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How could we recover biological structure from resolution-limited acquisitions? This is
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Solve inverse problem through variational approach

o S, isthe source;
« itis observed through y: blur ®, noise..;

« how to build an estimate S from y?

Variational optimisation
e use aprioron Sy;
« among all sources S, penalise the ones fulfiling the prior;
« Sminimises S ||y — ®S||5 + aR(S);
« ||y — ®S|[3 penalises the closeness of  and the source S;

+ R(S) regularises the problem (well-posed) and enforces more or less the prioron S
w. a > 0.
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Reconstruction S is now off-the-grid



Grid or gridless?



Grid or gridless?

Grid

+ geometry constrained on the grid;
« combinatorial (non-)convex
optimisation;

« well-known problems (LASSO, ...).



Grid or gridless?

Off-the-grid
Grid

« brings structural prior;

+ geometry constrained on the grid; . guarantees (uniqueness, support);

« combinatorial (non-)convex e . .
( ) convex but infinite dimensional;

optimisation;

young field.
« well-known problems (LASSO, ...).
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+ Xisacompact of RY

+ how to model spikes ? Through Dirac measure dy, element of the set of Radon
measures M (X);

« topological dual of 6 (X) equipped with (f, m) = [, fdm. Generalises L' (X) ;
LY (&) — M (X);

+ Banach endowed with TV-norm: m € M (X),

‘ def.

mi(@) S sup [ fam|re () e <1).
X

Ifm = Y | a6, a discrete measure, then |m|(X) = SN, |aj.
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A LASSO equivalent for measures

def.

« Letthe source Mgy ., = S.r 1 0idy, € M (X)adiscrete measure;

def.

= Yo aih(x = x);

1=
+ ®: M (X) — RP the acquisition operator, e.g. ®mg, x,
« w € RP additive noise;

f.
ey dmgy ., + w.

We call BLASSO for A > 0 the problem
[Candés and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

argmin *Hy o[ + Alm|(%) (Pa(y))
mEM(X)

One of its minimisers is a sum of Dirac, close to mg, x, [Duval and Peyré, 2014].

Difficult numerical problem: infinite dimensional, non-reflexive. Tackled by greedy
algorithm like Frank-Wolfe [Frank and Wolfe, 1956] , etc.



Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit
fluorophores per image.

Figure 1: Two excerpts from a SMLM stack 10
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Results on SMLM

Stack mean Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

SMLM drawback: a lot of images, no live-cell imaging.




Off-the-grid covariance spikes
reconstruction
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Quantities at stake

« acquisition stack i.e. images in L2 (X) during [0, T] ;
« y:[0,T] — L2 (X) is the SOFI acquisition stack ;
« we aim to reconstruct the dynamic measure:

t u(t) < Za (t)5,, € L2 (0, T; M (X))
generatinga.e. t € [0, 7] : y(t) = CD,u( )- In the convolution case for PSF h,
Pu(t) = Z:V 19 fx X — Xx;) dx.
Moments are a tool to recover the positions x;.

Example: let the stack mean y . % fOTy(-, t) dt.
One have ®m, , = y where m, « def. Zf\'zl a;dy, and a; is the mean of g;(+).

13
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Build the variational problem

Let R, be the spatial covariance, Vu,v € X weyield:

R 1 [ 00 = 5(0) () 7(1)

= ... (independence of fluctuations)

\A:IL h(u — xi)h(v — x;)

N
=1 a; variance

i
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Build the variational problem

Let R, be the spatial covariance, Vu,v € X weyield:

et. 1 [T _ _
R 1 [ 00 = 5(0) () — 7(1)
= ... (independence of fluctuations)

= Z M h(u — x;)h(v — x;)

T a; varlance

= / h(u — x)h(v — x) dmpy x (x)
X

= Amux(u,v).

