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Abstract: Gridless sparse spike reconstruction is a rather new research field with significant results
for the super-resolution problem, where we want to retrieve fine-scale details from a noisy and
filtered acquisition. To tackle this problem, we are interested in optimisation under some prior,
typically the sparsity i.e. the source is composed of spikes. Following the seminal work [1–4] on the
generalised LASSO for measures called the Beurling-Lasso (BLASSO), we will give a review on the
chief theoretical and numerical breakthrough of the off-the-grid inverse problem, as we illustrate its
usefulness to the super-resolution problem in Single Molecule Localisation Microscopy (SMLM) through
new reconstruction metrics and test on synthetic and real SMLM data we performed for this review.

Keywords: Off-the-grid optimisation review; inverse problems; sparse spike localisation; super-
resolution; fluorescence microscopy; SMLM; functional analysis.

1. Introduction

In this paper, we propose to conduct a comprehensive review on the so-called off-
the-grid variational methods to solve the sparse spike recovery problem. We will exhibit
the main theoretical and numerical results in the literature, underlining the interest of
these methods for various domains dealing with inverse problems. As part of this review
and our former work on gridless methods, we developed an implementation of the more
consistent numerical methods with a focus on efficiency and computation time. With this
implementation, we were able to apply off-the-grid method to fluorescence microscopy
super-resolution problem. The codes and the computed result are an addition to the off-
the-grid literature, and constitute further evidence supporting the relevance of this domain
in inverse problem field.

Loosely speaking, inverse problems consist in the reconstruction of the causes from
the consequences. The problem is generally ill-posed, meaning that existence, uniqueness,
and stability of a solution(s) is (are) not guaranteed. A case arising in numerous fields such
as image or signal processing, telecommunications, machine learning, super-resolution, etc.
is the sparse spike problem. It consists in the reconstruction of spikes located on a domain X
from an acquisition y, with the prior of sparsity on the cause; or in layman terms, the source
is composed of a few spikes. This includes sources such as stars in astronomy, fractures in
seismology, etc. A spike is typically modelled by a Dirac measure aδx with amplitude a ∈ C
and position x ∈ X . All the difficulty lies in the estimation of the number N of spikes, of
their amplitudes (ai)

N
i=1 and their positions (xi)

N
i=1. Hence, the goal is to reconstruct the

measure m = ∑N
i=1 aiδxi only from a few number of observations y in a Hilbert space H

(typically L2(X )) linked to m through an operator Φ accounting for deterioration of the

input (blur, downsizing by the sampling) such as y def.
= Φm + w where w ∈ H is an additive

noise. The reconstruction of the spikes may be off-the-grid i.e. the positions (xi)
N
i=1 are not

constrained on a grid hence (xi)
N
i=1 are not limited to a finite set of values: this allows

interesting new mathematical insights and guarantees for the reconstruction, at the cost of
some challenges for the numerical implementation. The general sparse spike problem is
encountered in many situations, such as:
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• compressed sensing domain [5], where one wants to recover a s-sparse vector v ∈ CN

from M measurements Av0 where A ∈ CM×N ;
• machine learning, sketching mixtures, etc. For example, we desire to fit a probability

distribution with respect to given data. The point is to estimate parameters (ai) ∈ RN

and (xi) ∈ X N of a mixture ∑N
i=1 ai ϕ(xi) of N elementary distributions described by

ϕ. For instance, one wants to retrieve the means µi ∈ R and standard deviations
σi ∈ R+ of a Gaussian mixture, see [6] for more insights on this question;

• deep learning such as training neural networks with a single hidden layer [7];
• signal processing, for instance low rank tensor decomposition for Direction of Arrival

estimation through sensor array (multiple sampling points);
• super-resolution, a rather central problem in image processing. Roughly speaking,

it consists in the reconstruction of details from an altered input of signal/image.
It includes classic physical operator of acquisition such as Fourier measurements,
Laplace transform or Gaussian convolution.

The latter item will be our case of interest in the sparse spike problem for this paper.
All the difficulty stems from the degradation in the acquisition process, which entails in
general two things: a deterioration by the system of acquisition, typically modelled by the
Point Spread Function in imagery which acts as a low-pass filter sensor acquisition which
results in sampling and pollution by noise of different types, characterised by densities
such as Gaussian, Poisson, etc. To sum-up, we want to reconstruct the correct number of
spikes with correct amplitudes and positions in the continuous setting from a noisy and
filtered discrete acquisition. It can be tackled from the theoretical point of view by either
the variational approach or the Prony’s method:

• Prony’s method and its variants1 which recover the signal source from Fourier mea-
surements in a noiseless 1D setting. It consists in the decomposition of the signal
onto a basis of exponentials with different amplitudes, damping factors, frequencies
and phase angles to match the observed data. The results are compelling in the 1D
noiseless case, and can be extended to a multivariate and noisy context; but still these
methods lack of versatility since they cannot be sometimes extended to the context of
interest. Thus, we will not consider this approach in this paper;

• variational approach which does not impose any particular structure on the acquisition
operator, which can be adapted to any type of noise and does not need any prior on the
number of point sources [8]. The key idea is to solve the inverse problem by finding
among all possible signal sources the one minimising an objective function called the
energy, formulated as a trade-off between a fidelity data term and a regularisation
term, typically enforcing the sparsity prior here.

Then, there are two types of variational approaches: the discrete and the off-the-grid.
In the discrete setting, one seeks to recover the spikes on a prescribed fine grid, typically
with more points than the acquisition image. Indeed, we call coarse grid for the low-
resolved acquisition, and fine grid for the finer (by a so-called super-resolution factor
q ∈ N∗) grid of the reconstruction. Thus, it consists in a finite dimensional problem, where
the positions of the spikes must lie on a grid G of L points meshing the domain X . This
problem is a problem of sparse vectors reconstruction, and it can be tackled by enforcing
sparsity through minimisation of the `1 norm of the unknown vector. This is known as the
LASSO [9] or the Basis-pursuit problem, defined as the variational problem with tuning
parameter λ > 0 controlling the trade-off between fidelity to the data and enforcement of
the prior:

min
a∈RL
‖y−ΦLa‖2

H︸ ︷︷ ︸
data term

+ λ‖a‖1︸ ︷︷ ︸
sparsity prior

(LASSO)

1 such as MUSIC (MUltiple SIgnal Classification), ESPRIT (Estimation of Signal Parameters by Rotational Invariance Techniques) or Matrix Pencil.
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where ΦL : RL → H is the acquisition operator with a vector of size L as an input
and H is a Hilbert space. A grid is useful to epitomise the concept of sparsity in the
case of spikes: indeed, sparsity is just the fact that only a few points of the L grid have a
non-zero value. Moreover, since a computer can only store array and vector quantities, it
seems rather fair to work with finite dimensional problem; even for the theoretical analysis.
However, how does one choose the discretisation? A grid with a step-size too small yields
numerical instabilities [10] while choosing the step-size too large leads to round-off errors.
Moreover, one would like to localise the spikes as precisely as possible without having to
rely on a grid: a discretisation of positions would necessarily convey approximation on
positions. The appropriate mathematical objects to get rid of these discretisation drawbacks
is to represent a collection of spikes with Dirac measures, an element of the space of Radon
measures M(X ). The operator of acquisition is now Φ : M(X ) → H, the sparsity is
enforced by a norm onM(X ) called the TV-norm. This variational problem is called the
BLASSO (for Beurling LASSO):

min
m∈M(X )

‖y−Φm‖2
H︸ ︷︷ ︸

data term

+ λ‖m‖TV︸ ︷︷ ︸
sparsity prior

. (BLASSO)

In this latter setting, the spikes can move continuously on the domain X : a comparison
between the discrete and the off-the-grid reconstruction is given in Figure 1. The off-the-
grid setting can be seen as the limit of the discrete case with a finer and finer grid [11].

Figure 1. (a) Discrete reconstruction, which can be seen as spikes with support constrained on a
grid (b) Off-the-grid reconstruction, the spikes can move continuously on the line. The red line
is the acquisition y, orange spikes are the source (the cause we want to retrieve), blue spikes are
discrete reconstruction constrained on a grid and green can move freely since it is off-the-grid. Note
that when a source spike is between two grid points, two spikes will be recovered in the discrete
reconstruction.

This shift from the discrete domain to the continuous setting called off-the-grid or
gridless leads to some crucial mathematical insights, in particular a sharp signal-dependent
criterion for stable spikes recovery [4], the minimum separation distance (see the next
section). Obviously, some difficulties arise also due to the infinite dimension and the lack
of algebraic properties of the set of optimisation. The comparison between discrete and
gridless settings may be summed up by:

• the discrete problem is tackled by LASSO, through the minimisation of a convex
function defined on a fine grid i.e. a convenient finite dimension Hilbert RL space.
Due to the `1 norm, there are some cases where the sparsity is not properly enforced:
one can then replace the `1 norm by the non-continuous pseudo-norm `0, but this
yields a NP-hard combinatory non-convex problem. There exists some continuous
relaxation of `0 such as CEL0 [12], but due to the non-convex aspect the problem is still
hard from the theoretical and numerical point of view. Despite the lack of guarantees,
there are numerous algorithms to compute the solution of LASSO or its `0 relaxed
variant;

• the off-the-grid problem is treated by BLASSO, a convex functional defined onM(X ).
The convex property is handy from the theoretical point of views as it leads to some
crucial insights on the existence/uniqueness/support estimation w.r.t. noise, at the
cost of the set of optimisation namelyM(X ) a Banach (no Hilbertian structure so no
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straightforward proximal algorithm) infinite dimensional and non-reflexive space for
the strong topology (convergence results are then essentially on the weak-∗ topology).
Despite these lack of algebraic properties, one has currently a wide range of algorithms
to tackle this problem, such as root-finding or greedy algorithms.

Gridless reconstruction can then be evaluated through suitable metrics, namely the
Flat Metric based on optimal transport of measures. This metric assesses the quality of
the reconstruction and can be applied straightforwardly to off-the-grid and even discrete
reconstruction outputs.

In the following, we give a review on the key results in the variational off-the-grid
domain. The paper is organised in 3 sections, namely:

• the variational analysis of the space M(X ), the properties and the guarantees of
reconstruction concerning the sparse spike problem are now quite well-documented
[1–4] and will be recalled in the theoretical section 2;

• multiple strategies were considered to numerically tackle BLASSO, the more com-
pelling will be presented and put into context in the numerical section 3;

• interesting practical applications and new metrics have been considered for the grid-
less method, such as the SMLM super-resolution; these results are shown and dis-
cussed in section 4.

At the end of each paragraph, a grey box (beginning either with ’summary’ or
’shorthand’) like this one will recall the main results highlighted in the section. Please
refer to it for a quick summary.

2. A theoretical background for gridless spike recovery

In the following X denotes the ambient space where the positions of the spikes live.
We suppose X is a subset of Rd such that its interior X̊ is a submanifold of dimension

d ∈ N∗ [13]. This setting encompasses X = Rd, the torus X = Td def.
= Rd/Zd, any compact

with non-empty interior, etc. The reader is invited to take a look at the Table A1 to remind
the notations.

