

Off-the-grid curve reconstruction: theory and applications to fluorescence microscopy

Bastien Laville under the direction of Laure Blanc-Féraud and Gilles Aubert

15th September 2023

Morpheme research team Inria, CNRS, Université Côte d'Azur

1. Introduction

- 2. Off-the-grid 101: the sparse spike problem
- 3. Off-the-grid covariance spikes reconstruction
- 4. A new divergence regularisation
- 5. Off-the-grid curve numerical reconstruction
- 6. Conclusion

Introduction

How could we recover biological structure from resolution-limited acquisitions?

Microscope acquisition

How could we recover biological structure from resolution-limited acquisitions?

Microscope acquisition

Reconstruction

How could we recover biological structure from resolution-limited acquisitions? This is a case of **inverse problem**.

Microscope acquisition

Reconstruction

An *inverse problem* consists in finding a quantity from experimental data.

An *inverse problem* consists in finding a quantity from experimental data.

'Can one hear the shape of a drum?', Marc Kac (1966)

Marc Kac.

Source

Observation

Source

Observation

Three criteria for an *ill-posed* inverse problem:

Three criteria for an *ill-posed* inverse problem:

• the solution may not exist;

Three criteria for an *ill-posed* inverse problem:

- the solution may not exist;
- the solution may not be unique;

Sources

Observation

Three criteria for an *ill-posed* inverse problem:

- the solution may not exist;
- the solution may not be unique;
- the solution may not depend continuously on the data.

Inverse problem

Source

Observation

Three criteria for an *ill-posed* inverse problem:

- the solution may not exist;
- the solution may not be unique;
- the solution may not depend continuously on the data.

Source

Three criteria for an *ill-posed* inverse problem:

- the solution may not exist;
- the solution may not be unique;
- the solution may not depend continuously on the data.

Source

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

Objective

To image **live** biological structures at **small scales**.

• S_o is the source;

- $S_{\rm o}$ is the source;
- it is observed through *y*: blur Φ, noise...;

- $S_{\rm o}$ is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build an estimate \hat{S} from *y*?

- $S_{\rm o}$ is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build an estimate \hat{S} from *y*?

- S_o is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build an estimate \hat{S} from y?

Variational optimisation

• use a *prior* on S_o;

- $S_{\rm o}$ is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build an estimate \hat{S} from y?

- use a *prior* on S_o;
- among all sources **S**, penalise the ones fulfiling the prior;

- S_o is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build an estimate S from y?

- use a *prior* on S_o;
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto \|y \Phi S\|_2^2 + \alpha R(S)$;

- S_{o} is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build an estimate S from y?

- use a *prior* on S_o;
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto \|y \Phi S\|_2^2 + \alpha R(S)$;
- $\|y \Phi S\|_2^2$ penalises the closeness of y and the source S;

- S_{o} is the source;
- it is observed through *y*: blur Φ, noise...;
- how to build an estimate \$\u00dfs from y?

- use a *prior* on S_o;
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto \|y \Phi S\|_2^2 + \alpha R(S)$;
- $\|y \Phi S\|_2^2$ penalises the closeness of y and the source S;
- R(S) regularises the problem (well-posed) and enforces more or less the prior on S
 w. α > 0.

Grid or gridless?

Source to estimate

Introducing a grid

Reconstruction \hat{S} on a grid

Reconstruction \hat{S} on a finer grid

Reconstruction \hat{S} is now **off-the-grid**
Grid or gridless?

Grid

- geometry constrained on the grid;
- combinatorial (non-)convex optimisation;
- well-known problems (LASSO, ...).

Grid or gridless?

Grid

- geometry constrained on the grid;
- combinatorial (non-)convex optimisation;
- well-known problems (LASSO, ...).

Off-the-grid

- brings structural prior;
- guarantees (uniqueness, support);
- convex but infinite dimensional;
- young field.

Off-the-grid 101: the sparse spike problem

• \mathcal{X} is a compact of \mathbb{R}^d ;

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f dm$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f dm$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
- Banach endowed with TV-norm : $m\in\mathcal{M}\left(\mathcal{X}
 ight)$,

$$|m|(\mathcal{X}) \stackrel{ ext{def.}}{=} \sup\left(\int_{\mathcal{X}} f \,\mathrm{d}m \,\bigg|\, f \in \mathscr{C}_0\left(\mathcal{X}
ight), \|f\|_{\infty,\mathcal{X}} \leq 1
ight).$$

If $m = \sum_{i=1}^{N} a_i \delta_{x_i}$ a discrete measure

- \mathcal{X} is a compact of \mathbb{R}^d ;
- how to model spikes ? Through Dirac measure δ_x, element of the set of Radon measures M (X);
- topological dual of $\mathscr{C}_0(\mathcal{X})$ equipped with $\langle f, m \rangle = \int_{\mathcal{X}} f dm$. Generalises $L^1(\mathcal{X})$; $L^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$;
- Banach endowed with TV-norm : $m\in\mathcal{M}\left(\mathcal{X}
 ight)$,

$$|m|(\mathcal{X}) \stackrel{ ext{def.}}{=} \sup\left(\int_{\mathcal{X}} f \,\mathrm{d}m \,\bigg|\, f \in \mathscr{C}_0\left(\mathcal{X}
ight), \|f\|_{\infty,\mathcal{X}} \leq 1
ight).$$

If $m = \sum_{i=1}^{N} a_i \delta_{x_i}$ a discrete measure, then $|m|(\mathcal{X}) = \sum_{i=1}^{N} |a_i|$.

• Let the source
$$m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}\right)$$
 a discrete measure:

- Let the source $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^{N} a_i \delta_{x_i} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$

- Let the source $m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^{N} a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}\right)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in \mathbb{R}^p$ additive noise;

- Let the source $m_{a_{0},x_{0}}\stackrel{\mathrm{def.}}{=}\sum_{i=1}^{N}a_{i}\delta_{x_{i}}\in\mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

- Let the source $m_{a_0,x_0} \stackrel{ ext{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

We call **BLASSO** for $\lambda > 0$ the problem

[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi m\|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

- Let the source $m_{a_0,x_0} \stackrel{ ext{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

We call **BLASSO** for $\lambda > 0$ the problem

[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \| y - \Phi m \|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

One of its minimisers is a sum of Dirac, close to m_{a_0,x_0} [Duval and Peyré, 2014].

