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Abstract. Several numerical algorithms have been developed in the lit-
erature and employed for curves reconstruction. However, these tech-
niques are developed within the discrete setting, namely the super-resolved
image is defined on a finer grid than the observed images. Conversely, off-
the-grid (or gridless) optimisation does not rely on a fine grid and offer a
tractable theoretical and numerical framework. In this work, we present
a gridless method accounting for the reconstruction of both open and
closed curves, based on the latest theoretical development in off-the-grid
curve reconstruction.

Keywords: Off-the-grid variational method · Inverse problem · Frank-
Wolfe algorithm · Curve detection.

1 Introduction

This work focuses on the numerical optimisation of the functional CROC de-
signed for inverse problems in order to recover curves in an off-the-grid fashion,
by considering the space of vector Radon measures with finite divergence.

Off-the-grid methods is a rather new field of research, introduced a decade ago
to overcome some limitations of so-called discrete methods. Indeed, the source
estimation problem amounts to recover the source with support lying in some
set X , thanks to an altered acquisition on a coarse grid: blurred, noisy, low-
passed, etc. In a rather classical discrete framework, the recovered source lies
on a refined grid i.e. it is a matrix. On the contrary, off-the-grid (or gridless)
methods do not rely on a grid: for instance a spike source position is continuously
estimated, and cannot be bound to a pixel in a fine grid, thus not bringing
any discretisation error. The source is then encoded in a measure, lying in a
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broader set of functions denoted M (X ). Moreover, these gridless methods have
several theoretical guarantees [8] and also add up structural information to the
optimisation: geometrical information is then used to recover a certain object,
on the contrary to discrete methods where it always yields a matrix. The off-
the-grid literature built up around the spike reconstruction, but several other
structures such as level sets [5], sinusoid [15], dynamic trajectories [3] etc. have
likewise been explored.

However, to the best knowledge of the authors, the literature does not han-
dle the off-the-grid curve reconstruction problem, let alone provides a tailored
numerical algorithm for this specific task. The point/spike reconstruction prob-
lem, i.e. measure supported on a 0D set, was thoroughly explored [4,7] and the
level set reconstruction problem, i.e. measure supported on a 2D set, has well-
known theoretical results stemming from the geometrical measure theory and
was lately successfully adapted to off-the-grid reconstruction [5]. Still, the nu-
merical reconstruction of a measure supported on a 1D set, and more specifically
a curve object, was yet to explore. It is all the more unfortunate as the curve
structure naturally arise in many inverse problems, such as the super-resolution
in biomedical imaging. In this paper, we propose a new algorithm for curve re-
construction in an off-the-grid fashion, based on the latest theoretical results [14]
investigating a new regulariser to yield curve minima.

1.1 Notations

In the following, X is the ambient space where the positions of the objects
(e.g. spikes, curves, etc.) live, it is a non-empty bounded open set of Rd, hence
a submanifold of dimension d ∈ N∗. H1 denotes the 1-dimensional Hausdorff
measure (see [9] for a definition).

1.2 Related works

This paper makes an extensive use of the last theoretical results on the divergence
vector field measure space brought by [14], based on some strong results of
[17,12]. As we aim to close the gap between spike (sort of 0D, total variation)
and set (somehow 2D, bounded variation) reconstruction, we relate to state-of-
art Dirac [7,4] and level set [5] Frank-Wolfe algorithm.

2 Optimisation in the space of divergence vector fields

2.1 The space of charges

We give some useful definitions and properties from the off-the-grid literature,
the interested reader can take a look at the review [13].

Definition 1 (Evanescent continuous function on X ). We call C0 (X ,Y)
the set of evanescent continuous functions from X to a normed vector space Y,
namely all the continuous map ψ : X → Y such that :



Off-the-grid algorithm for curve reconstruction 3

∀ε > 0,∃K ⊂ X compact, sup
x∈X\K

∥ψ(x)∥Y ≤ ε.

We write C0 (X ) when Y = R. We now introduce:

Definition 2 (Set of Radon measures). We denote by M (X ) the set of real
signed Radon measures on X of finite masses. It is the topological dual of C0 (X )
endowed with supremum norm ∥·∥∞,X by the Riesz-Markov representation the-
orem [9]. Thus, a Radon measure m ∈ M (X ) is a continuous linear form on
functions f ∈ C0 (X ), with the duality bracket denoted by ⟨f,m⟩M (X ) =

∫
X f dm.

