

Off-the-grid curve reconstruction: theory and applications to fluorescence microscopy

Bastien Laville
under the direction of Laure Blanc-Féraud and Gilles Aubert
15th September 2023
Morpheme research team
Inria, CNRS, Université Côte d'Azur

Table of contents

1. Introduction
2. Off-the-grid 101: the sparse spike problem
3. Off-the-grid covariance spikes reconstruction
4. A new divergence regularisation
5. Off-the-grid curve numerical reconstruction
6. Conclusion

Introduction

How could we recover biological structure from resolution-limited acquisitions?

Microscope acquisition

How could we recover biological structure from resolution-limited acquisitions?

Microscope acquisition

Reconstruction

How could we recover biological structure from resolution-limited acquisitions? This is a case of inverse problem.

Microscope acquisition

Reconstruction

What is an inverse problem?

An inverse problem consists in finding a quantity from experimental data.

What is an inverse problem?

An inverse problem consists in finding a quantity from experimental data.
'Can one hear the shape of a drum?', Marc Kac (1966)

Marc Kac.

What is an inverse problem?

Direct problem

Observation

What is an inverse problem?

What is an inverse problem?

Three criteria for an ill-posed inverse problem:

What is an inverse problem?

Three criteria for an ill-posed inverse problem:

- the solution may not exist;

No source

Observation

What is an inverse problem?

Three criteria for an ill-posed inverse problem:

- the solution may not exist;
- the solution may not be unique;

Sources
Observation

What is an inverse problem?

Three criteria for an ill-posed inverse problem:

- the solution may not exist;
- the solution may not be unique;
- the solution may not depend continuously on the data.

vand

Source

Observation

What is an inverse problem?

Three criteria for an ill-posed inverse problem:

- the solution may not exist;
- the solution may not be unique;
- the solution may not depend continuously on the data.

Inverse problem

What is an inverse problem?

Three criteria for an ill-posed inverse problem:

- the solution may not exist;
- the solution may not be unique;
- the solution may not depend continuously on the data.

Source
Observation

Biomedical imaging

Objective

To image live biological structures at small scales.

Biomedical imaging

Objective

To image live biological structures at small scales.

Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Biomedical imaging

Objective

To image live biological structures at small scales.

Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Biomedical imaging

Objective

To image live biological structures at small scales.

Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Biomedical imaging

Objective

To image live biological structures at small scales.
Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Biomedical imaging

Objective

To image live biological structures at small scales.
Physical limitation due to diffraction for bodies < 200 nm : convolution by the microscope's point spread function (PSF).

Inverse problem

Solve inverse problem through variational approach

- S_{0} is the source;

Solve inverse problem through variational approach

- S_{0} is the source;
- it is observed through y: blur Φ, noise...;

Solve inverse problem through variational approach

- S_{0} is the source;
- it is observed through y: blur Φ, noise...;
- how to build an estimate \hat{S} from y ?

Solve inverse problem through variational approach

- S_{0} is the source;
- it is observed through y: blur Φ, noise...;
- how to build an estimate \hat{S} from y ?

Solve inverse problem through variational approach

- S_{o} is the source;
- it is observed through y : blur Φ, noise...;
- how to build an estimate \hat{S} from y ?

Variational optimisation

- use a prior on S_{o};

Solve inverse problem through variational approach

- S_{0} is the source;
- it is observed through y : blur Φ, noise...;
- how to build an estimate \hat{S} from y ?

Variational optimisation

- use a prior on S_{o};
- among all sources S, penalise the ones fulfiling the prior;

Solve inverse problem through variational approach

- S_{0} is the source;
- it is observed through y : blur Φ, noise...;
- how to build an estimate \hat{S} from y ?

Variational optimisation

- use a prior on S_{o};
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto\|y-\Phi S\|_{2}^{2}+\alpha R(S)$;

Solve inverse problem through variational approach

- S_{0} is the source;
- it is observed through y : blur Φ, noise...;
- how to build an estimate \hat{S} from y ?

Variational optimisation

- use a prior on S_{o};
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto\|y-\Phi S\|_{2}^{2}+\alpha R(S)$;
- $\|y-\Phi S\|_{2}^{2}$ penalises the closeness of y and the source S;

Solve inverse problem through variational approach

- S_{o} is the source;
- it is observed through y: blur Φ, noise...;
- how to build an estimate \hat{S} from y ?

Variational optimisation

- use a prior on S_{o};
- among all sources S, penalise the ones fulfiling the prior;
- \hat{S} minimises $S \mapsto\|y-\Phi S\|_{2}^{2}+\alpha R(S)$;
- $\|y-\Phi S\|_{2}^{2}$ penalises the closeness of y and the source S;
- $R(S)$ regularises the problem (well-posed) and enforces more or less the prior on S w. $\alpha>0$.

Grid or gridless?

Source to estimate

Grid or gridless?

Introducing a grid

Grid or gridless?

Reconstruction Ŝ on a grid

Grid or gridless?

Reconstruction \hat{S} on a finer grid

Grid or gridless?

Reconstruction \hat{S} is now off-the-grid

Grid or gridless?

Grid or gridless?

Grid

- geometry constrained on the grid;
- combinatorial (non-)convex optimisation;
- well-known problems (LASSO, ...).

Grid or gridless?

Off-the-grid
Grid

- geometry constrained on the grid;
- combinatorial (non-)convex optimisation;
- well-known problems (LASSO, ...).
- brings structural prior;
- guarantees (uniqueness, support);
- convex but infinite dimensional;
- young field.

Off-the-grid 101: the sparse spike

 problem
Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};

Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};
- how to model spikes? Through Dirac measure δ_{x}, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;

Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};
- how to model spikes ? Through Dirac measure δ_{x}, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
- topological dual of $\mathscr{C}_{0}(\mathcal{X})$ equipped with $\langle f, m\rangle=\int_{\mathcal{X}} f \mathrm{~d} m$. Generalises $\mathrm{L}^{1}(\mathcal{X})$; $\mathrm{L}^{1}(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X}) ;$

Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};
- how to model spikes ? Through Dirac measure δ_{x}, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
- topological dual of $\mathscr{C}_{0}(\mathcal{X})$ equipped with $\langle f, m\rangle=\int_{\mathcal{X}} f \mathrm{~d} m$. Generalises $\mathrm{L}^{1}(\mathcal{X})$; $\mathrm{L}^{1}(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X}) ;$
- Banach endowed with TV-norm : $m \in \mathcal{M}(\mathcal{X})$,

$$
|m|(\mathcal{X}) \stackrel{\text { def. }}{=} \sup \left(\int_{\mathcal{X}} f \mathrm{~d} m \mid f \in \mathscr{C}_{0}(\mathcal{X}),\|f\|_{\infty, \mathcal{X}} \leq 1\right)
$$

If $m=\sum_{i=1}^{N} a_{i} \delta_{x_{i}}$ a discrete measure

Quantities

- \mathcal{X} is a compact of \mathbb{R}^{d};
- how to model spikes ? Through Dirac measure δ_{x}, element of the set of Radon measures $\mathcal{M}(\mathcal{X})$;
- topological dual of $\mathscr{C}_{0}(\mathcal{X})$ equipped with $\langle f, m\rangle=\int_{\mathcal{X}} f \mathrm{~d} m$. Generalises $\mathrm{L}^{1}(\mathcal{X})$; $\mathrm{L}^{1}(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X}) ;$
- Banach endowed with TV-norm : $m \in \mathcal{M}(\mathcal{X})$,

$$
|m|(\mathcal{X}) \stackrel{\text { def. }}{=} \sup \left(\int_{\mathcal{X}} f \mathrm{~d} m \mid f \in \mathscr{C}_{0}(\mathcal{X}),\|f\|_{\infty, \mathcal{X}} \leq 1\right)
$$

If $m=\sum_{i=1}^{N} a_{i} \delta_{x_{i}}$ a discrete measure, then $|m|(\mathcal{X})=\sum_{i=1}^{N}\left|a_{i}\right|$.