2.1. What is a measure?

As we have stated in the section above, the Dirac measure is the proper object to
describe a spike not constrained on a finite set of positions. This object is not a function,
since one cannot exhibit any integrable equivalence class satisfying the properties of the
Dirac (see below). Thus, one should considerate the notion of Radon measure, a formal
extension of functions. From a distributional standpoint, it is a subset of the distribution
space D ′(X ), namely the space of linear forms over the space of test functions D(X )
i.e. smooth functions (continuous derivatives of all orders) compactly supported. This
functional approach2 consists in the definition of a measure as a linear form on some
function space, namely:

Definition 2.1.1 (Evanescent continuous function on X ). We call C0(X ,Y) the set of contin-
uous functions with zero at infinity (or evanescent), namely all the continuous map ψ : X → Y
such that :

∀ε > 0, ∃K ⊂ X compact, sup
x∈X\K

‖ψ(x)‖Y ≤ ε.

2 One can then define equivalently the space of Radon measures, either by a set-related approach or by functional analysis approach (thanks to
Riesz–Markov theorem). In the more set-related [14] insight, a measure is an object which takes sets as an input. A Borel measure is a measure defined
on all open sets of X , and a Radon measure is a Borel measure such that it is finite on all compact sets of X (by an isomorphism). The functional and
the set point-of-views are different approaches to describe the same object.
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When Y = R we will simply write C0(X ). Since we dispose of a suitable test functions
space, we need to precise the notion of duality at stake in this review.

Definition 2.1.2 (Topological dual space). If E is a topological vector space, we denote E∗ its
topological dual i.e. the space of all continuous linear forms ψ : E→ R. The pairing between an

element φ ∈ E and a map ψ ∈ E∗ is denoted by the bilinear mapping 〈φ, ψ〉E×E∗
def.
= ψ(φ) called

the duality bracket.

This notion allows us to define the Radon measure through duality in the following
definition.

Definition 2.1.3 (Set of Radon measures). We denote M(X ) the set of real signed Radon
measures on X of finite masses. It is the topological dual of C0(X ) with supremum norm ‖·‖∞,X
by the Riesz-Markov representation theorem3 [15] Thus, a Radon measure m is a continuous linear
form evaluated on functions f ∈ C0(X ), with for m ∈ M(X ) the duality bracket denoted by
〈 f , m〉C0(X )×M(X ) =

∫
X f dm.

The term ’signed’ refers to the generalisation of the concept of (positive) measure, by
allowing the quantity 〈 f , m〉C0(X )×M(X ) to be negative. We can define in the same way the
space of real non-negative Radon measuresM+(X ) dual of C0(X ,R+) and the space of
complex Radon measuresMC(X ) dual of C0(X ,C). Classic examples of Radon measures
are:

• the Lebesgue measure of dimension d ∈ N;
• the Dirac measure δz centred in z ∈ X , also called the δ-peak. For all f ∈ C0(X ) one

have 〈 f , δz〉C0(X )×M(X ) = f (z);

• discrete measures ma,x
def.
= ∑N

i=1 aiδxi where N ∈ N, a ∈ CN , x ∈ X N .

Since C0(X ) is a Banach space,M(X ) is complete [2] by endowing it with its dual
norm called the total variation (TV) norm, defined for m ∈ M(X ) by:

|m|(X )
def.
= sup

(∫
X

f dm, f ∈ C0(X ), ‖ f ‖∞,X ≤ 1
)

.

The TV norm of a measure is also called its mass. One can note that in the case of a
discrete measure defined as before ma,x

def.
= ∑N

i=1 aiδxi , one has |ma,x|(X ) = ‖a‖1.
The interested reader might take a look at the appendix B.1 for more details on some

functional analysis notions and results.

Summary: we model a spike by a Dirac measure, an element of the Radon measure
spaces M(X ). This space is defined by duality, it is endowed by the TV-norm and
is complete. It is however infinite dimensional and non-reflexive (see B.1), this poses
additional difficulties to be taken into account in the optimisation.

2.2. Observations

Let us introduce the space where the acquired data live. We will denote by H this
Hilbert space; for the instance of images H = L2(X ). Let m ∈ M(X ) be the source
measure, we call acquisition y ∈ H the result of the forward/acquisition map Φ :M(X )→ H
evaluated on m, with measurement kernel ϕ : X → H:

y def.
= Φm =

∫
X

ϕ(x)dm(x). (1)

3 it can also be defined as the topological dual of the space of continuous function C (X ) if X is compact.
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The latter integral ought to be not confused with the duality bracket 〈 f , m〉C0(X )×M(X ) =∫
X f (x)dm(x) mentioned in the Definition 2.1.3 above. Indeed, while f (x) ∈ R for x ∈ X ,

we have ϕ(x) ∈ H: the integral in (1) is then a Böchner integral [16] i.e. the proper notion to
deal with vector valued map. It is valid as long as ϕ is continuous and bounded [7,13].

Remark. Measures are objects that generalise functions at the cost of losing some of their properties.
Thus, one cannot define a product of measures (what would be the square of the Dirac?) and one
ought to be aware of some caveats concerning the functions of measure: these functionals need to be
at most (sub)linear in order to be well-defined [17].

In the following, we will impose ϕ ∈ C 2(X ,H). Let us also define the adjoint operator
of Φ :M(X )→ H in the weak-∗ topology, namely the map Φ∗ : H → C0(X ). It is defined
for all x ∈ X and p ∈ H by Φ∗(p)(x) = 〈p, ϕ(x)〉H. The choice of ϕ andH depends on the
physical process of acquisition, indeed generic measurement kernels are:

• convolution kernel with typicallyH = L2(X ) and ∀x ∈ X , ϕ(x) def.
= (s 7→ ϕ̃(s− x)) ∈

H, for the PSF ϕ̃ ∈ C 2
0 (Rd). One has for instance the Gaussian kernel, centred in

c ∈ X with spread σ > 0, defined by s 7→ ϕ̃(s− c) def.
= 1/ d/2√2πσ2 e−‖s−c‖2

2/2σ2
;

• Fourier kernel with cut-off frequency fc ∈ N andH = C2 fc+1, for x ∈ X = T in 1D:

ϕ(x) =
(

e2iπkx
)
|k|≤ fc

;

• Laplace kernel [8] for non-negative weighting function ξ ∈ C (X ) specific to the

physical acquisition process andH = L2(R+): ∀x ∈ X , ϕ(x) def.
= (s 7→ ξ(x)e−sx) ∈

H.

These 3 kernels correspond to various physical context of imagery, hence they are
encountered in multiple acquisition process, such as Nuclear Magnetic Resonance spec-
troscopy (Fourier), SMLM super-resolution (convolution), MA-TIRF (Laplace), etc.

We will now on use the following notation for the discrete forward map: let x =

(x1, . . . , xN) and a ∈ RN : Φx(a) def.
= ∑N

i=1 ai ϕ(xi).

Shorthand: an acquisition living in the Hilbert space H of a measure m is the
quantity Φm. Φ is the forward operator, completely defined by a kernel ϕ specific to the
physical context of imagery.

2.3. An off-the-grid functional: the BLASSO

Let ma0,x0
def.
= ∑N

i=1 a0,iδx0,i be the source measure with amplitudes a0 ∈ RN and
positions x0 ∈ X N , the sparse spike problem is to recover this measure from the acquisition

y def.
= Φma0,x0 + w where w ∈ H is an additive noise, typically white Gaussian noise. To

tackle this problem, we use the following convex functional [2,18] also called the BLASSO,
which stands for Beurling-LASSO:

argmin
m∈M(X )

Tλ(m)
def.
=

1
2
‖y−Φ(m)‖2

H + λ|m|(X ) (Pλ(y))

with regularisation parameter λ > 0 which accounts for the trade-off between fidelity
and sparsity of the reconstruction. The name BLASSO was coined in the work of [18,
19] according to the link between the Generalised Minimal Extrapolation (GME) problem
where one seeks to reconstruct a Radon measure from several observations on its Fourier
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coefficients, and the work [20] of the Norwegian mathematician Beurling4 which coincides
with GME in the case of a Fourier forward operator.

The BLASSO in a noiseless setting writes down:

argmin
Φm=y0

|m|(X ) with y0 = Φma0,x0 . (P0(y0))

BLASSO is genuinely linked with its discrete counterpart the (LASSO) [4]: one can
formally see BLASSO as the functional limit of LASSO on a finer and finer grid. If the
LASSO problem exhibits existence and uniqueness of the solution, what can one says for
its off-the-grid counterpart? First of all, let us observe that:

• m 7→ |m|(X ) is lower semi-continuous w.r.t. the weak-∗ convergence (see Appendix
B.1 for more insights);

• Φ is continuous from the weak-∗ topology ofM(X ) to the weak topology ofH.

Thus, one can establish the existence of solutions to (Pλ(y)) thanks to convex analysis
results, as proved in [2].

Summary: the sparse spike problem is tractable thanks to the convex functional
onM(X ) called the BLASSO and denoted by (Pλ(y)). With m ∈ M(X ) as an input,
it consists in a data term comparing observed data versus Φm, and a regularisation
accounting for sparsity prior through the TV-norm of m. Existence of solutions of the
BLASSO is known and proved.

The difficulties now lie in the following questions:

1. what are the conditions to recover a sparse measure, within a certain noise regime? Is
the minimum unique?

2. under which conditions can we retrieve exactly the number of spikes, the amplitude,
and the positions; when do we have support stability?

3. how can we tackle numerically the infinite dimensional and non-reflexive nature of
the spaceM(X )?

In order to address these points, we need to introduce some notions of convex analysis
in the following subsection.

2.4. Dual problems and certificates

The BLASSO in the equation (Pλ(y)) above is a minimisation problem with a convex
functional. Then we can apply Ekeland-Temam [21, Remark 4.2] results5 and define a dual
problem which writes down for p ∈ H (see Appendix B.2 for the proof):

argmax
‖φ∗p‖∞,X≤1

〈y, p〉H −
λ

2
‖p‖2

H (Dλ(y))

which can be recast as the projection onto a closed convex [2,19] :

argmax
‖φ∗p‖∞,X≤1

∥∥∥ y
λ
− p

∥∥∥2

H
(D′λ(y))

4 More precisely he studied the minimal total variation norm function among all bounded variation functions with constrained Fourier transform on
a given domain.

5 A little caveat should be raised for these results: the space of features V should be a reflexive space, which is clearly not the case here with
V =M(X ). However, as stated in the Appendix B.2, the reflexive hypothesis is only needed for the sake of existence proof. Since we already
proved the solution’s existence, this hypothesis is not relevant let alone necessary in this context.
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Fenchel’s duality between (Pλ(y)) and (Dλ(y)) is proved in [2]. Therefore, any so-
lution mλ of (Pλ(y)) is linked [4] to the unique solution pλ of (Dλ(y)) by the extremality
conditions:

 Φ∗pλ ∈ ∂|mλ|(X ),

−pλ =
1
λ
(Φmλ − y)

(2)

where ∂|·|(X ) is the sub-differential of the TV norm. Indeed, since the total variation
is not differentiable (as the `1 norm) but lower semi-continuous w.r.t. the weak-∗topology,
we use its sub-differential which for m ∈ M(X ) identifies to:

∂|m|(X ) =

{
η ∈ C0(X ); ‖η‖∞,X ≤ 1 and

∫
X

η dm = |m|(X )

}
. (3)

Elements of this subgradient are called certificate. Thanks to strong duality, one can
define peculiar certificates called the dual certificates [1].