The space of integrable equivalent classes L1 (X ) continuously injects into the
Radon measure space L1 (X ) ↪→ M (X ), measures are then a generalisation of
functions to a broader set. An example of Radon measure is the Dirac measure
δx, where x ∈ X . Also, since C0 (X ) is a normed vector space, M (X ) is complete
[4] if endowed with its dual norm called the total variation (TV) norm, defined
for m ∈ M (X ) by ∥m∥TV.

Now, we use the latest developments in the off-the-grid literature concerning
the curve reconstruction [14]. Consider the space of vector Radon measures:

Definition 3. We define the set of vector Radon measuresM (X )
2 as the topo-

logical dual of the space of continuous vector functions C 0(X )2
def.
= C 0(X ,R2).

The properties of the scalar case hold for the vector one, indeed M (X )
2 has a

natural TV-norm denoted by ∥·∥TV2 , a duality bracket ⟨·, ·⟩M(X)2 , etc.

The following results in this section only hold in dimension d = 2, since some
tumultuous pathological cases appear when d > 2, see [17, Section 1.3]. We
denote by div the divergence operator, understood in the distributional sense.
Indeed, for all m ∈M (X )

2 and C∞
0 (X ) the space of bump functions:

∀ξ ∈ C∞
0 (X ), ⟨divm, ξ⟩D′(X )×C∞

0 (X ) = −⟨m,∇ξ⟩M(X)2 .

A measure m is of finite divergence if div(m) ∈ M (X ). Let us now introduce
the following useful space [17,16].

Definition 4 (Space of charges). We denote by V the space of divergence
vector fields or charges, namely the space of vector Radon measures with finite
divergence:

V def.
=
{
m ∈M (X )

2
, div(m) ∈ M (X )

}
.

It is a Banach space with respect to the norm ∥·∥V
def.
= ∥·∥TV2 + ∥div(·)∥TV.

We define in the following the curve measure belonging to V i.e. a measure
supported on a curve and defined through integration:
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Definition 5 (Curve measure). Let γ : [0, 1] → X a parametrised Lipschitz
curve, we say that µγ ∈ V is a measure supported on the curve γ if:

∀g ∈ C 0(X )2, ⟨µγ , g⟩M(X)2
def.
=

∫ 1

0

g(γ(t)) · γ̇(t) dt.

We denote by Γ def.
= γ([0, 1]) the support of the curve.

The bracket w.r.t. to a curve measure is the circulation [17] of a test vec-
tor field function along the curve γ. The curve has a finite length since its
parametrisation is Lipschitz, hence H1(Γ ) < +∞. Some properties that a curve
might exhibit are introduced in the following.

Definition 6 (Several characterisation of curves). A curve is called simple
if the restriction of γ on [0, 1) is an injective mapping. A curve is closed if
γ(0) = γ(1), it is called a loop if it is simple and closed.

Using Sard’s theorem for Lipschitz functions, one can prove that µγ does not
depend on the way the curve is parametrized. Therefore, it is assumed that the
curve γ has a constant speed parametrization3, unless stated otherwise. Finally,
we give the expression for the divergence of a curve:

Proposition 1 (Curve divergence). Let µγ be a measure supported on a
curve γ, then div(µγ) = δγ(0) − δγ(1). In particular, div(µγ) = 0 if γ is closed.

2.2 The CROC functional and its minimiser structure

Similarly to the scalar case, one can define a variational problem on V . The
following functional (CROC) standing for Curves Represented On Charges [14]
implements the curve reconstruction problem:

argmin
m∈V

Tα(m)
def.
=

1

2
∥y − Φm∥2H + α∥m∥V . (CROC)

Φ : V → H is linear and maps the divergence vector field set to the acquisition
space H supposed to be Hilbert, where the data observation is y ∈ H. This
functional exhibits existence of a solution, see [14] for a proof and a discussion
on extremality conditions. The regulariser penalises the length of the curve and
the number of curves. Now, consider the following:

Definition 7 (Curve measures set). We denote by S the space of curve
measures, supported on either open or closed simple ones, endowed with weak-∗
topology:

S
def.
=

{
µγ

∥µγ∥V
, γ is a simple oriented Lipschitz curve

}
.

It is a (non-complete) metric space for the weak-∗ topology.
3 γ̇ is a.e. equal to a constant.
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We stress that the curve measures involved do not encode any variation
of amplitude along the support, also that the elements of S are normalised.
This obviously affects the terms of the V -norm: from now on, and to avoid
any ambiguity, we denote by νγ

def.
= µγ/∥µγ∥V an element of S. The following

result is a corollary of the main theorem of [14], which establishes that the
extreme points of the unit ball of the V -norm are precisely the elements of S,
and the celebrated representer theorem [2,1]. The Hilbert acquisition space is
now specifically H = Hn

def.
= Rn a finite dimensional space.

