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How could we recover biological structure from resolution‑limited acquisitions?

This is
a case of inverse problem.

Microscope acquisition

Reconstruction
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What is an inverse problem?

An inverse problem consists in finding a
quantity from experimental data.

’Can one hear the shape of a drum?’,
Marc Kac (1966)

Marc Kac.

Three criteria for an ill‑posed inverse problem:

• the solution may not exist;
• the solution may not be unique;
• the solution may not depend continuously on the data.

Source Observation

Inverse problem
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Biomedical imaging

Objective
To image live biological structures at small scales.

Physical limitation due to diffraction for bodies < 200 nm: convolution by the
microscope’s point spread function (PSF).
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Solve inverse problem through variational approach

• So is the source;

• it is observed through y: blurΦ, noise…;
• how to build an estimate Ŝ from y?

Variational optimisation

• use a prior on So;
• among all sources S, penalise the ones fulfiling the prior;
• Ŝminimises S 7→ ‖y− ΦS‖22 + αR(S);
• ‖y− ΦS‖22 penalises the closeness of y and the source S;
• R(S) regularises the problem (well‑posed) and enforces more or less the prior on S
w. α > 0.
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• Ŝminimises S 7→ ‖y− ΦS‖22 + αR(S);
• ‖y− ΦS‖22 penalises the closeness of y and the source S;
• R(S) regularises the problem (well‑posed) and enforces more or less the prior on S
w. α > 0.

6



DR
AF
T

Solve inverse problem through variational approach

• So is the source;
• it is observed through y: blurΦ, noise…;
• how to build an estimate Ŝ from y?
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Variational optimisation
• use a prior on So;
• among all sources S, penalise the ones fulfiling the prior;
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Grid or gridless?

Source to estimate 7
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Grid or gridless?

Introducing a grid 7



DR
AF
T

Grid or gridless?

Reconstruction Ŝ on a grid 7
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Grid or gridless?

Reconstruction Ŝ is now off‑the‑grid 7
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Grid or gridless?

Grid

• geometry constrained on the grid;
• combinatorial (non‑)convex
optimisation;

• well‑known problems (LASSO,…).
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Grid or gridless?

Grid

• geometry constrained on the grid;
• combinatorial (non‑)convex
optimisation;

• well‑known problems (LASSO,…).

Off‑the‑grid

• brings structural prior;
• guarantees (uniqueness, support);
• convex but infinite dimensional;
• young field.
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Off‑the‑grid 101: the sparse spike
problem
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Quantities

• X is a compact ofRd;

• how tomodel spikes ? Through Dirac measure δx, element of the set of Radon
measuresM (X );

• topological dual of C0 (X ) equipped with 〈f,m〉 =
´
X fdm. Generalises L1 (X ) ;

L1 (X ) ↪→ M (X );
• Banach endowed with TV‑norm : m ∈ M (X ),

|m|(X )
def.
= sup

(ˆ
X
fdm

∣∣∣∣ f ∈ C0 (X ) , ‖f‖∞,X ≤ 1
)
.

Ifm =
∑N

i=1 aiδxi a discrete measure, then |m|(X ) =
∑N

i=1 |ai|.

8
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A LASSO equivalent for measures

• Let the sourcema0,x0
def.
=

∑N
i=1 aiδxi ∈ M (X ) a discrete measure;

• Φ : M (X ) → Rp the acquisition operator, e.g. Φma0,x0
def.
=

∑N
i=1 aih(x− xi);

• w ∈ Rp additive noise;
• y def.

= Φma0,x0 + w.

We call BLASSO for λ > 0 the problem
[Candès and Fernandez‑Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

argmin
m∈M(X )

1
2‖y− Φm‖2Rp + λ|m|(X ) (Pλ(y))

One of its minimisers is a sum of Dirac, close toma0,x0 [Duval and Peyré, 2014].

Difficult numerical problem: infinite dimensional, non‑reflexive. Tackled by greedy
algorithm like Frank‑Wolfe [Frank and Wolfe, 1956] , etc.

9
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Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit
fluorophores per image.

Figure 1: Two excerpts from a SMLM stack 10
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Results on SMLM

Stack mean

Off‑the‑grid [Laville et al., 2021] Deep‑STORM [Nehme et al., 2018]

SMLM drawback: a lot of images, no live‑cell imaging.