B Z, 1 Midy, shares the same positions w. p = Z, 1 ai(t)dx, through A. ”
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Legend: dynamic part,
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Legend: dynamic part, temporal mean part y
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Quantities digest

Legend: dynamic part, temporal mean part y and covariance Ry,.
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BLASSO on cumulants

Let A > 0,

The energy for covariance-based reconstruction writes down:

. ef. 1
argmin T(m) < 1Ry — A(m)|[F2(xz) + Alm| (). (QA())
meM(X)
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2D numerical results SOFItool

Test on 2D tubulins from ISBI challenge
2016:

17


http://bigwww.epfl.ch/smlm/challenge2016/datasets/MT4.N2.HD/Data/data.html
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2D numerical results SOFItool

Test on 2D tubulins from ISBI challenge
2016:

« stack of 1000 acquisitions 64 x 64
simulated by SOFItool;

« 8700 emitters scattered along the
tubulins; high background noise +
Poisson noise at 4 + Gaussian noise
at1 x 1072, SNR~ 10 db.
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http://bigwww.epfl.ch/smlm/challenge2016/datasets/MT4.N2.HD/Data/data.html
http://bigwww.epfl.ch/smlm/challenge2016/datasets/MT4.N2.HD/Data/data.html

Ground-truth
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Ground-truth (Qa(y)) [Laville et al., 2022]
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Results

Ground-truth (Qa(y)) [Laville et al., 2022] SRRF [Culley et al., 2018]




Partial conclusion

Colyrme [Stergiopoulou et al., 2021] (Qx(y))

Recap
+ anew off-the-grid method for fluctuation microscopy

+ the results are a bit dotted, by design.
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« filaments in fluorescence microscopy;
+ biological structures;

+ collaboration with LBDV on the
seaweed Ostreopsis; filaments in the
cytoskeleton.

BAIGNADE
INTERDITE

Algues Ostreopsis
ARRETE &JN!ClPAL N°5398 QU 28/07/2009 l
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Practical applications

Soudure présentant des
fissures

Biomedical imaging:
« filaments in fluorescence microscopy; i
+ biological structures;
+ collaboration with LBDV on the
seaweed Ostreopsis; filaments in the
cytoskeleton.

fissures

Crackle detection: non-destructive testing
Stress corrosion cracking spotted by

on nuclear powerplant pipes, etc.
ultrasounds.
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Practical applications

Biomedical imaging:
« filaments in fluorescence microscopy;
+ biological structures;

+ collaboration with LBDV on the
seaweed Ostreopsis; filaments in the
cytoskeleton.

Crackle detection: non-destructive testing

on nuclear powerplant pipes, etc. . . .
Crackle in the aforementioned pipe.

20



A new divergence regularisation



2-rectifiable measures reconstruction [de Castro et al., 2021]

« how to model sets measures? Through xr where E is a simple set, belonging to
BV(X) the set of function of bounded variation;
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2-rectifiable measures reconstruction [de Castro et al., 2021]

« how to model sets measures? Through xr where E is a simple set, belonging to
BV(X) the set of function of bounded variation;

. BV(X) = {u €12 (X)|Due M (X)z};
« Banach endowed with BV-norm: u € BV (),

def.
lullgy =" llully + [IDullpy-

If u = xg, then ||Dul|y = Per(E);
o Let A > 0, the adaptation of BLASSO [de Castro et al., 2021] writes down:

argmin EH,V ¢uHLz y T AllDull v (Sx(v))
ueBV(X)

One of its minimisers is a sum of level sets ¢!
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Geometry encoded in off-the-grid

0D
Geometry Spikes
Space M (X)

Regulariser |||y
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Geometry encoded in off-the-grid

oD 1D 2D
Geometry Spikes Curves Sets
Space M(X) ? BV(X)
Regulariser |-y 7 1Dy

—~
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Desperate times call for desperate measures

« let M (X)? be the space of vector Radon measures;

. lety < {m e M (X)?, div(im) e M (X)} the space of charges, or divergence

vector fields. It is a Banach equipped with ||-||., - |-l pvz + ldiv()|lpys

« lety : [0,1] — R? a 1-rectifiable parametrised Lipschitz curve, we say that p, € ¥
is a measure supported on a curve - if:

def.