- Let the source $m_{a_0,x_0} \stackrel{ ext{def.}}{=} \sum_{i=1}^N a_i \delta_{x_i} \in \mathcal{M}\left(\mathcal{X}
 ight)$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{R}^p$ the acquisition operator, e.g. $\Phi m_{a_0,x_0} \stackrel{\text{def.}}{=} \sum_{i=1}^N a_i h(x-x_i);$
- $w \in \mathbb{R}^p$ additive noise;
- $y \stackrel{\text{def.}}{=} \Phi m_{a_0,x_0} + w.$

We call **BLASSO** for $\lambda > 0$ the problem

[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi m\|_{\mathbb{R}^p}^2 + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(y))$$

One of its minimisers is a sum of Dirac, close to m_{a_0,x_0} [Duval and Peyré, 2014].

Difficult numerical problem: infinite dimensional, non-reflexive. Tackled by greedy algorithm like *Frank-Wolfe* [Frank and Wolfe, 1956], *etc*.

Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit fluorophores per image.

Figure 1: Two excerpts from a SMLM stack

Stack mean

Stack mean

Off-the-grid [Laville et al., 2021]

Stack mean

Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

Stack mean Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

SMLM drawback: a lot of images, no live-cell imaging.

Off-the-grid covariance spikes reconstruction

 many conventional fluorophores lit at the same time;

- many conventional fluorophores lit at the same time;
- temporal independence of the fluorophores luminosity fluctuation;

- many conventional fluorophores lit at the same time;
- temporal independence of the fluorophores luminosity fluctuation;
- less harmful to the biological structures studied.

- many conventional fluorophores lit at the same time;
- temporal independence of the fluorophores luminosity fluctuation;
- less harmful to the biological structures studied.

- many conventional fluorophores lit at the same time;
- temporal independence of the fluorophores luminosity fluctuation;
- less harmful to the biological structures studied.

- many conventional fluorophores lit at the same time;
- temporal independence of the fluorophores luminosity fluctuation;
- less harmful to the biological structures studied.

- acquisition stack i.e. images in $L^{2}(\mathcal{X})$ during [0, T];

Quantities at stake

- acquisition stack i.e. images in $\mathrm{L}^{2}\left(\mathcal{X}\right)$ during $\left[0,T\right]$;
- $y: [0,T]
 ightarrow \mathrm{L}^2\left(\mathcal{X}
 ight)$ is the SOFI acquisition stack ;

Quantities at stake

- acquisition stack i.e. images in $\mathrm{L}^{2}\left(\mathcal{X}\right)$ during $\left[0,T\right]$;
- $y: [0,T] \rightarrow L^{2}(\mathcal{X})$ is the SOFI acquisition stack ;
- we aim to reconstruct the *dynamic* measure:

$$t\mapsto \mu(t)\stackrel{ ext{def.}}{=}\sum_{i=1}^{N}a_{i}(t)\delta_{x_{i}}\in\mathrm{L}^{2}\left(0, extsf{T};\mathcal{M}\left(\mathcal{X}
ight)
ight)$$

generating a.e. $t \in [0, T]$: $y(t) = \Phi \mu(t)$.

Quantities at stake

- acquisition stack i.e. images in $L^{2}(\mathcal{X})$ during [0, T];
- $y:[0,T] \rightarrow L^{2}(\mathcal{X})$ is the SOFI acquisition stack ;
- we aim to reconstruct the *dynamic* measure:

$$t\mapsto \mu(t)\stackrel{ ext{def.}}{=}\sum_{i=1}^{N}a_{i}(t)\delta_{x_{i}}\in\mathrm{L}^{2}\left(0,T;\mathcal{M}\left(\mathcal{X}
ight)
ight)$$

generating a.e. $t \in [0, T]$: $y(t) = \Phi \mu(t)$. In the convolution case for PSF h, $\Phi \mu(t) = \sum_{i=1}^{N} a_i(t) \int_{\mathcal{X}} h(x - x_i) dx.$

Ouantities at stake

- acquisition stack i.e. images in $L^2(\mathcal{X})$ during [0, T];
- $y: [0, T] \to L^2(\mathcal{X})$ is the SOFI acquisition stack :
- we aim to reconstruct the *dynamic* measure:

$$t\mapsto \mu(t)\stackrel{\mathrm{def.}}{=}\sum_{i=1}^{N}a_{i}(t)\delta_{x_{i}}\in\mathrm{L}^{2}\left(0,T;\mathcal{M}\left(\mathcal{X}
ight)
ight)$$

generating a.e. $t \in [0, T]$: $y(t) = \Phi \mu(t)$. In the convolution case for PSF *h*, $\Phi\mu(t) = \sum_{i=1}^{N} a_i(t) \int_{\mathcal{X}} h(x - x_i) \, \mathrm{d}x.$

Moments are a tool to recover the positions x_i . Example: let the stack mean $\bar{y} \stackrel{\text{def.}}{=} \frac{1}{\bar{t}} \int_0^{\bar{t}} y(\cdot, t) \, \mathrm{d}t$.

Ouantities at stake

- acquisition stack i.e. images in $L^2(\mathcal{X})$ during [0, T];
- $y: [0, T] \rightarrow L^2(\mathcal{X})$ is the SOFI acquisition stack;
- we aim to reconstruct the *dynamic* measure:

$$t\mapsto \mu(t)\stackrel{ ext{def.}}{=}\sum_{i=1}^{N}a_{i}(t)\delta_{x_{i}}\in\mathrm{L}^{2}\left(0,T;\mathcal{M}\left(\mathcal{X}
ight)
ight)$$

generating a.e. $t \in [0, T]$: $y(t) = \Phi \mu(t)$. In the convolution case for PSF *h*, $\Phi\mu(t) = \sum_{i=1}^N a_i(t) \int_{\mathcal{X}} h(x - x_i) \, \mathrm{d}x.$

Moments are a tool to recover the positions x_i . Example: let the stack mean $\bar{y} \stackrel{\text{def.}}{=} \frac{1}{\bar{t}} \int_0^T y(\cdot, t) \, \mathrm{d}t$. One have $\Phi m_{a,x} = \bar{y}$ where $m_{a,x} \stackrel{\text{def.}}{=} \sum_{i=1}^N \bar{a}_i \delta_{x_i}$ and \bar{a}_i is the mean of $a_i(\cdot)$.