Definition 2.4.1. We call ηλ
def.
= Φ∗pλ where pλ satisfies (2), a dual certificate of mλ.

It is a certificate since Φ∗pλ ∈ ∂|mλ|(X ) and it is called dual because it verifies the
second extremality (2) condition: it is thus defined by the dual solution pλ. Loosely
speaking a dual certificate ηλ is associated to a measure mλ and it certifies that the measure
mλ is a minimum of the BLASSO. For instance, if there exists solutions of (Pλ(y)) of the

form mλ
def.
= ∑N

i=1 aiδxi , the support satisfies [4] for all 0 ≤ i ≤ N : |ηλ|(xi) = 1.
In the same fashion, one has the link between a solution m0 of the noiseless BLASSO

(P0(y0)) and its certificates η0, which are not unique in general. Then, in the rest of the
document we will refer to η0 as the minimal norm certificate i.e. the dual certificate η0 with
minimal supremum norm ‖η0‖∞,X . It is shown in [4] that this minimal norm certificate
η0 has important properties, since it somehow drives the stability of the recovered spike
locations when the additive noise is small, in particular how close they are to the positions
of the true measure ma0,x0 : see definition 2.5.2 in the section below.

Summary: we defined the primal problem in the former section, thanks to convexity
we can define the dual problem of the BLASSO. A solution mλ of the BLASSO and a
solution pλ of the dual problem are linked through extremality condition. The dual
solution pλ defines the dual certificate, an element of the subgradient specified by
ηλ = Φ∗pλ: the dual certificate ηλ certifies that mλ is a solution of the BLASSO. We can
then establish more precise conditions on the uniqueness/support recovery.

2.5. Support recovery guarantees

We will address in this section the first two questions we have laid down, namely
existence, uniqueness and support recovery conditions. A classical tool to establish some
recovery properties lies in the notion of the minimum separation distance.

Definition 2.5.1 (Minimum separation distance). The minimum separation distance is a
characterisation of the support of the discrete measure ma0,x0 by:

∆(ma0,x0)
def.
= min

i 6=j

∣∣x0,i − x0,j
∣∣.

The reconstruction condition is driven by this minimum separation distance, itself
determined by the type of measure (complex, real, real non-negative) and the type of
forward operator.
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• if the operator is an acquisition of the Fourier spectrum within [− fc, fc] with frequency
cut-off fc forX = Td the d-torus in the noiseless setting, it is necessary that ∆(ma0,x0) &
2
fc

if the source measure is complex [1]. Upon a few conditions [22] one can weaken it

to ∆(ma0,x0) &
1.26

fc
, and ∆(ma0,x0) &

1.87
fc

if the source measure is real [1];

• regardless of the operator Φ [18,23], there is no condition on the separation for a real
positive source measure in the noiseless setting, however stability constant explodes
when ∆(ma0,x0)→ 0.

These results are important but do not provide a sharp characterisation of the recovery
in the presence of noise; however, we expect to find noise in the images we deal with and
therefore to be limited by this noise regime. To account for this effect we need to add some
conditions on the ground-truth measure, following the work of [4] we introduce:

Definition 2.5.2 (Non-degenerate source condition). The source ma0,x0 verifies the NDSC
(Non-Degenerate Source Condition) if:

• there exists η ∈ Im Φ∗ such that η ∈ ∂|ma0,x0 |(X );
• ∀s ∈ X\ ∪N

i=1 {x0,i}, |η0(s)| < 1;
• ∀i ∈ J1, NK, the Hessian matrix ∇2η0(x0,i) ∈ Rd×d is invertible.

The first condition amounts to assuming that ma0,x0 is a solution to (P0(y0)) and there
exists a solution to its dual problem. If the two latter conditions are matched, we say that
η0 is not degenerate. This allows us to write the main result of [4] namely:

Theorem 2.5.3 (Noise robustness [4]). Let Γx0 the N × N matrix defined by Γx0
def.
= (ϕ(· −

x0,i), ϕ′(· − x0,i))
N
i=1. Assume that Γx0 has full column rank and that ma0,x0 verifies the NDSC.

Then there exists α > 0, λ0 > 0 such that for all 0 ≤ λ ≤ λ0 and w such that ‖w‖ ≤ αλ; there

exists N pairings (aλ,i, xλ,i) such that mλ
def.
= ∑N

i=1 aλ,iδxλ,i is the unique solution of (Pλ(y))
composed of exactly N spikes. In particular, for λ = 1/α‖w‖H we have the control over the
discrepancies:

∀i ∈ J1, NK : ‖xλ,i − x0,i‖ = O(‖w‖H) and |aλ,i − a0,i| = O(‖w‖H).

Under the Non-Degenerate Source Condition, for λ and ‖w‖2
H/λ small enough, one

can reconstruct a measure with the same number of spikes as the ground-truth measure
ma0,x0 . Furthermore, the reconstructed measure (weak-∗)converges to the ground-truth
measure when the noise level drops to 0. The authors of [4] also introduce the notion of
vanishing derivatives precertificate. The η0 certificate is indeed hard to compute from the
dual problem of (P0(y0)) because of the constraint ‖η0‖∞,X ≤ 1, the precertificate allows
to leverage this computation by solving instead a linear system. The interested reader is
advised to take a glance at this article among other ones [4,23] for these new concepts.

Shorthand: the minimum separation distance criterion is used to assess recovery
possiblities in the noiseless setting. In a low regime of noise, a theorem states that the
source measure ma,x composed of N spikes can be recovered through BLASSO, with a
control over the discrepancies (amplitudes/positions) between the reconstructed and the
source measures.

We were therefore able to establish some guarantees on the reconstruction of the
source measures in the presence of noise. In the next section, we propose to address the
third question and to discuss strategies to compute the numerical solution of the inverse
problem; a difficult task requiring to account for the difficulties of the optimisation space.
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3. Numerical strategies to tackle the BLASSO

The BLASSO problem Pλ(y) is an optimisation over the set of Radon measures, an
infinite dimensional and non-reflexive space. We recall that it writes down:

argmin
m∈M(X )

Tλ(m)
def.
=

1
2
‖y−Φ(m)‖2

H + λ|m|(X ). (Pλ(y))

A naive approach would be to enforce the measure m to be supported on a fine grid
(pi)

L
i which is equivalent to solve the LASSO problem:

min
a∈RL
‖y−ΦLa‖2

H + ‖a‖1

with the discrete operator ΦLa def.
= ∑L

i=1 ai ϕ(pi) and ϕ the kernel of the forward
operator. This approach conveys numerous cons: for instance the solution of the LASSO,
in small noise regime and when the step size tends to 0, contains pairs of spikes around the
true one [10,11]. Furthermore, refining the step size leads to a worse conditioning of the
forward operator, accounting for numerical difficulties. The following classes of algorithms
better account for the infinite dimensional nature ofM(X ). We present in details the three
methods with the most established results in the literature [13,19,24]. Before describing
these methods, let us remark that there exist also some promising avenues, such as the
projected gradient descent [25,26]. It relies on an over parametrised initialisation i.e. a
discrete measure with numerous δ-peaks compared to the ground-truth, then one applies
a gradient descent on the amplitudes and positions of the over parametrised measure
combined at each step with a projection on a set of positions constraints to enforce the
separation of the spikes. This projection can be replaced by a ’heuristic’ which boils down
to the merging of δ-peaks that are not enough separated [26].

3.1. Semi-definite recasting and hierarchy

Semi-definite programming was one of the first scheme solving the BLASSO in the
specific case of a Fourier acquisition on the 1D torus T1 [1,3,18,19]. Before explaining in
layman terms the SDP scheme, let us first introduce and detail the relevant quantities for
this section. Let d = 1 be the dimension of the interior of X , let us study the case where
the forward operator denoted by Fn (and not Φ for this section) is a Fourier coefficients
measurements up to some cut-off frequency fc ∈ N, with n = 2 fc + 1 the number of

measurements. We have Fn :MC(X )→ Cn and for a discrete measure ma,x
def.
= ∑N

j=1 ajδxj

it writes downFn(ma,x) =
(

∑j aje
2iπkxj

)
|k|≤ fc

and its adjoint operatorF ∗n : Cn → C0(X ,C)
is for s ∈ X :

∀c ∈ Cn, F ∗n (c)(s) =
〈

c,
(

e2iπks
)
|k|≤ fc

〉
Cn

= ∑
|k|≤ fc

c fc+k e2iπks. (4)

This method is based on semi-definite programming (SDP) for efficiently comput-
ing the minima of BLASSO. It stems from the Hilbert approach [27] when one globally
decomposes the objective function into simple pieces, atoms. The solution of the dual
problem of (Pλ(y)), denoted here (DFλ (y)), is a polynomial p linked to a certificate by F ∗n p:
the idea then is the reconstruction of the dual certificate as a linear sum of trigonometric
polynomials [19], which is enough to find the measure associated with this reconstructed
certificate. This associated measure is a solution to the BLASSO. The dual problem, on the
other hand, is tractable thanks to a semi-definite programming approach.
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Since F ∗n p is a trigonometric polynomial for any p ∈ Cn by the definition above,
one can recast the constraint ‖F ∗n p‖∞,X ≤ 1 (imposed by definition of a certificate, see
equation (3)) and rewrite it as the intersection of the cone of positive semi-definite matrices
{A : A � 0} with an affine hyperplane [1,28]. Hence, the Fenchel dual problem of (Pλ(y))
for the Fourier forward operator Fn:

max
p∈Cn

Re{y, p} − λ

2
‖p‖2

H constrained by ‖F ∗n p‖∞,X ≤ 1 (DFλ (y))

with hermitian product {·, ·}, has the equivalent formulation [28]

max
p∈Cn ,Q∈Cn×n

Re{y, p} − λ

2
‖p‖2

H constrained by

(
Q p
p∗ 1

)
� 0 and

n−j

∑
k=1

Qk,k+j = δ0,j for j ∈ J1, n− 1K (D̃Fλ (y))

with Q a Hermitian matrix and p a vector of coefficients (accounting for the dual
variable p), and δ0,j the Kronecker delta equal to 1 if j = 0 and 0 otherwise. The choice of
regulariser λ is crucial: if chosen too high it will yield a solution with fewer spikes, if chosen
too low it will recover a solution with spurious spikes. This finite dimensional formulation
can now be tackled with classic semi-definite programming solvers, as did the authors of
[1] who proposed an algorithm of Interior Point Method, given in the Algorithm (1). The

first step reaches a solution p, allowing the definition of the certificate p2n−2
(
e2iπt) def.

=

1− |F ∗n p|2(t), where F ∗n is defined in equation (4).

Algorithm 1: Interior Point Method applied to the BLASSO.

1 Solve

max
p∈Cn ,Q∈Cn×n

Re{y, p} − λ

2
‖p‖2

H

subject to
(

Q p
p∗ 1

)
� 0 and ∑

n−j
i=1 Qi,i+j = δ0,j for j = 1, . . . , n− 1.

2 Reconstruct the support X̂ of m by locating the roots of p2n−2 on the unit circle (e.g.
by computing the eigenvalues of its companion matrix).