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right)$;

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right)$;
- $w \in \mathbb{R}^{p}$ additive noise;

A LASSO equivalent for measures

- Let the source $m_{a_{0}, \chi_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \xlongequal{\text { def. }} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right)$;
- $w \in \mathbb{R}^{p}$ additive noise;
- $y \stackrel{\text { def. }}{=} \Phi m_{a_{0}, x_{0}}+w$.

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right)$;
- $w \in \mathbb{R}^{p}$ additive noise;
- $y \stackrel{\text { def. }}{=} \Phi m_{a_{0}, x_{0}}+w$.

We call BLASSO for $\lambda>0$ the problem
[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi m\|_{\mathbb{R}^{p}}^{2}+\lambda|m|(\mathcal{X})
$$

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right)$;
- $w \in \mathbb{R}^{p}$ additive noise;
- $y \stackrel{\text { def. }}{=} \Phi m_{a_{0}, x_{0}}+w$.

We call BLASSO for $\lambda>0$ the problem
[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi m\|_{\mathbb{R}^{p}}^{2}+\lambda|m|(\mathcal{X})
$$

One of its minimisers is a sum of Dirac, close to $m_{a_{0}, x_{0}}$ [Duval and Peyré, 2014].

A LASSO equivalent for measures

- Let the source $m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \in \mathcal{M}(\mathcal{X})$ a discrete measure;
- $\Phi: \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}^{p}$ the acquisition operator, e.g. $\Phi m_{a_{0}, x_{0}} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i} h\left(x-x_{i}\right)$;
- $w \in \mathbb{R}^{p}$ additive noise;
- $y \stackrel{\text { def. }}{=} \Phi m_{a_{0}, x_{0}}+w$.

We call BLASSO for $\lambda>0$ the problem
[Candès and Fernandez-Granda, 2013, Azais et al., 2015, Bredies and Pikkarainen, 2012]:

$$
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi m\|_{\mathbb{R}^{p}}^{2}+\lambda|m|(\mathcal{X})
$$

One of its minimisers is a sum of Dirac, close to $m_{a_{0}, x_{0}}$ [Duval and Peyré, 2014].
Difficult numerical problem: infinite dimensional, non-reflexive. Tackled by greedy algorithm like Frank-Wolfe [Frank and Wolfe, 1956] , etc.

Some results for spikes reconstruction

Reconstruction by fluorescence microscopy SMLM: acquisition stack with few lit fluorophores per image.

Figure 1: Two excerpts from a SMLM stack

Results on SMLM

Stack mean

Results on SMLM

Results on SMLM

Stack mean

Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

Stack mean

Off-the-grid [Laville et al., 2021] Deep-STORM [Nehme et al., 2018]

SMLM drawback: a lot of images, no live-cell imaging.

Off-the-grid covariance spikes

 reconstruction
An other imagery technique: SOFI

SOFI protocol (Super-resolution optical fluctuation imaging) [Dertinger et al., 2010].

An other imagery technique: SOFI

SOFI protocol (Super-resolution optical fluctuation imaging) [Dertinger et al., 2010].

- many conventional fluorophores lit at the same time;

An other imagery technique: SOFI

SOFI protocol (Super-resolution optical fluctuation imaging) [Dertinger et al., 2010].

- many conventional fluorophores lit at the same time;
- temporal independence of the fluorophores luminosity fluctuation;

An other imagery technique: SOFI

SOFI protocol (Super-resolution optical fluctuation imaging) [Dertinger et al., 2010].

- many conventional fluorophores lit at the same time;
- temporal independence of the fluorophores luminosity fluctuation;
- less harmful to the biological structures studied.

An other imagery technique: SOFI

SOFI protocol (Super-resolution optical fluctuation imaging) [Dertinger et al., 2010].

- many conventional fluorophores lit at the same time;
- temporal independence of the fluorophores luminosity fluctuation;
- less harmful to the biological structures studied.

An other imagery technique: SOFI

SOFI protocol (Super-resolution optical fluctuation imaging) [Dertinger et al., 2010].

- many conventional fluorophores lit at the same time;
- temporal independence of the fluorophores luminosity fluctuation;
- less harmful to the biological structures studied.

An other imagery technique: SOFI

SOFI protocol (Super-resolution optical fluctuation imaging) [Dertinger et al., 2010].

- many conventional fluorophores lit at the same time;
- temporal independence of the fluorophores luminosity fluctuation;
- less harmful to the biological structures studied.

Quantities at stake

- acquisition stack i.e. images in $\mathrm{L}^{2}(\mathcal{X})$ during $[0, T]$;

Quantities at stake

- acquisition stack i.e. images in $\mathrm{L}^{2}(\mathcal{X})$ during $[0, T]$;
- $y:[0, T] \rightarrow \mathrm{L}^{2}(\mathcal{X})$ is the SOFI acquisition stack;

Quantities at stake

- acquisition stack i.e. images in $\mathrm{L}^{2}(\mathcal{X})$ during $[0, T]$;
- $y:[0, T] \rightarrow \mathrm{L}^{2}(\mathcal{X})$ is the SOFI acquisition stack;
- we aim to reconstruct the dynamic measure:

$$
t \mapsto \mu(t) \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i}(t) \delta_{x_{i}} \in \mathrm{~L}^{2}(0, T ; \mathcal{M}(\mathcal{X}))
$$

generating a.e. $t \in[0, T]: y(t)=\Phi \mu(t)$.

Quantities at stake

- acquisition stack i.e. images in $\mathrm{L}^{2}(\mathcal{X})$ during $[0, T]$;
- $y:[0, T] \rightarrow \mathrm{L}^{2}(\mathcal{X})$ is the SOFI acquisition stack;
- we aim to reconstruct the dynamic measure:

$$
t \mapsto \mu(t) \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i}(t) \delta_{x_{i}} \in \mathrm{~L}^{2}(0, T ; \mathcal{M}(\mathcal{X}))
$$

generating a.e. $t \in[0, T]: y(t)=\Phi \mu(t)$. In the convolution case for PSF h, $\Phi \mu(t)=\sum_{i=1}^{N} a_{i}(t) \int_{\mathcal{X}} h\left(x-x_{i}\right) \mathrm{d} x$.

