
Synchronous language for formal

validation - application to CEP

(complex event processing)

Annie Ressouche & Ines Sarray

Inria-sam (stars)

{annie.ressouche, ines.sarray}@inria.fr

http://www-sop.inria.fr/members/Annie.Ressouche/teaching.html

2

Entity of Interest

Introduction

• Middleware for IoT may be used to
design critical applications.

• How ensure a correct behavior of
applications and services sharing same
device accesses ?

• Apply general techniques used to develop
critical software

Outline

1. Critical system validation

2. Model-checking solution

1. Model specification

2. Model-checking techniques

3. Application to middleware for IoT

1. Introduction in middleware design of
synchronous components to allow validation

2. Synchronous/asynchronous issue

Outline

1. Critical system validation

2. Model-checking solution

1. Model specification

2. Model-checking techniques

3. Application to component based adaptive
middleware

1. Introduction in middleware design of
synchronous components to allow validation

2. Synchronous/asynchronous issue

Critical Software

A critical software is a software whose failing

has serious consequences:

• Nuclear technology

• Transportation

•Automotive

•Train

•Aircraft construction

…

Critical Software

• In addition, other consequences are relevant
to determine the critical aspect of software:

• Financial aspect

• Loosing equipment, bug correction

• Equipment callback (automotive)

• Bad advertising

Example: Ariane5 launcher

• 9 Jul 1996 Ariane5 launcher explodes
• Same software as Ariane4
• Causes:

• Variable to carry horizontal acceleration encoded
with 8 bits (ok for Ariane4, not sufficient for
Ariane5)

• Result: variable overflow
• The rocket had an incorrect trajectory and

engineers blow it up
• Cost: > 1 million euros (2 satellites lost)

Software Classification

A Catastrophic (human life loss)

B Dangerous (serious injuries, loss
of goods)

C Major (failure or loss of the
system)

D Minor (without consequence on
the system)

E Without effect

Example of the aeronautics norm
DO178B:

Depending of the level of risk
of the system, different kinds
of verification are required

Software Classification

Minor acceptable situation

Major

Dangerous Unacceptable situation

catastrophic 10-3 / hour 10-6 /

hour

10-9/hour 10-12
/hour

probabilities probable rare very rare very
improbable

How Develop critical software ?

Classical Development U Cycle

investigation
Qualification

in laboratory
in operation

specification

design

development tests

integration

validation

tests white box

tests black box

tests of integrated system

09/01/2017 11

How Develop Critical Software ?

• Cost of critical software development:
• Specification : 10%

• Design: 10%

• Development: 25%

• Integration tests: 5%

• Validation: 50%

• Fact:

– Earlier an error is detected, less expensive its
correction is.

09/01/2017 12

Cost of Error Correction

09/01/2017 13

error detection time

cost of
error

correction

Put the effort on the upstream phase

development based on models

How Develop Critical Software ?

• Goals of critical software specification:

– Define application needs

•  specific domain engineers

– Allowing application development

• Coherency

• Completeness

– Allowing application functional validation

• Express properties to be validated

 Formal model usage
09/01/2017 14

Critical Software Specification

• First goal: must yield a formal description of

the application needs.

• Second goal: allowing errors detection

carried out upstream.

• Third goal: make easier the transition from

specification to design

09/01/2017 15

How Develop Critical Software

test reuse
test coverage

test generation
MODEL

proofs

code

automatic code
generation

functional
validation

abstract
interpretation

simulation

no more
integration tests

Critical Software Validation

• What is a correct software?

– No execution errors, time constraints
respected, compliance of results.

• Solutions:

– At model level :
• Simulation

• Formal proofs

– At implementation level:
• Test

• Abstract interpretation

Validation Methods

• Testing

– Run the program on set of inputs and check the
results

• Static Analysis

– Examine the source code to increase confidence
that it works as intended

• Formal Verification

– Argue formally that the application always works as
intended

Testing

• Dynamic verification process applied at

implementation level.

• Feed the system (or one if its components)

with a set of input data values:

– Input data set not too large to avoid huge time

testing procedure.

