y + (1 - \lambda)z$$

 $\implies x = y = z$

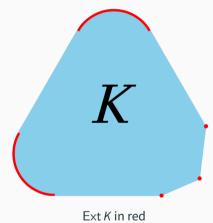
Definition

Let X be a topological vector space and $K \subset X$. An extreme point x of K is a point such that $\forall y, z \in K$:

$$\forall \lambda \in (0,1), x = \lambda y + (1 - \lambda)z$$

 $\implies x = y = z$

Ext *K* is the set of extreme points of *K*.



Let $F: E \to \mathbb{R}^p$, G the data-term, R the regulariser, $\alpha > 0$.

$$F = G + \alpha R$$

Let $F: E \to \mathbb{R}^p$, G the data-term, R the regulariser, $\alpha > 0$.

$$F = G + \alpha R$$

$$\mathcal{B}_{E}^{1}$$
 is the unit-ball of $R: \mathcal{B}_{E}^{1} \stackrel{\text{def.}}{=} \{u \in E \mid R(u) \leq 1\}.$

Let $F: E \to \mathbb{R}^p$, G the data-term, R the regulariser, $\alpha > 0$.

$$F = G + \alpha R$$

 \mathcal{B}_{E}^{1} is the unit-ball of $R: \mathcal{B}_{E}^{1} \stackrel{\mathrm{def.}}{=} \{u \in E \, | \, R(u) \leq 1\}.$

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of Ext \mathcal{B}^1_E

Let $F: E \to \mathbb{R}^p$, G the data-term, R the regulariser, $\alpha > 0$.

$$F = G + \alpha R$$

 \mathcal{B}_{E}^{1} is the unit-ball of $R: \mathcal{B}_{E}^{1} \stackrel{\mathrm{def.}}{=} \{u \in E \, | \, R(u) \leq 1\}.$

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of $\mathsf{Ext}\,\mathcal{B}^1_\mathsf{E}$

Characterise Ext \mathcal{B}_{E}^{1} of the regulariser \iff outline the structure of a *minimum* of F.

• If
$$\mathit{E} = \mathcal{M}\left(\mathcal{X}\right)$$
 and $\mathit{R} = \left\|\cdot\right\|_{\mathrm{TV}}$, then:

• If $\mathit{E} = \mathcal{M}\left(\mathcal{X}\right)$ and $\mathit{R} = \left\|\cdot\right\|_{\mathrm{TV}}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_{\mathsf{x}}, \mathsf{x} \in \mathcal{X}\}$$
 .

• If $E = \mathcal{M}(\mathcal{X})$ and $R = \|\cdot\|_{\mathrm{TV}}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_{\mathsf{x}}, \mathsf{x} \in \mathcal{X}\}$$
.

• If $E = \mathrm{BV}(\mathcal{X})$ and $R = \|\cdot\|_{\mathrm{BV}}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathrm{BV}}) = \left\{ rac{1}{\mathrm{Per}(\mathit{E})} \, \chi_{\mathit{E}}, \, \mathit{E} \subset \mathcal{X} \, \mathsf{is \, simple}
ight\}.$$

• If $E = \mathcal{M}(\mathcal{X})$ and $R = \|\cdot\|_{\mathrm{TV}}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_{\mathsf{x}}, \mathsf{x} \in \mathcal{X}\}$$
.

• If $E = \mathrm{BV}(\mathcal{X})$ and $R = \|\cdot\|_{\mathrm{BV}}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathrm{BV}}) = \left\{ rac{1}{\mathrm{Per}(\mathit{E})} \, \chi_{\mathit{E}}, \, \mathit{E} \subset \mathcal{X} \, \mathsf{is \, simple}
ight\}.$$

• If $E = \mathscr{V}$ and $R = \|\cdot\|_{\mathscr{V}}$, then:

$$\mathsf{Ext}(\mathcal{B}_\mathscr{V}) = ?$$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ rac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{arphi}}, \ \gamma \ \mathsf{Lipschitz} \ \mathsf{1-rectifiable} \ \mathsf{simple} \ \mathsf{curve}
ight\}.$$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ \frac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\mathscr{V}}}, \ \gamma \ \mathsf{Lipschitz} \ \mathsf{1-rectifiable} \ \mathsf{simple} \ \mathsf{curve} \right\}.$$

Theorem (Main result of [Laville et al., 2023b])

Let
$$\mathcal{B}^1_\mathscr{V}\stackrel{\mathrm{def.}}{=}\{\pmb{m}\in\mathscr{V},\|\pmb{m}\|_\mathscr{V}\leq 1\}$$
 the unit ball of the \mathscr{V} -norm.

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ \frac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\mathscr{V}}}, \ \gamma \ \mathsf{Lipschitz} \ \mathsf{1-rectifiable} \ \mathsf{simple} \ \mathsf{curve}
ight\}.$$

Theorem (Main result of [Laville et al., 2023b])

Let
$$\mathcal{B}^1_\mathscr{V}\stackrel{\mathrm{def.}}{=}\{\pmb{m}\in\mathscr{V},\|\pmb{m}\|_\mathscr{V}\leq 1\}$$
 the unit ball of the \mathscr{V} -norm. Then,

$$\operatorname{Ext}(\mathcal{B}^1_{\mathscr{V}}) = \mathfrak{G}.$$

Recap

- a space of measures $\mathcal V,$ a new energy called CROC;

- a space of measures \mathcal{V} , a new energy called CROC;
- optimality conditions, dual certificates;

- a space of measures \mathcal{V} , a new energy called CROC;
- · optimality conditions, dual certificates;
- $\operatorname{Ext}(\mathcal{B}^1_{\mathscr{V}}) = \mathfrak{G}$, hence CROC admits one minimiser boiling down to a **finite** sum of curves.