Quantities at stake

- acquisition stack i.e. images in $\mathrm{L}^{2}(\mathcal{X})$ during $[0, T]$;
- $y:[0, T] \rightarrow \mathrm{L}^{2}(\mathcal{X})$ is the SOFI acquisition stack;
- we aim to reconstruct the dynamic measure:

$$
t \mapsto \mu(t) \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i}(t) \delta_{x_{i}} \in \mathrm{~L}^{2}(0, T ; \mathcal{M}(\mathcal{X}))
$$

generating a.e. $t \in[0, T]: y(t)=\Phi \mu(t)$. In the convolution case for PSF h, $\Phi \mu(t)=\sum_{i=1}^{N} a_{i}(t) \int_{\mathcal{X}} h\left(x-x_{i}\right) \mathrm{d} x$.

Moments are a tool to recover the positions x_{i}.
Example: let the stack mean $\bar{y} \stackrel{\text { def. }}{=} \frac{1}{T} \int_{0}^{T} y(\cdot, t) \mathrm{d} t$.

Quantities at stake

- acquisition stack i.e. images in $\mathrm{L}^{2}(\mathcal{X})$ during $[0, T]$;
- $y:[0, T] \rightarrow \mathrm{L}^{2}(\mathcal{X})$ is the SOFI acquisition stack;
- we aim to reconstruct the dynamic measure:

$$
t \mapsto \mu(t) \stackrel{\text { def. }}{=} \sum_{i=1}^{N} a_{i}(t) \delta_{x_{i}} \in \mathrm{~L}^{2}(0, T ; \mathcal{M}(\mathcal{X}))
$$

generating a.e. $t \in[0, T]: y(t)=\Phi \mu(t)$. In the convolution case for PSF h, $\Phi \mu(t)=\sum_{i=1}^{N} a_{i}(t) \int_{\mathcal{X}} h\left(x-x_{i}\right) \mathrm{d} x$.

Moments are a tool to recover the positions x_{i}.
Example: let the stack mean $\bar{y} \stackrel{\text { def. }}{=} \frac{1}{T} \int_{0}^{T} y(\cdot, t) \mathrm{d} t$.
One have $\Phi m_{a, x}=\bar{y}$ where $m_{a, x} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} \bar{a}_{i} \delta_{x_{i}}$ and \bar{a}_{i} is the mean of $a_{i}(\cdot)$.

Build the variational problem

Let R_{y} be the spatial covariance, $\forall u, v \in \mathcal{X}$ we yield:

$$
R_{y}(u, v) \stackrel{\text { def. }}{=} \frac{1}{T} \int_{0}^{T}(y(u, t)-\bar{y}(u))(y(v, t)-\bar{y}(v)) \mathrm{d} t
$$

Build the variational problem

Let R_{y} be the spatial covariance, $\forall u, v \in \mathcal{X}$ we yield:

$$
\begin{aligned}
R_{y}(u, v) & \stackrel{\text { def. }}{=} \frac{1}{T} \int_{0}^{T}(y(u, t)-\bar{y}(u))(y(v, t)-\bar{y}(v)) \mathrm{d} t \\
& =\ldots \quad \text { (independence of fluctuations) } \\
& =\sum_{i=1}^{N} \underbrace{M_{i}}_{a_{i} \text { variance }} h\left(u-x_{i}\right) h\left(v-x_{i}\right)
\end{aligned}
$$

Build the variational problem

Let R_{y} be the spatial covariance, $\forall u, v \in \mathcal{X}$ we yield:

$$
\begin{aligned}
R_{y}(u, v) & \stackrel{\text { def. }}{=} \frac{1}{T} \int_{0}^{T}(y(u, t)-\bar{y}(u))(y(v, t)-\bar{y}(v)) \mathrm{d} t \\
& =\ldots \quad \text { (independence of fluctuations) } \\
& =\sum_{i=1}^{N} \underbrace{M_{i}}_{a_{i} \text { variance }} h\left(u-x_{i}\right) h\left(v-x_{i}\right) \\
& =\int_{\mathcal{X}} h(u-x) h(v-x) \mathrm{d} m_{M, x}(x) \\
& =\Lambda m_{M, x}(u, v)
\end{aligned}
$$

$m_{M, X} \stackrel{\text { def. }}{=} \sum_{i=1}^{N} M_{i} \delta_{x_{i}}$ shares the same positions w. $\mu=\sum_{i=1}^{N} a_{i}(t) \delta_{x_{i}}$ through Λ.

Quantities digest

-
 $$
\mathrm{L}^{2}\left(0, T, \mathrm{~L}^{2}(\mathcal{X})\right)
$$

Legend: dynamic part,

Quantities digest

Legend: dynamic part, temporal mean part \bar{y}

Quantities digest

Legend: dynamic part, temporal mean part \bar{y}

Quantities digest

Legend: dynamic part, temporal mean part \bar{y} and covariance R_{y}.

BLASSO on cumulants

Let $\lambda>0$,
The energy for covariance-based reconstruction writes down:

$$
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} T_{\lambda}(m) \stackrel{\text { def. }}{=} \frac{1}{2}\left\|R_{y}-\Lambda(m)\right\|_{L^{2}\left(\mathcal{X}^{2}\right)}^{2}+\lambda|m|(\mathcal{X})
$$

BLASSO on cumulants

Let $\lambda>0$,
The energy for covariance-based reconstruction writes down:

$$
\begin{equation*}
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} T_{\lambda}(m) \stackrel{\text { def. }}{=} \frac{1}{2}\left\|R_{y}-\Lambda(m)\right\|_{L^{2}\left(\mathcal{X}^{2}\right)}^{2}+\lambda|m|(\mathcal{X}) \tag{y}
\end{equation*}
$$

while mean reconstruction is:

$$
\begin{equation*}
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} S_{\lambda}(m) \stackrel{\text { def. }}{=} \frac{1}{2}\|\bar{y}-\Phi(m)\|_{L^{2}(\mathcal{X})}^{2}+\lambda|m|(\mathcal{X}) \tag{y}
\end{equation*}
$$

BLASSO on cumulants

Let $\lambda>0$,
The energy for covariance-based reconstruction writes down:

$$
\begin{equation*}
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} T_{\lambda}(m) \stackrel{\text { def. }}{=} \frac{1}{2}\left\|R_{y}-\Lambda(m)\right\|_{L^{2}\left(\mathcal{X}^{2}\right)}^{2}+\lambda|m|(\mathcal{X}) \tag{y}
\end{equation*}
$$

while mean reconstruction is:

$$
\begin{equation*}
\underset{m \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} S_{\lambda}(m) \stackrel{\text { def. }}{=} \frac{1}{2}\|\bar{y}-\Phi(m)\|_{L^{2}(\mathcal{X})}^{2}+\lambda|m|(\mathcal{X}) \tag{y}
\end{equation*}
$$

2D numerical results SOFItool

Test on 2D tubulins from ISBI challenge 2016:

2D numerical results SOFItool

Test on 2D tubulins from ISBI challenge 2016:

- stack of 1000 acquisitions 64×64 simulated by SOFItool;
- 8700 emitters scattered along the tubulins; high background noise + Poisson noise at $4+$ Gaussian noise at 1×10^{-2}. SNR $\approx 10 \mathrm{db}$.

