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Abstract—Face recognition has been widely accepted as a
means of identification in applications ranging from border
control to security in the banking sector. Surprisingly, while
widely accepted, we still lack the understanding of uniqueness or
distinctiveness of faces as biometric modality. In this work, we
study the impact of factors such as image resolution, feature
representation, database size, age and gender on uniqueness
denoted by the Kullback-Leibler divergence between genuine
and impostor distributions. Towards understanding the impact,
we present experimental results on the datasets AT&T, LFW,
IMDb-Face, as well as ND-TWINS, with the feature extraction al-
gorithms VGGFace, VGG16, ResNet50, InceptionV3, MobileNet
and DenseNet121, that reveal the quantitative impact of the
named factors. While these are early results, our findings indicate
the need for a better understanding of the concept of biometric
uniqueness and its implication on face recognition.

I. INTRODUCTION

Biometrics is the science of identifying humans based on
their physical, behavioral or psycho-physiological characteris-
tics [20], with one assumption being that such characteristics
are unique. Uniqueness refers to the ability of a biometric
modality to distinguish between individuals, indicating how a
biometric characteristic varies across the population. Conse-
quently, an individual possesses high biometric uniqueness, if
the distance distribution of their genuine (mated) comparison
scores is well separated from the distance distribution of
impostor (non-mated) comparison scores. Hence, an individual
is less unique if their genuine and impostor distributions signif-
icantly overlap (see Figure 1). We note that while a similarity
match score represents a genuine score if it is a result of
matching two biometric samples of the same individual, an
impostor score refers to comparing of two biometric samples
originating from different individuals [18].
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Fig. 1. Genuine and impostor score distributions in a setting with relatively
unique subjects (left), as well as a setting with similar subjects (right).

The amount of biometric information is influenced by a set
of factors including facial expression, pose, image resolution,
distortion, noise or blur [9]. Moreover, the general population

includes family members, a large number of twins (3% in the
US between 2014–2018 [25]), as well as doppelgangers1 (see
Figure 2), all of which inherently lower the overall uniqueness
of faces in a dataset.

However, the knowledge of distinctiveness of face is incom-
plete and often relegated to anecdotal interpretation of error
rates rather than a systematic exploration of the biology of the
characteristics [2], [19], [30]. Hence, we lack an estimate for
the upper bound of the amount of discriminatory information
contained in a face.

Fig. 2. Are faces unique? Images of identical twins (left) and doppelgangers
(right). The anthropology project Twinstrangers has the goal to identify
doppelgangers across the world.

Such upper bound can be estimated on the level of extracted
features. Generally speaking, class separability of the feature
space directly corresponds to accuracy of the estimate. In
the context of soft biometrics [6], distinctiveness has to do
with collision, or equivalently interference, which describes
the event where any two or more subjects belong in the same
category of soft biometrics (e.g., female, dark hair, tall) [3]–
[5], [7]. We note that this is related to the Birthday para-
dox [11] and named works answered questions such as: How
large can a population become before it is likelier than not
that at least two persons in the group collide biometrically?

It is known that users of a biometric system may exhibit
statistically different degrees of accuracy within the system,
which relates to variations in uniqueness across subjects.
While some users may experience challenges in authentica-
tion, others may be particularly vulnerable to impersonation.
The Doddington’s zoo [10], [29], [31] has been frequently
used to quantify this phenomenon and specifically to classify
users based on verification performance, when users are com-
pared against themselves and against others. Associated major
classes include: (a) sheep: users who are easy to recognize;
(b) goats: users who are difficult to recognize; (c) lambs: users
who are easy to imitate; and (d) wolves: users who can easily
imitate others. Easy imitation contributes to False Acceptance

1https://twinstrangers.net/
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Rate and difficult recognition to False Rejection Rate. This
concept was extended in the biometric menagerie [14] (see
Figure 3), with additional classes: (e) chameleons: users who
are easy to recognize and easy to imitate; (f) phantoms: users
who are difficult to recognize and difficult to imitate; (g) doves:
users who are easy to recognize and difficult to imitate; and
(h) worms: users who are difficult to recognize and easy to
imitate. Hence, the distribution of a given dataset in such
classes impacts the accuracy of a face recognition system on
the dataset.
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Fig. 3. Animal groups distinguished by Doddington’s zoo according to [14].
Left figure shows the distribution for match-based classification and the right
one for entropy-based classification.