- a space of measures \mathcal{V} , a new energy called CROC;
- · optimality conditions, dual certificates;
- $\operatorname{Ext}(\mathcal{B}^1_{\mathscr{V}}) = \mathfrak{G}$, hence CROC admits one minimiser boiling down to a **finite** sum of curves.

- a space of measures \mathcal{V} , a new energy called CROC;
- · optimality conditions, dual certificates;
- $\operatorname{Ext}(\mathcal{B}^1_{\mathscr{V}})=\mathfrak{G}$, hence CROC admits one minimiser boiling down to a **finite** sum of curves.

	0D	1D	2D
Geometry	Spikes	Curves	Sets
Space	$\mathcal{M}(\mathcal{X})$	Y	$\mathrm{BV}(\mathcal{X})$
Regulariser	$\left\ \cdot \right\ _{\mathrm{TV}}$	$\left\ \cdot \right\ _{\mathrm{TV^2}} + \left\ div \cdot \right\ _{\mathrm{TV}}$	$\left\ \cdot \right\ _1 + \left\ \mathrm{D} \cdot \right\ _{\mathrm{TV}}$

• No Hilbertian structure on measure spaces: no proximal algorithm;

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

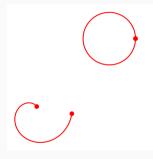
- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

 \hookrightarrow perfect with our latter results!

We present the Charge Sliding Frank-Wolfe algorithm.

Synthetic problem



Synthetic problem

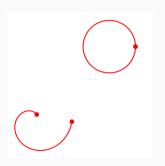




Figure 2: The source and its noisy acquired image *I*

• a possible choice consists in setting $\Phi = *\nabla h$ since:

- a possible choice consists in setting $\Phi = *\nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y= like the gradient;

- a possible choice consists in setting $\Phi = *\nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y= like the gradient;
 - let *u* be the support of the curve, then we feel that:

$$\eta = \Phi^*(\Phi m - \underbrace{y}_{=\nabla I}) \simeq \Delta u$$

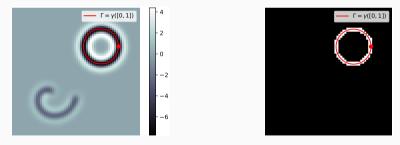


Figure 3: The certificate $|\eta|$ on the left, u on the right.

- a possible choice consists in setting $\Phi = *\nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y= like the gradient;
 - let *u* be the support of the curve, then we feel that:

$$\eta = \Phi^*(\Phi m - \underbrace{y}_{=\nabla I}) \simeq \Delta u$$

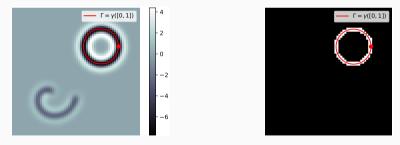


Figure 3: The certificate $|\eta|$ on the left, u on the right.

- a possible choice consists in setting $\Phi = *\nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y= like the gradient;
 - let *u* be the support of the curve, then we feel that:

$$\eta = \Phi^*(\Phi m - \underbrace{y}_{=\nabla I}) \simeq \Delta u$$

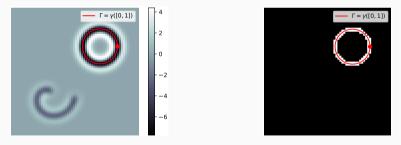


Figure 3: The certificate $|\eta|$ on the left, u on the right.

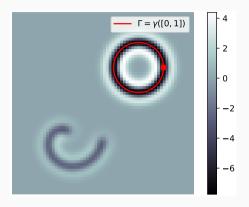


Figure 4: First step of first iteration: certificate and support of new curve estimated

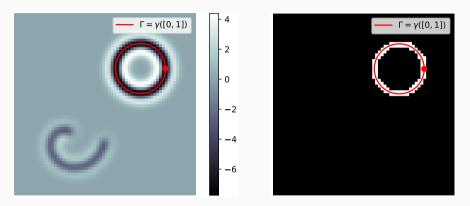
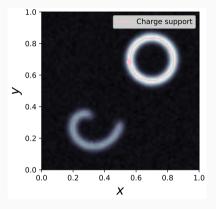
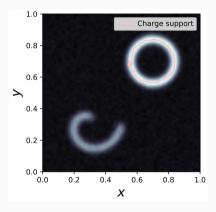


Figure 4: First step of first iteration: certificate and support of new curve estimated

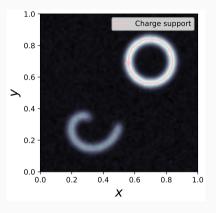


Amplitude optimisation

Figure 4: First iteration: second and third steps



Amplitude optimisation



Both amplitude and position optimisation

Figure 4: First iteration: second and third steps

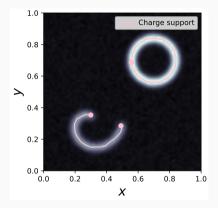
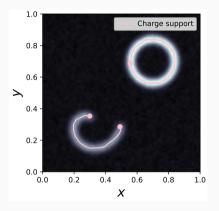


Figure 4: Second iteration: another curve is found



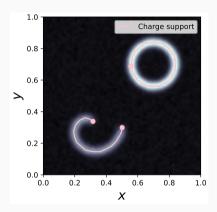
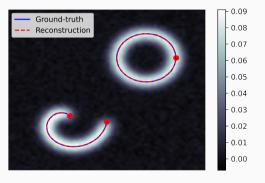


Figure 4: Second iteration: another curve is found

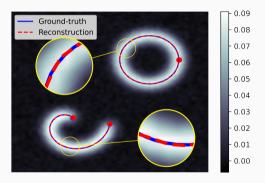
Final results

Final results



Reconstruction [Laville et al., 2023a].