Build the variational problem

Let R_{y} be the spatial covariance, $\forall u, v \in \mathcal{X}$ we yield:

$$R_y(u,v) \stackrel{\mathrm{def.}}{=} rac{1}{T} \int_0^T \left(y(u,t) - ar y(u)
ight) \left(y(v,t) - ar y(v)
ight) \, \mathrm{d}t$$
Build the variational problem

Let R_{y} be the spatial covariance, $\forall u, v \in \mathcal{X}$ we yield:

$$R_{y}(u,v) \stackrel{\text{def.}}{=} \frac{1}{T} \int_{0}^{T} (y(u,t) - \bar{y}(u)) (y(v,t) - \bar{y}(v)) \, \mathrm{d}t$$
$$= \dots \quad (\text{independence of fluctuations})$$
$$= \sum_{i=1}^{N} \underbrace{M_{i}}_{a_{i} \text{ variance}} h(u - x_{i})h(v - x_{i})$$

Build the variational problem

Let R_y be the spatial covariance, $\forall u, v \in \mathcal{X}$ we yield:

$$R_{y}(u,v) \stackrel{\text{def.}}{=} \frac{1}{T} \int_{0}^{T} (y(u,t) - \bar{y}(u)) (y(v,t) - \bar{y}(v)) \, \mathrm{d}t$$

= ... (independence of fluctuations)
$$= \sum_{i=1}^{N} \underbrace{\mathcal{M}_{i}}_{a_{i} \text{ variance}} h(u - x_{i})h(v - x_{i})$$

$$= \int_{\mathcal{X}} h(u - x)h(v - x) \, \mathrm{d}m_{M,x}(x)$$

$$= \Lambda m_{M,x}(u,v).$$

 $m_{M,x} \stackrel{\text{def.}}{=} \sum_{i=1}^{N} M_i \delta_{x_i}$ shares the same positions w. $\mu = \sum_{i=1}^{N} a_i(t) \delta_{x_i}$ through A.

$\mathrm{L}^{2}\left(0,T,\mathrm{L}^{2}\left(\mathcal{X}\right)\right)$

Legend: dynamic part,

٠

Quantities digest

Legend: dynamic part, temporal mean part \bar{y}

٠

Quantities digest

٠

Legend: dynamic part, temporal mean part \bar{y}

Quantities digest

Legend: dynamic part, temporal mean part \bar{y} and covariance R_y .

Let $\lambda > 0$,

The energy for covariance-based reconstruction writes down:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} T_{\lambda}(m) \stackrel{\text{def.}}{=} \frac{1}{2} \|R_{y} - \Lambda(m)\|_{\operatorname{L}^{2}(\mathcal{X}^{2})}^{2} + \lambda |m|(\mathcal{X}). \tag{Q}_{\lambda}(y)$$

Let $\lambda > 0$,

The energy for covariance-based reconstruction writes down:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} T_{\lambda}(m) \stackrel{\text{def.}}{=} \frac{1}{2} \|R_{y} - \Lambda(m)\|_{\mathrm{L}^{2}(\mathcal{X}^{2})}^{2} + \lambda |m|(\mathcal{X}). \tag{Q}_{\lambda}(y)$$

while mean reconstruction is:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} S_{\lambda}(m) \stackrel{\text{def.}}{=} \frac{1}{2} \|\bar{y} - \Phi(m)\|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(\bar{y}))$$

Let $\lambda > 0$,

The energy for covariance-based reconstruction writes down:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} T_{\lambda}(m) \stackrel{\text{def.}}{=} \frac{1}{2} \|R_{y} - \Lambda(m)\|_{\mathrm{L}^{2}(\mathcal{X}^{2})}^{2} + \lambda |m|(\mathcal{X}). \tag{Q}_{\lambda}(y)$$

while mean reconstruction is:

$$\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} S_{\lambda}(m) \stackrel{\text{def.}}{=} \frac{1}{2} \|\bar{y} - \Phi(m)\|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda |m|(\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(\bar{y}))$$

Test on 2D tubulins from ISBI challenge 2016:

Test on 2D tubulins from ISBI challenge 2016:

- stack of 1000 acquisitions 64 × 64 simulated by SOFItool;
- 8700 emitters scattered along the tubulins; **high** background noise + Poisson noise at 4 + Gaussian noise at 1×10^{-2} . SNR ≈ 10 db.

Results

Ground-truth

Results

Ground-truth

 $(\mathcal{Q}_{\lambda}(y))$ [Laville et al., 2022]

Results

Ground-truth

 $(\mathcal{Q}_{\lambda}(y))$ [Laville et al., 2022]

SRRF [Culley et al., 2018]

Partial conclusion

 $Co\ell_0$ rme [Stergiopoulou et al., 2021]

Recap

- a new off-the-grid method for fluctuation microscopy
- the results are a bit dotted, by design.

• filaments in fluorescence microscopy;

- filaments in fluorescence microscopy;
- biological structures;

- filaments in fluorescence microscopy;
- biological structures;
- collaboration with LBDV on the seaweed Ostreopsis; filaments in the cytoskeleton.

- filaments in fluorescence microscopy;
- biological structures;
- collaboration with LBDV on the seaweed Ostreopsis; filaments in the cytoskeleton.

Crackle detection: non-destructive testing on nuclear powerplant pipes, *etc.*

Stress corrosion cracking spotted by *ultrasounds*.

- filaments in fluorescence microscopy;
- biological structures;
- collaboration with LBDV on the seaweed Ostreopsis; filaments in the cytoskeleton.

Crackle detection: non-destructive testing on nuclear powerplant pipes, *etc.*

Crackle in the aforementioned pipe.

A new divergence regularisation

• how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;

• how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;

•
$$\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^2(\mathcal{X}) \mid " \nabla u" \in \mathcal{M}(\mathcal{X})^2 \right\};$$

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D} u\|_{\mathrm{TV}}.$$

If $u = \chi_E$,

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

If
$$u = \chi_E$$
, then $\|Du\|_{TV} = Per(E)$;

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

If $u = \chi_E$, then $\|Du\|_{TV} = Per(E)$;

- Let $\lambda >$ 0, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$\underset{u \in \mathrm{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi u\|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda \|\mathrm{D}u\|_{\mathrm{TV}} \qquad (\mathcal{S}_{\lambda}(y))$$

- how to model sets measures? Through χ_E where *E* is a **simple set**, belonging to $BV(\mathcal{X})$ the set of function of *bounded variation*;
- $\mathrm{BV}(\mathcal{X}) = \left\{ u \in \mathrm{L}^{2}(\mathcal{X}) \mid \mathrm{D}u \in \mathcal{M}(\mathcal{X})^{2} \right\};$
- Banach endowed with BV-norm : $u \in BV(\mathcal{X})$,

$$\|u\|_{\mathrm{BV}} \stackrel{\mathrm{def.}}{=} \|u\|_1 + \|\mathrm{D}u\|_{\mathrm{TV}}.$$

If $u = \chi_E$, then $\|Du\|_{TV} = Per(E)$;

- Let $\lambda >$ 0, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$\underset{u \in \mathrm{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2} \| y - \Phi u \|_{\mathrm{L}^{2}(\mathcal{X})}^{2} + \lambda \| \mathrm{D} u \|_{\mathrm{TV}}$$
 (S_{\lambda}(y))

One of its minimisers is a sum of level sets χ_E !