– Maximal coverage of different cases required.

09/01/2017 19

Program Testing

Concrete semantics

Test coverage
errors

all program executions

executions tested ok

undetected
failure

“Testing only highlights
bugs but not ensure their
absence “ (E. Dijkstra)

09/01/2017 20

Static Analysis

• The aim of static analysis is to search for

errors without running the program.

• Abstract interpretation = replace data of

the program by an abstraction in order to

be able to compute program properties.

• Abstraction must ensure :

• A(P) “correct”  P correct

• But A(P) “incorrect”  ?

09/01/2017 21

Static Analysis: example

abstraction: integer by intervals

1: x:= 1;

2: while (x < 1000) {

3: x := x+1;

4: }

x1 = [1,1]

x2 = x1 U x3 ∩ [-∞, 999]

x3 = x2  [1,1]

x4 = x1 U x3 ∩ [1000, ∞]

Abstract interpretation theory  values

are fix point equation solutions.

09/01/2017 22

Formal Verification

• What about functional validation ?

– Does the program compute the expected outputs?

– Respect of time constraints (temporal properties)

– Intuitive partition of temporal properties:

• Safety properties: something bad never happens

• Liveness properties: something good eventually
happens

Safety and Liveness
Properties

• Example: train timetable

– Count the difference between marks and seconds

– Decide when the train is ontime, late, early

– ontime : difference = 0

– late : difference > 3 and it was ontime before or
difference > 1 and it was already late before

– early : difference < -3 and it was ontime before or
difference < -1 and it was early before

Safety and Liveness
Properties

• Some properties:

1. It is impossible to be late and early;

2. It is impossible to directly pass from late to early;

3. It is impossible to remain late only one instant;

4. If the train stops, it will eventually get late

• Properties 1, 2, 3 : safety

• Property 4 : liveness

Safety and Liveness Properties

Some properties:

1. It is impossible to be late and early;

2. It is impossible to directly pass from late to early;

3. It is impossible to remain late only one instant;

4. If the train stops, it will eventually get late

Properties 1, 2, 3 : safety

Property 4 : liveness (refer to unbound future)

Outline

1. Critical system validation

2. Model-checking solution

1. Model specification

2. Model-checking techniques

3. Application to middleware for IoT

1. Introduction in middleware design of
synchronous components to allow validation

2. Synchronous/asynchronous issue

Safety and Liveness Properties
Checking

• Use of model checking technique

• Model checking goal: prove safety and
liveness properties of a system in analyzing
a model of the system.

• Model checking techniques require:

– model of the system

– express properties

– algorithm to check properties againts the
model ( decidability)

Model Checking Techniques

• Model = automata which is the set of program
behaviors

• Properties expression = temporal logic:

– LTL : liveness properties

– CTL: safety properties

• Algorithm =

– LTL : algorithm exponential wrt the formula size
and linear wrt automata size.

– CTL: algorithm linear wrt formula size and wrt
automata size

Model Checking Model

• Model = finite state machine (automata) which is the
set of program behaviors

• Kripke structure:
• non deterministic automata

• Oriented graph

• Nodes are program states

• To each state , a set of atomic (basic) properties is
associated

3009/01/2017 30

Model Checking Model

• Model = finite state machine (automata) which is the
set of program behaviors

• Kripke structure over AP (set of atomic propositions)
• A finite set of states (S)

• A set of initial states I ⊆ S
• A transition relation R ⊆ S x S | ∀s ∊ S, ∃ s’ ∊ S and (s,s’)

∊ R
• A labeling function L: S → AP

• How specify such a model ?