Corollary 1 (Minimiser structure). The problem (CROC) admits a min-
imiser denoted u ∈ V :

u =

p∑
i=1

αiui

where p ≤ dimHn, u ∈ Sp and αi > 0 for 0 ≤ i ≤ p, while
∑p

i=1 αi = Tα(u).

The extreme points result of [14] and these latest corollary are the core com-
ponent of our numerical implementation. Based on the compelling results ob-
tained in [7], we use similarly a greedy algorithm namely the Frank-Wolfe algo-
rithm [10], also known as the conditional gradient method. Hopefully, it consists
in the iterative reconstruction of the solution with the regulariser atoms, i.e. level
sets extreme points, yet precisely curve measures here. In the following sections,
we present our main contribution, amounting to the numerical optimisation of
(CROC) with an instance for a synthetic super-resolution.

3 The Charge (Sliding) Frank-Wolfe for off-the-grid
curve reconstruction

The Frank-Wolfe algorithm perfoms the minimisation of a convex differentiable
function over a weakly compact convex subset of a Banach space. It relies on
the iterative minimisation of a linearised version of the objective function, ben-
efiting from the fact that it uses the directional derivatives and that it does
not require any Hilbertian structure, contrary to classical proximal algorithms.
It has gained significant attention from data scientists as it produces iterates
that are a combination of only a few atoms, specific to the chosen regulariser.
Similarly to other off-the-grid implementation, this algorithm is not straightfor-
wardly appliable to CROC: Tα is not differentiable, and the optimisation set V
is not bounded. It is thus necessary to perform an epigraphical lift [11,7] to reach
a differentiable functional that shares the same minimum measures as Tα. Our
proposed algorithm is given in Algorithm 1.

We precise some notation: we denote νγ
[k] def.

= (νγ1
[k], . . . ,νγ

N[k]

[k]) the vec-

tor of reconstructed atoms at the k-th iteration, and Φνγ
[k](a)

def.
=
∑k

i=0 aiΦνγi
[k]
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where a ∈ RN [k] is the vector of the estimated curves weights, see Algorithm 1.
We denote by S(X ) the set of curves spanning S, namely:

S(X )
def.
= {γ,γ is a simple oriented Lipschitz curve with support in X} .

The length of γ is given by ℓ(γ) def.
= H1(γ([0, 1])) and its V -norm equivalent by

ℓdiv(γ):

ℓdiv(γ) =

{
ℓ(γ) + 2 if γ open.
ℓ(γ) otherwise.

Our algorithm benefits from the sliding improvement, where the classic Frank-
Wolfe is improved by the sliding step in line 8–9. Among others, this non-convex
step allows a finite time convergence for off-the-grid spikes reconstruction, while
a similar argument for off-the-grid level sets and curves is yet to be found, though
observed in practice. The following property derived from Frank-Wolfe algorithm
properties [6,7] holds:

Proposition 2. Let (m[k])k≥0 a sequence produced by Algorithm 1. Then it has
an accumulation point in weak-∗ topology, the latter being a solution of (CROC).
Also, there exists C > 0 such that for any minimiser m∗ of (CROC):

∀k ∈ N∗, Tα(m
[k])− Tα(m

∗) ≤ C

k
.

In practice, a curve measure νγ is discretised by a polygonal curve with
integer n ≥ 2 segments4: it is the set of x ∈ (X )2n such that the list of vertices
is simple. Such a choice of approximation is made for the sake of simplicity, in
particular for the numerical implementation. A variant with splines or Bézier
curves may be interesting to reach higher accuracy with fewer control points.
In further works, we will pursue the theoretical (Γ -)convergence of the discrete
approximation towards the continuous one. To help the reader to get a grasp
on this numerical implementation, we illustrate the Charge Sliding Frank-Wolfe
directly on a practical case of super-resolution.