Motivated by the above, we here aim to provide new insight
on the topic of facial uniqueness by investigating the impact of
feature extractors (in particular six CNN-based feature extrac-
tors: VGGFace, VGG16, ResNet50, InceptionV3, MobileNet
and DenseNet121), dataset size (see Section VI-A), image
resolution (see Section VI-B), as well as age and gender (see
Section VI-C), on the four datasets AT&T, LFW, IMDb and
TWINS. Additionally, we identify a potential limitation of the
used uniqueness score and propose an additional uniqueness
score, which reflects the common occurrence of persons, who
look alike (twins, family members and doppelgangers).

II. RELATED WORK

There have been numerous early attempts to quantify bio-
metric uniqueness, distinctiveness and entropy. A key esti-
mator of biometric information related to uniqueness was
defined by Adler et al. [1] as the decrease in uncertainty
about the identity of a person due to a set of biomet-
ric measurements. This measure was subsequently used by
Sutcu et al. [36], Takashi and Murakami [38], as well as
Gomez-Barrero et al. [12]. Similar uniqueness considerations
were applied towards improving template protection [12] and
performance of biometric systems [21]. Further, facial entropy
was quantified and was found to range from 2.6 bits [26]
to 55 bits [1]. Recent work of Krivokuća and Marcel [22]
on fingervein entropy estimated discriminatory information in
fingervein patterns by calculating the number of features used
to differentiate between different fingers.

While such works have used different measures of biometric
information, what they have in common is the calculation of
entropy, which relates to the inter-class variance that can be

artificially increased by including a larger number of features.
In order to be independent of the number of extracted features
and thus to more accurately estimate the intrinsic information,
we also need to consider intra-class variance. Both of these
variances are encompassed in our proposed biometric unique-
ness score based on the Kullback-Leibler divergence [24], also
denoted as relative entropy, between genuine and impostor
distributions. By its definition below, KL-divergence weighs
resistance to both false acceptance and false rejection.

In the context of iris and iris code in particular, an iris
uniqueness has been determined by Daugman [8], [9]. Therein
28% of the bits in two IrisCodes are allowed to disagree
while still accepting them as a match, resulting in a false
match rate of 1 in 92 billion. Given the fixed length of
the standardized IrisCode, we consider this rate as an exact
indicator of uniqueness in irises.

For the purpose of texture-based generation of fingerprint
images, Yankov et al. [42] used generative models to estimate
upper bounds on the image entropy for systems with small
sensor acquisition. They estimated the identification capacity
of such systems using the mutual information between differ-
ent samples from the same finger.

We proceed with describing the uniqueness measure to
quantify the identification capacity of faces based on a similar
concept.

III. UNIQUENESS AS A DIVERGENCE

Takahashi et al. [39] showed that a decrease in uncertainty
with respect to identity of an unknown biometric characteristic
can be formulated in terms of mutual information

I (X;Y ) = H(X)−H(X|Y ) (1)

with H(X) as the marginal entropy, i.e., uncertainty of X ,
and H(X|Y ) as the conditional entropy, i.e., uncertainty of X
given the observation of Y . In addition, the authors showed
that I (X;Y ) can be approximated by the Kullback-Leibler
divergence of genuine PG(d) and impostor PI(d) probability
distributions

I (X;Y ) ≈ D
(
PG

∥∥PI

)
=
∑
d

PG(d) log
PG(d)

PI(d)
, (2)

where d denote observed dissimilarities between pairs of
samples constituting a genuine or impostor observations.

We here note that an average norm estimator can be used to
calculate the value of D

(
PG

∥∥PI

)
from the dissimilarities of

samples without computing any probability models [35]. Let
G and I be i.i.d. sets of samples with mutual dissimilarities
forming the distributions PG and PI , respectively. Then, the
average norm estimator of the KL-divergence is defined as

D
(
PG

∥∥PI

)
≈ D̂(G, I) =

1

|G|
∑
g∈G

log
δg(I)

δg(G)
+ log

|I|
|G| − 1

,

(3)
where

δs(S) =
1

|S \ {s}|
∑

s′∈S\{s}

‖s− s′‖2 (4)



represents mean of the Euclidean norms between a sample s
and all samples from the set S eventually without s.

Calculation of D
(
PG

∥∥PI

)
can be sped up by approximation

with random sampling. In order to ensure that the score is not
biased towards the distribution of a certain random subset, we
calculate the divergence as the average of n different random
subset choices. We note that random samples are a sounder
representation of the underlying distribution as compared to
for example nearest neighbors. Furthermore, for the divergence
to mainly depend on the genuine-impostor distributions rather
than the count distribution, we choose the subsets G′⊆G and
I ′⊆I to contain r + 1 and r random samples from G and I ,
respectively. Equation 3 then transforms to

D̂n,r(G, I) =
1

n

n∑
k=1

1

r

∑
g∈G′

log
δg(I ′)

δg(G′)
+ log

r

r


=

1

nr

n∑
k=1

∑
g∈G′

log
δg(I ′)

δg(G′)
.