3 Solve ∑t∈X̂ ate−2iπkt = yk to recover the amplitudes a.

One can note the link between the dual and the primal problem, i.e. that p the solution
of (D̃Fλ (y)) entails the location of the spikes: asF ∗n p yields its extremal points on the support
of m since it is the certificate of a discrete measure, note that p2n−2(e2iπt) = 1− |F ∗n p|2(t)
has all its roots on the unit circle and these roots are the support of the target measure [1].
Thus, the strategy is to solve the dual problem and then to use a root-finding algorithm on
the certificate F ∗n p associated to the dual solution, hence reconstructing the support of the
measure then the measure (after a last amplitude recover step). We present an example of
the reconstruction of 3 Dirac measures on the 1D torus T1 through the observed noisy data
y and the roots of the polynomial p2n−2(e2iπt) in Figure 2.
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Figure 2. (a) Certificates associated to acquisition y and noiseless y0, result of 3 δ-peaks (in black,
plotted with 10 times their ground-truth amplitudes) through a Fourier measurement of cut-off
frequency fc = 6. (b) Localisation of the roots of the certificate associated to the dual maximum. All
the roots (the 3 ground-truth and the spurious spike on the right) on the unit circle are interpreted as
the support of the δ-peaks.

This strategy is only suitable for d = 1. For the multi-variate case, one needs to make
use of a so-called Lasserre Hierarchy [29]. Consider the semi-definite relaxation of order m
with m > n = 2 fc + 1:

max
p∈Cn ,Q∈Cn×n

Re{y, p} constrained by0 �
(

Q p̃
p̃∗ 1

)
where p̃k =

{
ck if k ∈ [− fc, fc]d

0 otherwise
Tr(ΘkQ) = δ0,k with k ∈ J−m, mK

with Θk = θkd
⊗ · · · ⊗ θk1 where θkj

the entries of m×m elementary Toeplitz matrix
are 1 on its k j-th diagonal and 0 elsewhere, and ⊗ the Kronecker product. In a nutshell,
Lasserre’s hierarchies give a sequence of nested outer SDP approximations of the cone of
moments of non-negative measure. This method has been successfully applied to super-
resolution in [3]. Some reconstructions in the 1D setting with a Fourier kernel are given
in the Figure 3, the interested reader may find a more in-depth tutorial in the Numerical
Tours6 on ’Sparse spikes measures’ joined with the code used to compute the following
figure.

6 https://nbviewer.jupyter.org/github/gpeyre/numerical-tours/blob/master/matlab/sparsity_8_sparsespikes_measures.ipynb

https://nbviewer.jupyter.org/github/gpeyre/numerical-tours/blob/master/matlab/sparsity_8_sparsespikes_measures.ipynb
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Figure 3. Reconstruction with the Interior Point Method for λ = 1. The algorithm detected a spurious
spike near 0.05, otherwise amplitudes and positions of the peaks are correctly estimated.

These methods are proved to be asymptotically exact [3]. Nonetheless, it is not known
if the algorithm has finite convergence in general: one does not know when to stop the
hierarchy to obtain a solution of the BLASSO [7]. This stems from the fact that non-
negative trigonometric polynomials in dimension d > 1 are not necessarily sums of square.
Moreover, these SDP based approach are rather limited to a certain class of measurement
map Φ, typically the Fourier forward operator or at least filters with compact Fourier
supports. With the two following class of algorithm, one can better exploit the continuous
setting and get rid of the discretisation drawback.

Summary (1st algorithm): the scheme boils down to the resolution of the dual
problem, the reconstruction of the measure’s support thanks to the certificate associated
to the dual solution, and finally the solving of a linear problem to yield the corresponding
estimated amplitudes. This strategy can be extended to a multivariate context but still,
it is quite restrictive on the forward operator and it does not have finite convergence in
general.

3.2. Greedy algorithm: the conditional gradient

The conditional gradient method also called the Frank-Wolfe (FW) algorithm [30,31]
aims at solving minm∈C f (m) for C a weakly compact convex set of a topological vector
space and f a convex and differentiable function (the differential is then denoted by d f ). It
relies on the iterative minimisation of a linearised version of f . Hence, the interest of this
algorithm lies in the fact that it uses only the directional derivatives of f and that it does
not require any Hilbertian structure, contrary to a classic proximal algorithm formulated
in terms of Euclidean distance. We recall the definition of the conditional gradient in the
pseudocode 2 for the general problem of minimising f .

Algorithm 2: Frank-Wolfe.

1 for 0 ≤ k ≤ K do
2 sk ∈ argmins∈C f (mk) + d f (mk)(s−mk).
3 if d f (mk)(sk −mk) = 0 then
4 mk is a solution. Stop.
5 else

6 Step research: γk ← either
2

k + 2
or argminγ∈[0,1] f (mk + γ(sk −mk)).

7 Update: mk+1 ← mk + γk(sk −mk).
8 end
9 end
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One can make the following remarks:

• the compactness assumption on C ensures that the argmin in step 2 is non-empty;
• in line 7, we can replace mk+1 by any element m̂ ∈ C such that f (m̂) ≤ f (mk+1)

without changing the convergence properties of the algorithm;

There are however two problems that prevent us from applying straightforwardly
this algorithm to BLASSO: Tλ is not differentiable, and the optimisation setM(X ) is not
bounded. It is thus necessary to perform an epigraphical lift [13,32] to reach a differentiable
functional that shares the same minimum measures as Tλ:

min
(r,m)∈C

T̃λ(m, r) def.
=

1
2
‖y−Φ(m)‖2

H + λr (P̃λ(y))

with the bounded set C = {(r, m) ∈ R+ ×M(X ); |m|(X ) ≤ r ≤ M} and M def.
= ‖y‖2

2λ .
Even though C is not weakly compact, it is compact for the weak-∗ topology and the
hypotheses for the algorithm 2 are still matched. The Frank-Wolfe algorithm is then well-
defined for the energy T̃λ, differentiable in the Fréchet sense on the Banach R×M(X ). Its
differential writes down :

dT̃λ : (r′, m′) 7→
∫

X
Φ∗(Φm− y)dm′ + λr′.

Finally, one has that m∗ is a minimum of Tλ iff (|m∗|(X ), m∗) minimises (P̃λ(y)), and
Tλ(m∗) = T̃λ(|m∗|(X ), m∗). In the rest of the document, we will omit the r-part, and we
will refer to the quantity (|m∗|(X ), m∗) by only m∗.

We note before that the update mk+1 in line 7 can be replaced by any value m̂ improving
the objective function, this remark is rather interesting as it can drastically improve the
convergence property of the algorithm [2,33]. Hence, an interesting improvement to
the Frank-Wolfe algorithm relies in the change of the final update step by a non-convex
optimisation on both the amplitudes and the positions of the reconstructed δ-peaks in a
simultaneous fashion. This modification is presented in the algorithm 3.

This tweak yields a theoretical convergence to the unique solution of BLASSO in a
finite number of iterations, empirically a N-step convergence. This version is called the
Sliding Frank-Wolfe algorithm [13], as the spike positions are sliding on the continuous
domain X . The authors also proved in the same paper that the generated measure sequence
m[k] converges towards the minimum for the weak-∗ topology.

A reconstruction by Sliding Frank-Wolfe for the same Fourier operator, ground-truth
spikes and acquisition as the latter section is plotted in Figure 4. On contrary to SDP in
Figure 3, no spurious spike is reconstructed. As in the SDP method, the choice of regulariser
λ is crucial: if chosen too high it will yield a solution with fewer spikes than needed, if set
too low it will recover a solution with spurious spikes. We set λ = 1 for the 1D Fourier
example as in the former SDP section.

The line 3 in the algorithm 3 is typically solved by a grid search, the convex step
in line 5 can use a FISTA solver [34] and the non-convex step in line 6 can be tackled by
a modified Broyden-Fletcher-Goldfarb-Shann method (L-BFGS-B) implementation [35].
Reconstructions in the 2D setting with a convolution kernel, similar to the SMLM conditions,
are presented in the Figure 5. Since luminosity is always a non-negative quantity, one can
restrict [8] the SFW to build a positive measure of the coneM+(X ), by changing:

• the stopping condition to η[k]
(

x[k]∗
)
≤ 1;

• the LASSO step is solved for a ∈ RN[k]+1
+ ;

• the non-convex step is solved on RN[k]+1
+ ×X N[k]+1

.
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Algorithm 3: Sliding Frank-Wolfe.
Input: Acquisition y ∈ H, number of iterations K, λ > 0.

1 Initialisation : m[0] = 0, N[k] = 0.
2 for k, 0 ≤ k ≤ K do
3 For m[k] = ∑N[k]

i=1 a[k]i δ
x[k]i

such that a[k]i ∈ R, x[k]i ∈ X , find x[k]∗ ∈ X such that :

x[k]∗ ∈ argmax
x∈X

∣∣∣η[k](x)
∣∣∣ where η[k](x) def.

=
1
λ

Φ∗(Φm[k] − y),

if
∣∣∣η[k]

(
x[k]∗
)∣∣∣ ≤ 1 then

4 m[k] is the solution of the BLASSO. Stop.
5 else
6 Compute m[k+1/2] = ∑N[k]

i=1 a[k+1/2]
i δ

x[k+1/2]
i

+ a[k+1/2]
N[k]+1 δ

[k+1/2]

x[k]∗
such that:

a[k+1/2]
i ∈ argmin

a∈RN[k]+1

1
2

∥∥y−Φx[k+1/2](a)
∥∥2
H + λ‖a‖1

for x[k+1/2] def.
=
(

x[k]1 , . . . , x[k]
N[k] , x[k]∗

)
.

7 Compute m[k+1] = ∑N[k+1]

i=1 a[k+1]
i δ

x[k+1]
i

such that:

(
a[k+1]

i , x[k+1]
i

)
∈ argmax

(a,x)∈RN[k]+1×X N[k]+1

1
2

∥∥y−Φx[k+1/2](a)
∥∥2
H + λ‖a‖1.

8 end
9 end

Output: Discrete measure m[k] where k is the stopping iteration.

-1
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0 0.2 0.4 0.6 0.8 1
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Recovered

Figure 4. Reconstruction by Sliding Frank-Wolfe for a 1D Fourier operator, with the same settings
(y, noise realisations, λ = 1) as the former section. All ground-truth spikes are reconstructed, no
spurious spike is detected.
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Figure 5. (a) First iterate k = 0 (b) Mid-computation k = 1 (c) End of the computation k = 2, results
for SFW reconstruction on the domain X = [0, 1]2 for the Gaussian kernel with spread-factor σ = 0.1
and additive Gaussian noise of variance 0.1. All δ-peaks are successfully recovered only thanks to
the acquisition, λ = 3× 10−2 .

Hence, this modified algorithm offers a good trade-off between precision and theo-
retical guarantees. However, it suffers from the high computation load for one iteration,
making it slow to compute. The next section algorithm is a promising alternative with
easier/cheaper iteration while still taking advantage of the continuous setting.

Shorthand (2nd algorithm): Conditional gradient method is a greedy algorithm
consisting in the iterative minimisation of a linearised version of the objective convex
function. This algorithm can be applied to any forward operator without restriction on
the space X . Up to a modification (SFW), the Frank-Wolfe algorithm reaches a finite
convergence, empirically a N-step convergence for a source measure with N spikes. The
iterations however are computationally costly, yielding long computation time.