4 A numerical illustration for super-resolution

The chosen application for these experiments is a super-resolution problem in
the context of a Gaussian convolution operator. Let g ∈ Xn be the observed
image with n pixels. Since our source νγ is a vector measure, a natural choice
of vector quantity for the fidelity term from this image would be the gradient of
the image g, then we denote y = ∇g. In further works, we plan to justify more
thoroughly this choice. In practice, we exploit a trick enabled by the convolution
derivative property. Indeed, consider formally the discrete image source I, then
4 and obviously n ≥ 3 for closed curves.
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Algorithm 1: Charge Sliding Frank-Wolfe
Input: Acquisition y ∈ H, number of iterations K, regularisation weight

α > 0.
1 Initialisation: m[0] = 0, N [k] = 0.
2 for k, 0 ≤ k ≤ K do
3 For m[k] =

∑N [k]

i=1 a
[k]
i νγi

[k] such that a
[k]
i ∈ R, νγi

[k] ∈ S, let

η[k](x)
def.
=

1

α
Φ∗(Φm[k] − y).

4 Find γ∗
[k] ∈ S(X ) such that :

γ∗ ∈ argmax
γ∈S(X )

1

ℓdiv(γ)

∫ 1

0

η[k](γ(t)) · γ̇(t) dt.

if
∣∣∣η[k] (γ∗)

∣∣∣ ≤ 1 then
5 m[k] is the solution of CROC. Stop.
6 else
7 Compute m[k+1/2] =

∑N [k]

i=1 a
[k+1/2]
i νγi + a

[k+1/2]

N [k]+1
νγ∗

[k+1/2] such that:

a
[k+1/2]
i ∈ argmin

a∈RN[k]+1

Tα

N [k]∑
i=1

aiνγi

[k] + aN [k]+1νγ∗
[k+1/2]


8 Compute m[k+1] =

∑N [k+1]

i=1 a
[k+1]
i νγi , output of the optimisation

initialised with m[k+1/2]:

(
a[k+1],νγ

[k+1]
)
∈ argmin

(a,γ)∈RN[k]+1×S(X )N
[k]+1

Tα

N [k]+1∑
i=1

aiνγi

[k]

 .

9 Set m[k+1] =
∑N [k]+1

i=1 a
[k]
i νγi

[k]. Prune the low amplitude atoms.
10 end
11 end

Output: Discrete measure m[k] where k is the stopping iteration.

y = h ∗∇I = ∇h ∗ I. Hence, Φνγ will be computed as the support convolved
with the gradient of the Gaussian kernel. Then we consider the vector forward
operator Φ with kernel φ(x) for x ∈ X writing down:

∀x ∈ X , φ(x)
def.
=

1

2πσ

(
−x1 e−( i−1

K−1−x1)
2
/2σ2

−x2 e−( i−1
K−1−x2)

2
/2σ2

)
1≤i≤n

.

Obviously, the gradient y ought to be smoothed up, since it is the vector
image y = ∇g used in practice in the algorithm and all the more as the noise
in g has even more impact on y.
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In the following, we consider a synthetic example where one wants to recover
curves from a classic image acquisition y, altered by a convolution with standard
deviation σ = 2 × 10−2 and white additive noise with spread σb = 4 × 10−3.
Let two measures µ1 an open curve and µ2 a closed one, both belonging to S;
consider now the source charge T = 4µ1+µ2, the latter 4 is chosen for the sake
of visualisation. The image g and its source T are plotted on the Figure 1. The
gradient y of the image is plotted on the Figure 2.

0.00

0.05

0.10

0.15

0.20

Fig. 1: Left: The observed image g, generated from a charge T composed of a
spiral µ1 and a loop µ2, which have different intensities. Right: the two curves
support. Note the smooth curvature of µ1 and µ2 we aim to recover.

( y)(1) ( y)(2)

Fig. 2: The two components of the gradient y = ∇g, is the relevant quantity
for the fidelity term of (CROC). Note that the noise on the image has an even
greater impact on its gradient, such that a gradient denoising strategy must be
adopted, especially for experimental images.

As we stated before, the first step of the algorithm lies in the support estima-
tion, this linear step bears an original approach in each off-the-grid regulariser.
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The equivalent case for the classic TV-norm consists in a simple grid search of
the greatest value pixel of η[k], similarly defined as in line 3 of Algorithm 1. Here
we have to solve:

argmax
m∈V

⟨η[k],m⟩M(X)2

equivalent to the following problem:

argmax
γ∈S(X )

1

ℓdiv(γ)

∫ 1

0

η[k](γ(t)) · γ̇(t) dt.

This can be interpreted as the length of the curve γ weighted by a ’metric’
η[k]. Since the kernel in Φ is the gradient of the 2D Gaussian kernel, the reader
might be aware that the certificate η[k] in Algorithm 1, see [14] for more insights,
is the Laplacian of the image g. Then, the support of the estimated curve γ∗
appears naturally in the Laplacian, as it is the maximum of

∣∣η[k]
∣∣. Concerning

the heuristic to determine if γ∗ is open or closed, note that our involved curves
are simple. Therefore, we exploit that a loop separates X onto two connected
components, on the contrary to an open curve whose support complement has
only one connected set. The algorithm then selects a simple chain of pixels to
give an approximate support estimation. The Figure 3 shows the magnitude
of the certificate at iteration 0, an initialisation support for the added atom is
successfully found.