3109/01/2017 31

Model Specification

• Model = Mealy automata which is the set of
program behaviors (deterministic)

• A Mealy automata is composed of:
1. A finite set of states (Q)

2. A finite alphabet of triggers (T)

3. A finite alphabet of actions (A)

4. An initial state (qinit € Q)

5. A transition function δ: Q x T → Q
6. An output function λ : Q x T → 2 A

32

Notation: a transition is denoted q1 q2
t/a

Model Specification

• Model = Mealy automata which is the set of
program behaviors

Example: Traffic Light

trigger: tick, reset

action:green,orange,red

Model Specification

Mealy automata = Kripke structure

• AP = T ∪ A
• S ⊆ Q x 2AP ; {(q, v) |∃ q q’ and v = {t} ∪a or v = ⌀ }
• I = {qinit } x 2AP ⋂ S
• R = {(q,v), (q’,v’) | ∃ q q’ and v = {t} ∪a and (q’,v’) ∊ S
• L(q,v) = v

t/a

t/a

Model Specification

Mealy automata = Kripke structure

Implicit vs Explicit Mealy

Machine

• Mealy automata is an explicit Mealy Machine

• Implicit representation as Boolean equation

system with registers.

• M = <Q, qinit, T, A, δ, λ> ξ (M) = < T ∪ A, R, D>:

– R: Boolean registers

– D : definitions or equations of the form x=e

• X ∊ A ∪ R+ and e Boolean expr built from T ∪ R

• States are encoded as register combination: {q1,q2,q3} is

encoded with 2 registers r1, r2 and a possible encoding is : 00,

01,10

• For each state, δ and λ encoded with truth tables

09/01/2017 36

Implicit vs Explicit Mealy
Machine

Registers: X0, X1
Initial values: X0 = 0 and X1 = 0

X0next = not X0 and not X1;
X1next = X0;

orange = not X0 and not X1 and tick;
green = not X0 and X1 and tick;
red = X0 and not X1 and tick;

00 10

01

Model Checking

How design Mealy automata ?

Use synchronous languages to specify critical

systems.

Synchronous programs = Mealy automata

Model Specification with Synchronous
Languages

1. Synchronous languages have a simple formal
model (a finite state machine) making formal
reasoning tractable.

2. Synchronous languages support concurrency
and offer an implicit or explicit means to express
parallelism.

3. Synchronous languages are devoted to design
reactive systems.

Determinism & Reactivity

• Synchronous languages are deterministic and reactive

• Determinism:
• The same input sequence always yields the same output

sequence

• Reactivity:
• The program must react(*) to any stimulus

• Implies absence of deadlock
• (*) Does not necessary generate outputs, the reaction may change internal state only.

Synchronous Modelling

41

 Atomic execution of the reaction

 Logical time

 Well founded

 Liable to formal analysis

Time

Atomic Reaction

I1 I2

O1
O2

Synchronous Hypothesis

• Synchronous languages work on a logical time.

• The time is

– Discrete

– Total ordering of instants.

• A reaction executes in one instant.

• Actions that compose the reaction may be
partially ordered.

Use N as time base

Synchronous Hypothesis

• Communications between actors are also
supposed to be instantaneous.

• All parts of a synchronous model receive
exactly the same information (instantaneous
broadcast).

• Outcome: Outputs are simultaneous with
Inputs (they are said to be synchronous)

• Thanks to these strong hypotheses, program
execution is fully deterministic.

Reactive ?

• Different ways to “react” to the environment:

– Event driven system:

• Receive events

• Answer by sending events

– Data flow system:

• Receive data continuously

• Answer by treating data continuously also

Some systems
have components of
both kinds

Event Driven Reactive
System

landing

open gear door

gear door opened gear down

push down gear block gear

Langing gear management

Data Flow Reactive System
(Example)

sensors

navigation

guidance

piloting

operators

P
e
ri
o
d
ic

 p
ro

ce
ss

u
s

• get measures

• where am I ?

• where go I ?

• command computation

• command to operators

Control/Command vehicle

Imperative and

Declarative languages

• Different ways to express synchronous

programs:

1. Imperative languages rely on implicitly or

explicitly finite state machines, well suited

to design event driven reactive system

2. Declarative languages rely on operator

networks computing data flows, well suited

to design data flow reactive system

Synchronous programs = Mealy Automata

09/01/2017 47

Model Checking Technique

• Model = automata which is the set of program
behaviors

• Properties expression = temporal logic:
– LTL : liveness properties

– CTL: safety properties

• Algorithm =
– LTL : algorithm exponential wrt the formula size and

linear wrt automata size.