11
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Off‑the‑grid covariance spikes
reconstruction
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An other imagery technique: SOFI

SOFI protocol (Super‑resolution optical fluctuation imaging) [Dertinger et al., 2010].

• many conventional fluorophores lit
at the same time;

• temporal independence of the
fluorophores luminosity fluctuation;

• less harmful to the biological
structures studied.

12
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Quantities at stake

• acquisition stack i.e. images in L2 (X ) during [0, T] ;

• y : [0, T] → L2 (X ) is the SOFI acquisition stack ;
• we aim to reconstruct the dynamicmeasure:

t 7→ µ(t) def.
=

N∑
i=1

ai(t)δxi ∈ L2 (0, T;M (X ))

generating a.e. t ∈ [0, T] : y(t) = Φµ(t). In the convolution case for PSF h,
Φµ(t) =

∑N
i=1 ai(t)

´
X h(x− xi) dx.

Moments are a tool to recover the positions xi.

Example: let the stack mean ȳ def.
= 1

T
´ T
0 y(·, t) dt.

One haveΦma,x = ȳwherema,x
def.
=

∑N
i=1 āiδxi and āi is the mean of ai(·).

13
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i=1 āiδxi and āi is the mean of ai(·).

13



DR
AF
T

Quantities at stake

• acquisition stack i.e. images in L2 (X ) during [0, T] ;
• y : [0, T] → L2 (X ) is the SOFI acquisition stack ;
• we aim to reconstruct the dynamicmeasure:

t 7→ µ(t) def.
=

N∑
i=1

ai(t)δxi ∈ L2 (0, T;M (X ))

generating a.e. t ∈ [0, T] : y(t) = Φµ(t).

In the convolution case for PSF h,
Φµ(t) =

∑N
i=1 ai(t)

´
X h(x− xi) dx.

Moments are a tool to recover the positions xi.

Example: let the stack mean ȳ def.
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i=1 āiδxi and āi is the mean of ai(·).

13



DR
AF
T

Quantities at stake

• acquisition stack i.e. images in L2 (X ) during [0, T] ;
• y : [0, T] → L2 (X ) is the SOFI acquisition stack ;
• we aim to reconstruct the dynamicmeasure:

t 7→ µ(t) def.
=

N∑
i=1

ai(t)δxi ∈ L2 (0, T;M (X ))

generating a.e. t ∈ [0, T] : y(t) = Φµ(t). In the convolution case for PSF h,
Φµ(t) =

∑N
i=1 ai(t)

´
X h(x− xi) dx.

Moments are a tool to recover the positions xi.

Example: let the stack mean ȳ def.
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i=1 āiδxi and āi is the mean of ai(·).

13



DR
AF
T

Build the variational problem

Let Ry be the spatial covariance, ∀u, v ∈ X we yield:

Ry(u, v)
def.
=

1
T

ˆ T

0
(y(u, t)− ȳ(u)) (y(v, t)− ȳ(v)) dt

Ry(u, v)
def.
=

1
T

ˆ T

0
(y(u, t)− ȳ(u)) (y(v, t)− ȳ(v)) dt

= . . . (independence of fluctuations)

=
N∑
i=1

Mi︸︷︷︸
ai variance

h(u− xi)h(v− xi)

=

ˆ
X
h(u− x)h(v− x) dmM,x (x)

= ΛmM,x(u, v).

mM,x
def.
=

∑N
i=1 Miδxi shares the same positions w. µ =

∑N
i=1 ai(t)δxi through Λ.

14
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Quantities digest

Legend: dynamic part,

temporal mean part ȳ and covariance Ry

.
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BLASSO on cumulants

Let λ > 0,

The energy for covariance‑based reconstruction writes down:

argmin
m∈M(X )

Tλ(m)
def.
=

1
2‖Ry − Λ(m)‖2L2(X 2) + λ|m|(X ). (Qλ(y))

while mean reconstruction is:

argmin
m∈M(X )

Sλ(m)
def.
=

1
2‖ȳ− Φ(m)‖2L2(X ) + λ|m|(X ) (Pλ(ȳ))
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2D numerical results SOFItool

Test on 2D tubulins from ISBI challenge
2016:

• stack of 1000 acquisitions 64× 64
simulated by SOFItool;