Final results



Reconstruction [Laville et al., 2023a].

Another discretisation

polygonal works well, under peculiar circumstances;

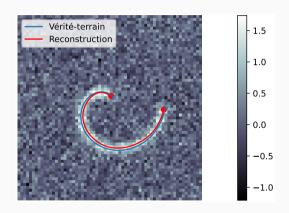
Another discretisation

- polygonal works well, under peculiar circumstances;
- Bézier curves holds nice regularity properties, encodes a curve with few control points



Another discretisation

- polygonal works well, under peculiar circumstances;
- Bézier curves holds nice regularity properties, encodes a curve with few control points
- Pro: always smooth curves. Cons: prone to shortening.



Recap

• Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the *vector* operator definition;

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the *vector* operator definition;
- discretisation insights.

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the *vector* operator definition;
- discretisation insights.

Still, there is room for improvements:

- define a scalar operator, further enabling curve reconstruction in fluctuation microscopy;
- improve the support estimation step;
- tackle the curve crossing issue.

Dynamic curve untangling: lift and Riemannian regularisation

Bastien Laville

Théo Bertrand

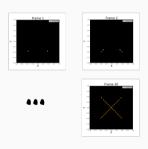
João M. Machado

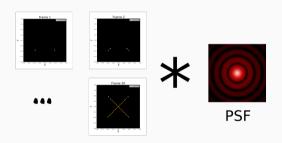
Laure B.-Féraud

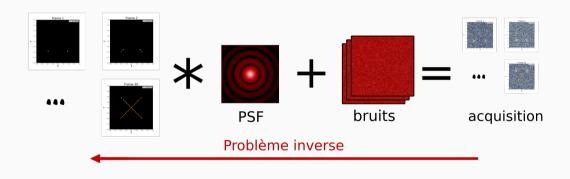
Gilles Aubert

Related paper

Dynamic off-the-grid curves untangling by the Reeds-Shepp metric: theory, algorithm and a biomedical application. **Preprint, to appear 2024.**







• Let $X \stackrel{\mathrm{def.}}{=} \mathcal{X} \times [0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?

- Let $X \stackrel{\text{def.}}{=} \mathcal{X} \times [0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?
- $\Gamma = \{ \gamma = (h, \xi), \quad h \in C([0, 1], \mathbb{R}), \quad \xi : [0, 1] \to \mathcal{X}, \quad \xi_{|h \neq 0} \text{ continuous} \};$

- Let $X \stackrel{\text{def.}}{=} \mathcal{X} \times [0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?
- $\Gamma = \{ \gamma = (h, \xi), h \in C([0, 1], \mathbb{R}), \xi : [0, 1] \to \mathcal{X}, \xi_{|h \neq 0} \text{ continuous} \};$
- with e_t the measurable map of evaluation at time $t, e_t(\gamma) = \gamma(t)$ i.e. $e_{t\sharp}\sigma \in \mathcal{M}(\Omega)$,

- Let $X \stackrel{\text{def.}}{=} \mathcal{X} \times [0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?
- $\Gamma = \{ \gamma = (h, \xi), h \in C([0, 1], \mathbb{R}), \xi : [0, 1] \to \mathcal{X}, \xi_{|h \neq 0} \text{ continuous} \};$
- with e_t the measurable map of evaluation at time $t, e_t(\gamma) = \gamma(t)$ i.e. $e_{t\sharp}\sigma \in \mathcal{M}(\Omega)$,

- Let $X \stackrel{\text{def.}}{=} \mathcal{X} \times [0, T]$. How to recover the source measure $\rho \in \mathcal{M}(X)$?
- $\Gamma = \{ \gamma = (h, \xi), \quad h \in \mathit{C}([0, 1], \mathbb{R}), \quad \xi : [0, 1] \to \mathcal{X}, \quad \xi_{|h \neq 0} \text{ continuous} \};$
- with e_t the measurable map of evaluation at time t, $e_t(\gamma) = \gamma(t)$ i.e. $e_{t\sharp}\sigma \in \mathcal{M}(\Omega)$,

$$\underset{\sigma \in \mathcal{M}(\Gamma)}{\operatorname{argmin}} \sum_{i=1}^{T} \|y_{t_i} - \Phi e_{t_i} \sharp \sigma\|_{\mathcal{H}} + \alpha \int_{0}^{T} \underbrace{w(\gamma)}_{=\int_{0}^{1} \|\dot{\gamma}(t)\|_{g} dt} d\sigma(\gamma).$$

Crossing curves may be **not** optimal in the sense we cannot infere them from the certificate.