Geometry encoded in off-the-grid

	0D		
Geometry	Spikes		
Space	$\mathcal{M}\left(\mathcal{X} ight)$		
Regulariser	$\left\ \cdot\right\ _{\mathrm{TV}}$		

Geometry encoded in off-the-grid

	0D	2D
Geometry	Spikes	Sets
Space	$\mathcal{M}\left(\mathcal{X} ight)$	$\mathrm{BV}(\mathcal{X})$
Regulariser	$\left\ \cdot\right\ _{\mathrm{TV}}$	$\left\ \cdot\right\ _{1}+\left\ \mathrm{D}\cdot\right\ _{\mathrm{TV}}$

Geometry encoded in off-the-grid

	0D	1D	2D
Geometry	Spikes	Curves	Sets
Space	$\mathcal{M}(\mathcal{X})$?	$\mathrm{BV}(\mathcal{X})$
Regulariser	$\left\ \cdot\right\ _{\mathrm{TV}}$?	$\left\ \cdot\right\ _{1}+\left\ \mathbf{D}\cdot\right\ _{\mathrm{TV}}$

• let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M} \left(\mathcal{X} \right)^2, \, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M} \left(\mathcal{X} \right) \right\}$ the space of *charges*, or *divergence*

vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\mathsf{div}(\cdot)\|_{\mathrm{TV}};$

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma: [0,1]
 ightarrow \mathbb{R}^2$ a 1-rectifiable parametrised Lipschitz curve,

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma : [0, 1] \to \mathbb{R}^2$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure **supported on a curve** γ if:

$$\forall \boldsymbol{g} \in \boldsymbol{C_0}(\boldsymbol{\mathcal{X}})^{\boldsymbol{2}}, \quad \langle \boldsymbol{\mu_{\gamma}}, \boldsymbol{g} \rangle_{\boldsymbol{\mathcal{M}}^{\boldsymbol{2}}} \stackrel{\text{def.}}{=} \int_0^1 \boldsymbol{g}(\boldsymbol{\gamma}(t)) \cdot \dot{\boldsymbol{\gamma}}(t) \, \mathrm{d}t.$$

- a curve is closed is $\gamma(0)=\gamma(1),$ open otherwise;
Desperate times call for desperate measures

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma : [0, 1] \to \mathbb{R}^2$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure **supported on a curve** γ if:

$$orall oldsymbol{g} \in oldsymbol{C}_0(\mathcal{X})^2, \quad \langle \mu_\gamma, oldsymbol{g}
angle_{\mathcal{M}^2} \stackrel{ ext{def.}}{=} \int_0^1 oldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \, \mathrm{d}t.$$

- a curve is closed is $\gamma(0)=\gamma(1),$ open otherwise;
- simple if γ is an injective mapping;

Desperate times call for desperate measures

- let $\mathcal{M}(\mathcal{X})^2$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text{def.}}{=} \left\{ \boldsymbol{m} \in \mathcal{M}(\mathcal{X})^2, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X}) \right\}$ the space of *charges*, or *divergence* vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text{def.}}{=} \|\cdot\|_{\mathrm{TV}^2} + \|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma : [0, 1] \to \mathbb{R}^2$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure **supported on a curve** γ if:

$$orall oldsymbol{g} \in oldsymbol{C}_0(\mathcal{X})^2, \quad \langle \mu_\gamma, oldsymbol{g}
angle_{\mathcal{M}^2} \stackrel{ ext{def.}}{=} \int_0^1 oldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \, \mathrm{d}t.$$

- a curve is closed is $\gamma(0)=\gamma(1),$ open otherwise;
- simple if γ is an injective mapping;
- div $\mu_{\gamma} = \delta_{\gamma(0)} \delta_{\gamma(1)}$.

CROC energy

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\Phi}\,\boldsymbol{m}\|_{\mathscr{H}}^{2} + \alpha \|\boldsymbol{m}\|_{\mathscr{V}}. \tag{CROC}$$

CROC energy

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathscr{H}}^2 + \alpha \| \boldsymbol{m} \|_{\mathscr{V}}. \tag{CROC}$$

•
$$\frac{1}{2} \|y - \Phi \boldsymbol{m}\|_{\mathcal{H}}^2$$
 is the data-term;

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathscr{H}}^{2} + \alpha (\| \boldsymbol{m} \|_{\mathrm{TV}^{2}} + \| \operatorname{div} \boldsymbol{m} \|_{\mathrm{TV}})$$
(CROC)

- $\frac{1}{2} \| y \Phi \boldsymbol{m} \|_{\mathcal{H}}^2$ is the data-term;
- $\|\pmb{m}\|_{\mathrm{TV}^2}$ weights down the curve length, *i.e.* $\|\mu_{\gamma}\|_{\mathrm{TV}^2} = \mathscr{H}_1(\gamma((0,1)));$

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\Phi}\,\boldsymbol{m}\|_{\mathscr{H}}^{2} + \alpha(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}} + \|\operatorname{div}\boldsymbol{m}\|_{\mathrm{TV}}) \tag{CROC}$$

- $\frac{1}{2} \| y \Phi \boldsymbol{m} \|_{\mathcal{H}}^2$ is the data-term;
- $\|\pmb{m}\|_{\mathrm{TV}^2}$ weights down the curve length, *i.e.* $\|\mu_{\gamma}\|_{\mathrm{TV}^2} = \mathscr{H}_1(\gamma((0,1)));$
- $\left\|\operatorname{div} \boldsymbol{m}\right\|_{\mathrm{TV}}$ is the (open) curve counting term.

Consider the variational problem we coined *Curves Represented On Charges*:

$$\underset{\boldsymbol{m}\in\mathscr{V}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \, \boldsymbol{m} \|_{\mathscr{H}}^{2} + \alpha (\| \boldsymbol{m} \|_{\mathrm{TV}^{2}} + \| \operatorname{div} \boldsymbol{m} \|_{\mathrm{TV}})$$
(CROC)

Do curve measures minimise (CROC)?