3.3. Optimal transport based algorithm: the particle gradient descent

All the following results are proven for a domain X with no boundaries, e.g. the
d-dimensional torus Td. The case described in the former sections – X is any compact of Rd

– is included in this new setting, since any compact X can be periodised to yield a domain
with no boundaries. The forward operator kernel ϕ : X → H should also be differentiable
in the Fréchet sense. The least squares term in BLASSO is denoted by the more general
data term R : H → R+, the functional Tλ of the BLASSO will now be restricted toM+(X )
and denoted J; its Fréchet differential at point ν ∈ M+(X ) is denoted J′ν:

J(ν) = ‖y−Φν‖2
H + λ|ν|(X ), (5)

J′ν(x) = 〈ϕ(x),∇R〉H + λ for all x ∈ X (6)

A comprehensive guide on its computation is given in appendix B.4. In the following,
we describe the setting for non-negative measures ofM+(X ), but it can be extended in
a straightforward fashion [24] to signed measures ofM(X ) by performing the method
on the positive then negative part of the signed measure (see Jordan decomposition in
B.1). The Figure 6 sums up the chief quantities and relations introduced in this section,
the reader is advised to refer to it whenever he or she needs a global view on the optimal
transport problem.
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The functional we
want to optimise

Figure 6. Digest of the important quantities mentioned in [7,24]: red refers toM+(X ) quantities,

green to ΩN def.
= (R+ ×X ) and blue to the Wasserstein space P2(Ω) and theoretical results. Dashed

lines correspond to the theoretical section, and continuous lines indicate the numerical part.

Sparse optimisation on measures through optimal transport [7,24] relies on the approx-
imation of the ground-truth positive measure ma0,x0 by a ’system of N ∈ N∗ particles’, i.e.

an element of the space ΩN def.
= (R+ ×X )N . The point is then to estimate the ground-truth

measure by a gradient-based optimisation on the objective function:

FN((r1, x1), . . . , (rN , xN))
def.
=

∥∥∥∥∥y− 1
N

N

∑
i=1

ri
2 ϕ(xi)

∥∥∥∥∥
2

H
+

λ

N
ri

2 (7)

where (ri, xi) belongs to the lifted space Ω def.
= R+ ×X endowed with a metric. Hence,

the hope is that the gradient descent on FN converges to the amplitudes and the positions
of the ground-truth measure, despite the non-convexity of functional (7). Author of [24]
proposes the definition of a suitable metric for the gradient of FN , which enables separation
of the variables in the gradient descent update. Let α, β two parameters such that α > 0
and β > 0 and for any (r, θ) ∈ Ω, we define the Riemannian inner product of Ω called the
cone metric endowing Ω is defined by ∀(δr1, δr2) ∈ R2

+, ∀(δθ1, δθ2) ∈ X 2:

〈(δr1, δθ1), (δr2, δθ2)〉(r,θ)
def.
=

δr1δr2

α
+ r2 〈δθ1, δθ2〉θ

β
.

We denote by 〈·, ·〉θ the metric on the manifold X at the point θ. The gradient of the
functional FN for all i ∈ J1, NK w.r.t. the cone metric writes down [6,24]:

{
∇ri FN = 2αri J′ν(xi) = −2αriλ(ηλ − 1)
∇xi FN = βλ∇J′ν(xi) = −βλ∇ηλ

for ν
def.
=

N

∑
i=1

ri
2δxi , ηλ

def.
= −J′ν/λ. (8)

See appendix B.4 for more details on this computation. We now present the theoretical
results on the particle gradient descent, which corresponding to the blue dashed lines in
Figure 6. The reader is invited to refer to this figure any time he needs to get a hold on the
broader picture.

3.3.1. Theoretical results

The main idea of these papers [7,24] boils down to the following observation: the
minimisation of function (7) is a peculiar case of a more general problem, formulated
in terms of measure of the lifted space Ω. The space is more precisely P2(Ω) subset



J. Imaging 2021, 7, 266 18 of 34

ofM(Ω), namely the space of probabilities with finite second moments endowed with
the 2-Wasserstein metric i.e. the optimal transport distance: see Appendix B.5 for more
details. Hence, the lift of the unknown m ∈ M+(X ) to µ ∈ P2(Ω) enables to remove the
asymmetry for discrete measures between position x ∈ X and amplitude a ∈ R+ by lifting
aδx to δ(a,x). The lifted functional now writes down for parameter λ > 0:

∀µ ∈ P2(Ω), F(µ) def.
=
∥∥y− Φ̃µ

∥∥2
H + λṼ(µ) (9)

where Φ̃µ
def.
=
∫

Ω φ(a, x)dµ(a, x) for φ(a, x) def.
= aϕ(x) and Ṽ is the TV-norm on the

spatial component of the measure µ. The functional is non-convex, its Fréchet differential
is denoted F′ and for u ∈ Ω:

F′(µ)(u) def.
=
〈

R̃′(µ), φ(u)
〉
H + λ

with R̃′ def.
=
∥∥y−

∫
Ω ∇φ(a, x)dµ(a, x)

∥∥2
H. Then, a discrete measure µN

def.
= 1

N ∑N
i δai ,xi

of P2(Ω) can be also seen as an element of ΩN from the standpoint of its components
(ai, xi). It allows the authors of [7,24] to perform a precise characterisation of the source
recovery conditions, through the measures and the tools of optimal transport such as
gradient flow (see below).

Then one may run a gradient descent on the amplitudes and positions (ai, xi) ∈
(R+ ×X )N of the measure µN , in order to exploit the differentiability of the kernel ϕ. Note
that the measure µN is over-parametrized i.e. its number of δ-peaks is larger compared to
the number of spikes of the ground-truth measure: thus the particles, namely the δ-peaks
of the space Ω are covering the domain X for their spatial part; see Figure 8 as an example,
where µN is plotted in red dots.

Before giving the main results, we need to clarify the generalised notion of gradient
descent to measure function called the gradient flow [36,37] from optimal transport theory,
the main ingredient in the particle gradient descent. Let F : Rd → R be the objective
function with certain regularity, a gradient flow describes the evolution of a curve x(t)
such that its starting point at t = 0 is x0 ∈ Rd, evolving by choosing at any time t in the
direction that decreases the most the function F [37].

{
x′(t) = −∇F(x(t)) pour t > 0
x(0) = x0.

The interest of gradient flow is its extension to spaces X with no differentiable structure.
In the differentiable case one can consider the discretisation of the gradient flow i.e. the
sequence defined for a step-size τ > 0, k ∈ N∗:

xτ
k+1 ∈ argmin

x∈X
F(x) +

∣∣x− xτ
k

∣∣2
2τ

.

It is the implicit Euler scheme for the equation7 (xτ)′ = −∇F(xτ). The gradient flow
is then the limit (under certain hypotheses) of the sequence (xτ

k )k≥0 for τ → 0 for a starting
point x0 ∈ X. Gradient flow can be extended to metric space: indeed, for a metric space
(X, d) and a map F : X → R lower semi-continuous one can define the discretisation of
gradient flow by the sequence

7 or the weaker (xτ)′ ∈ ∂F(xτ) if F is convex and non-smooth.
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xk+1 ∈ argmin
x∈ X

F(x) +
d(x, xk)

2

2τ
. (10)

In the case of the metric space of probability measures i.e. the measures with unitary
mass, the limit τ → 0 of the scheme exists and converges to the unique gradient flow
starting at x0 element of the metric space. A typical case is the space of probabilities with
finite second moments P2(Ω), endowed with 2-Wasserstein metric i.e. the optimal transport
distance (see Appendix B.5): a gradient flow in this space P2(Ω) is a curve t 7→ µt called
a Wasserstein gradient flow starting at µ0 ∈ P2(Ω), for all t ∈ R+ one have µt ∈ P2(Ω),
obeying the partial differential8 equation in the sense of distributions:

∂tµt = −div (µt∇F′(µt)). (11)

This equation ensures the conservation of the mass, namely at each time t > 0 one
have |µt|(Ω) = |µ0|(Ω). Hence, despite the lack of differentiability structure of P2(Ω)
which forbids straightforward application of classical gradient-based algorithm, one can
perform an optimisation on the space through gradient flow to reach a minimum of F by
discretizing (11).

The interesting case of a gradient flow in P2(Ω) is the flow starting at µN,0
def.
=

1/N ∑N
i=1 δ(a0

i ,x0
i )

, uniquely defined by the equation (11), which writes down for all t ∈ R+:

µN,t
def.
= 1/N ∑N

i=1 δ(ai(t),xi(t)) where ai : R+ → R+ and xi : R+ → X are continuous maps.
This path (µN,t)t≥0 is a Wasserstein gradient flow, and uses N Dirac measures over Ω to
optimise the objective function F in (9). When the number of particles N goes to infinity
and if µN,0 converges to some µ0 ∈ P2(X ), the gradient flow (µN,t)t≥0 converges to the
unique Wasserstein gradient flow of F starting from µ0, described by the time-dependent
density (µt)t≥0 valued in P2(X ) obeying the latter partial differential equation (11).

For these non-convex gradient flow, the authors of [7] give a consistent result for
gradient based optimisation methods: under certain hypothesis, the gradient flow (µN,t)t≥0
converges to global minima in the over-parametrization limit i.e. for N → +∞. It relies
on two important assumptions that prevent the optimisation from being blocked in non-
optimal points:

• homogeneity9 of φ in order to select the correct magnitude for each feature, or at least
partially 1-homogeneity (i.e. boundedness of ϕ in [7]);

• diversity in the initialisation of parameters, in order to explore all combinations of
features. Too few or too close particles will not reach all source peaks and will only
yield local minima.

We can then introduce the fundamental result for the many particle limit [7], the
mean-field limits of gradient flows (µN,t)t≥0 despite the lack of convexity of these gradient
flows:

Theorem 3.3.2 (Global convergence – informal). If the initialisation µN,0 is such that µ0
def.
=

limN→+∞ µN,0 support separates10 {−∞}×X from {+∞}×X then the gradient flow µt weakly-
∗ (see appendix B.1) converges in P2(Ω) to a global minimum of F and we also have:

lim
N,t→∞

F(µN,t) = min
m∈M+(X )

J(m).

8 div(m) = ∑d
i=1

∂m
∂xd

for all m ∈ M(X ). Derivatives ought to be understood in the distributional sense.
9 A function f between vector spaces is positively p-homogeneous if, for λ > 0 and argument x, one have f (λx) = λd f (x).

10 The support of a measure m is the complement of the largest open set on which m vanishes. In an ambient space X , we say that a set C separates the
sets A and B if any continuous path in X with endpoints in A and B intersects C.
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Limits can be interchanged; the interested reader might take a look at [7] for precise
statements and exact hypothesis (boundary conditions, ’Sard-type’ regularity e.g. ϕ is
d-times continuously differentiable, etc).