A lift to the 'roto-translational space'

How to untangle crossing curves?

- Consider $\mathbb{S}_1=[0,2\pi)$ and the lifted space $\mathbb{R}^2\times\mathbb{S}_1$ [Chambolle and Pock, 2019];
- we can separate objects with the same position but different local orientation.

A lift to the 'roto-translational space'

How to untangle crossing curves?

- Consider $\mathbb{S}_1 = [0, 2\pi)$ and the lifted space $\mathbb{R}^2 \times \mathbb{S}_1$ [Chambolle and Pock, 2019];
- we can separate objects with the same position but different local orientation.

The separation prior is enforced by the relaxed Reeds-Shepp metric [Reeds and Shepp, 1990, Duits et al., 2018]. Let $(x, \theta) \in \mathbb{M}_2$ while $(\dot{x}, \dot{\theta}) \in \mathcal{T}(\mathbb{M}_2)$ lies in the tangent bundle:

$$\|\dot{\gamma}(t)\|_{g}^{2} = \|(x,\theta)\|_{g}^{2}$$
$$= |\dot{x} \cdot e_{\theta}|^{2} + \frac{1}{\varepsilon^{2}}|\dot{x} \wedge e_{\theta}|^{2} + \xi^{2}|\dot{\theta}|^{2}.$$

A lift to the 'roto-translational space'

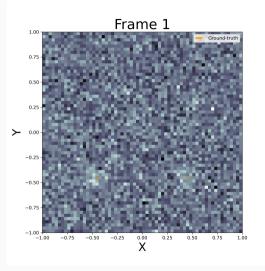
How to untangle crossing curves?

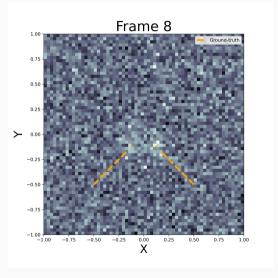
- Consider $\mathbb{S}_1=[0,2\pi)$ and the lifted space $\mathbb{R}^2 \times \mathbb{S}_1$ [Chambolle and Pock, 2019];
- we can separate objects with the same position but different local orientation.

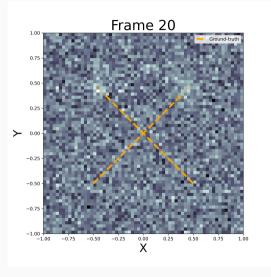
The separation prior is enforced by the relaxed Reeds-Shepp metric [Reeds and Shepp, 1990, Duits et al., 2018]. Let $(x, \theta) \in \mathbb{M}_2$ while $(\dot{x}, \dot{\theta}) \in \mathcal{T}(\mathbb{M}_2)$ lies in the tangent bundle:

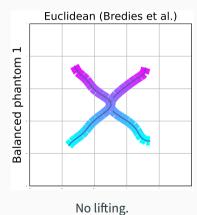
$$\|\dot{\gamma}(t)\|_{g}^{2} = \|(x,\theta)\|_{g}^{2}$$
$$= |\dot{x} \cdot e_{\theta}|^{2} + \frac{1}{\varepsilon^{2}} |\dot{x} \wedge e_{\theta}|^{2} + \xi^{2} |\dot{\theta}|^{2}.$$

- $0 < \varepsilon < 1$ enforces the planarity of the curve,
- $\xi > 0$ penalises the local curvature.

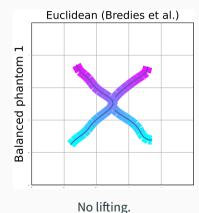


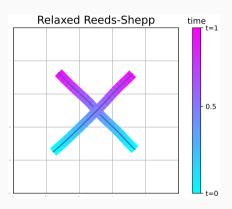




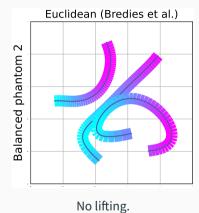


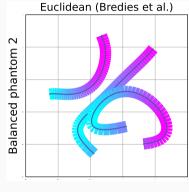
31



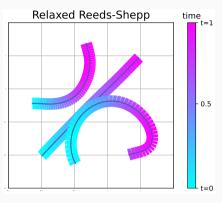


RS with $\beta=$ 10 $^{-3}$, $\varepsilon=$ 0.05 and $\xi=$ 1.

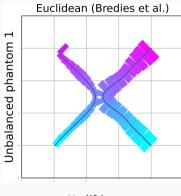




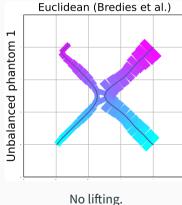
No lifting.



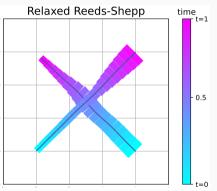
RS with $\beta=$ 10 $^{-3}$, $\varepsilon=$ 0.05 and $\xi=$ 1.



No lifting.



RS wit



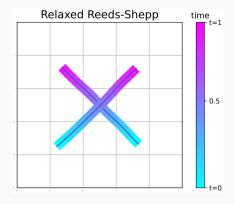
RS with $\beta=$ 10 $^{-3}$, $\varepsilon=$ 0.05 and $\xi=$ 1.