(5)

In our experiments, we calculate KL-divergence from the
above definition using all available genuine data

r = min(|G| − 1, |I|) (6)

so as to obtain the most accurate approximation of the genuine
and impostor distributions and

n = d100/re (7)

random subset choices which we believe is sufficiently large
to prevent a potential bias. For very large datasets that have
too many samples of individual subjects, one can take a
smaller r to estimate the divergence for reasons of efficiency.
Slightly abusing annotation, in the following we will refer to
D̂d100/min(|G|−1,|I|)e,min(|G|−1,|I|) as to simply D̂.

Let a dataset S have c subjects and let Sp ⊂ S denote a
set of samples that belong to subject p. The KL-divergence
estimate on this dataset is defined as the average D̂ across all
subjects

D̄(S) =
1

c

c∑
p=1

D̂(Sp, S\{Sp}) , (8)

where impostor distribution is calculated from the whole
remainder of the dataset S\{Sp}.

Finally, since there is a common practice of normalizing
biometric scores to the interval (0, 1), we define the impostor-
based biometric uniqueness U of a given dataset S as the
estimated and sigmoid-normalized divergence

U(S) =
1

1 + e−D̄(S)
. (9)

Note that while U(S) close to 1 indicates that subjects are
highly unique, a lower uniqueness indicates that the genuine
and impostor distributions are increasingly overlapping. Also
note that the uniqueness score is defined as an exponential
function with base e, which means that even a small variation
in the uniqueness score has a rather significant effect.

IV. DATASETS

In this section we briefly present the four used datasets:
AT&T, LFW, IMDb and TWINS. We summarize details in
Table I.
• AT&T Database of Faces (AT&T) [33] contains face

images acquired in the laboratory conditions, with a
dark homogeneous background. Subjects are captured
in an upright, frontal position. There are 10 different
images of each of 40 subjects. Covariates include lighting,
facial expressions, open or closed eyes, as well as facial
accessories such as glasses.

• Labeled Faces in the Wild (LFW) [17] was designed
for studying the problem of unconstrained face recog-
nition. The dataset contains 5,749 distinct subjects with
13,233 images of faces collected from the web and hence
incorporates highly unconstrained conditions. We select
9,164 images of 1,680 subjects, with two or more images
in the dataset. Faces were detected and cropped by the
Viola-Jones face detector [40].

• IMDb-Face (IMDb) [41] is a large-scale noise-controlled
dataset for face recognition research, containing about
1.7M faces of 59K identities, which is a manually cleaned
subset of the original 2M raw images. All images were
obtained from the IMDb website. We select 1,167,509
images associated to 10,347 identities. IMDb contains
gender and age annotations, which allow us to perform
additional experiments on subsets pertained to gender and
age. See statistics in Table II.

• ND-TWINS-2009-2010 (TWINS) [28] dataset was col-
lected by the University of Notre Dame in the years
2009-2010 and comprises 24,050 color photographs of
435 attendee faces captured at the Twins Days Festival
under natural light in indoor and outdoor configurations.
Facial yaw varies from −90 to +90 degrees in steps of 45
degrees. We use a set of cropped 23,762 images, where
we detect faces with the MTCNN detector [43].

TABLE I
SIZES OF DATASETS WITH MEAN AND STANDARD DEVIATION STATISTICS,

GENDER AND ETHNICITY DISTRIBUTIONS.

AT&T LFW IMDb TWINS
total number of subjects 40 1,680 10,347 435
total number of samples 400 9,164 1,167,509 23,762

mean/st.d. samples per subject 10.0/0.0 5.5/16.3 112.8/70.5 54.6/36.1
% female/male 10/90 23/77 40/60 75/25

% African/Asian/Caucasian 2/0/98 9/8/83 12/23/65 12/1/84

TABLE II
NUMBERS OF SUBJECTS IN IMDB BY AGE AND GENDER.

full male female 0-9 10-19 20-29 30-39
10,347 6,215 4,132 159 856 2558 3031
40-49 50-59 60-69 70-79 80-89 90-99 100-109
1876 1024 522 227 77 14 2



V. ALGORITHMS

We select six state-of-the-art convolutional neural networks
(CNNs), which have excelled in a number of face recognition
and classification tasks that we proceed to describe.