– CTL: algorithm linear wrt formula size and wrt
automata size

48

Properties Checking

• Liveness Property  :

–  automata B()

– L(B()) =  decidable

–  |= M : L(M B(~)) = 

Reference:
“LTL Model Checking, in All About Maude- A High-Performance Logical

Framework: How to Specify, Program and Verify Systems in Rewriting
Logic”

Pages 385-418, Ed: Springer Berlin Heidelberg

@Inbook{Clavel2007, author="Clavel, Manuel and Dur{\'a}n, Francisco and Eker, Steven and Lincoln, Patrick and Mart{\'i}-Oliet, Narciso and Meseguer, Jos{\'e} and Talcott, Carolyn", title="LTL Model Checking", bookTitle="All About Maude

@Inbook{Clavel2007, author="Clavel, Manuel and Dur{\'a}n, Francisco and Eker, Steven and Lincoln, Patrick and Mart{\'i}-Oliet, Narciso and Meseguer, Jos{\'e} and Talcott, Carolyn", title="LTL Model Checking", bookTitle="All About Maude

Safety Properties

• CTL formula characterization:

– Atomic formulas

– Usual logic operators: not, and, or ()

– Specific temporal operators:

• EX, EF, EG

• AX, AF, AG

• EU(1 ,2), AU(1 ,2)

Safety Properties Verification

We call Sat() the set of states where  is true.

M |=  iff sinit  Sat().

Algorithm:

Sat() = { s |  |= s}

Sat(not ) = S\Sat()

Sat(1 or 2) = Sat(1) U Sat(2)

Sat (EX ) = {s |  t  Sat() , s → t} (Pre Sat())

Sat (EG ) = gfp ((x) = Sat()  Pre(x))

Sat (E(1 U 2)) = lfp ((x) = Sat(2) U (Sat(1)  Pre(x))

Example

s0
s1

s2

s3 s4

atomic formulas: a, b, cab

a,b,c

c
b,c

EG (a or b) gfp ((x) = Sat(a or b)  Pre(x))

({s0, s1, s2, s3, s4}) = Sat (a or b)  Pre({s0, s1, s2, s3, s4})

({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}  {s0, s1, s2, s3, s4}

({s0, s1, s2, s3,s4}) = {s0, s1, s2, s4}

09/01/2017 52

Example

s0
s1

s2

s3 s4

atomic formulas: a, b, cab

a,b,c
c b,c

EG (a or b) ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}

({s0, s1, s2, s4}) = Sat (a or b)  Pre({s0, s1, s2,, s4})

({s0, s1, s2, s4}) = {s0, s1, s2, s4}

S0 |= EG(a or b)

09/01/2017 53

• Problem: the size of automata

• Solution: symbolic model checking

• Usage of BDD (Binary Decision Diagram)

to encode both automata and formula.

• Each Boolean function has a unique

representation

• Shannon decomposition:
• f(x0,x1,…,xn) = f(1, x1,…., xn) v f(0, x1,…,xn)

Model Checking

Implementation

09/01/2017 54

Model Checking

Implementation

• When applying recursively Shannon

decomposition on all variables, we obtain

a tree where leaves are either 1 or 0.

• BDD are:

– A concise representation of the Shannon tree

– no useless node (if x then g else g  g)

– Share common sub graphs

09/01/2017 55

Model Checking

Implementation (2)

(x1  y1) v (x0  y0  x1)

0 00 0 0 1 0 1 0 00 0 0 1 1

x0

x1

y0

y1 y1

y0

y1 y1

x1

y0

y1 y1

y0

y1 y1

0 1

1
09/01/2017 56

Model Checking

Implementation (2)

(x1  y1) v (x0  y0  x1)
x0

0 00 0 0 1 0 1 0 00 0 0 1 1

0

1

1
x1

y0

y1 y1

y0

y1 y1

x1

y0

y1 y1

y0

y1 y1

09/01/2017 57

Model Checking

Implementation (2)