Vg € Co(X)2, (1, 9) i / a(v(1) - ¥(t)dt

0
+ acurveis closed is v(0) = «(1), open otherwise;
«+ simpleif v is an injective mapping;
o div My = 57(0) - 57(1)'
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1 )
argmin = ly — ® m|%, + a([mll 2 + divm] gy ) (CROC)

mey

- slly - ¢mH§i is the data-term;
* ||m|| 12 weights down the curve length, i.e. ||t || 2 = ZA(7((0,1)));

+ ||divm|| 1 is the (open) curve counting term.
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CROC energy

Consider the variational problem we coined Curves Represented On Charges:
.1 :
argmin = |ly — ®m|f3, + a([|m||py2 + ||divm|| ) (CROC)
mey 2

Do curve measures minimise (CROC)?
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Definition

Let X be a topological vector space and
K C X. An extreme point x of K is a point
such thatVy, z € K:
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Extreme points

Definition /-\

Let X be a topological vector space and
K C X. An extreme point x of K is a point

such thatVy, z € K: K

VA€ (0,1),x= A y+ (1 —\)z
:}X:y:z °

Ext K is the set of extreme points of K. ExtKinred

25



Link with extreme points: the representer theorem

Let F: E — R™, G the data-term, R the regulariser, o > 0.

F=G+aR
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Link with extreme points: the representer theorem

Let F: E — R™, G the data-term, R the regulariser, o > 0.

F=G+aR
BLis the unit-ball of R: B L {u € £|R(u) < 1}.
Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of Ext B

Characterise Ext Bt of the regulariser <> outline the structure of a minimum of F.
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Extreme points in measure spaces

s fE=M(X)andR = |||y, then:
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Extreme points in measure spaces

s fE=M(X)andR = |||y, then:
Ext(Bm) = {6x,x € X'}.

« IfE=BV(X)andR = ||-||zy, then:

1 .
EXt(BBV) = {PeI‘(E)XE’ ECXis Slmple} c
« fE=7andR = |||, then:

Ext(By) =?
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Let the (non-complete) set of curve measures endowed with weak-x topology:
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6 {“'Y, ~ Lipschitz 1-rectifiable simple curve} .

HN'V V4

Theorem (Main result of [Laville et al., 2023b])

Let B, et {m e 7, ||m||, < 1} theunitball of the ¥'-norm.
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Let the (non-complete) set of curve measures endowed with weak-x topology:

¢ 2 {“'Y, ~ Lipschitz 1-rectifiable simple curve} .
eyl

Theorem (Main result of [Laville et al., 2023b])

Let B, et {m e 7, |m|,, <1} theunitball of the ¥'-norm. Then,

Ext(B}) = &.
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Partial conclusion

Recap

+ aspace of measures 7/, a new energy called CROC;
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Partial conclusion

Recap
+ aspace of measures 7/, a new energy called CROC;
» optimality conditions, dual certificates;

« Ext(B}) = &, hence CROC admits one minimiser boiling down to a finite sum of

curves.
oD 1D 2D
Geometry Spikes Curves Sets
Space M(X) 14 BV(X)

Regulariser  [|-lpy  [[*[lpyv2 + Idiv-llpy  [Illy + ID-[lpy
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Off-the-grid curve numerical
reconstruction



General setup in off-the-grid

+ No Hilbertian structure on measure spaces: no proximal algorithm;

30



General setup in off-the-grid

+ No Hilbertian structure on measure spaces: no proximal algorithm;

+ we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

30



General setup in off-the-grid

+ No Hilbertian structure on measure spaces: no proximal algorithm;

+ we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

« it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

30



General setup in off-the-grid

+ No Hilbertian structure on measure spaces: no proximal algorithm;

+ we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

« it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

30



General setup in off-the-grid

+ No Hilbertian structure on measure spaces: no proximal algorithm;

+ we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

« it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

— perfect with our latter results!