• VGGFace [27] is a 16-layer CNN, trained on the VG-
GFace dataset comprising over 2M celebrity images.
Given a 224×224 input image, the network extracts 4,096
image features from the output of the 6-th fully connected
layer.

• VGG16 [34] constitutes the same 16-layer CNN, how-
ever trained on over 1M images from the ImageNet
database [32]. We use 4,096 features, provided as output
by the second fully connected layer.

• ResNet50 [13] represents a 50-layer CNN, also trained on
ImageNet. As a result of having a large amount of layers,
the network has learned rich feature representations for
a wide range of images. Similar as the above networks,
ResNet50 accepts as input an image of size 224×224.
The 2,048 related ResNet50 features are provided by the
last convolutional layer.

• InceptionV3 [37] is a 48-layer CNN trained on Im-
ageNet. We obtain 2,048 features from the last fully
connected layer.

• MobileNet [15] is a 56-layer CNN trained on ImageNet,
which has been optimized for mobile devices. MobileNet
extracts a 1,000-dimensional feature vector.

• DenseNet121 [16] is a 121-layer CNN trained on Ima-
geNet. The layer structure involves more narrow layers
as opposed to ResNet50. The total number of layers is
determined by 5 plus two blocks of 58 layers, the last of
which results in a 1,024-dimensional feature vector.

VI. EXPERIMENTS

We conduct a set of experiments on the above enlisted
datasets with the above named algorithms. We report in each
experiment the uniqueness score U, as denoted in Equation 9.
We note that small variations in U can indicate large differ-
ences in uniqueness due to the exponential function in the
denominator in Equation 8. We proceed to investigate U with
respect to following factors.

A. Datasets

In the first experiment, we study the uniqueness score
across datasets of different size and setting. Related scores are
reported in Table III. We note that dataset size is pertinent,
as in large datasets it is more likely to encounter similar
faces, and the related probability of collision is higher as
opposed to small datasets. As expected, AT&T encompasses
higher uniqueness scores, due to its small size, as well as
constrained acquisition conditions. With respect to features, we
see that VGGFace features are systematically outperforming
the other networks w.r.t. uniqueness and hence distinctiveness.
We believe it is because VGGFace was trained on faces as
opposed to other models trained on ImageNet.

TABLE III
UNIQUENESS EVALUATED ON FULL AT&T, LFW, IMDB AND TWINS,

WITH RESOLUTION 224×224.

AT&T LFW IMDb TWINS
VGGFace 0.6710 0.5637 0.5420 0.5591

VGG16 0.6417 0.5364 0.5381 0.5339
ResNet50 0.6650 0.5364 0.5330 0.5574

InceptionV3 0.5915 0.5293 0.5272 0.5242
MobileNet 0.6204 0.5353 0.5299 0.5301

DenseNet121 0.6338 0.5302 0.5309 0.5268

B. Image Resolution

We proceed to investigate five image resolutions, namely
224×224, 112×112, 64×64, 48×48 and 36×36, of the
cropped face images of our datasets, all of them in RGB. Given
that some of the CNNs take an input of size 224×224, we
apply a lossy data conversion by first downscaling the image
to a given resolution and subsequently upscaling it to 224×
224, in order to fit the standardized input size. We observe
that resolution has a surprisingly low effect on uniqueness, as
shown in Table IV.

For this experiment we provide an additional measure
related to uniqueness, namely the image entropy calculated
by

H = −
C∑

c=1

pc · log2 (pc) , (10)

where C is the color depth, pc is probability of color c, that is,
number of pixels of color c by total number of pixels. We see
that while H decreases proportionally with resolution, U(S)
is not substantially affected.

TABLE IV
UNIQUENESS (AND MEAN IMAGE ENTROPY) EVALUATED ON FULL AT&T,

LFW, IMDB AND TWINS, WITH VGGFACE FEATURE EXTRACTION
ALGORITHM.

AT&T LFW IMDb TWINS
224×224 0.6710 (68.8) 0.5637 (87.4) 0.5420 (43.9) 0.5591 (27.8)
112×112 0.6725 (64.0) 0.5636 (70.1) 0.5418 (38.1) 0.5590 (25.3)

64×64 0.6620 (60.4) 0.5635 (59.3) 0.5405 (32.1) 0.5581 (23.3)
48×48 0.6485 (55.5) 0.5637 (34.4) 0.5385 (27.9) 0.5566 (21.9)
36×36 0.6241 (51.2) 0.5603 (19.0) 0.5345 (20.4) 0.5522 (19.7)

C. Subsets

We investigate the effect of gender and age on the unique-
ness score in the dataset IMDb, since related annotations are
provided. Results for the gender split are depicted in Table V.
Intuitively, the full dataset reflects a higher uniqueness than
the gender subsets, which are likely to include more similar
faces of only females and only males.