Recap

• a roto-translational lift $\mathbb{R}^2 \times \mathbb{S}^1$ and a new metric regularisation with Reeds-Shepp metric;

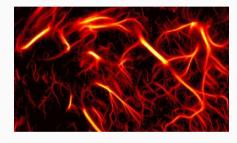
Recap

- a roto-translational lift $\mathbb{R}^2 \times \mathbb{S}^1$ and a new metric regularisation with Reeds-Shepp metric;
- Convincing first results;



Recap

- a roto-translational lift $\mathbb{R}^2 \times \mathbb{S}^1$ and a new metric regularisation with Reeds-Shepp metric;
- Convincing first results;
- yet a work in progress: a
 Γ-convergence result for the more ubiquitous discretisations, test on real biological data (ULM), more lined up Riemannian optimisation, etc.



Ultrasound Localisation Microscopy (ULM)

Conclusion

 off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we propose a way to bridge the gap in off-the-grid static curve reconstruction;

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we propose a way to bridge the gap in off-the-grid static curve reconstruction;
- we studied a new way to untangle trajectories, dynamic curve reconstruction;

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we propose a way to bridge the gap in off-the-grid static curve reconstruction;
- we studied a new way to untangle trajectories, dynamic curve reconstruction;
- we believe there are connections between them two, improvements in the off-the-grid community may benefit both fields.

Measure v. current?

• a curve can be encoded in a measure μ_{γ} :

$$\langle \boldsymbol{\mu}_{\boldsymbol{\gamma}}, \boldsymbol{f} \rangle = \int_0^1 \boldsymbol{f}(\boldsymbol{\gamma}(t)) \cdot \dot{\boldsymbol{\gamma}}(t) \, \mathrm{d}t.$$

Measure v. current?

• a curve can be encoded in a *measure* μ_{γ} :

$$\langle \boldsymbol{\mu}_{\boldsymbol{\gamma}}, \boldsymbol{f}
angle = \int_0^1 \boldsymbol{f}(\boldsymbol{\gamma}(t)) \cdot \dot{\boldsymbol{\gamma}}(t) \, \mathrm{d}t.$$

• but it can be encoded in a *current*, in the sense of *Georges de Rham*:

$$egin{aligned} \langle \mathcal{T}_{m{\gamma}}, f \mathrm{d}\omega
angle &= \int_0^1 f(m{\gamma}(t)) \, \mathrm{d}\pi(m{\gamma}(t)). \ &= \int_0^1 f(m{\gamma}(t)) \|m{\gamma}(t)\|_g \mathrm{d}t. \end{aligned}$$

if $\mathrm{d}\pi$ is a 0-form, for a metric g.

References i

Azais, J.-M., Castro, Y. D., and Gamboa, F. (2015).

Spike detection from inaccurate samplings.

Applied and Computational Harmonic Analysis, 38(2):177–195.

Boyer, C., Chambolle, A., Castro, Y. D., Duval, V., de Gournay, F., and Weiss, P. (2019). **On representer theorems and convex regularization.**

SIAM Journal on Optimization, 29(2):1260–1281.

Bredies, K. and Carioni, M. (2019).

Sparsity of solutions for variational inverse problems with finite-dimensional data.

Calculus of Variations and Partial Differential Equations, 59(1).

References ii

Bredies, K., Carioni, M., Fanzon, S., and Romero, F. (2021).

On the extremal points of the ball of the benamou-brenier energy.

Bulletin of the London Mathematical Society.

Bredies, K., Carioni, M., Fanzon, S., and Romero, F. (2022).

A generalized conditional gradient method for dynamic inverse problems with optimal transport regularization.

Foundations of Computational Mathematics.

Bredies, K. and Pikkarainen, H. K. (2012).

Inverse problems in spaces of measures.

ESAIM: Control, Optimisation and Calculus of Variations, 19(1):190–218.

References iii

Candès, E. J. and Fernandez-Granda, C. (2013).

Towards a mathematical theory of super-resolution.

Communications on Pure and Applied Mathematics, 67(6):906–956.

Chambolle, A. and Pock, T. (2019).

Total roto-translational variation.

Numerische Mathematik, 142(3):611–666.

de Castro, Y., Duval, V., and Petit, R. (2021).

Towards off-the-grid algorithms for total variation regularized inverse problems.

In *Lecture Notes in Computer Science*, pages 553–564. Springer International Publishing.

References iv

Duits, R., Meesters, S. P. L., Mirebeau, J.-M., and Portegies, J. M. (2018).

Optimal paths for variants of the 2d and 3d reeds-shepp car with applications in image analysis.

Journal of Mathematical Imaging and Vision, 60(6):816–848.

Duval, V. and Peyré, G. (2014).

Exact support recovery for sparse spikes deconvolution.

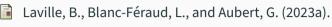
Foundations of Computational Mathematics, 15(5):1315–1355.

Frank, M. and Wolfe, P. (1956).

An algorithm for quadratic programming.

Naval Research Logistics Quarterly, 3(1-2):95-110.

References v



 ${\bf Off-the-grid\ charge\ algorithm\ for\ curve\ reconstruction\ in\ inverse\ problems.}$

In *Lecture Notes in Computer Science*, pages 393–405. Springer International Publishing.

Laville, B., Blanc-Féraud, L., and Aubert, G. (2023b).

Off-the-grid curve reconstruction through divergence regularization: An extreme point result.

SIAM Journal on Imaging Sciences, 16(2):867–885.

Laville, B., Blanc-Féraud, L., and Aubert, G. (2021).