Definition

Let *X* be a topological vector space and $K \subset X$. An *extreme point x* of *K* is a point such that $\forall y, z \in K$:

Definition

Let X be a topological vector space and $K \subset X$. An *extreme point* x of K is a point such that $\forall y, z \in K$:

$$\forall \lambda \in (0, 1), x = \lambda y + (1 - \lambda)z$$

 $\implies x = y = z$

Definition

Let X be a topological vector space and $K \subset X$. An *extreme point* x of K is a point such that $\forall y, z \in K$:

$$orall \lambda \in (0,1), x = \lambda y + (1-\lambda)z$$

 $\implies x = y = z$

Ext *K* is the set of extreme points of *K*.

$$F = G + \alpha R$$

 $F = G + \alpha R$

$$\mathcal{B}^1_E$$
 is the unit-ball of R : $\mathcal{B}^1_E \stackrel{\text{def.}}{=} \{u \in E \,|\, R(u) \leq 1\}.$

$$F = G + \alpha R$$

 \mathcal{B}^1_E is the unit-ball of R: $\mathcal{B}^1_E \stackrel{\text{def.}}{=} \{u \in E \,|\, R(u) \leq 1\}.$

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of $\operatorname{Ext} \mathcal{B}_F^1$

$$F = G + \alpha R$$

$$\mathcal{B}^1_E$$
 is the unit-ball of R : $\mathcal{B}^1_E \stackrel{\mathrm{def.}}{=} \{u \in E \,|\, R(u) \leq 1\}.$

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of $\operatorname{Ext} \mathcal{B}^1_E$

Characterise Ext \mathcal{B}^1_E of the regulariser \iff outline the structure of a *minimum* of *F*.

• If $E = \mathcal{M}(\mathcal{X})$ and $R = \|\cdot\|_{\mathrm{TV}}$, then:

Extreme points in measure spaces

• If $E = \mathcal{M}(\mathcal{X})$ and $R = \|\cdot\|_{\mathrm{TV}}$, then:

 $\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_x, x \in \mathcal{X}\}.$

Extreme points in measure spaces

• If $\textit{E} = \mathcal{M}\left(\mathcal{X}
ight)$ and $\textit{R} = \left\|\cdot\right\|_{\mathrm{TV}}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_x, x \in \mathcal{X}\}.$$

• If
$$E = BV(\mathcal{X})$$
 and $R = \left\|\cdot\right\|_{BV}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathrm{BV}}) = \left\{ \frac{1}{\operatorname{Per}(\mathcal{E})} \chi_{\mathcal{E}}, \, \mathcal{E} \subset \mathcal{X} \text{ is simple}
ight\}.$$

Extreme points in measure spaces

• If $\textit{E} = \mathcal{M}\left(\mathcal{X}
ight)$ and $\textit{R} = \left\|\cdot\right\|_{\mathrm{TV}}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathcal{M}}) = \{\delta_x, x \in \mathcal{X}\}.$$

• If
$$E = BV(\mathcal{X})$$
 and $R = \|\cdot\|_{BV}$, then:

$$\mathsf{Ext}(\mathcal{B}_{\mathrm{BV}}) = \left\{ \frac{1}{\operatorname{Per}(\mathcal{E})} \, \chi_{\mathcal{E}}, \, \mathcal{E} \subset \mathcal{X} \text{ is simple}
ight\}.$$

• If $E = \mathscr{V}$ and $R = \|\cdot\|_{\mathscr{V}}$, then:

 $\mathsf{Ext}(\mathcal{B}_{\mathscr{V}}) = ?$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ rac{\mu_{\boldsymbol{\gamma}}}{\|\mu_{\boldsymbol{\gamma}}\|_{\mathscr{V}}}, \, \boldsymbol{\gamma} \, \mathsf{Lipschitz} \, \mathsf{1} ext{-rectifiable simple curve}
ight\}.$$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ rac{\mu_{\boldsymbol{\gamma}}}{\|\mu_{\boldsymbol{\gamma}}\|_{\mathscr{V}}}, \, \boldsymbol{\gamma} \, \mathsf{Lipschitz} \, \mathsf{1} ext{-rectifiable simple curve}
ight\}.$$

Theorem (Main result of [Laville et al., 2023b])

Let $\mathcal{B}^1_{\mathscr{V}} \stackrel{\text{def.}}{=} \{ \boldsymbol{m} \in \mathscr{V}, \| \boldsymbol{m} \|_{\mathscr{V}} \leq 1 \}$ the unit ball of the \mathscr{V} -norm.

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$\mathfrak{G} \stackrel{\mathrm{def.}}{=} \left\{ rac{\mu_{\boldsymbol{\gamma}}}{\|\mu_{\boldsymbol{\gamma}}\|_{\mathscr{V}}}, \, \boldsymbol{\gamma} \, \mathsf{Lipschitz} \, \mathsf{1} ext{-rectifiable simple curve}
ight\}.$$

Theorem (Main result of [Laville et al., 2023b])

Let $\mathcal{B}^1_{\mathscr{V}} \stackrel{\mathrm{def.}}{=} \{ \pmb{m} \in \mathscr{V}, \|\pmb{m}\|_{\mathscr{V}} \leq 1 \}$ the unit ball of the \mathscr{V} -norm. Then,

$$\operatorname{Ext}(\mathcal{B}^1_{\mathcal{V}}) = \mathfrak{G}.$$

Recap

- a space of measures \mathscr{V} , a new energy called CROC;

- a space of measures \mathscr{V} , a new energy called CROC;
- optimality conditions, dual certificates;

- a space of measures \mathscr{V} , a new energy called CROC;
- optimality conditions, dual certificates;
- Ext(B¹_𝒱) = 𝔅, hence CROC admits one minimiser boiling down to a **finite** sum of curves.

- a space of measures \mathscr{V} , a new energy called CROC;
- optimality conditions, dual certificates;
- Ext(B¹_𝒱) = 𝔅, hence CROC admits one minimiser boiling down to a **finite** sum of curves.

- a space of measures \mathscr{V} , a new energy called CROC;
- optimality conditions, dual certificates;
- Ext(B¹_𝒱) = 𝔅, hence CROC admits one minimiser boiling down to a **finite** sum of curves.

	0D	1D	2D
Geometry	Spikes	Curves	Sets
Space	$\mathcal{M}(\mathcal{X})$	V	$\mathrm{BV}(\mathcal{X})$
Regulariser	$\left\ \cdot\right\ _{\mathrm{TV}}$	$\left\ \cdot\right\ _{\mathrm{TV}^2} + \left\ div\cdot\right\ _{\mathrm{TV}}$	$\left\ \cdot\right\ _{1}+\left\ \mathbf{D}\cdot\right\ _{\mathrm{TV}}$

Off-the-grid curve numerical reconstruction

• No Hilbertian structure on measure spaces: no proximal algorithm;

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
- \hookrightarrow perfect with our latter results!

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
- \hookrightarrow perfect with our latter results!

We present the Charge Sliding Frank-Wolfe algorithm.