30



General setup in off-the-grid

+ No Hilbertian structure on measure spaces: no proximal algorithm;

+ we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

« it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

— perfect with our latter results!

We present the Charge Sliding Frank-Wolfe algorithm.
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Synthetic problem

@,
C
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Synthetic problem
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Figure 2: The source and its noisy acquired image /
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Acquisition process and certificate

+ apossible choice consists in setting ® = «Vh since:
* [~ isvector, hence we need vector datum y = like the gradient;
« let u be the support of the curve, then we feel that:

n=0o"(dbm—- y )~ Au

=VI

— =y([0,1])

Figure 3: The certificate || on the left, u on the right. -



Amplitude and sliding steps
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Amplitude and sliding steps

Charge support

1.0

0.8

0.6

0.4

Amplitude optimisation

« we optimise the amplitude a of the new estimated curve;
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Amplitude and sliding steps

Charge support

1.0 1.0

Charge support

0.8
0.6

0.4

0.0

Amplitude optimisation Both amplitude and position optimisation

« we optimise the amplitude a of the new estimated curve;

« we perform a sliding: we optimise on both amplitudes a and positions ~.
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Recap: iterate the algorithm

— =y([0,1])

Figure 4: First step of first iteration: certificate and support of new curve estimated
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Recap: iterate the algorithm

Charge support
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Figure 4: First iteration: second and third steps

34



Recap: iterate the algorithm

Charge support

1.0 1.0

Charge support

0.8 0.8

0.6 0.6
0.4 0.4

0.2 0.2

Amplitude optimisation Both amplitude and position optimisation

Figure 4: First iteration: second and third steps
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Recap: iterate the algorithm
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Figure 4: Second iteration: another curve is found
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Recap: iterate the algorithm

1.0 1.0

Charge support Charge support

0.8 0.8

0.6 0.6
> >
0.4 0.4
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Figure 4: Second iteration: another curve is found
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—— Ground-truth
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-

Reconstruction [Laville et al., 2023a].
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Another discretisation

+ polygonal works well, under peculiar
circumstances;
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Another discretisation

1.0
X —— path
X  control
. 0.8 1
+ polygonal works well, under peculiar
circumstances;
2 g q a 0.6 1 X X
+ Bézier curves holds nice regularity X X
properties, encodes a curve with few
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Another discretisation

+ polygonal works well, under peculiar
circumstances;

« Bézier curves holds nice regularity
properties, encodes a curve with few
control points

« Pro: always smooth curves. Cons:
prone to shortening.

—— Vérité-terrain

—— Reconstruction
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0.0

-0.5

-1.0
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Partial conclusion

Recap

« Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in
inverse problem;

« struggles with the vector operator definition;

« discretisation insights.

Still, there is room for improvements:

« define a scalar operator, further enabling curve reconstruction in fluctuation
microscopy;

« improve the support estimation step;

« tackle the curve crossing issue.
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Conclusion




Key points
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« off-the-grid methods yields compelling results (yet scarcely used by applicative
researchers);
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Take home messages

« off-the-grid methods yields compelling results (yet scarcely used by applicative
researchers);

« we proposed an off-the-grid method for fluorescence microscopy;
+ we bridged the gap in off-the-grid curve;

« we proposed a Charge Sliding Frank-Wolfe for curve reconstruction.
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Perspectives

Relaxed Reeds-Shepp time, _

« application on real data images
(covariance with Ph.D. Aneva Tsafack,
fissures, etc.);

+ study the link between divergence
vector fields 7 and Radon measures
on curves M(T);

« curves untangling with the
Reeds-Shepp metric.