 ${\bf Off-The-Grid\ Variational\ Sparse\ Spike\ Recovery:\ Methods\ and\ Algorithms.}$

Journal of Imaging, 7(12):266.

References vi

Nehme, E., Weiss, L. E., Michaeli, T., and Shechtman, Y. (2018).

Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica, 5(4):458.

Reeds, J. and Shepp, L. (1990).

Optimal paths for a car that goes both forwards and backwards.

Pacific Journal of Mathematics, 145(2):367–393.

Smirnov, S. K. (1993).

Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows.

St. Petersburg Department of Steklov Institute of Mathematics, Russian Academy of Sciences, 5(4):206–238.

See our work and papers on

https://www-sop.inria.fr/members/Bastien.Laville/

First inclusion:

$$\mathsf{Ext}(\mathcal{B}^1_\mathscr{V})\supset\mathfrak{G}$$

First inclusion:

$$\mathsf{Ext}(\mathcal{B}^1_\mathscr{V})\supset\mathfrak{G}$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $\pmb{u_1}, \pmb{u_2} \in \mathcal{B}^1_{\mathscr{V}}$ and for $\lambda \in (0,1)$:

$$\frac{oldsymbol{\mu_{\gamma}}}{\left\|oldsymbol{\mu_{\gamma}}
ight\|_{\mathscr{H}}} = \lambda oldsymbol{u_1} + (1-\lambda)oldsymbol{u_2}.$$

First inclusion:

$$\mathsf{Ext}(\mathcal{B}^1_\mathscr{V})\supset\mathfrak{G}$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $\pmb{u_1}, \pmb{u_2} \in \mathcal{B}^1_{\mathscr{V}}$ and for $\lambda \in (0,1)$:

$$rac{oldsymbol{\mu_{\gamma}}}{\left\|oldsymbol{\mu_{\gamma}}
ight\|_{\mathscr{H}}} = \lambda oldsymbol{u_1} + (1-\lambda)oldsymbol{u_2}.$$

By Smirnov's decomposition, $u_i = \int_{\mathfrak{G}} \mathbf{R} \, \mathrm{d} \rho_i(\mathbf{R})$ where ρ_i is a Borel measure.

First inclusion:

$$\mathsf{Ext}(\mathcal{B}^1_\mathscr{V})\supset\mathfrak{G}$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $\pmb{u_1}, \pmb{u_2} \in \mathcal{B}^1_{\mathscr{V}}$ and for $\lambda \in (0,1)$:

$$rac{oldsymbol{\mu_{\gamma}}}{\left\|oldsymbol{\mu_{\gamma}}
ight\|_{\mathscr{V}}} = \lambda oldsymbol{u_1} + (1-\lambda)oldsymbol{u_2}.$$

By Smirnov's decomposition, $u_i = \int_{\mathfrak{G}} R \, \mathrm{d} \rho_i(R)$ where ρ_i is a Borel measure. Also:

 $u_{f 1},u_{f 2}$ has support included in μ_{γ} support, ditto for spt ${\it R}\subset$ spt μ_{γ} [Smirnov, 1993];

First inclusion:

$$\mathsf{Ext}(\mathcal{B}^1_\mathscr{V})\supset\mathfrak{G}$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_1,u_2\in\mathcal{B}^1_{\mathscr{V}}$ and for $\lambda\in(0,1)$:

$$rac{oldsymbol{\mu_{\gamma}}}{\left\|oldsymbol{\mu_{\gamma}}
ight\|_{\mathscr{V}}} = \lambda oldsymbol{u_1} + (1-\lambda)oldsymbol{u_2}.$$

By Smirnov's decomposition, $u_i = \int_{\mathfrak{S}} R \, \mathrm{d} \rho_i(R)$ where ρ_i is a Borel measure. Also:

 u_1,u_2 has support included in μ_γ support, ditto for $\operatorname{spt} R\subset\operatorname{spt}\mu_\gamma$ [Smirnov, 1993]; moreover, each R has maximal length implying $\operatorname{spt} R=\operatorname{spt}\mu_\gamma$.

$$\operatorname{spt} { extbf{ extit{R}}} = \operatorname{spt} \mu_{oldsymbol{\gamma}}.$$

$$\operatorname{spt} extbf{ extit{R}} = \operatorname{spt} \mu_{\gamma}.$$
 Otherwise $\operatorname{spt} extbf{ extit{R}} \subsetneq \operatorname{spt} \mu_{\gamma} \left\| extbf{ extit{R}}
ight\|_{\operatorname{TV}} < \dfrac{\left\| \mu_{\gamma}
ight\|_{\operatorname{TV}}}{\left\| \mu_{\gamma}
ight\|_{\operatorname{TV}}},$