Since we have a convergence result, we can then investigate the numerical imple-
mentation. This optimisation problem is tractable thanks to the Conic Particle Gradient
Descent algorithm [24] denoted CPGD: the proposed framework involves a slightly differ-
ent gradient flow (νt)t≥0 defined through a projection of (µt)t≥0 ontoM+(X ). This new
gradient flow (νt)t≥0 is defined for a specific metric inM+(X ), which is now a trade-off
between Wasserstein and Fisher-Rao11 metric [24], it is then called a Wasserstein-Fisher-Rao
gradient flow. Then the Wasserstein-Fisher-Rao gradient flow starting at νN,0

def.
= ∑N

i=1 a0
i δx0

i

inM+(X ) writes down t 7→ νN,t
def.
= 1

N ∑N
i=1 ri(t)

2δxi(t) inM+(X ), rather than the Wasser-

stein flow t 7→ µN,t
def.
= 1

N ∑N
i=1 δri(t),xi(t) starting at µN,0 in P2(Ω). The partial differential

equation of a Wasserstein-Fisher-Rao flow writes down:

∂tνt = −4ανtTλ(νt) + β div (νt∇J′ν(νt)) (12)

for the two parameters α, β > 0 arising from the cone metric, α tunes the Fisher-Rao
metric weight while β tunes the Wasserstein metric one. All statements on convergence
could be made alternatively on µt or νt, we have indeed the same theorem:

Theorem 3.3.3 (Global convergence – informal). If ν0 has full support (its support is the
whole set X ) and (νt)t≥0 converges for t → +∞ then the limit is a global minimum of J. If
νN,0 −−−−→

N→+∞
ν0 in the weak-∗ sense then:

lim
N,t→∞

J(νN,t) = min
m∈M+(X )

J(m).

Summary (3rd algorithm theoretical aspects): we introduced the proposed solu-
tion of [7,24] namely approximate the source measure by a discrete non-convex objective
function of amplitudes and positions. The analytical study of the discrete function is an
uphill problem and could be tackled thanks to the recast of the problem in the space of
measures. Then, we exhibited the theoretical framework on gradient flows, understood
in the sense of generalisation of gradient descent in the space of measures. Eventually,
we presented the convergence results of the gradient flow denoted (νt)t towards the
minimum of the BLASSO, thus enabling results for the convergence. Gradient descent on
the discrete objective approximates well the gradient flow dynamic and can then benefits
from the convergence results exhibited before.

We now discuss the numerical results of the particle gradient descent. The reader is
advised to take a look at the Figure 6, more precisely at red and green ellipses, to get a
grasp on the numerical part.

3.3.4. Numerical results

We recall that a gradient flow (νN,t)t≥0 starting at def.
= 1/N ∑N

i=1

(
r(0)i

)2
δ

x(0)i
can be seen

as a (time continuous) generalisation of gradient descent in the space of measures, allowing
precise theoretical statements on the recovery conditions. To approach this gradient flow,
we use the Conic Particle Gradient Descent algorithm [24] denoted CPGD: the point is to
discretise the evolution of the gradient flow t 7→ νN,t through a numerical scheme on (12).
This consists in a gradient descent on the amplitudes r and positions x through the gradient

11 also called Hellinger metric.
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of the functional FN in equation (8), a strategy which approximates well the dynamic of the
gradient flow [24].

This choice of gradient with the cone metric enables multiplicative updates in r and
additive in x, the two updates being independent of each other. Then the algorithm consists
in a gradient descent with the definition of r′i(t) and x′i(t) according to [6,24]:

{
r′i(t) = −2αriλ(ηλ(xi(t))− 1)
x′i(t) = −βλ∇ηλ(xi(t))

(13)

thanks to gradient in equation (8), for the mirror retraction12 and ηλ = −J′ν/λ. The
structure of the CPGD is presented in the algorithm 4. Note that the multiplicative updates
in r yields an exponential of the certificate, and that the updates of the quantities r, x are
separated.

Algorithm 4: Conic Particle Gradient Descent Algorithm.
Input: Gradient step sizes α, β > 0 and N ≥ 1 the number of particles.

1 Draw uniformly the initialisation discrete measure with amplitude-positions(
r(0)i , x(0)i

)N

i=1
∈ (R+ ×X )N such that a(0)i =

(
r(0)i

)2
:

ν(0)
def.
=

1
N

N

∑
i=1

a(0)i δ
x(0)i

.

2 while stopping criterion is not met do
3 Mirror descent step, for all i = 1, . . . , N update:

r(k+1)
i = r(k)i exp

(
2αλ

(
η(k)

(
x(k)i

)
− 1
))

x(k+1)
i = x(k)i + βλ∇η(k)

(
x(k)i

)
where η(k) = − J′(ν(k))

λ , ν(k) = 1
N ∑N

i=1 a(k)i δ
x(k)i

and a(k)i =
(

r(k)i

)2
.

4 end

This algorithm has rather easy and cheap iterations: to reach an accuracy of ε – i.e.
a distance such as the ∞-Wasserstein distance between the source measure ma0,x0 and
the reconstructed measure m∗ is below ε – the CPGD yields a typical complexity cost
of log

(
ε−1) rather than ε−1/2 for convex program [24, Theorem 4.2]. A reconstruction

from the latter 1D Fourier measurements is plotted in Figure 7, the reconstruction is
obtained through two gradient flows, the former on the positive measures to recover the
positive δ-peaks of the ground-truth and the latter on the negative measures to recover the
negative one: the merging of the two results gives the reconstructed δ-peaks. The noiseless
reconstruction13 for 2D Gaussian convolution with the same setting as the Frank-Wolfe
section is plotted in Figure 8. One can see that the spikes are well-recovered as some
non-zero red and blue particles cluster around the three δ-peaks.

12 The notion of retraction compatible with cone structure is central: in the Riemann context a retraction is a continuous mapping that maps a tangent
vector to a point on the manifold. Formally, one could see it as a way to enforce the gradient evaluation to be mapped on the manifold. See [24] for
other choices of compatible retractions and more insights on these notions.

13 See our GitHub repository for our implementation: https://github.com/XeBasTeX

https://github.com/XeBasTeX
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Figure 7. Reconstruction by Conic Particle Gradient Descent for a 1D Fourier operator in a noiseless
setting, with the same ground-truth spikes as the former section. Implementation is an adaptation of
[24], α = β = 1× 10−3 and λ = 1 for 1000 iterations.

Figure 8. (a) Initialisation k = 0 (b) Mid-computation k = 150 (c) End of the computation k = 1000.
Conic Particle Gradient Descent applied for 2D Gaussian deconvolution, the red dots are the particle
measure ν(k) (size of dot proportional with amplitude), the 3 white dots are the source measure,
the image in the background is the noiseless acquisition y0 and the black line are the paths of the
particles ν(k) — all the paths constitute the gradient flow (νt)t≥0. Implementation is an adaptation of
[24], α = β = 1× 10−2 and λ = 1.

Summary (3rd algorithm numerical aspects): the gradient flow (νt)t is computable
by the Conic Particle Gradient Descent algorithm, consisting in an estimation through
a gradient (w.r.t. cone metric) descent on both amplitudes and positions of an over-
parametrised measure, namely a measure with a fixed number of δ-peaks exceeding the
source’s one. The iterations are cheaper than the SFW presented before, but the CPGD
lacks guarantees in a low-noise regime.

To sum-up all the pros and cons of these algorithms, we give the table 1 for a quick
digest. Since the CPGD lacks guarantees on the global optimality of its output, the following
section will use the conditional gradient and more precisely the Sliding Frank-Wolfe in order
to tackle the SMLM super-resolution problem.

Table 1. Pros and cons for the different off-the-grid algorithm strategies, Semi-definite programming
(SDP) v. Sliding Frank-Wolfe (SFW) algorithm v. Conic Particle Gradient Descent (CPGD).

Algorithm Operator Space X Convergence Computation Tuning
rate time parameters

SDP [1] Fourier Torus Td Asymptotic Mild λ
SFW [2,13] All Any compact Sublinear Long λ

CPGD [24] All Torus Td log(ε) Quick λ, α, β
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4. Applications and results in SMLM imaging

As an illustration of off-the-grid applications’ in this review, we propose to solve the
super-resolution problem, aiming to retrieve biological structures at very small scales.

4.1. Metrics of quality of reconstruction

If one has access to the ground-truth i.e. the real position of the point sources, one is
able to assess the quality of the reconstruction by:

• detection metrics, such as the Jaccard index;
• quality of reconstruction metrics, such as the L2 norm in the discrete case.

Detection metrics can be applied to the off-the-grid output in a straightforward manner.
We will rather focus in this part on the ’quality of reconstruction’ metric. Any of the former
algorithms returns a list of Dirac measures, which can be compared with the ground-truth
measure ma0,x0 . This comparison cannot be done with discrete tools, such as the L2 norm
of the reconstructed acquisitions: we cannot compare an element ofM(X ) with L2(X ).
Examining the L2 norm of the xi vector of reconstructed positions against the x0,i vector is
not sufficient either: we need the same number of elements for x and x0, we have to sort
the vector of positions, and we have no guarantee that the matching of one position of x
with another of x0 is the right one.

Hence, a distance on the measure space is the good tool of comparison. We will use in
the following the Wasserstein 1-distanceW1 [38]: see the appendix B.5 for some recall on
the useful definition and more insights on the optimal transport setting used in this section.
The Wasserstein distance with measures of equal mass is defined14 as :

Definition 4.1.1 (Balanced optimal transport). For 0 ≤ p < +∞ and m1, m2 ∈ M(X ) such
that |m1|(X ) = |m2|(X ) , the p-Wasserstein distance is written:

W p(m1, m2)
def.
=

(
min

γ∈Γ(m1,m2)

∫
X×X

|u− v|p dγ(u, v)
)1/p

. (14)

Γ(m1, m2) is the set of transport maps between m1 and m2, one can take a look at the
Appendix B.5 for more insights on this notion. However this notion is not sufficient for our
application since the metric can only take measures of equal masses (i.e. equal TV-norm) as
an input. In the case of a discrete measure, we recall that mass is simply the sum of the
modulus of individual amplitudes: hence in general we cannot compare a source measure
and a reconstructed measure with differing amplitudes. The classic solution is then to
distribute the unit mass, divided by the number of spikes, uniformly over each δ-peak of
the discrete measure. Still, it would be way more convenient to incorporate the case of
differing masses in the metric. The proper metric to compare two measures of different
masses is called the Kantorovtich-Rubinstein norm also referred as the Flat Metric [38–40].

Definition 4.1.2 (Unbalanced optimal transport). Let us denote m ∈ M(X ) of finite first
moment and τ > 0, the following quantity is called Kantorovtich-Rubinstein norm:

Fτ(m)
def.
= sup

f∈Cb(X )

(∫
X

f dm, ‖ f ‖∞,X ≤ τ, f Lipschitz, ‖ f ‖Lip ≤ 1
)

14 Actually it is well-defined on the subset X def.
=
{

m ∈ M(X ), |m|(X ) ≤ ‖y‖2
H/2λ

}
because only the bounded subset ofM(X ) are metrizable for the

weak-∗ topology, so we have to restrain the set of measures to X in order to reach a Polish space i.e. the convenient framework for this OT-based
metric, see the Appendix B.5. Since all solutions of the BLASSO belong to X [4] we will keep this slight abuse of notation in the rest of the paper.
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where ‖ f ‖Lip is the Lipschitz constant of f . We then define the Flat Metric dτ for m1, m2 ∈ M(X )
of finite first moments:

dτ(m1, m2)
def.
= Fτ(m1 −m2).