Results

Ground-truth

Results

Ground-truth

$\left(\mathcal{Q}_{\lambda}(y)\right)$ [Laville et al., 2022]

Results

Ground-truth

$\left(\mathcal{Q}_{\lambda}(y)\right)$ [Laville et al., 2022]

SRRF [Culley et al., 2018]

Partial conclusion

Co ℓ_{0} rme [Stergiopoulou et al., 2021]

$\left.\mathcal{Q}_{\lambda}(y)\right)$

Recap

- a new off-the-grid method for fluctuation microscopy
- the results are a bit dotted, by design.

Practical applications

Biomedical imaging:

- filaments in fluorescence microscopy;

Practical applications

Biomedical imaging:

- filaments in fluorescence microscopy;
- biological structures;

Practical applications

Biomedical imaging:

- filaments in fluorescence microscopy;
- biological structures;
- collaboration with LBDV on the seaweed Ostreopsis; filaments in the cytoskeleton.

Practical applications

Biomedical imaging:

- filaments in fluorescence microscopy;
- biological structures;
- collaboration with LBDV on the seaweed Ostreopsis; filaments in the cytoskeleton.

Stress corrosion cracking spotted by ultrasounds.

Practical applications

Biomedical imaging:

- filaments in fluorescence microscopy;
- biological structures;
- collaboration with LBDV on the seaweed Ostreopsis; filaments in the cytoskeleton.

Crackle detection: non-destructive testing on nuclear powerplant pipes, etc.

Crackle in the aforementioned pipe.

A new divergence regularisation

2-rectiffable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;

2-rectiffable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\operatorname{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid " \nabla u " \in \mathcal{M}(\mathcal{X})^{2}\right\} ;$

2-rectiffable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\operatorname{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{2}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} .
$$

2-rectiffable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\mathrm{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{2}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} .
$$

If $u=\chi_{E}$,

2-rectiffable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\mathrm{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{2}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\begin{aligned}
& \qquad u\left\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\right\| u\left\|_{1}+\right\| \mathrm{D} u \|_{\mathrm{TV}} . \\
& \text { If } u=\chi_{E} \text {, then }\|\mathrm{D} u\|_{\mathrm{TV}}=\operatorname{Per}(E) ;
\end{aligned}
$$

2-rectiffable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\mathrm{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{2}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} .
$$

If $u=\chi_{E}$, then $\|\mathrm{D} u\|_{\mathrm{TV}}=\operatorname{Per}(E)$;

- Let $\lambda>0$, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$
\begin{equation*}
\underset{u \in \operatorname{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi u\|_{\mathrm{L}^{2}(\mathcal{X})}^{2}+\lambda\|\mathrm{D} u\|_{\mathrm{TV}} \tag{y}
\end{equation*}
$$

2-rectiffable measures reconstruction [de Castro et al., 2021]

- how to model sets measures? Through χ_{E} where E is a simple set, belonging to $\mathrm{BV}(\mathcal{X})$ the set of function of bounded variation;
- $\mathrm{BV}(\mathcal{X})=\left\{u \in \mathrm{~L}^{2}(\mathcal{X}) \mid \mathrm{D} u \in \mathcal{M}(\mathcal{X})^{2}\right\}$;
- Banach endowed with BV-norm : $u \in \operatorname{BV}(\mathcal{X})$,

$$
\|u\|_{\mathrm{BV}} \stackrel{\text { def. }}{=}\|u\|_{1}+\|\mathrm{D} u\|_{\mathrm{TV}} .
$$

If $u=\chi_{E}$, then $\|\mathrm{D} u\|_{\mathrm{TV}}=\operatorname{Per}(E)$;

- Let $\lambda>0$, the adaptation of BLASSO [de Castro et al., 2021] writes down:

$$
\begin{equation*}
\underset{u \in \operatorname{BV}(\mathcal{X})}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi u\|_{\mathrm{L}^{2}(\mathcal{X})}^{2}+\lambda\|\mathrm{D} u\|_{\mathrm{TV}} \tag{y}
\end{equation*}
$$

One of its minimisers is a sum of level sets χ_{E} !

Geometry encoded in off-the-grid

Geometry encoded in off-the-grid

Geometry encoded in off-the-grid

Geometry encoded in off-the-grid

	0 D	1 D	2 D						
Geometry	Spikes	Curves	Sets						
Space	$\mathcal{M}(\mathcal{X})$	$?$	$\mathrm{BV}(\mathcal{X})$						
Regulariser	$\\|\cdot\\|_{\mathrm{TV}}$	$?$	$\\|\cdot\\|_{1}+\\|\mathrm{D} \cdot\\|_{\mathrm{TV}}$						

?
χ_{E}

Desperate times call for desperate measures

- let $\mathcal{M}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;

Desperate times call for desperate measures

- let $\boldsymbol{\mathcal { M }}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{\mathbf{2}}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{\mathrm{TV}^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;

Desperate times call for desperate measures

- let $\boldsymbol{\mathcal { M }}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{\mathbf{2}}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{\mathrm{TV}^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ a 1-rectifiable parametrised Lipschitz curve,

Desperate times call for desperate measures

- let $\boldsymbol{\mathcal { M }}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{\mathbf{2}}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{\mathrm{TV}^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure supported on a curve γ if:

$$
\forall \boldsymbol{g} \in \boldsymbol{C}_{\mathbf{0}}(\mathcal{X})^{\mathbf{2}}, \quad\left\langle\boldsymbol{\mu}_{\gamma}, \boldsymbol{g}\right\rangle_{\mathcal{M}^{2}} \stackrel{\text { def. }}{=} \int_{0}^{1} \boldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \mathrm{d} t
$$

- a curve is closed is $\gamma(0)=\gamma(1)$, open otherwise;

Desperate times call for desperate measures

- let $\boldsymbol{\mathcal { M }}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{\mathbf{2}}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{\mathrm{TV}^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure supported on a curve γ if:

$$
\forall \boldsymbol{g} \in \boldsymbol{C}_{0}(\mathcal{X})^{\mathbf{2}}, \quad\left\langle\boldsymbol{\mu}_{\gamma}, \boldsymbol{g}\right\rangle_{\mathcal{M}^{2}} \stackrel{\text { def. }}{=} \int_{0}^{1} \boldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \mathrm{d} t
$$

- a curve is closed is $\gamma(0)=\gamma(1)$, open otherwise;
- simple if γ is an injective mapping;

Desperate times call for desperate measures

- let $\boldsymbol{\mathcal { M }}(\mathcal{X})^{\mathbf{2}}$ be the space of vector Radon measures;
- let $\mathscr{V} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathcal{M}(\mathcal{X})^{\mathbf{2}}, \operatorname{div}(\boldsymbol{m}) \in \mathcal{M}(\mathcal{X})\right\}$ the space of charges, or divergence vector fields. It is a Banach equipped with $\|\cdot\|_{\mathscr{V}} \stackrel{\text { def. }}{=}\|\cdot\|_{\mathrm{TV}^{2}}+\|\operatorname{div}(\cdot)\|_{\mathrm{TV}}$;
- let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ a 1-rectifiable parametrised Lipschitz curve, we say that $\mu_{\gamma} \in \mathscr{V}$ is a measure supported on a curve γ if:

$$
\forall \boldsymbol{g} \in \boldsymbol{C}_{\mathbf{0}}(\mathcal{X})^{\mathbf{2}}, \quad\left\langle\boldsymbol{\mu}_{\gamma}, \boldsymbol{g}\right\rangle_{\mathcal{M}^{2}} \stackrel{\text { def. }}{=} \int_{0}^{1} \boldsymbol{g}(\gamma(t)) \cdot \dot{\gamma}(t) \mathrm{d} t
$$

- a curve is closed is $\gamma(0)=\gamma(1)$, open otherwise;
- simple if γ is an injective mapping;
- $\operatorname{div} \mu_{\gamma}=\delta_{\gamma(0)}-\delta_{\gamma(1)}$.