 $ext{spt } extbf{ extit{R}} = ext{spt } \mu_{m{\gamma}}.$ Otherwise $ext{spt } extbf{ extit{R}} \subsetneq ext{spt } \mu_{m{\gamma}} \left\| extbf{ extit{R}}
ight\|_{ ext{TV}} < rac{\left\| \mu_{m{\gamma}}
ight\|_{ ext{TV}}}{\left\| \mu_{m{\gamma}}
ight\|_{arphi}},$ therefore,

$$\int_{\mathfrak{G}} \|\mathbf{\textit{R}}\|_{\mathrm{TV}} \, \mathrm{d}\rho(\mathbf{\textit{R}}) < \frac{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{\boldsymbol{\varphi}} = \int_{\mathfrak{G}} \left\|\mathbf{\textit{R}}\right\|_{\mathrm{TV}} \mathrm{d}\rho(\mathbf{\textit{R}}),$$

thus spt $extbf{ extit{R}} = \operatorname{spt} \mu_{\gamma}$,

 $\operatorname{spt} \textit{\textbf{R}} = \operatorname{spt} \mu_{\boldsymbol{\gamma}}. \text{ Otherwise } \operatorname{spt} \textit{\textbf{R}} \subsetneq \operatorname{spt} \mu_{\boldsymbol{\gamma}} \left\| \textit{\textbf{R}} \right\|_{\operatorname{TV}} < \frac{\left\| \mu_{\boldsymbol{\gamma}} \right\|_{\operatorname{TV}}}{\left\| \mu_{\boldsymbol{\gamma}} \right\|_{\mathscr{V}}}, \text{ therefore,}$

$$\int_{\mathfrak{G}} \|\mathbf{\textit{R}}\|_{\mathrm{TV}} \, \mathrm{d}\rho(\mathbf{\textit{R}}) < \frac{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1} = \int_{\mathfrak{G}} \left\|\mathbf{\textit{R}}\right\|_{\mathrm{TV}} \mathrm{d}\rho(\mathbf{\textit{R}}),$$

thus $\operatorname{spt} {\it R} = \operatorname{spt} \mu_{\gamma}$,

each R is supported on a simple Lipschitz curve $\gamma_{\rm R}$.

 $ext{spt } extit{ extit{R}} = ext{spt } \mu_{m{\gamma}}.$ Otherwise $ext{spt } extit{ extit{R}} \subsetneq ext{spt } \mu_{m{\gamma}} \left\| extit{ extit{R}}
ight\|_{ ext{TV}} < rac{\left\| \mu_{m{\gamma}}
ight\|_{ ext{TV}}}{\left\| \mu_{m{\gamma}}
ight\|_{arphi}},$ therefore,

$$\int_{\mathfrak{G}} \left\| \mathbf{\textit{R}} \right\|_{\mathrm{TV}} \mathrm{d} \rho(\mathbf{\textit{R}}) < \frac{\left\| \boldsymbol{\mu}_{\boldsymbol{\gamma}} \right\|_{\mathrm{TV}}}{\left\| \boldsymbol{\mu}_{\boldsymbol{\gamma}} \right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1} = \int_{\mathfrak{G}} \left\| \mathbf{\textit{R}} \right\|_{\mathrm{TV}} \mathrm{d} \rho(\mathbf{\textit{R}}),$$

thus $\operatorname{spt} {\it R} = \operatorname{spt} \mu_{\gamma}$,

each R is supported on a simple Lipschitz curve $\gamma_{\rm R}$.

Hence, each $\gamma_{\it R}$ is a reparametrisation of γ yielding $\it R=rac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{_{\it Y}}}$

 $\mathbb{E}[\operatorname{spt} extbf{ extit{R}} = \operatorname{spt} \mu_{m{\gamma}}.$ Otherwise $\operatorname{spt} extbf{ extit{R}} \subsetneq \operatorname{spt} \mu_{m{\gamma}} \left\| extbf{ extit{R}}
ight\|_{\mathrm{TV}} < \dfrac{\left\| \mu_{m{\gamma}}
ight\|_{\mathrm{TV}}}{\left\| \mu_{m{\gamma}}
ight\|_{\mathscr{V}}}$, therefore,

$$\int_{\mathfrak{G}} \left\| \mathbf{\textit{R}} \right\|_{\mathrm{TV}} \mathrm{d} \rho(\mathbf{\textit{R}}) < \frac{\left\| \boldsymbol{\mu}_{\boldsymbol{\gamma}} \right\|_{\mathrm{TV}}}{\left\| \boldsymbol{\mu}_{\boldsymbol{\gamma}} \right\|_{\boldsymbol{\mathscr{V}}}} \underbrace{\rho(\mathfrak{G})}_{=1} = \int_{\mathfrak{G}} \left\| \mathbf{\textit{R}} \right\|_{\mathrm{TV}} \mathrm{d} \rho(\mathbf{\textit{R}}),$$

thus spt $extbf{ extit{R}} = \operatorname{spt} \mu_{oldsymbol{\gamma}}$,

each R is supported on a simple Lipschitz curve γ_R .

Hence, each γ_R is a reparametrisation of γ yielding $R=rac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\omega}}$, eventually:

$$oldsymbol{u_i} = \int_{\mathfrak{G}} oldsymbol{R} \, \mathrm{d}
ho_i = \int_{\mathfrak{G}} rac{oldsymbol{\mu_{\gamma}}}{\left\|oldsymbol{\mu_{\gamma}}
ight\|_{\mathscr{V}}} \, \mathrm{d}
ho_i = rac{oldsymbol{\mu_{\gamma}}}{\left\|oldsymbol{\mu_{\gamma}}
ight\|_{\mathscr{V}}} \underbrace{
ho_i(\mathfrak{G})}_{=1} = rac{oldsymbol{\mu_{\gamma}}}{\left\|oldsymbol{\mu_{\gamma}}
ight\|_{\mathscr{V}}}.$$

Contradiction, then μ_{γ} is an extreme point.