• 8700 emitters scattered along the
tubulins; high background noise +
Poisson noise at 4 + Gaussian noise
at 1× 10−2. SNR≈ 10 db.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0
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0.6
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1.0

y

Ground-truth -peaks

17

http://bigwww.epfl.ch/smlm/challenge2016/datasets/MT4.N2.HD/Data/data.html
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Results

Ground‑truth

(Qλ(y)) [Laville et al., 2022] SRRF [Culley et al., 2018]
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Partial conclusion

Co`0rme [Stergiopoulou et al., 2021] (Qλ(y))

Recap
• a new off‑the‑grid method for fluctuation microscopy
• the results are a bit dotted, by design.

19
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Practical applications

Biomedical imaging:
• filaments in fluorescence microscopy;

• biological structures;
• collaboration with LBDV on the
seaweed Ostreopsis; filaments in the
cytoskeleton.

Crackle detection: non‑destructive testing
on nuclear powerplant pipes, etc.
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Biomedical imaging:
• filaments in fluorescence microscopy;
• biological structures;
• collaboration with LBDV on the
seaweed Ostreopsis; filaments in the
cytoskeleton.

Crackle detection: non‑destructive testing
on nuclear powerplant pipes, etc.

Crackle in the aforementioned pipe.
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A new divergence regularisation
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2‑rectifiable measures reconstruction [de Castro et al., 2021]

• how tomodel sets measures? Through χE where E is a simple set, belonging to
BV(X ) the set of function of bounded variation;

•
• Banach endowed with BV‑norm : u ∈ BV(X ),

‖u‖BV
def.
= ‖u‖1 + ‖Du‖TV.

If u = χE, then ‖Du‖TV = Per(E);
• Let λ > 0, the adaptation of BLASSO [de Castro et al., 2021] writes down:

argmin
u∈BV(X )

1
2‖y− Φu‖2L2(X ) + λ‖Du‖TV (Sλ(y))

One of its minimisers is a sum of level sets χE!
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Geometry encoded in off‑the‑grid
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Desperate times call for desperate measures

• letM (X )2 be the space of vector Radonmeasures;

• let V def.
=

{
m ∈ M (X )2, div(m) ∈ M (X )

}
the space of charges, or divergence

vector fields. It is a Banach equipped with ‖·‖V
def.
= ‖·‖TV2 + ‖div(·)‖TV;

• let γ : [0, 1] → R2 a 1‑rectifiable parametrised Lipschitz curve, we say thatµγ ∈ V

is a measure supported on a curve γ if:

∀g ∈ C0(X )2, 〈µγ , g〉M2
def.
=

ˆ 1

0
g(γ(t)) · γ̇(t) dt.

• a curve is closed is γ(0) = γ(1), open otherwise;
• simple if γ is an injective mapping;
• divµγ = δγ(0) − δγ(1).

23
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CROC energy

Consider the variational problemwe coined Curves Represented On Charges:

argmin
m∈V

1
2‖y− Φm‖2H + α‖m‖V . (CROC)

argmin
m∈V

1
2‖y− Φm‖2H + α(‖m‖TV2 + ‖divm‖TV) (CROC)

• 1
2‖y− Φm‖2H is the data‑term;

• ‖m‖TV2 weights down the curve length, i.e. ‖µγ‖TV2 = H1(γ((0, 1)));
• ‖divm‖TV is the (open) curve counting term.

Do curve measures minimise (CROC)?
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Extreme points

Definition
Let X be a topological vector space and
K ⊂ X. An extreme point x of K is a point
such that ∀y, z ∈ K:

∀λ ∈ (0, 1), x = λy+ (1− λ)z
=⇒ x = y = z

Ext K is the set of extreme points of K. Ext K in red
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Link with extreme points: the representer theorem

Let F : E → Rm, G the data‑term, R the regulariser, α > 0.

F = G+ αR

B1
E is the unit‑ball of R: B1

E
def.
= {u ∈ E | R(u) ≤ 1}.

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])
There exists a minimiser of F which is a linear sum of extreme points of ExtB1

E

Characterise ExtB1
E of the regulariser ⇐⇒ outline the structure of aminimum of F.
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Extreme points in measure spaces

• If E = M (X ) and R = ‖·‖TV, then:

Ext(BM) = {δx, x ∈ X} .