The parameter τ is homogeneous to a distance, and it is understood in the optimal
transport sense as the cost of creating/destroying a Dirac measure. The Flat Metric co-
incides with the 1-Wasserstein distance, for m1, m2of equal masses, when τ → +∞ [39];
it also coincides with the total variation norm of m1 − m2 when τ → 0. Then it may be
seen as an interpolation between the total variation norm and the 1-Wasserstein norm.
Moreover, when the number of δ-peaks is correctly estimated, the Flat Metric stands for
the mean error in terms of localisation and is similar to the RMSE [40]. Eventually, the Flat
metric can be extended to discrete reconstruction i.e. images on a fine grid; this metric is
then a method applicable to discrete reconstruction, namely images with a finer grid.

To sum-up, there are two possibilities if one wants to compare the reconstructed
measure and the ground-truth one:

• let the source measure be composed of N spikes, we set the amplitude of each δ-peak
at 1/N. We apply the same procedure to the reconstructed (with differing or not
number of spikes), hence dividing uniformly the unit mass over all the δ-peaks of
the considered measure. Therefore, the reconstructed luminosity is not considered as
relevant and discarded: we can compute directly the 1-Wasserstein distance, since it is
equal to the Flat Metric in this case;

• we want to account for the luminosity, and we use the Flat Metric to compare the
reconstructed measure against the ground-truth one.

Summary: classic quality of reconstruction metrics such as the L2(X ) norm cannot
be straightforwardly applied to off-the-grid reconstruction. Instead, one could use
optimal transport score such as the Flat Metric: it accounts for both amplitude and
position reconstructions, while it can be easily extended to discrete reconstruction (images
on a fine grid).

4.2. Results for a SMLM stack

In super-resolution for biomedical imaging, one wants to retrieve some fine scale
details to better study biological structures of interest. Indeed, the studied bodies are
generally smaller than the Rayleigh limit at 200 nm, a length at which the phenomenon of
light diffraction comes into play. This diffraction causes a blurring of the image, which can
be described as a convolution of the image by the PSF mentioned above. Hence, we want
to perform a deconvolution i.e. remove the blur of diffraction to get a super-resolved image.
It is worth noticing that other imaging systems exist, for which the inverse problems to
solve are a bit different from deconvolution: e.g. Nuclear Magnetic Resonance spectroscopy
with Fourier measurements [41], MA-TIRF with Laplace [13].

In order to enhance spatial resolution over standard diffraction-limited microscopy
techniques and allow imaging of biological structures below the Rayleigh criterion, one can
use SMLM, which stands for ’Single Molecule Localisation Microscopy ’. It is a compelling
technique in fluorescence microscopy to tackle the super-resolution problem [42]. It requires
photoactivable fluorophores with, roughly speaking two states, for example ’On’ and ’Off ’.
These molecules are therefore only visible on the acquisitions in the ’On’ case, and the idea
is then to light up some molecules in the sample to make the acquisition and to be able to
locate them precisely; the fluorescent molecules are bound to the biological structure and
since only a few molecules are emitting in one frame, the resulting image is rather sparse
which allows accurate localisation. This process is repeated until all the molecules have
been lit and imaged. All the positions of the imaged molecules frame-by-frame can then be
put together to form a super-resolved image that go below the diffraction barrier, ridden of
the degradation by the process of acquisition (blur, noise, etc.). The quality of the image
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reconstruction is naturally limited by the number of acquisitions necessary to reconstruct
the image, which implies a cost in time (precious insofar as the organism studied moves)
and in physical memory and by the density of fluorophores lit at each stage. Indeed, there
is a risk of overlap hindering the localisation of the molecules since the separation criterion
is not matched.

Off-the-grid methods can be applied to any SMLM stack with only the knowledge of
the forward operator, the acquisition system’s PSF in this case. In this review, a gridless
method based on Sliding Frank-Wolfe is tested on an 2D SMLM acquisition stack from the
2013 EPFL Challenge15. For this purpose, we consider the first image of the stack, locate the
source points, and store the coordinates of these points. Then, we move on to the second
image, we locate the source points, and so on. Note that off-the-grid method with this
variational approach are not the only method taking advantage of a continuous domain
like the PSF-fitting such as DAOSTORM [43], etc.

Deconvolution is a first challenge to solve this inverse problem, but we must also take
into account the noise. One has to deal with three main types of noise on these acquisitions:

• photon noise (also known as shot noise or quantum noise) is due to the quantum
nature of light. It arises from the fact that fluorophores emit photons randomly, so that
between t and t + 1 (exposure time), a variable number of photons have been emitted,
and therefore a variable number of photons have been collected by the sensor. Thus
the amplitude of the electrical signal generated in the sensor (at each pixel) fluctuates
according to a Poisson statistic;

• the dark current is a phenomenon due to the natural agitation of electrons. This
natural agitation is sufficient to occasionally eject an electron from the valence band to
the conduction band without any photoelectric effect. Additional charges are therefore
created which interfere with the signal. The number of electrons generated by thermal
agitation follows a Poisson distribution;

• amplification and readout noise. This noise is produced by the electronic circuit that
amplifies and converts the electron packets into voltage. It is generally modelled by a
Gaussian noise.

Thus, we have several noises that pollute each of the observed images. To deal with
this ill-posed inverse problem, we use the results on BLASSO, with the least-squares term
as the data-fitting term and the TV norm as the regulariser of the inverse problem. In the
Bayesian approach the least-square term is modelling the maximum of likelihood when the
acquisition is polluted by Gaussian noise, hence our model is making the approximation of
Gaussian noise. Measurements are discrete so at each image one have to deal with images
with N1 × N2 pixels, each of them with size (b1, b2). Let (ci,1, ci,2) be the centre of the ith
pixel, we denote the ith camera pixels by

Ωi
def.
= (ci,1, ci,2) +

[
− b1

2N1
,

b1

2N1

]
×
[
− b2

2N2
,

b2

2N2

]
.

We can then clarify the forward operator Φ : m 7→ RN1 N2 which encapsulates the
integration over camera pixels [13], indeed with the evaluation of the discrete Gaussian
kernel ϕ with standard deviations σ, for i ∈ {1, . . . , N1N2}:

[ϕ(x)]i
def.
=

1
2πσ2

∫
Ωi

e
−
(

(x1−s1)
2

2σ2 +
(x2−s2)

2

2σ2

)
ds1ds2.

In the SMLM data set, one has the PSF standard deviation σ = 149.39nm and N1 =
N2 = 100nm. The reconstruction is performed by our implementation of the Sliding Frank-

15 https://srm.epfl.ch/DatasetPage?name=MT0.N1.HD

https://srm.epfl.ch/DatasetPage?name=MT0.N1.HD
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Wolfe in python16 insofar as it is the more robust method available: indeed it works with
Gaussian kernel, it has proven results in a noise regime, etc. The results are presented in
Figure 9. The stack of 2500 images of 64× 64 is qualified as high density with high SNR:
the number of activated fluorophores is quite important, and the noise is not negligible17.

Figure 9. (a) Ground-truth tubulins, two excerpts of the stack in the square below: convolution
+ all noise described before. (b) Reconstructed measure by Sliding Frank-Wolfe visualised through
Gaussian kernel with a smaller σ (see text).

Flat metric between the reconstructed measure ma,x and the ground-truth measure
ma0,x0 is then computed, and it reaches dτ(ma,x, ma0,x0) = 1.7× 10−2. The reconstruction is
convincing and well capture the fine details of the biological structures, one can clearly see
the interweaving tubulins in the right part of the image.

Note that an interesting feature of the gridless reconstruction is that once the Radon
measure is computed, it is straightforward to plot it through any operator on a fine grid of
one choice. Indeed, as one cannot represent a discrete measure m, we rather plot Φm where
Φ is the PSF with a slightly smaller variance, in order to clearly see the deconvolution. In
all of our reconstruction, we convolve the reconstruction through the PSF with variance
σ/6 and plot it on a grid 32 times finer. As a matter of comparison discrete methods are
performed for a fixed fine grid, and if one want a finer reconstruction one has to recompute
everything.

We finally test the off-the-grid reconstruction on a real data set of tubulins with high
density molecules, provided by the 2013 IEEE ISBI SMLM challenge. In this stack of 500
frames of 128× 128 pixels, the FWHM (full width at half maximum) of the acquisition
system is estimated at 351.8 nm. We recall that the FWHM is the width of the Gaussian
curve measured between those points on the y-axis which are half the maximum amplitude,
also note that it is linked to the variance σ by FWHM = 2

√
2 ln 2× σ. We compare the re-

construction of the off-the-grid method with the output of the Deep-STORM [44] algorithm,
touted as the algorithm with the most visually compelling results. The reconstructions of
the gridless method and the Deep-STORM algorithm are presented in Figure 10, where one
can appreciate the reconstruction by off-the-grid on fine details. The reconstruction seems
a small bit blurry compared to Deep-STORM, due to the plotting through a small spread
Gaussian kernel. However, it is noteworthy that both comparison perform well to retrieve
the filaments, in particular in the enhancing yellow circles: the off-the-grid reconstruction
seems to better preserve the structure compared to the Deep-STORM’s rough output. The
quality of the reconstruction is notably interesting for off-the-grid reconstruction since it
does not require any test sets to yield this reconstruction, on the contrary to Deep-STORM.
The only data needed is the knowledge of (an estimation of) the forward operator, the
off-the-grid reconstruction can be then performed from any input without having to train
the model on different type and level of noise.

16 See our GitHub repository for our PyTorch implementation: https://github.com/XeBasTeX
17 See https://srm.epfl.ch/DatasetPage?name=MT0.N1.HD for more insights.

https://github.com/XeBasTeX
https://srm.epfl.ch/DatasetPage?name=MT0.N1.HD
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Figure 10. (a) Excerpt of the stack (b) Mean of the stack (c) Reconstruction by off-the-grid method (d)
Deep-STORM.

Shorthand: we tested an off-the-grid method on both SMLM synthetic and exper-
imental data set. The gridless problem is tractable thanks to the Sliding Frank-Wolfe
algorithm, and yields compelling results. The results are all the more interesting since
there is only one parameter, handy to tune and robust w.r.t. noise. Thus, it can be easily
adapted to any other dataset with known acquisition operator.