40



References i

[§ Azais, J.-M., Castro, Y. D., and Gamboa, F. (2015).
Spike detection from inaccurate samplings.
Applied and Computational Harmonic Analysis, 38(2):177-195.

[4 Boyer, C., Chambolle, A., Castro, Y. D., Duval, V., de Gournay, F., and Weiss, P. (2019).
On representer theorems and convex regularization.
SIAM Journal on Optimization, 29(2):1260-1281.

[3 Bredies, K. and Carioni, M. (2019).
Sparsity of solutions for variational inverse problems with finite-dimensional
data.
Calculus of Variations and Partial Differential Equations, 59(1).

41



References ii

[3 Bredies, K. and Pikkarainen, H. K. (2012).
Inverse problems in spaces of measures.
ESAIM: Control, Optimisation and Calculus of Variations, 19(1):190-218.
[4 Candés, E. J. and Fernandez-Granda, C. (2013).
Towards a mathematical theory of super-resolution.
Communications on Pure and Applied Mathematics, 67(6):906-956.

[4 Culley, S., Tosheva, K. L., Pereira, P. M., and Henriques, R. (2018).
SRRF: Universal live-cell super-resolution microscopy.
The International Journal of Biochemistry & Cell Biology, 101:74-79.

42



References iii

[3 de Castro, Y., Duval, V., and Petit, R. (2021).
Towards off-the-grid algorithms for total variation regularized inverse
problems.
In Lecture Notes in Computer Science, pages 553-564. Springer International
Publishing.

[§ Dertinger, T., Heilemann, M., Vogel, R., Sauer, M., and Weiss, S. (2010).
Superresolution optical fluctuation imaging with organic dyes.
Angewandte Chemie International Edition, 49(49):9441-9443.

[d Duval, V. and Peyré, G. (2014).

Exact support recovery for sparse spikes deconvolution.
Foundations of Computational Mathematics, 15(5):1315-1355.

43



References iv

[§ Frank, M. and Wolfe, P. (1956).
An algorithm for quadratic programming.
Naval Research Logistics Quarterly, 3(1-2):95-110.

[3 Laville, B., Blanc-Feraud, L., and Aubert, G. (2022).
Off-the-grid covariance-based super-resolution fluctuation microscopy.
In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE.

[3 Laville, B., Blanc-Féraud, L., and Aubert, G. (2023a).
Off-the-grid charge algorithm for curve reconstruction in inverse problems.
In Lecture Notes in Computer Science, pages 393-405. Springer International
Publishing.

44



References v

[3 Laville, B., Blanc-Féraud, L., and Aubert, G. (2023b).
Off-the-grid curve reconstruction through divergence regularization: An
extreme point result.
SIAM Journal on Imaging Sciences, 16(2):867-885.

[3 Laville, B., Blanc-Féraud, L., and Aubert, G. (2021).
Off-The-Grid Variational Sparse Spike Recovery: Methods and Algorithms.
Journal of Imaging, 7(12):266.

[{ Nehme, E., Weiss, L. E., Michaeli, T., and Shechtman, Y. (2018).
Deep-STORM: super-resolution single-molecule microscopy by deep learning.
Optica, 5(4):458.

45



References vi

[3 Smirnov, S. K. (1993).
Decomposition of solenoidal vector charges into elementary solenoids, and
the structure of normal one-dimensional flows.
St. Petersburg Department of Steklov Institute of Mathematics, Russian Academy of
Sciences, 5(4):206-238.

[§ Stergiopoulou, V., de Morais Goulart, J. H., Schaub, S., Calatroni, L., and
Blanc-Feraud, L. (2021).
ColOrme: Covariance-based 10 super-resolution microscopy with intensity
estimation.
2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI).