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\|\boldsymbol{m}\|_{\mathscr{V}} \tag{CROC}
\end{equation*}
$$

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\|\boldsymbol{m}\|_{\mathscr{V}} \tag{CROC}
\end{equation*}
$$

- $\frac{1}{2}\|y-\Phi \boldsymbol{m}\|_{\mathcal{H}}^{2}$ is the data-term;

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\left(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}+\|\operatorname{div} \boldsymbol{m}\|_{\mathrm{TV}}\right) \tag{CROC}
\end{equation*}
$$

- $\frac{1}{2}\|y-\Phi \boldsymbol{m}\|_{\mathcal{H}}^{2}$ is the data-term;
- $\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}$ weights down the curve length, i.e. $\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}^{2}}=\mathscr{H}_{1}(\gamma((0,1)))$;

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{\Phi} \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\left(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}+\|\operatorname{div} \boldsymbol{m}\|_{\mathrm{TV}}\right) \tag{CROC}
\end{equation*}
$$

- $\frac{1}{2}\|y-\Phi \boldsymbol{m}\|_{\mathcal{H}}^{2}$ is the data-term;
- $\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}$ weights down the curve length, i.e. $\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}^{2}}=\mathscr{H}_{1}(\gamma((0,1)))$;
- $\|\operatorname{div} \boldsymbol{m}\|_{\text {TV }}$ is the (open) curve counting term.

CROC energy

Consider the variational problem we coined Curves Represented On Charges:

$$
\begin{equation*}
\underset{\boldsymbol{m} \in \mathscr{V}}{\operatorname{argmin}} \frac{1}{2}\|y-\Phi \boldsymbol{m}\|_{\mathcal{H}}^{2}+\alpha\left(\|\boldsymbol{m}\|_{\mathrm{TV}^{2}}+\|\operatorname{div} \boldsymbol{m}\|_{\mathrm{TV}}\right) \tag{CROC}
\end{equation*}
$$

Do curve measures minimise (CROC)?

Extreme points

Extreme points

Definition

Let X be a topological vector space and $K \subset X$. An extreme point x of K is a point such that $\forall y, z \in K$:

Extreme points

Definition

Let X be a topological vector space and $K \subset X$. An extreme point x of K is a point such that $\forall y, z \in K$:

$$
\begin{aligned}
\forall \lambda \in(0,1), x & =\lambda y+(1-\lambda) z \\
& \Longrightarrow x=y=z
\end{aligned}
$$

Extreme points

Definition

Let X be a topological vector space and $K \subset X$. An extreme point x of K is a point such that $\forall y, z \in K$:

$$
\begin{aligned}
\forall \lambda \in(0,1), x & =\lambda y+(1-\lambda) z \\
& \Longrightarrow x=y=z
\end{aligned}
$$

Ext K is the set of extreme points of K.

Ext K in red

Link with extreme points: the representer theorem

Let $F: E \rightarrow \mathbb{R}^{m}, G$ the data-term, R the regulariser, $\alpha>0$.

$$
F=G+\alpha R
$$

Link with extreme points: the representer theorem

Let $F: E \rightarrow \mathbb{R}^{m}, G$ the data-term, R the regulariser, $\alpha>0$.

$$
F=G+\alpha R
$$

\mathcal{B}_{E}^{1} is the unit-ball of R : $\mathcal{B}_{E}^{1} \stackrel{\text { def. }}{=}\{u \in E \mid R(u) \leq 1\}$.

Link with extreme points: the representer theorem

Let $F: E \rightarrow \mathbb{R}^{m}, G$ the data-term, R the regulariser, $\alpha>0$.

$$
F=G+\alpha R
$$

\mathcal{B}_{E}^{1} is the unit-ball of R : $\mathcal{B}_{E}^{1} \stackrel{\text { def. }}{=}\{u \in E \mid R(u) \leq 1\}$.

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of Ext \mathcal{B}_{E}^{1}

Link with extreme points: the representer theorem

Let $F: E \rightarrow \mathbb{R}^{m}, G$ the data-term, R the regulariser, $\alpha>0$.

$$
F=G+\alpha R
$$

\mathcal{B}_{E}^{1} is the unit-ball of R : $\mathcal{B}_{E}^{1} \stackrel{\text { def. }}{=}\{u \in E \mid R(u) \leq 1\}$.

Theorem (from [Boyer et al., 2019, Bredies and Carioni, 2019])

There exists a minimiser of F which is a linear sum of extreme points of Ext \mathcal{B}_{E}^{1}
Characterise Ext \mathcal{B}_{E}^{1} of the regulariser \Longleftrightarrow outline the structure of a minimum of F.

Extreme points in measure spaces

- If $E=\mathcal{M}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{TV}}$, then:

Extreme points in measure spaces

- If $E=\mathcal{M}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{TV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathcal{M}}\right)=\left\{\delta_{x}, x \in \mathcal{X}\right\}
$$

Extreme points in measure spaces

- If $E=\mathcal{M}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{TV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathcal{M}}\right)=\left\{\delta_{x}, x \in \mathcal{X}\right\}
$$

- If $E=\mathrm{BV}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{BV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathrm{BV}}\right)=\left\{\frac{1}{\operatorname{Per}(E)} \chi_{E}, E \subset \mathcal{X} \text { is simple }\right\}
$$

Extreme points in measure spaces

- If $E=\mathcal{M}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{TV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathcal{M}}\right)=\left\{\delta_{x}, x \in \mathcal{X}\right\}
$$

- If $E=\mathrm{BV}(\mathcal{X})$ and $R=\|\cdot\|_{\mathrm{BV}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathrm{BV}}\right)=\left\{\frac{1}{\operatorname{Per}(E)} \chi_{E}, E \subset \mathcal{X} \text { is simple }\right\}
$$

- If $E=\mathscr{V}$ and $R=\|\cdot\|_{\mathscr{V}}$, then:

$$
\operatorname{Ext}\left(\mathcal{B}_{V}\right)=?
$$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$
\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}, \gamma \text { Lipschitz 1-rectifiable simple curve }\right\} .
$$

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$
\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\boldsymbol{\gamma}}}, \gamma \text { Lipschitz 1-rectifiable simple curve }\right\} .
$$

Theorem (Main result of [Laville et al., 2023b])

Let $\mathcal{B}_{\mathscr{V}}^{1} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathscr{V},\|\boldsymbol{m}\|_{\mathscr{V}} \leq 1\right\}$ the unit ball of the \mathscr{V}-norm.