(x1  y1) v (x0  y0  x1)
x00 1

x1

y0

y1 y1

0 1 0 1

x1

y0

y1 y1

0

0 1 11

0

09/01/2017 58

Model Checking

Implementation (2)

(x1  y1) v (x0  y0  x1)
x00 1

x1

y1

0 1

x1

y0

y1 y1

0 1 11

0 0

09/01/2017 59

Model Checking

Implementation (2)

x00 1
x1

y1

0 1

x1

y0

y1

11

0
0

(x1  y1) v (x0  y0  x1)

09/01/2017 60

Model Checking

Implementation (2)

x00 1

x1

y1

0 1

x1

y0

1

0
0

(x1  y1) v (x0  y0  x1)

09/01/2017 61

Model Checking

Implementation (2)

x00 1

x1

y1

0 1

x1

y0

(x1  y1) v (x0  y0  x1)

09/01/2017 62

Model Checking

Implementation(3)

• Implicit representation of the of states set

and of the transition relation of automata

with BDD.

• BDD allows
• canonical representation

• test of emptiness immediate (bdd =0)

• complementarity immediate (1 = 0)

• union and intersection not immediate

• Pre immediate

09/01/2017 63

Model Checking

Implementation (4)

• But BDD efficiency depends on the

number of variables

• Other method: SAT-Solver

– Sat-solvers answer the question: given a

propositional formula, is there exist a

valuation of the formula variables such that

this formula holds

– first algorithm (DPLL) exponential (1960)

09/01/2017 64

Model Checking

Implementation (4)

• SAT-Solver algorithm:

– formula  CNF formula  set of clauses

– heuristics to choose variables

– deduction engine:

• propagation

• specific reduction rule application (unit clause)

• Others reduction rules

– conflict analysis + learning

09/01/2017 65

Model Checking

Implementation (5)

• SAT-Solver usage:

– encoding of the paths of length k by

propositional formulas

– the existence of a path of length k (for a given

k) where a temporal property  is true can be

reduce to the satisfaction of a propositional

formula

– theorem: given  a temporal property and M

a model, then M |=    n such that

M |= n  (n < |S| . 2 ||)

09/01/2017 66

Bounded Model Checking

• SAT-Solver are used in complement of

implicit (BDD based) methods.

• M |= 

– verify ¬  on all paths of length k (k bounded)

– useful to quickly extract counter examples

09/01/2017 67

Bounded Model Checking

Given a property p
Is there a state reachable in k steps, which
satisfies ¬p ?

p p p p¬p

s0 s1 s2 Sk-1 sk

……..

09/01/2017 68

Bounded Model Checking

The reachable states in k steps are captured by:
I(s0) T(s0,s1) ……….. T(sk-1, sk)

The property p fails in one of the k steps

V V V

¬p(s0) V ¬p(s1) V ¬p(s2) …… V ¬p(sk-1) V ¬p(sk)

The safety property p is valid up to step k iff Ω(k) is
unsatisfiable:

Ω(k) = I(s0) (T(si, si+1)) (¬p(si))

v V

i=0

k-1

v

V
i=0

k

09/01/2017 69

Bounded Model Checking

K=0

BMC(M,ρ,k)

k≥ CT

SAT

UnSATK++

M |= ρ

M |=ρ

CT is the completeness threshold
09/01/2017 70

Bounded Model Checking

• Computing CT is as hard as model checking.

• Idea: Compute an over-approximation to the

actual CT

– Consider the system as a graph.

– Compute CT from structure of the graph.

• Example: for AGρ properties, CT is the

longest shortest path between any two

reachable states, starting from initial state

09/01/2017 71

Model Checking with
Observers

• Express safety properties as observers.