Figure 2: The source and its noisy acquired image I
• a possible choice consists in setting $\Phi = * \nabla h$ since:

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y = like the gradient;

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y = like the gradient;
 - let *u* be the support of the curve, then we feel that:

$$\eta = \Phi^* (\Phi m - \underbrace{y}_{=\nabla t}) \simeq \Delta u$$

Figure 3: The certificate $|\eta|$ on the left, *u* on the right.

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y = like the gradient;
 - let *u* be the support of the curve, then we feel that:

$$\eta = \Phi^* (\Phi m - \underbrace{y}_{=\nabla t}) \simeq \Delta u$$

Figure 3: The certificate $|\eta|$ on the left, *u* on the right.

- a possible choice consists in setting $\Phi = * \nabla h$ since:
 - μ_{γ} is vector, hence we need vector datum y = like the gradient;
 - let *u* be the support of the curve, then we feel that:

$$\eta = \Phi^* (\Phi m - \underbrace{y}_{=\nabla t}) \simeq \Delta u$$

Figure 3: The certificate $|\eta|$ on the left, *u* on the right.

Amplitude and sliding steps

Amplitude and sliding steps

Amplitude optimisation

• we optimise the amplitude *a* of the new estimated curve;

Amplitude and sliding steps

Amplitude optimisation

Both amplitude and position optimisation

- we optimise the amplitude *a* of the new estimated curve;
- we perform a *sliding*: we optimise on both amplitudes a and positions γ .

Figure 4: First step of first iteration: certificate and support of new curve estimated

Figure 4: First step of first iteration: certificate and support of new curve estimated

Amplitude optimisation

Figure 4: First iteration: second and third steps

Amplitude optimisation

Both amplitude and position optimisation

Figure 4: First iteration: second and third steps

Figure 4: Second iteration: another curve is found

Figure 4: Second iteration: another curve is found

Final results

Reconstruction [Laville et al., 2023a].

Reconstruction [Laville et al., 2023a].

polygonal works well, under peculiar circumstances;

- polygonal works well, under peculiar circumstances;
- Bézier curves holds nice regularity properties, encodes a curve with few control points

- polygonal works well, under peculiar circumstances;
- Bézier curves holds nice regularity properties, encodes a curve with few control points
- Pro: always smooth curves. Cons: prone to shortening.

Recap

• Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the *vector* operator definition;

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the vector operator definition;
- discretisation insights.

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the vector operator definition;
- discretisation insights.

Still, there is room for improvements:

- define a *scalar* operator, further enabling curve reconstruction in fluctuation microscopy;
- improve the support estimation step;
- tackle the curve crossing issue.

Conclusion

Key points

off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we proposed an off-the-grid method for fluorescence microscopy;

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we proposed an off-the-grid method for fluorescence microscopy;
- we bridged the gap in off-the-grid curve;

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we proposed an off-the-grid method for fluorescence microscopy;
- we bridged the gap in off-the-grid curve;
- we proposed a Charge Sliding Frank-Wolfe for curve reconstruction.

 application on real data images (covariance with Ph.D. Aneva Tsafack, fissures, etc.);

- application on real data images (covariance with Ph.D. Aneva Tsafack, fissures, etc.);
- study the link between divergence vector fields 𝒞 and Radon measures on curves (Γ);

Perspectives

- application on real data images (covariance with Ph.D. Aneva Tsafack, fissures, etc.);
- study the link between divergence vector fields 𝒴 and Radon measures on curves 𝓜(Γ);
- curves untangling with the Reeds-Shepp metric.

Perspectives

- application on real data images (covariance with Ph.D. Aneva Tsafack, fissures, etc.);
- study the link between divergence vector fields 𝒴 and Radon measures on curves 𝓜(Γ);
- curves untangling with the Reeds-Shepp metric.

Perspectives

- application on real data images (covariance with Ph.D. Aneva Tsafack, fissures, etc.);
- study the link between divergence vector fields *V* and Radon measures on curves *M*(Γ);
- curves untangling with the Reeds-Shepp metric.

- application on real data images (covariance with Ph.D. Aneva Tsafack, fissures, etc.);
- study the link between divergence vector fields 𝒴 and Radon measures on curves 𝓜(Γ);
- curves untangling with the Reeds-Shepp metric.

- application on real data images (covariance with Ph.D. Aneva Tsafack, fissures, etc.);
- study the link between divergence vector fields *V* and Radon measures on curves *M*(Γ);
- curves untangling with the Reeds-Shepp metric.

References i

Azais, J.-M., Castro, Y. D., and Gamboa, F. (2015). **Spike detection from inaccurate samplings.**

Applied and Computational Harmonic Analysis, 38(2):177–195.

- Boyer, C., Chambolle, A., Castro, Y. D., Duval, V., de Gournay, F., and Weiss, P. (2019).
 On representer theorems and convex regularization.
 SIAM Journal on Optimization, 29(2):1260–1281.
- Bredies, K. and Carioni, M. (2019).

Sparsity of solutions for variational inverse problems with finite-dimensional data.

Calculus of Variations and Partial Differential Equations, 59(1).

References ii

Bredies, K. and Pikkarainen, H. K. (2012). Inverse problems in spaces of measures. ESAIM: Control. Optimisation and Calculus of Variations, 19(1):190–218. Candès, E. J. and Fernandez-Granda, C. (2013). Towards a mathematical theory of super-resolution. Communications on Pure and Applied Mathematics, 67(6):906–956. Culley, S., Tosheva, K. L., Pereira, P. M., and Henriques, R. (2018). SRRF: Universal live-cell super-resolution microscopy.

The International Journal of Biochemistry & Cell Biology, 101:74–79.

References iii

de Castro, Y., Duval, V., and Petit, R. (2021). Towards off-the-grid algorithms for total variation regularized inverse problems.

In *Lecture Notes in Computer Science*, pages 553–564. Springer International Publishing.

Dertinger, T., Heilemann, M., Vogel, R., Sauer, M., and Weiss, S. (2010).
 Superresolution optical fluctuation imaging with organic dyes.

Angewandte Chemie International Edition, 49(49):9441–9443.

📄 Duval, V. and Peyré, G. (2014).

Exact support recovery for sparse spikes deconvolution.

Foundations of Computational Mathematics, 15(5):1315–1355.

References iv

Frank, M. and Wolfe, P. (1956).

An algorithm for quadratic programming.

Naval Research Logistics Quarterly, 3(1-2):95–110.

- Laville, B., Blanc-Feraud, L., and Aubert, G. (2022).
 Off-the-grid covariance-based super-resolution fluctuation microscopy.
 In ICASSP 2022 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
- Laville, B., Blanc-Féraud, L., and Aubert, G. (2023a).
 Off-the-grid charge algorithm for curve reconstruction in inverse problems.
 In *Lecture Notes in Computer Science*, pages 393–405. Springer International Publishing.