Main result

Let the (non-complete) set of curve measures endowed with weak-* topology:

$$
\mathfrak{G} \stackrel{\text { def. }}{=}\left\{\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\boldsymbol{\gamma}}}, \gamma \text { Lipschitz 1-rectifiable simple curve }\right\} .
$$

Theorem (Main result of [Laville et al., 2023b])

Let $\mathcal{B}_{\mathscr{V}}^{1} \stackrel{\text { def. }}{=}\left\{\boldsymbol{m} \in \mathscr{V},\|\boldsymbol{m}\|_{\mathscr{V}} \leq 1\right\}$ the unit ball of the \mathscr{V}-norm. Then,

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)=\mathfrak{G}
$$

Partial conclusion

Recap

- a space of measures \mathscr{V}, a new energy called CROC;

Partial conclusion

Recap

- a space of measures \mathscr{V}, a new energy called CROC;
- optimality conditions, dual certificates;

Partial conclusion

Recap

- a space of measures \mathscr{V}, a new energy called CROC;
- optimality conditions, dual certificates;
- $\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)=\mathfrak{G}$, hence CROC admits one minimiser boiling down to a finite sum of curves.

Partial conclusion

Recap

- a space of measures \mathscr{V}, a new energy called CROC;
- optimality conditions, dual certificates;
- $\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)=\mathfrak{G}$, hence CROC admits one minimiser boiling down to a finite sum of curves.

Partial conclusion

Recap

- a space of measures \mathscr{V}, a new energy called CROC;
- optimality conditions, dual certificates;
- $\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)=\mathfrak{G}$, hence CROC admits one minimiser boiling down to a finite sum of curves.

	0 D	1 D	2 D										
Geometry	Spikes	Curves	Sets										
Space	$\mathcal{M}(\mathcal{X})$	\mathscr{V}	$\mathrm{BV}(\mathcal{X})$										
Regulariser	$\\|\cdot\\|_{\mathrm{TV}}$	$\\|\cdot\\|_{\mathrm{TV}}{ }^{2}+\\|\operatorname{div} \cdot\\|_{\mathrm{TV}}$	$\\|\cdot\\|_{1}+\\|\mathrm{D} \cdot\\|_{\mathrm{TV}}$										

Off-the-grid curve numerical reconstruction

General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;

General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;

General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.

General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
\hookrightarrow perfect with our latter results!

General setup in off-the-grid

- No Hilbertian structure on measure spaces: no proximal algorithm;
- we use the Frank-Wolfe algorithm, designed to minimise a differentiable functional on a weakly compact set;
- it recovers the solution by iteratively adding and optimising extreme points of the regulariser.
\hookrightarrow perfect with our latter results!
We present the Charge Sliding Frank-Wolfe algorithm.
o c

Synthetic problem

Figure 2: The source and its noisy acquired image /

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:
- μ_{γ} is vector, hence we need vector datum $y=$ like the gradient;

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:
- μ_{γ} is vector, hence we need vector datum $y=$ like the gradient;
- let u be the support of the curve, then we feel that:

$$
\eta=\Phi^{*}(\Phi m-\underbrace{y}_{=\nabla!}) \simeq \Delta u
$$

Figure 3: The certificate $|\eta|$ on the left, u on the right.

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:
- μ_{γ} is vector, hence we need vector datum $y=$ like the gradient;
- let u be the support of the curve, then we feel that:

$$
\eta=\Phi^{*}(\Phi m-\underbrace{y}_{=\nabla!}) \simeq \Delta u
$$

Figure 3: The certificate $|\eta|$ on the left, u on the right.

Acquisition process and certificate

- a possible choice consists in setting $\Phi=* \nabla h$ since:
- μ_{γ} is vector, hence we need vector datum $y=$ like the gradient;
- let u be the support of the curve, then we feel that:

$$
\eta=\Phi^{*}(\Phi m-\underbrace{y}_{=\nabla ।}) \simeq \Delta u
$$

Figure 3: The certificate $|\eta|$ on the left, u on the right.

Amplitude and sliding steps

Amplitude and sliding steps

Amplitude optimisation

- we optimise the amplitude a of the new estimated curve;

Amplitude and sliding steps

Amplitude optimisation

Both amplitude and position optimisation

- we optimise the amplitude a of the new estimated curve;
- we perform a sliding: we optimise on both amplitudes a and positions γ.

Recap: iterate the algorithm

Figure 4: First step of first iteration: certificate and support of new curve estimated

Recap: iterate the algorithm

Figure 4: First step of first iteration: certificate and support of new curve estimated

Recap: iterate the algorithm

Amplitude optimisation

Figure 4: First iteration: second and third steps

Recap: iterate the algorithm

Amplitude optimisation

Both amplitude and position optimisation

Figure 4: First iteration: second and third steps

Recap: iterate the algorithm

Figure 4: Second iteration: another curve is found

Recap: iterate the algorithm

Figure 4: Second iteration: another curve is found

Final results

Reconstruction [Laville et al., 2023a].

Final results

Reconstruction [Laville et al., 2023a].

Another discretisation

- polygonal works well, under peculiar circumstances;

Another discretisation

- polygonal works well, under peculiar circumstances;
- Bézier curves holds nice regularity properties, encodes a curve with few control points

Another discretisation

- polygonal works well, under peculiar circumstances;
- Bézier curves holds nice regularity properties, encodes a curve with few control points
- Pro: always smooth curves. Cons: prone to shortening.

Partial conclusion

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;

Partial conclusion

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the vector operator definition;

Partial conclusion

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the vector operator definition;
- discretisation insights.

Partial conclusion

Recap

- Charge Sliding Frank-Wofe, an algorithm designed to recover off-the-grid curves in inverse problem;
- struggles with the vector operator definition;
- discretisation insights.

Still, there is room for improvements:

- define a scalar operator, further enabling curve reconstruction in fluctuation microscopy;
- improve the support estimation step;
- tackle the curve crossing issue.

Conclusion

Key points

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we proposed an off-the-grid method for fluorescence microscopy;

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we proposed an off-the-grid method for fluorescence microscopy;
- we bridged the gap in off-the-grid curve;

Take home messages

- off-the-grid methods yields compelling results (yet scarcely used by applicative researchers);
- we proposed an off-the-grid method for fluorescence microscopy;
- we bridged the gap in off-the-grid curve;
- we proposed a Charge Sliding Frank-Wolfe for curve reconstruction.

Perspectives

- application on real data images
(covariance with Ph.D. Aneva Tsafack, fissures, etc.);

Perspectives

- application on real data images (covariance with Ph.D. Aneva Tsafack, fissures, etc.);
- study the link between divergence vector fields \mathscr{V} and Radon measures on curves $\mathcal{M}(\Gamma)$;

Perspectives

Frame 1

- application on real data images (covariance with Ph.D. Aneva Tsafack, fissures, etc.);
- study the link between divergence vector fields \mathscr{V} and Radon measures on curves $\mathcal{M}(\Gamma)$;
- curves untangling with the Reeds-Shepp metric.

Perspectives

- application on real data images (covariance with Ph.D. Aneva Tsafack, fissures, etc.);
- study the link between divergence vector fields \mathscr{V} and Radon measures on curves $\mathcal{M}(\Gamma)$;
- curves untangling with the Reeds-Shepp metric.