A similar claim can be made w.r.t. age split. Results in
Figure 4 show a decrease in uniqueness in all 10-year age-
subsets compared to the full IMDb dataset. Moreover, we
observe a slight trend of lower uniqueness scores associated
with all algorithms for infants and seniors, and of higher
uniqueness for middle-aged people. This can be related to the
other-age-effect observed in psychology [23].
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Fig. 4. Uniqueness evaluated on full IMDb compared to its split into 10-year blocks.

TABLE V
UNIQUENESS EVALUATED ON FULL IMDB WITH RESOLUTION 224×224

COMPARED TO ITS SPLITS INTO GENDERS.

full female male
VGGFace 0.542 0.535 0.532

VGG16 0.538 0.520 0.521
ResNet50 0.533 0.519 0.525

InceptionV3 0.527 0.511 0.514
MobileNet 0.530 0.514 0.516

DenseNet121 0.531 0.515 0.517

VII. LIMITATION OF Ū AND INTRODUCTION OF ŪMIN

We recall the definition of the uniqueness score in Equa-
tion 8, where impostors are randomly drawn from the whole
remainder of the dataset. Under this definition, given a dataset
of N subjects, replacing half of the subjects with twins of
the already included subjects, would lower the divergence by
a factor of 1/N . Hence the divergence of a dataset of 100
twins will be about 99% of the divergence of non-twin dataset,
which is negligible and therefore represents a limitation of the
used divergence estimate D̄. For an application that requires
a significant impact of occurrence of twins on the uniqueness
score, we propose a revised divergence estimate D̄MIN, which
places emphasis on the most similar impostor instead of
all remaining people. This amendment moves the impostor
distribution towards genuine mildly for general population
datasets and significantly for twin datasets.

Let a dataset S have c subjects and Sp ⊂ S denote a set
of samples that belong to the subject p. As an alternative, the
minimum KL-divergence estimate on this dataset is defined as
the minimum D̂ across all pairs of subjects

D̄MIN(S) =
1

c

c∑
p=1

minc
q=1
q 6=p

D̂(Sp, Sq) , (11)

where impostor distribution is calculated from the samples Sq

of only the subject q with the closest distribution to Sp. The
corresponding alternative uniqueness scores UMIN, calculated
using D̄MIN as

UMIN(S) =
1

1 + e−D̄MIN(S)
, (12)

are reported in Table VI. We observe that while the
AT&T dataset based on D̄MIN has a slightly lower
UMIN(AT&T) score than U(AT&T), the TWINS dataset
drops D̄MIN(TWINS) ≈ 0 and so UMIN(TWINS) ≈ 0.5,
as desired.

TABLE VI
UNIQUENESS EVALUATED ON 224×224 RESOLUTION WITH ORIGINAL

AND MINIMUM DIVERGENCE ESTIMATES.

U UMIN

AT&T TWINS AT&T TWINS
VGGFace 0.671 0.559 0.632 0.507

VGG16 0.642 0.534 0.582 0.491
ResNet50 0.665 0.557 0.542 0.449

InceptionV3 0.592 0.524 0.542 0.485
MobileNet 0.620 0.530 0.570 0.498

DenseNet121 0.634 0.527 0.577 0.494

VIII. CONCLUSIONS

In this work we presented preliminary results on the impact
of factors such as image resolution, gender, age, datasets, as
well as feature extraction algorithms on facial uniqueness.
This is the first work that systematically studies such fac-
tors. We provided clear experimental evidence of decrease in
the uniqueness score, in the case that (a) image resolution
decreases, (b) a single gender is observed, (c) a smaller
age group is observed, (d) a larger dataset is used, as well
as (e) different feature extractors are used. We illustrated
that while feature representation and dataset size significantly
affect the uniqueness score, image resolution has a negligi-
ble impact. Further, we proposed an alternative uniqueness
estimate, which reflects on the presence of twins. Future work
will involve establishing a more detailed experimental protocol
that among others will aim at quantifying the impact of facial
symmetry on uniqueness. Further, common notions of facial
entropy, distinctiveness, diversity, complexity, averageness and
attractiveness, and their associated relations are to be explored.
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