Second inclusion:

$$\mathsf{Ext}(\mathcal{B}^1_\mathscr{V})\subset\mathfrak{G}$$

Second inclusion:

$$\mathsf{Ext}(\mathcal{B}^1_\mathscr{V})\subset\mathfrak{G}$$

Let $T \in Ext(\mathcal{B}^1_{\mathscr{C}})$, then there exists a finite (probability) Borel measure ρ s.t.:

$$extbf{ extit{T}} = \int_{\partial S} extbf{ extit{R}} \, \mathrm{d}
ho(extbf{ extit{R}}),$$

Second inclusion:

$$\mathsf{Ext}(\mathcal{B}^1_\mathscr{V})\subset\mathfrak{G}$$

Let $T \in \mathsf{Ext}(\mathcal{B}^1_\mathscr{V})$, then there exists a finite (probability) Borel measure ρ s.t.:

$$extbf{\textit{T}} = \int_{\partial S} extbf{\textit{R}} \, \mathrm{d}
ho(extbf{\textit{R}}),$$

either ho is supported on a singleton of ${\mathfrak G}$, then there exists μ_{γ} s.t. ${\it T}=\frac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{_{\mathscr V}}}$

Second inclusion:

$$\mathsf{Ext}(\mathcal{B}^1_\mathscr{V})\subset\mathfrak{G}$$

Let $T \in \mathsf{Ext}(\mathcal{B}^1_\mathscr{V})$, then there exists a finite (probability) Borel measure ρ s.t.:

$$extbf{ extit{T}} = \int_{\partial S} extbf{ extit{R}} \, \mathrm{d}
ho(extbf{ extit{R}}),$$

either ρ is supported on a singleton of $\mathfrak G$, then there exists μ_{γ} s.t. $\mathbf T = \frac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\mathscr V}}$ or there exists a Borel set $A \subset \mathfrak G$ with arbitrary $0 < \rho(A) < 1$ and:

$$ho = \left|
ho
ight| \left(A
ight) \left(rac{1}{\left|
ho
ight| \left(A
ight)}
ho igs A
ight) + \left|
ho
ight| \left(A^c
ight) \left(rac{1}{\left|
ho
ight| \left(A^c
ight)}
ho igs A^c
ight).$$

Then,

$$\mathbf{\textit{T}} = |\rho|\left(A\right) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|\left(A\right)} \mathbf{\textit{R}} \, \mathrm{d}(\rho \, \Box A)(\mathbf{\textit{R}})\right]}_{\stackrel{\mathrm{def.}}{=} \mathbf{\textit{u}}_{\mathbf{1}}} + |\rho|\left(A^{c}\right) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|\left(A^{c}\right)} \mathbf{\textit{R}} \, \mathrm{d}(\rho \, \Box A^{c})(\mathbf{\textit{R}})\right]}_{\stackrel{\mathrm{def.}}{=} \mathbf{\textit{u}}_{\mathbf{2}}}$$

Then,

$$\mathbf{T} = |\rho| (A) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A)} \mathbf{R} \, \mathrm{d}(\rho \, \Box A)(\mathbf{R}) \right]}_{\stackrel{\mathrm{def.}}{=} \mathbf{u_1}} + |\rho| (A^c) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A^c)} \mathbf{R} \, \mathrm{d}(\rho \, \Box A^c)(\mathbf{R}) \right]}_{\stackrel{\mathrm{def.}}{=} \mathbf{u_2}}$$

A is chosen (up to a neighbourhood) as a convex set, hence $u_1 = \int_A R \, d\rho(R)$ belongs to A, while conversely $u_2 \in A^c$, thus $u_1 \neq u_2$.

Then,

$$\mathbf{T} = |\rho| (A) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A)} \mathbf{R} \, \mathrm{d}(\rho \, \Box A)(\mathbf{R}) \right]}_{\stackrel{\mathrm{def.}}{=} \mathbf{u_1}} + |\rho| (A^c) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A^c)} \mathbf{R} \, \mathrm{d}(\rho \, \Box A^c)(\mathbf{R}) \right]}_{\stackrel{\mathrm{def.}}{=} \mathbf{u_2}}$$

A is chosen (up to a neighbourhood) as a convex set, hence $u_1 = \int_A R \, d\rho(R)$ belongs to A, while conversely $u_2 \in A^c$, thus $u_1 \neq u_2$. Eventually, thanks to Smirnov's decomposition:

$$egin{align} \|oldsymbol{u_1}\|_{\mathscr{V}} &\leq \int_{\mathfrak{G}} rac{1}{|
ho|\left(A
ight)} rac{\|oldsymbol{R}\|_{\mathscr{V}}}{=1} \, \mathrm{d}(
ho igsqcup A)(oldsymbol{R}) \ &\leq rac{|
ho|\left(A
ight)}{|
ho|\left(A
ight)} = 1. \end{split}$$

Then $u_1,u_2\in\mathcal{B}^1_\mathscr{V}$ while $u_1\neq u_2$, thus reaching a non-trivial convex combination:

$$\mathbf{T} = \lambda \mathbf{u_1} + (1 - \lambda)\mathbf{u_2},$$

Then $u_1,u_2\in\mathcal{B}^1_{\mathscr{V}}$ while $u_1
eq u_2$, thus reaching a non-trivial convex combination:

$$T = \lambda \mathbf{u_1} + (1 - \lambda)\mathbf{u_2},$$

thereby reaching a contradiction, and therefore concluding the proof.