5. Conclusion

We described in this review the off-the-grid variational settings for the sparse spike
problem, through the definition of the space of signed measuresM(X ) and the functional
BLASSO defined over this set. Thanks to the trade-off between the convexity of the
functional and the infinite dimensional, non-reflexive space of optimisationM(X ); the
BLASSO can be defined to solve the sparse spike recovery problem. We review in this paper
the theoretical guarantees to reach the correct minimum as the literature provides multiple
results, in particular a sharp criterion for stable spikes recovery under a low noise regime.
Numerical methods to tackle the BLASSO problem were also discussed, with insights on
the SDP approach which is asymptotically exact but only suited for Fourier measurements,
the Frank-Wolfe approach with known rate of convergence but a high computation load
and the Conic Particle Gradient Descent with cheap iterations but lacks of guarantees. We
were finally able to present the result of the off-the-grid approach with Sliding Frank-Wolfe
algorithm in the case of SMLM synthetic data and real data from the EPFL Challenge, and
to illustrate the usefulness of these methods to recover fine-scale details.
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Abbreviations
The following abbreviations are used in this manuscript:

PSF Point Spread Function
FWHM Full width at half maximum
SNR Signal-to-noise ratio
LASSO Least Absolute Shrinkage and Selection Operator
BLASSO Beurling-LASSO
SFW Sliding Frank-Wolfe
OT Optimal Transport
CPGD Conic Particle Gradient Descent

Appendix A. Notations table

Table A1. Main notations used in the review.

d dimension of the ambient space
X ambient space of the spike positions e.g. the torus, [0, 1]d, Rd, etc.
C0(X ) space of evanescent continuous functions
M(X ) space of signed Radon measures
M+(X ) space of non-negative Radon measures
MC(X ) space of complex Radon measures
H Hilbert space, typically L2(X )
m Radon measure
|m|(X ) TV norm of m
δ Dirac measure
a, x respectively amplitudes and positions of the spike aδx
N number of Dirac measures in a discrete measure
λ regularisation parameter in (Pλ(y))
Φ forward acquisition operator with kernel ϕ and adjoint Φ∗

Fn forward Fourier acquisition operator with n measurements
pλ solution of the dual problem (Dλ(y))
ηλ dual certificate of (Pλ(y))
Tλ BLASSO (Pλ(y)) functional

Ω Lifted space Ω def.
= R+ ×X

J BLASSO functional onM+(X )
R data-term R :M(X )→ H
FN ’discrete’ functional on ΩN

F functional onM(Ω)
(µt)t, (νt)t Gradient flows respectively in P2(Ω) andM+(X )
α, β Cone metric/ Fisher-Rao-Wasserstein tuning parameters
W p Wasserstein distance of order p
P2(Ω) space of probability measures with 2nd moment endowed withW2

Appendix B. Useful definitions and notions

Appendix B.1. Details on functional analysis

Definition B.1.1. Two Radon measures µ and ν ofM(X ) are called singular if there exists two
disjoints subsets A, B of the σ-algebra of X whose union is X ; such that µ is zero on all measurable
subsets of B while ν is zero on all measurable subsets of A.
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Proposition B.1.2 (Jordan decomposition). The Jordan decomposition states for every measure
µ ∈ M(X ) the existence of two non-negative Radon measures µ+, µ− ∈ M+(X ) which are
singular and such that µ = µ+ − µ−.

Definition B.1.3 (weak-∗ topology). Loosely speaking, weak-∗ convergence is convergence
locally on average. We say that a sequence of Radon measures (mn)n≥0 weakly-∗ converges
towards m ∈ M(X ) if and only if for all f ∈ C0(X ) :

∫
X

f dmn −−−−→
n→+∞

∫
X

f dm.

We note mn
∗
⇀ m, it is also called the vague convergence.

Definition B.1.4. A vector space E is said to be reflexive if the bi-dual E∗∗ is identified with E.

Remark. Since C0(X ) is not a reflexive space for its norm supremum, the dual ofM(X ) for the
topology induced by its TV norm is a complicated space, strictly larger [45] than C0(X ). However,
ifM(X ) is endowed with the weak-∗ topology, thenM(X ) is a locally convex space whose dual is
C0(X ) [4].

We also precise the notion of metrisability for the sake of the optimal transport part:

Definition B.1.5. A topological space (E, T ) is said to be metrisable if there exists a distance
d : E× E→ [0,+∞[ such that the topology induced by d is T .

(M(X ), ∗) is not a first-countable space, then it is not a metrisable space. To get hold
on that:

Lemma B.1.6. If E is a Banach, the weak-∗ topology is not metrisable on E∗, except if E is of finite
dimension.

Nonetheless, all bounded subsets ofM(X ) are metrisable for the weak-∗ topology.
This property is of upmost importance for the definitions of classic OT metrics such as
the Wasserstein distance and for the proof of Γ-convergence of the LASSO to the BLASSO
[11,38]. To sum-up all the properties of the different topologies, we give the following Table
A2:

Table A2. Algebraic properties ofM(X ) for its two main topologies.

Properties TV Topology Weak-∗ Topology

Completeness Yes On its bounded subset
Separability No Yes
Reflexivity No Yes
Metrisable Yes On its bounded subset
Polish space (see B.5) No On its bounded subset

Appendix B.2. Proof of the Fenchel dual

Proposition B.2.1. Let be the problem:

argmax
‖φ∗p‖∞,X≤1

〈y, p〉H −
λ

2
‖p‖2

H.

It is the dual problem of the BLASSO (Pλ(y)).
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Proof. We will apply results from [21, Remark 4.2], with a little caveat : the Banach space
V should be reflexive, which is clearly not the case here with V =M(X ). However, the
reflexive hypothesis is only needed for the sake of existence proof. Since we already proved
the solution’s existence, this reflexivity hypothesis is not needed in our case. Back to the
Remark 4.2, it states, for Λ : V → Y linear (with our notation Λ = Φ), F : V → R and
G : Y → R convex, that the primal problem:

inf
u∈V

F(u) + G(Λu)

has a dual problem which writes down:

sup
p∗∈Y∗

−F∗(Λ∗p∗)− G∗(−p∗). (A1)

If u and p∗ are respectively solutions of the primal and dual, the extremality conditions
are:

{
Λ∗p∗ ∈ ∂F(u)
−p∗ ∈ ∂G(Λu).

Let use specify in our case V def.
= M(X ), Y def.

= H, F(m)
def.
= |m|(X ) and G(p) def.

=
1
2‖y− p‖2

H. One can clearly see that the adjoint of G is G∗(p∗) = 〈y, p∗〉H + 1
2‖p∗‖2

H for

p∗ ∈ H; in order to determine F∗ let ψ ∈ V∗ def.
= C0(X ):

F∗(ψ) = sup
m∈M(X )

〈ψ, m〉C0(X )×M(X ) − |m|(X )

≥ 〈ψ, m〉C0(X )×M(X ) − |m|(X ), ∀m ∈ M(X ).

Let x ∈ X , and m = λδx with λ > 0. Then one have:

sup
m∈M(X )

〈ψ, m〉C0(X )×M(X ) − |m|(X ) ≥ λ(ψ(x)− 1).

At the limit λ→ ∞ one yields F∗(ψ) ≥ +∞ if ψ(x) > 1. A similar result for ψ(x) < 1
is obtained with the measure m = −λδx. One finally reach F∗(ψ) = +∞ if ‖ψ‖∞,X > 1.
Let us assume that ‖ψ‖∞,X ≤ 1, first note that F∗(ψ) = supm∈M(X )〈ψ, m〉C0(X )×M(X ) −
|m|(X ) ≥ 0 (case m = 0). Moreover,

〈ψ, m〉C0(X )×M(X ) − |m|(X ) ≤ ‖ψ‖∞,X |m|(X )− |m|(X )

≤ |m|(X )(‖ψ‖∞,X − 1)

≤ 0 since ‖ψ‖∞,X ≤ 1.

By introducing the sup on both sides of the last inequality, one finally get F∗(ψ) = 0 if
‖ψ‖∞,X ≤ 1 thus reaching the condition on the supremum norm.

Then from (A1) we yield the dual problem:

sup
‖Φ∗p∗‖∞,X≤1

〈y, p∗〉H −
1
2
‖p∗‖2

H
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and for m∗ and p∗ respectively solutions of the primal and dual, its extremality
conditions are:

{
Φ∗p∗ ∈ ∂|m∗|(X )

−p∗ = Φm∗ − y.

This concludes the proof.

Appendix B.3. Fréchet differential of J′ν
Let σ, ν ∈ M+(X ) and ε > 0. Consider the following:

J(ν + εσ) = R
(∫
X

ϕ(θ)(dν + ε dσ)

)
+ λ|ν + εσ|(X )

= R
(∫
X

ϕ(θ)dν(θ) + ε
∫
X

ϕ(θ)dσ(θ)

)
+ λ|ν|(X ) + ε|σ|(X ).

The TV linearity is obtained thanks to the positivity of ν, σ. Hence, the differential J′ν
at point ν is given by:

dJ(ν + εσ)

dε

∣∣∣∣
ε=0

=

〈∫
X

ϕ(θ)dσ(θ),∇R
(∫
X

ϕ(s)dσ(s)
)〉
H
+ λ|σ|(X )

=
∫
X
〈ϕ(θ),∇R(ϕ(s)dσ(s))〉H dσ(θ) + λ|σ|(X )

= 〈〈ϕ,∇R〉H, σ〉C0(X )×M(X ) + 〈λ, σ〉C0(X )×M(X )

=
〈

J′ν, σ
〉
C0(X )×M(X )

Appendix B.4. Gradient of FN

Let R be the data fitting term e.g. the least squares, and h an injective function such as
the map h : r 7→ r2. For r ∈ RN

+ and θ ∈ X N we consider:

FN(r, θ) = R
(

1
N ∑ h(ri)ϕ(θi)

)
+

1
N ∑ h(ri).

Its differential is given by:

dFN(x)(δx) = 〈∇FN(x), δx〉

=
1
N ∑ α(r)−1 ∂FN

∂ri
δri + ∑ β(r)−1

〈
∂FN
∂ri

, δθi

〉
θ

.

Moreover, we have:

∂FN
∂ri

=
1
N

h′(ri)ϕ(θi)
∂R
∂ri

(
1
N ∑ h(ri)ϕ(θi)

)
+

λ

N
h′(ri)

=
1
N

h′(ri)

(
ϕ(θi)

∂R
∂ri

(
1
N ∑ h(ri)ϕ(θi)

)
+ λ

)
= h′(ri)J′ν(θi).

Similarly,
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∂FN
∂θi

=
1
N

h′(ri)ϕ(θi)
∂R
∂ri

(
1
N ∑ h(ri)ϕ(θi)

)
+

λ

N
h′(ri)

= h(ri)∇J′ν(θi).

which yields the gradient in [24]. One can simplify the final expression by introducing

the certificate ηλ
def.
= J′ν/λ.

Appendix B.5. Details on section 4

Definition B.5.1. A space (X , dp) is a Polish space if it is separable, metrizable, and has a
topology – induced by a distance – which makes the space complete.

X is a separable Hilbert space then (X , dp) is a Polish metric space for dp a distance
on Rd restricted to X . We can also introduce:

Definition B.5.2 (Transport map). The non-negative measure γ ∈ M+(X ×X ) which verifies,
for all A, B ∈ B(X ) where B(X ) is the Borel σ-algebra:

γ(A×X ) = m1(A), γ(B×X ) = m2(B)

is called the transport map between two positive measures m1 and m2 of same mass.

We call Γ(m1, m2) the set of transport maps between m1 and m2 [38]. Metrics of
optimal transport such as the Wasserstein distance use at their core these notions, and
are defined only on Polish spaces: this is why we work with the measures in X from [11],
restriction ofM(X ) with the weak-∗ topology.

Definition B.5.3 (Wasserstein distance). Let the Polish metric space (X , dp), and p ∈ [1,+∞).
For any probability measures µ and ν of X , the Wasserstein distance of order p between µ and ν is
defined by:

W p(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
X

d(x, y)p dγ(x, y)
)1/p

.

We also recall the definition of moments:

Definition B.5.4. If r ∈ N, we call moment of order r of a measure m ∈ M(X ) the quantity :∫
X

xr dm(x).

We say that m is of r-finite moment if the preceding quantity is finite.
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