References v

Laville, B., Blanc-Féraud, L., and Aubert, G. (2023b).
 Off-the-grid curve reconstruction through divergence regularization: An extreme point result.

SIAM Journal on Imaging Sciences, 16(2):867–885.

📔 Laville, B., Blanc-Féraud, L., and Aubert, G. (2021).

Off-The-Grid Variational Sparse Spike Recovery: Methods and Algorithms. *Journal of Imaging*, 7(12):266.

 Nehme, E., Weiss, L. E., Michaeli, T., and Shechtman, Y. (2018).
 Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica, 5(4):458.

📄 Smirnov, S. K. (1993).

Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows.

St. Petersburg Department of Steklov Institute of Mathematics, Russian Academy of Sciences, 5(4):206–238.

Stergiopoulou, V., de Morais Goulart, J. H., Schaub, S., Calatroni, L., and Blanc-Feraud, L. (2021).

ColOrme: Covariance-based lO super-resolution microscopy with intensity estimation.

2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI).

See our work and papers on https://www-sop.inria.fr/members/Bastien.Laville/

First inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_\mathscr{V})\supset\mathfrak{G}$

First inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\supset\mathfrak{G}$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ and for $\lambda \in (0, 1)$:

$$\frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\|_{\mathscr{V}}} = \lambda \boldsymbol{u}_{\boldsymbol{1}} + (1-\lambda)\boldsymbol{u}_{\boldsymbol{2}}.$$

First inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\supset\mathfrak{G}$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ and for $\lambda \in (0, 1)$:

$$rac{oldsymbol{\mu}_{oldsymbol{\gamma}}}{\|oldsymbol{\mu}_{oldsymbol{\gamma}}\|_{\mathscr{V}}} = \lambda oldsymbol{u}_{oldsymbol{1}} + (1-\lambda)oldsymbol{u}_{oldsymbol{2}}.$$

By Smirnov's decomposition, $u_i = \int_{\mathfrak{G}} R \, \mathrm{d}
ho_i(R)$ where ho_i is a Borel measure.

First inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\supset\mathfrak{G}$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ and for $\lambda \in (0, 1)$:

$$\frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\|_{\boldsymbol{\gamma}}} = \lambda \boldsymbol{u}_{1} + (1-\lambda)\boldsymbol{u}_{2}.$$

By Smirnov's decomposition, $u_i = \int_{\partial S} R \, d\rho_i(R)$ where ρ_i is a Borel measure. Also:

 u_1, u_2 has support included in μ_{γ} support, ditto for spt $R \subset \text{spt } \mu_{\gamma}$ [Smirnov, 1993];

First inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\supset\mathfrak{G}$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ and for $\lambda \in (0, 1)$:

$$\frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\|_{\boldsymbol{\gamma}}} = \lambda \boldsymbol{u}_{\boldsymbol{1}} + (1-\lambda)\boldsymbol{u}_{\boldsymbol{2}}.$$

By Smirnov's decomposition, $u_i = \int_{\mathfrak{G}} R \, \mathrm{d}
ho_i(R)$ where ho_i is a Borel measure. Also:

 u_1, u_2 has support included in μ_{γ} support, ditto for spt $R \subset \text{spt } \mu_{\gamma}$ [Smirnov, 1993]; moreover, each R has maximal length implying spt $R = \text{spt } \mu_{\gamma}$.

spt ${m R}=$ spt $\mu_{m \gamma}$.

$$\operatorname{spt} {m extsf{R}} = \operatorname{spt} \mu_{m \gamma}$$
. Otherwise $\operatorname{spt} {m extsf{R}} \subsetneq \operatorname{spt} \mu_{m \gamma} \|{m extsf{R}}\|_{\operatorname{TV}} < rac{\|\mu_{m \gamma}\|_{\operatorname{TV}}}{\|\mu_{m \gamma}\|_{arphi}}$,

spt
$$\mathbf{R} = \operatorname{spt} \boldsymbol{\mu}_{\gamma}$$
. Otherwise spt $\mathbf{R} \subsetneq \operatorname{spt} \boldsymbol{\mu}_{\gamma} \| \mathbf{R} \|_{\mathrm{TV}} < \frac{\| \boldsymbol{\mu}_{\gamma} \|_{\mathrm{TV}}}{\| \boldsymbol{\mu}_{\gamma} \|_{\mathscr{V}}}$, therefore,
$$\int_{\mathfrak{G}} \| \mathbf{R} \|_{\mathrm{TV}} \, \mathrm{d}\rho(\mathbf{R}) < \frac{\| \boldsymbol{\mu}_{\gamma} \|_{\mathrm{TV}}}{\| \boldsymbol{\mu}_{\gamma} \|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1} = \int_{\mathfrak{G}} \| \mathbf{R} \|_{\mathrm{TV}} \, \mathrm{d}\rho(\mathbf{R}),$$

thus $\operatorname{spt} {m {\it R}} = \operatorname{spt} \mu_{\gamma}$,

spt
$$\mathbf{R} = \operatorname{spt} \mu_{\gamma}$$
. Otherwise spt $\mathbf{R} \subsetneq \operatorname{spt} \mu_{\gamma} \|\mathbf{R}\|_{\mathrm{TV}} < \frac{\|\mu_{\gamma}\|_{\mathrm{TV}}}{\|\mu_{\gamma}\|_{\varphi}}$, therefore,
$$\int_{\mathfrak{G}} \|\mathbf{R}\|_{\mathrm{TV}} \,\mathrm{d}\rho(\mathbf{R}) < \frac{\|\mu_{\gamma}\|_{\mathrm{TV}}}{\|\mu_{\gamma}\|_{\varphi}} \underbrace{\rho(\mathfrak{G})}_{=1} = \int_{\mathfrak{G}} \|\mathbf{R}\|_{\mathrm{TV}} \,\mathrm{d}\rho(\mathbf{R}),$$

thus $\operatorname{spt} R = \operatorname{spt} \mu_{\gamma}$,

each R is supported on a simple Lipschitz curve γ_R .

spt
$$\mathbf{R} = \operatorname{spt} \boldsymbol{\mu}_{\gamma}$$
. Otherwise spt $\mathbf{R} \subsetneq \operatorname{spt} \boldsymbol{\mu}_{\gamma} \| \mathbf{R} \|_{\mathrm{TV}} < \frac{\| \boldsymbol{\mu}_{\gamma} \|_{\mathrm{TV}}}{\| \boldsymbol{\mu}_{\gamma} \|_{\varphi}}$, therefore,
$$\int_{\mathfrak{G}} \| \mathbf{R} \|_{\mathrm{TV}} \, \mathrm{d}\rho(\mathbf{R}) < \frac{\| \boldsymbol{\mu}_{\gamma} \|_{\mathrm{TV}}}{\| \boldsymbol{\mu}_{\gamma} \|_{\varphi}} \underbrace{\rho(\mathfrak{G})}_{=1} = \int_{\mathfrak{G}} \| \mathbf{R} \|_{\mathrm{TV}} \, \mathrm{d}\rho(\mathbf{R}),$$

thus $\operatorname{spt} {\it I\hspace{-.05cm}R} = \operatorname{spt} {\it I\hspace{-.05cm}\mu_{\gamma}}$,

each R is supported on a simple Lipschitz curve γ_{R} .