Frame 8

Perspectives

Frame 20

- application on real data images (covariance with Ph.D. Aneva Tsafack, fissures, etc.);
- study the link between divergence vector fields \mathscr{V} and Radon measures on curves $\mathcal{M}(\Gamma)$;
- curves untangling with the Reeds-Shepp metric.

Perspectives

- application on real data images (covariance with Ph.D. Aneva Tsafack, fissures, etc.);
- study the link between divergence vector fields \mathscr{V} and Radon measures on curves $\mathcal{M}(\Gamma)$;
- curves untangling with the Reeds-Shepp metric.

Bredies et. al. 2022

Perspectives

- application on real data images (covariance with Ph.D. Aneva Tsafack, fissures, etc.);
- study the link between divergence vector fields \mathscr{V} and Radon measures on curves $\mathcal{M}(\Gamma)$;
- curves untangling with the Reeds-Shepp metric.

References i

Re Azais, J.-M., Castro, Y. D., and Gamboa, F. (2015).
Spike detection from inaccurate samplings.
Applied and Computational Harmonic Analysis, 38(2):177-195.
Boyer, C., Chambolle, A., Castro, Y. D., Duval, V., de Gournay, F., and Weiss, P. (2019). On representer theorems and convex regularization.
SIAM Journal on Optimization, 29(2):1260-1281.
囯 Bredies, K. and Carioni, M. (2019).
Sparsity of solutions for variational inverse problems with finite-dimensional data.
Calculus of Variations and Partial Differential Equations, 59(1).

囯 Bredies, K. and Pikkarainen, H. K. (2012).
Inverse problems in spaces of measures.
ESAIM: Control, Optimisation and Calculus of Variations, 19(1):190-218.
Candès, E. J. and Fernandez-Granda, C. (2013).
Towards a mathematical theory of super-resolution.
Communications on Pure and Applied Mathematics, 67(6):906-956.
嗇 Culley, S., Tosheva, K. L., Pereira, P. M., and Henriques, R. (2018).
SRRF: Universal live-cell super-resolution microscopy.
The International Journal of Biochemistry \& Cell Biology, 101:74-79.

References ifi

围 de Castro, Y., Duval, V., and Petit, R. (2021).
Towards off-the-grid algorithms for total variation regularized inverse problems.
In Lecture Notes in Computer Science, pages 553-564. Springer International Publishing.

圊 Dertinger, T., Heilemann, M., Vogel, R., Sauer, M., and Weiss, S. (2010). Superresolution optical fluctuation imaging with organic dyes. Angewandte Chemie International Edition, 49(49):9441-9443.

R Duval, V. and Peyré, G. (2014).
Exact support recovery for sparse spikes deconvolution.
Foundations of Computational Mathematics, 15(5):1315-1355.

References iv

Erank, M. and Wolfe, P. (1956).
An algorithm for quadratic programming.
Naval Research Logistics Quarterly, 3(1-2):95-110.
Raville, B., Blanc-Feraud, L., and Aubert, G. (2022).
Off-the-grid covariance-based super-resolution fluctuation microscopy.
In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
(Laville, B., Blanc-Féraud, L., and Aubert, G. (2023a).
Off-the-grid charge algorithm for curve reconstruction in inverse problems. In Lecture Notes in Computer Science, pages 393-405. Springer International Publishing.

圊 Laville, B., Blanc-Féraud, L., and Aubert, G. (2023b).
Off-the-grid curve reconstruction through divergence regularization: An extreme point result.
SIAM Journal on Imaging Sciences, 16(2):867-885.
Laville, B., Blanc-Féraud, L., and Aubert, G. (2021).
Off-The-Grid Variational Sparse Spike Recovery: Methods and Algorithms. Journal of Imaging, 7(12):266.

囯 Nehme, E., Weiss, L. E., Michaeli, T., and Shechtman, Y. (2018).
Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica, 5(4):458.

References vi

(1993).

Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows.
St. Petersburg Department of Steklov Institute of Mathematics, Russian Academy of Sciences, 5(4):206-238.

Reriopoulou, V., de Morais Goulart, J. H., Schaub, S., Calatroni, L., and Blanc-Feraud, L. (2021).
ColOrme: Covariance-based 10 super-resolution microscopy with intensity estimation.
2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI).

See our work and papers on
https://www-sop.inria.fr/members/Bastien.Laville/

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \supset \mathfrak{G}
$$

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right) \supset \mathfrak{G}
$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}} \in \mathcal{B}_{\mathscr{V}}^{1}$ and for $\lambda \in(0,1)$:

$$
\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}} .
$$

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right) \supset \mathfrak{G}
$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}} \in \mathcal{B}_{\mathscr{V}}^{1}$ and for $\lambda \in(0,1)$:

$$
\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}}
$$

By Smirnov's decomposition, $\boldsymbol{u}_{\boldsymbol{i}}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho_{i}(\boldsymbol{R})$ where ρ_{i} is a Borel measure.

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right) \supset \mathfrak{G}
$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}} \in \mathcal{B}_{\mathscr{V}}^{1}$ and for $\lambda \in(0,1)$:

$$
\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}} .
$$

By Smirnov's decomposition, $\boldsymbol{u}_{\boldsymbol{i}}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho_{i}(\boldsymbol{R})$ where ρ_{i} is a Borel measure. Also:
$\boldsymbol{u}_{1}, \boldsymbol{u}_{\mathbf{2}}$ has support included in μ_{γ} support, ditto for spt $\boldsymbol{R} \subset$ spt μ_{γ} [Smirnov, 1993];

Proof recipe I

First inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \supset \mathfrak{G}
$$

Let γ a simple Lipschitz curve and μ_{γ} the measure supported on this curve. By contradiction, let $u_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}} \in \mathcal{B}_{V}^{1}$ and for $\lambda \in(0,1)$:

$$
\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{2} .
$$

By Smirnov's decomposition, $\boldsymbol{u}_{i}=\int_{\mathscr{G}} \boldsymbol{R} \mathrm{d} \rho_{i}(\boldsymbol{R})$ where ρ_{i} is a Borel measure. Also:
$\boldsymbol{u}_{1}, \boldsymbol{U}_{\mathbf{2}}$ has support included in μ_{γ} support, ditto for spt $\boldsymbol{R} \subset$ spt μ_{γ} [Smirnov, 1993]; moreover, each R has maximal length implying spt $R=\operatorname{spt} \mu_{\gamma}$.

Proof recipe II

$\mathrm{spt} \boldsymbol{R}=\mathrm{spt} \mu_{\gamma}$.

Proof recipe II

spt $\boldsymbol{R}=$ spt μ_{γ}. Otherwise spt $\boldsymbol{R} \subsetneq$ spt $\mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$,

Proof recipe II

spt $\boldsymbol{R}=$ spt μ_{γ}. Otherwise spt $\boldsymbol{R} \subsetneq$ spt $\mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\mu_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathcal{V}}}$, therefore,

$$
\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R})<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R}),
$$

thus spt $R=$ spt μ_{γ},

Proof recipe II

spt $\boldsymbol{R}=$ spt μ_{γ}. Otherwise spt $\boldsymbol{R} \subsetneq$ spt $\mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\mu_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$, therefore,

$$
\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R})<\frac{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R}),
$$

thus spt $R=\mathrm{spt} \mu_{\gamma}$,
each R is supported on a simple Lipschitz curve γ_{R}.