= ([0, 1])

6

4

2

0

2

4 = ([0, 1])

Fig. 3: Left: magnitude of Φ∗ y, the support of the estimated curve γ∗ lies in the
(near-)optima pixels. Right: threshold to reach a rough estimate of the support.
The ground-truth curve γ with support Γ is traced in red.

The convex step in line 7 is a fairly run-of-the-mill routine, the amplitudes
of the atoms are estimated; this is a rather classical LASSO up to some tweaks,
tackled in partice with a L-BFGS optimiser. The non-convex step in lines 8-
9 on the contrary is way more challenging: the sliding performed here adjusts
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the atoms both in amplitudes and support. The chosen discretisation of curve
measure here amounts to a chain, this optimisation can be understood then as a
gradient descent over both amplitudes (common for one chain) and positions of
numerous discretisation points. This is dealt with in our implementation with a
flavour of stochastic gradient descent namely an ADAM optimiser, empirically
shown here to outperform other non-convex solvers. which have shown to be
empirically . In Figure 4 one can see the output of the convex step, then sharing
the same estimated support as the crude one from the linear step; to be compared
with the non-convex output on the right.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Charge support

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Charge support

Fig. 4: Left: crude estimation from the oracle step. Right: the estimate at the
end of the first iteration. Hopefully the sliding step smooths over the curvature
and corrects the rough support estimation.

Interestingly enough, the loop endpoints i.e. γ(0) and γ(1), by definition
equal, tends in fact to move a bit away from each other with the non-convex it-
eration. This is maybe related to the faces and broadly speaking to the geometric
structure of the unit ball of the V -norm: to the best knowledge of the authors
there is no such work investigating this curious change of topology since the V
space is a rather new concept for the off-the-grid community. Our observation
is at this point purely empirical, and we only implemented a strategy to merge
really closed endpoints. Our algorithm has then reconstructed one curve, and we
loop over so forth to yield a reconstruction of the source charge T , see Figure 5.

Finally, the reconstruction is plotted in Figure 6. The curves supports are
greatly recovered5, with of course some small differences due to the noise. A the-
oretical bound of this support estimation error is not trivial: it was investigated

5 20 seconds on an Intel Xeon E5-2687W v3 for a 64 × 64 image. A CUDA imple-
mentation is enabled for larger images, still ensuring reconstruction for a 512× 512
image in less than 4 minutes on a NVIDIA Quadro K2200. See https://gitlab.
inria.fr/blaville/amg.

https://gitlab.inria.fr/blaville/amg
https://gitlab.inria.fr/blaville/amg
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0.8
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Fig. 5: Left: crude estimation from the oracle step. Right: the estimate at the end
of the first iteration. Estimates matched the structure of the curves but exhibits
some ’thorns’: due to the noise, the reconstruction seems not as smoothed as the
ground-truth. The non-convex step better recover the spiral folding.

for spikes [8] and recently a similar result for level sets was advertised. Still, an
equivalent for the off-the-grid curve reconstruction is yet to be explored and is
clearly out of the scope of the present paper.

Ground-truth
Reconstruction

0.0000

0.0275

0.0550

0.0825

0.1100

0.1375

0.1650

0.1925

0.2200

Fig. 6: The final reconstruction captures well the curvature of the source curves.

The proposed results might seem a bit simple. However, we emphasize that
we can replace the convolution kernel with Fourier or Laplace measurements to
handle more difficultly interpretable acquisition encountered in inverse problems.
We wish to apply our algorithm to experimental data, but it requires a precise
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post-processing of the gradient such as denoising or a basic super-resolution, as
the algorithm needs a (mediocre but at least usable) first guess to estimate a
point of V in the basin of attraction of the global minimiser.

5 Conclusion

Based on the latest developments in off-the-grid theoretical results, we proposed
a new algorithm called Charge Sliding Frank-Wolfe to perform a gridless recon-
struction of curves while successfully implementing and reaching first results on
a synthetic example. In further works, we plan to carry out the experiments with
real data in localisation microscopy, while digging some numerical properties of
our algorithm: an equivalence of the finite-time convergence rate of the Sliding
Frank-Wolfe for instance would be a quite convenient property.
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