46



See our work and papers on
https://www-sop.inria.fr/members/Bastien.Laville/


https://www-sop.inria.fr/members/Bastien.Laville/

Proof recipel

First inclusion:

Ext(By) D> &



Proof recipel
First inclusion:
Ext(By) D> &
Let v a simple Lipschitz curve and 1., the measure supported on this curve. By

contradiction, let u;, u, € 5%, and for \ € (0, 1):

My

= Au; + (1 — Nu,.
el



Proof recipel

First inclusion:
Ext(By) D> &
Let v a simple Lipschitz curve and 1., the measure supported on this curve. By

contradiction, let u;, u, € 5%, and for \ € (0, 1):

My

= Au; + (1 — Nu,.
el

By Smirnov’s decomposition, u; = [, Rdpi(R) where p; is a Borel measure.



Proof recipel
First inclusion:
Ext(By) D> &

Let v a simple Lipschitz curve and 1., the measure supported on this curve. By
contradiction, let u;, u, € 5%, and for \ € (0, 1):

My

= Au; + (1 — Nu,.
el

By Smirnov’s decomposition, u; = [, Rdpi(R) where p; is a Borel measure. Also:

u;, u; has support included in 1., support, ditto for spt R C spt 11 [Smirnov, 1993];



Proof recipel

First inclusion:

Ext(By) D> &

Let v a simple Lipschitz curve and 1., the measure supported on this curve. By
contradiction, let u;, u, € 5%, and for \ € (0, 1):

L = )\U]_ T (l — )\)Uz.
[yl
By Smirnov’s decomposition, u; = [, Rdpi(R) where p; is a Borel measure. Also:

u;, u; has support included in 1., support, ditto for spt R C spt 11 [Smirnov, 1993];

moreover, each R has maximal length implying spt R = spt 1t
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Proof recipe Il

spt R = spt ft. Otherwise spt R C spt fi [[R]|py < pranv, therefore,
Y lly
[l l
[ IRl dp(R) < ST / IRllzy do
& HN'Y”V ~

thus spt R = spt 1,

each Ris supported on a simple Lipschitz curve 3.

Hence, each ~; is a reparametrisation of ~ yielding R = ﬁ, eventually:
Yy

ui:/RdPi: Hr = B )= Hr
® o llevylly HN'YHVW—/ eyl

Contradiction, then .., is an extreme point.



Proof recipe lll

Second inclusion:

Ext(B}) C &



Proof recipe lll

Second inclusion:

Ext(B}) C &

Let T € Ext(B% ), then there exists a finite (probability) Borel measure p s.t.:

T= /@ Rdp(R),



Proof recipe lll

Second inclusion:

Ext(B}) C &

Let T € Ext(B% ), then there exists a finite (probability) Borel measure p s.t.:
T= / Rdp(R),
®

either p is supported on a singleton of &, then there exists 11, s.t. T = Hy

||N7H~//




Proof recipe lll
Second inclusion:
Ext(B}) C &

Let T € Ext(B% ), then there exists a finite (probability) Borel measure p s.t.:
T= / Rdp(R),
®

either p is supported on a singleton of &, then there exists 11, s.t. T = Hy

[~
or there exists a Borel set A C & with arbitrary 0 < p(A) < 1and:

p= 101 (ool a) +10 69 (ol A
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Then,

1@ | [ R LA 416l @) | [ srai L

def. def.
= u; = uz

Alis chosen (up to a neighbourhood) as a convex set, hence u; = [, Rdp(R) belongs to A,
while conversely u, € A, thus u; # u,. Eventually, thanks to Smirnov’s decomposition:

lusll, < /@ ﬁ Rl d(pL AR
10l (4)

= 1@

=1
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Proof recipe V

Then u;, u, € B}, while u; # u,, thus reaching a non-trivial convex combination:

T=Mu+ (1 - Ny,

thereby reaching a contradiction, and therefore concluding the proof.



	Introduction
	Off-the-grid 101: the sparse spike problem
	Off-the-grid covariance spikes reconstruction
	A new divergence regularisation
	Off-the-grid curve numerical reconstruction
	Conclusion
	Appendix