Proof recipe II

spt $\boldsymbol{R}=$ spt μ_{γ}. Otherwise spt $\boldsymbol{R} \subsetneq$ spt $\mu_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\mu_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$, therefore,

$$
\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R})<\frac{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\boldsymbol{\gamma}}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R}),
$$

thus spt $\boldsymbol{R}=$ spt μ_{γ},
each R is supported on a simple Lipschitz curve γ_{R}.
Hence, each γ_{R} is a reparametrisation of γ yielding $R=\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\mathcal{V}}}$

Proof recipe II

spt $\boldsymbol{R}=$ spt μ_{γ}. Otherwise spt $\boldsymbol{R} \subsetneq$ spt $\boldsymbol{\mu}_{\gamma}\|\boldsymbol{R}\|_{\mathrm{TV}}<\frac{\left\|\mu_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$, therefore,

$$
\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R})<\frac{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathrm{TV}}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} \underbrace{\rho(\mathfrak{G})}_{=1}=\int_{\mathfrak{G}}\|\boldsymbol{R}\|_{\mathrm{TV}} \mathrm{~d} \rho(\boldsymbol{R}),
$$

thus spt $\boldsymbol{R}=\mathrm{spt} \mu_{\gamma}$,
each R is supported on a simple Lipschitz curve γ_{R}.
Hence, each γ_{R} is a reparametrisation of γ yielding $R=\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\gamma}}$, eventually:

$$
\boldsymbol{u}_{\boldsymbol{i}}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho_{i}=\int_{\mathfrak{G}} \frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} \mathrm{d} \rho_{i}=\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\boldsymbol{\mu}_{\gamma}\right\|_{\mathscr{V}}} \underbrace{\rho_{i}(\mathfrak{G})}_{=1}=\frac{\boldsymbol{\mu}_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}} .
$$

Contradiction, then μ_{γ} is an extreme point.

Proof recipe III

Second inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{Y}}^{1}\right) \subset \mathfrak{G}
$$

Proof recipe III

Second inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right) \subset \mathfrak{G}
$$

Let $T \in \operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)$, then there exists a finite (probability) Borel measure ρ s.t.:

$$
\boldsymbol{T}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R})
$$

Proof recipe III

Second inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right) \subset \mathfrak{G}
$$

Let $T \in \operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right)$, then there exists a finite (probability) Borel measure ρ s.t.:

$$
\boldsymbol{T}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R})
$$

either ρ is supported on a singleton of \mathfrak{G}, then there exists μ_{γ} s.t. $\boldsymbol{T}=\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$

Proof recipe III

Second inclusion:

$$
\operatorname{Ext}\left(\mathcal{B}_{\mathscr{V}}^{1}\right) \subset \mathfrak{G}
$$

Let $T \in \operatorname{Ext}\left(\mathcal{B}_{V}^{1}\right)$, then there exists a finite (probability) Borel measure ρ s.t.:

$$
\boldsymbol{T}=\int_{\mathfrak{G}} \boldsymbol{R} \mathrm{d} \rho(\boldsymbol{R}),
$$

either ρ is supported on a singleton of \mathfrak{G}, then there exists μ_{γ} s.t. $\boldsymbol{T}=\frac{\mu_{\gamma}}{\left\|\mu_{\gamma}\right\|_{\mathscr{V}}}$ or there exists a Borel set $A \subset \mathfrak{G}$ with arbitrary $0<\rho(A)<1$ and:

$$
\rho=|\rho|(A)\left(\frac{1}{|\rho|(A)} \rho\llcorner A)+|\rho|\left(A^{c}\right)\left(\frac{1}{|\rho|\left(A^{c}\right)} \rho\left\llcorner A^{c}\right) .\right.\right.
$$

Proof recipe IV

Then,

Proof recipe IV

Then,

$$
\boldsymbol{T}=|\rho|(A) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|(A)} \boldsymbol{R} \mathrm{d}(\rho\llcorner A)(\boldsymbol{R})]\right.}_{\operatorname{dof}=\boldsymbol{u}_{\mathbf{1}}}+|\rho|\left(\boldsymbol{A}^{c}\right) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|\left(A^{c}\right)} \boldsymbol{R} \mathrm{d}\left(\rho\left\llcorner A^{c}\right)(\boldsymbol{R})\right]\right.}_{\text {def }=\boldsymbol{u}_{2}}
$$

A is chosen (up to a neighbourhood) as a convex set, hence $u_{1}=\int_{A} R \mathrm{~d} \rho(R)$ belongs to A, while conversely $u_{2} \in A^{c}$, thus $u_{1} \neq \boldsymbol{u}_{2}$.

Proof recipe IV

Then,

$$
\boldsymbol{T}=|\rho|(A) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|(A)} \boldsymbol{R} \mathrm{d}(\rho\llcorner A)(\boldsymbol{R})]\right.}_{\text {def } \cdot \boldsymbol{u}_{\mathbf{1}}}+|\rho|\left(\boldsymbol{A}^{c}\right) \underbrace{\left[\int_{\mathfrak{G}} \frac{1}{|\rho|\left(A^{c}\right)} \boldsymbol{R} \mathrm{d}\left(\rho L A^{c}\right)(\boldsymbol{R})\right]}_{\text {deff }}
$$

A is chosen (up to a neighbourhood) as a convex set, hence $\boldsymbol{u}_{1}=\int_{A} \boldsymbol{R} \mathrm{~d} \rho(\boldsymbol{R})$ belongs to A, while conversely $\boldsymbol{u}_{2} \in A^{c}$, thus $\boldsymbol{u}_{1} \neq \boldsymbol{u}_{2}$. Eventually, thanks to Smirnov's decomposition:

$$
\begin{aligned}
\left\|\boldsymbol{u}_{\mathbf{1}}\right\|_{\mathscr{V}} & \leq \int_{\mathfrak{G}} \frac{1}{|\rho|(A)} \underbrace{\|\boldsymbol{R}\|_{\mathscr{V}}}_{=1} \mathrm{~d}(\rho L A)(\boldsymbol{R}) \\
& \leq \frac{|\rho|(A)}{|\rho|(A)}=1
\end{aligned}
$$

Proof recipe V

Then $u_{1}, \boldsymbol{u}_{\mathbf{2}} \in \mathcal{B}_{\mathscr{V}}^{1}$ while $\boldsymbol{u}_{1} \neq \boldsymbol{u}_{2}$, thus reaching a non-trivial convex combination:

$$
\boldsymbol{T}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}},
$$

Proof recipe V

Then $u_{1}, u_{2} \in \mathcal{B}_{\mathscr{Y}}^{1}$ while $u_{1} \neq u_{2}$, thus reaching a non-trivial convex combination:

$$
\boldsymbol{T}=\lambda \boldsymbol{u}_{\mathbf{1}}+(1-\lambda) \boldsymbol{u}_{\mathbf{2}},
$$

thereby reaching a contradiction, and therefore concluding the proof.