• If E = BV(X ) and R = ‖·‖BV, then:

Ext(BBV) =

{
1

Per(E) χE, E ⊂ X is simple
}
.

• If E = V and R = ‖·‖V , then:

Ext(BV ) =?

27
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Main result

Let the (non‑complete) set of curve measures endowed with weak‑∗ topology:

G
def.
=

{
µγ

‖µγ‖V

, γ Lipschitz 1‑rectifiable simple curve
}
.

Theorem (Main result of [Laville et al., 2023b])

Let B1
V

def.
= {m ∈ V , ‖m‖V ≤ 1} the unit ball of the V ‑norm. Then,

Ext(B1
V ) = G.

28
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Partial conclusion

Recap
• a space of measures V , a new energy called CROC;

• optimality conditions, dual certificates;
• Ext(B1

V ) = G, hence CROC admits one minimiser boiling down to a finite sum of
curves.

0D 1D 2D
Geometry Spikes Curves Sets
Space M (X ) V BV(X )

Regulariser ‖·‖TV ‖·‖TV2 + ‖div ·‖TV ‖·‖1 + ‖D·‖TV
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Off‑the‑grid curve numerical
reconstruction
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General setup in off‑the‑grid

• No Hilbertian structure onmeasure spaces: no proximal algorithm;

• we use the Frank‑Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

• it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

↪→ perfect with our latter results!

We present the Charge Sliding Frank‑Wolfe algorithm.

30



DR
AF
T

General setup in off‑the‑grid

• No Hilbertian structure onmeasure spaces: no proximal algorithm;
• we use the Frank‑Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

• it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

↪→ perfect with our latter results!

We present the Charge Sliding Frank‑Wolfe algorithm.

30



DR
AF
T

General setup in off‑the‑grid

• No Hilbertian structure onmeasure spaces: no proximal algorithm;
• we use the Frank‑Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

• it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

↪→ perfect with our latter results!

We present the Charge Sliding Frank‑Wolfe algorithm.

30



DR
AF
T

General setup in off‑the‑grid

• No Hilbertian structure onmeasure spaces: no proximal algorithm;
• we use the Frank‑Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

• it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

↪→ perfect with our latter results!

We present the Charge Sliding Frank‑Wolfe algorithm.

30



DR
AF
T

General setup in off‑the‑grid

• No Hilbertian structure onmeasure spaces: no proximal algorithm;
• we use the Frank‑Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

• it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

↪→ perfect with our latter results!

We present the Charge Sliding Frank‑Wolfe algorithm.

30



DR
AF
T

General setup in off‑the‑grid

• No Hilbertian structure onmeasure spaces: no proximal algorithm;
• we use the Frank‑Wolfe algorithm, designed to minimise a differentiable functional
on a weakly compact set;

• it recovers the solution by iteratively adding and optimising extreme points of the
regulariser.

↪→ perfect with our latter results!

We present the Charge Sliding Frank‑Wolfe algorithm.

30



DR
AF
T

Synthetic problem
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Figure 2: The source and its noisy acquired image I
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Acquisition process and certificate

• a possible choice consists in settingΦ = ∗∇h since:

• µγ is vector, hence we need vector datum y = like the gradient;
• let u be the support of the curve, then we feel that:

η = Φ∗(Φm− y︸︷︷︸
=∇I

) ' ∆u

= ([0, 1])

6

4

2

0

2

4 = ([0, 1])

Figure 3: The certificate |η| on the left, u on the right.
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Amplitude and sliding steps
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Amplitude optimisation
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Charge support

Both amplitude and position optimisation

• we optimise the amplitude a of the new estimated curve;
• we perform a sliding: we optimise on both amplitudes a and positions γ.
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Recap: iterate the algorithm
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Figure 4: First step of first iteration: certificate and support of new curve estimated
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Figure 4: First iteration: second and third steps
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Figure 4: Second iteration: another curve is found
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Final results
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Reconstruction [Laville et al., 2023a].
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Another discretisation

• polygonal works well, under peculiar
circumstances;

• Bézier curves holds nice regularity
properties, encodes a curve with few
control points

• Pro: always smooth curves. Cons:
prone to shortening.
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Another discretisation

• polygonal works well, under peculiar
circumstances;

• Bézier curves holds nice regularity
properties, encodes a curve with few
control points

• Pro: always smooth curves. Cons:
prone to shortening.
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Partial conclusion

Recap
• Charge Sliding Frank‑Wofe, an algorithm designed to recover off‑the‑grid curves in
inverse problem;

• struggles with the vector operator definition;
• discretisation insights.