Hence, each γ_R is a reparametrisation of γ yielding $R = \frac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\mathscr{V}}}$

spt
$$\mathbf{R} = \operatorname{spt} \mu_{\gamma}$$
. Otherwise spt $\mathbf{R} \subsetneq \operatorname{spt} \mu_{\gamma} \|\mathbf{R}\|_{\mathrm{TV}} < \frac{\|\mu_{\gamma}\|_{\mathrm{TV}}}{\|\mu_{\gamma}\|_{\psi}}$, therefore,
$$\int_{\mathfrak{G}} \|\mathbf{R}\|_{\mathrm{TV}} \,\mathrm{d}\rho(\mathbf{R}) < \frac{\|\mu_{\gamma}\|_{\mathrm{TV}}}{\|\mu_{\gamma}\|_{\psi}} \underbrace{\rho(\mathfrak{G})}_{=1} = \int_{\mathfrak{G}} \|\mathbf{R}\|_{\mathrm{TV}} \,\mathrm{d}\rho(\mathbf{R}),$$

thus $\operatorname{spt} R = \operatorname{spt} \mu_{\gamma}$,

each R is supported on a simple Lipschitz curve γ_{R} .

Hence, each γ_R is a reparametrisation of γ yielding $R = \frac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\omega}}$, eventually:

$$\boldsymbol{u}_{i} = \int_{\mathfrak{G}} \boldsymbol{R} \, \mathrm{d}\rho_{i} = \int_{\mathfrak{G}} \frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\|_{\mathscr{V}}} \, \mathrm{d}\rho_{i} = \frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\|_{\mathscr{V}}} \underbrace{\rho_{i}(\mathfrak{G})}_{=1} = \frac{\boldsymbol{\mu}_{\boldsymbol{\gamma}}}{\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\|_{\mathscr{V}}}.$$

Contradiction, then μ_{γ} is an extreme point.

Second inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_\mathscr{V})\subset\mathfrak{G}$

Second inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\subset\mathfrak{G}$

Let $\mathcal{T} \in \mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})$, then there exists a finite (probability) Borel measure ρ s.t.:

$$oldsymbol{T} = \int_{\mathfrak{G}} oldsymbol{R} \, \mathrm{d}
ho(oldsymbol{R}),$$

Second inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\subset\mathfrak{G}$

Let $T \in Ext(\mathcal{B}^1_{\mathscr{V}})$, then there exists a finite (probability) Borel measure ρ s.t.:

$$\mathbf{T} = \int_{\mathfrak{G}} \mathbf{R} \, \mathrm{d}
ho(\mathbf{R}),$$

either ho is supported on a singleton of \mathfrak{G} , then there exists μ_{γ} s.t. $extbf{ extbf{T}}=rac{\mu_{\gamma}}{\|\mu_{\gamma}\|_{\mathscr{V}}}$

Second inclusion:

 $\mathsf{Ext}(\mathcal{B}^1_{\mathscr{V}})\subset\mathfrak{G}$

Let $T \in Ext(\mathcal{B}^1_{\mathscr{V}})$, then there exists a finite (probability) Borel measure ρ s.t.:

$$oldsymbol{T} = \int_{\mathfrak{G}} oldsymbol{R} \, \mathrm{d}
ho(oldsymbol{R}),$$

either ho is supported on a singleton of \mathfrak{G} , then there exists μ_γ s.t. $extbf{T}=rac{\mu_\gamma}{\|\mu_\gamma\|_arphi}$

or there exists a Borel set $A \subset \mathfrak{G}$ with arbitrary $0 < \rho(A) < 1$ and:

$$ho = \left|
ho\right|\left(A
ight)\left(rac{1}{\left|
ho
ight|\left(A
ight)}
hoigsquare A
ight) + \left|
ho
ight|\left(A^{c}
ight)\left(rac{1}{\left|
ho
ight|\left(A^{c}
ight)}
hoigsquare A^{c}
ight).$$

$$\mathbf{T} = |\rho| (A) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A)} \mathbf{R} \, \mathrm{d}(\rho \, \square \, A)(\mathbf{R}) \right]}_{\overset{\mathrm{def.}}{=} \mathbf{u}_{1}} + |\rho| (A^{c}) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho| (A^{c})} \mathbf{R} \, \mathrm{d}(\rho \, \square \, A^{c})(\mathbf{R}) \right]}_{\overset{\mathrm{def.}}{=} \mathbf{u}_{2}}$$

A is chosen (up to a neighbourhood) as a convex set, hence $u_1 = \int_A R \, d\rho(R)$ belongs to A, while conversely $u_2 \in A^c$, thus $u_1 \neq u_2$.

A is chosen (up to a neighbourhood) as a convex set, hence $u_1 = \int_A R \, d\rho(R)$ belongs to A, while conversely $u_2 \in A^c$, thus $u_1 \neq u_2$. Eventually, thanks to Smirnov's decomposition:

$$egin{aligned} \|oldsymbol{u}_1\|_{\mathscr{V}} &\leq \int_{\mathfrak{G}} rac{1}{|
ho|\left(\mathcal{A}
ight)} \underbrace{\|oldsymbol{\mathcal{R}}\|_{\mathscr{V}}}_{=1} \operatorname{d}(
ho ldsymbol{ar{L}}\mathcal{A})(oldsymbol{\mathcal{R}}) \ &\leq rac{|
ho|\left(\mathcal{A}
ight)}{|
ho|\left(\mathcal{A}
ight)} = 1. \end{aligned}$$

Then $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ while $u_1 \neq u_2$, thus reaching a non-trivial convex combination:

 $m{ au} = \lambda m{u_1} + (1-\lambda)m{u_2},$

Then $u_1, u_2 \in \mathcal{B}^1_{\mathscr{V}}$ while $u_1 \neq u_2$, thus reaching a non-trivial convex combination:

 $\mathbf{T} = \lambda \mathbf{u_1} + (1 - \lambda) \mathbf{u_2},$

thereby reaching a contradiction, and therefore concluding the proof.