Still, there is room for improvements:

• define a scalar operator, further enabling curve reconstruction in fluctuation
microscopy;

• improve the support estimation step;
• tackle the curve crossing issue.
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Key points
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Take homemessages

• off‑the‑grid methods yields compelling results (yet scarcely used by applicative
researchers);

• we proposed an off‑the‑grid method for fluorescence microscopy;
• we bridged the gap in off‑the‑grid curve;
• we proposed a Charge Sliding Frank‑Wolfe for curve reconstruction.
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Perspectives

• application on real data images
(covariance with Ph.D. Aneva Tsafack,
fissures, etc.);

• study the link between divergence
vector fields V and Radonmeasures
on curvesM(Γ);

• curves untangling with the
Reeds‑Sheppmetric.
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Proof recipe I

First inclusion:

Ext(B1
V ) ⊃ G

Let γ a simple Lipschitz curve andµγ themeasure supported on this curve. By
contradiction, let u1, u2 ∈ B1

V and for λ ∈ (0, 1):

µγ

‖µγ‖V

= λu1 + (1− λ)u2.

By Smirnov’s decomposition, ui =
´
G
Rdρi(R)where ρi is a Borel measure. Also:

• u1, u2 has support included inµγ support, ditto for sptR ⊂ sptµγ [Smirnov, 1993];

• moreover, each R hasmaximal length implying sptR = sptµγ .
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Proof recipe II

• sptR = sptµγ .

Otherwise sptR ⊊ sptµγ ‖R‖TV <
‖µγ‖TV
‖µγ‖V

, therefore,
ˆ
G

‖R‖TV dρ(R) <
‖µγ‖TV
‖µγ‖V

ρ(G)︸ ︷︷ ︸
=1

=

ˆ
G

‖R‖TV dρ(R),

thus sptR = sptµγ ,

• each R is supported on a simple Lipschitz curve γR.

Hence, each γR is a reparametrisation of γ yielding R =
µγ

∥µγ∥V
, eventually:

ui =
ˆ
G

Rdρi =
ˆ
G

µγ

‖µγ‖V

dρi =
µγ

‖µγ‖V

ρi(G)︸ ︷︷ ︸
=1

=
µγ

‖µγ‖V

.

Contradiction, thenµγ is an extreme point.

□
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Proof recipe III

Second inclusion:

Ext(B1
V ) ⊂ G

Let T ∈ Ext(B1
V ), then there exists a finite (probability) Borel measure ρ s.t.:

T =

ˆ
G

Rdρ(R),

• either ρ is supported on a singleton ofG, then there existsµγ s.t. T =
µγ

‖µγ‖V

• or there exists a Borel set A ⊂ Gwith arbitrary 0 < ρ(A) < 1 and:

ρ = |ρ| (A)
(

1
|ρ| (A)ρ A

)
+ |ρ| (Ac)

(
1

|ρ| (Ac)ρ Ac
)
.
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Proof recipe IV

Then,

T = |ρ| (A)
[ˆ

G

1
|ρ| (A)Rd(ρ A)(R)

]
︸ ︷︷ ︸

def.
= u1

+|ρ| (Ac)
[ˆ

G

1
|ρ| (Ac)Rd(ρ Ac)(R)

]
︸ ︷︷ ︸

def.
= u2

A is chosen (up to a neighbourhood) as a convex set, hence u1 =
´
A Rdρ(R) belongs to A,

while conversely u2 ∈ Ac, thus u1 6= u2. Eventually, thanks to Smirnov’s decomposition:

‖u1‖V ≤
ˆ
G

1
|ρ| (A) ‖R‖V︸ ︷︷ ︸

=1

d(ρ A)(R)

≤ |ρ| (A)
|ρ| (A) = 1.
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Proof recipe IV
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Proof recipe V

Then u1, u2 ∈ B1
V while u1 6= u2, thus reaching a non‑trivial convex combination:

T = λu1 + (1− λ)u2,

thereby reaching a contradiction, and therefore concluding the proof.

□
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