• An observer is a program which observes the
program and outputs ok when the property
holds and failure when its fails

program

observer

inputs outputs

ok
failure

Model Checking with
observers (2)

P: aircraft autopilot and security system

Paircraft_altitude landing_order

aircraft_altitude

200

landing_order not

alarm

alarm

and

implies


Properties Validation

• Taking into account the environment

– without any assumption on the environment,
proving properties is difficult

– but the environment is indeterminist

• Human presence no predictable

• Fault occurrence

• …

– Solution: use assertion to make hypothesis on the
environment and make it determinist

Properties Validation (2)

• Express safety properties as observers.

• Express constraints about the environment as
assertions.

program

observer

inputs outputs

ok
failure

assertions assume

Properties Validation (3)

• if assume remains true, then ok also
remains true (or failure false).

program

observer

inputs outputs

ok
failure

assertions assume

Outline

1. Critical system validation

2. Model-checking solution

1. Model specification

2. Model-checking techniques

3. Application to middleware for IoT

1. Introduction in middleware design of synchronous
components to allow validation

2. Synchronous /asynchronous issues

Practical Issues

Application to Middleware for IoT

Application to Middleware

Devices and
applications

MODELS

proofs

C code
encoding

automatic code
generation

functional
validation

simulation

Synchronous Models

To sum up :
1. Synchronous models can be designed

as event-driven controllers or as data
flow operator networks

2. They always represent automata
3. Model-checking techniques apply

09/01/2017 80

Application to Middleware for IoT

• Our goal is to ensure safety for applications
using and managing services.
• Devices will have a synchronous component to
allow model-checking techniques application as
validation
• Synchronous component to express constraints
between concurrent services
• Synchronous parallelism as composition

09/01/2017 81

Use Case

82

Controlled

CrossRoad
application

Use Case

• Use case: manage a crossroad

1. 2 roads (EW and NS) with a traffic light each

2. Each traffic light has 3 exclusive outputs: red,

yellow, green.

3. Constraints:

 each traffic light works following the sequence:

green -> yellow -> red

 traffic lights work in a consistent way (no 2 green lights

simultaneously)

09/01/2017 83

Use Case Implementation

84

Controlled

CrossRoad

Component
C

O
N

STR
A

IN
TS

+

Use Case Implementation

09/01/2017 85

How specify the traffic light synchronous model ?

How specify both device and application constraints as
synchronous models ?

Solution: use a synchronous language

First Solution: SCADE

• Scade (Safety-Critical Application

Development Environment) has been

developed to address safety-critical

embedded application design

• The Scade suite KCG code generator has

been qualified as a development tool

according to DO-178B norm at level A.

09/01/2017 86

SCADE

• Scade has been used to develop, validate

and generate code for:

– avionics:

• Airbus A 341: flight controls

• Airbus A 380: Flight controls, cockpit display, fuel

control, braking, etc,..

• Eurocopter EC-225 : Automatic pilot

• Dassault Aviation F7X: Flight Controls, landing

gear, braking

• Boeing 787: Landing gear, nose wheel steering,

braking
09/01/2017 87

• System Design

– Both data flows and state machines

• Simulation

– Graphical simulation, automatic GUI

integration

• Verification

– Apply observer technique

• Code Generation

– certified C code

SCADE

09/01/2017 88

CLEM versus SCADE

• SCADE suite:

– Complex design environment

– C code not embedded easily

– closed compilation environment

• Solution: use CLEM toolkit to specify and

verify synchronous monitor before

integration:

– own compilation means

– C code generation easily adapted
09/01/2017 89

CLEM ISSUE

09/01/2017 90

CLEM is a toolkit around the
LE synchronous language
offering:

• Modular compilation
• Simulation
• Verification
• Code generation for

hardware and
software targets (C)

LE Language

• LE synchronous language

– Textual imperative language

• Usual synchronous languages operators:

– || ; abort ; strong abort; sequence (>>); present; loop; emit

– wait pause

• run to call external module

– Explicit Mealy machine (automata designed with

Galaxy)

– Implicit Mealy machine (~data flow)

09/01/2017 91

LE Language

module Parallel:

Input:I;

Output: O1, O2,O3;

emit O1

||

wait I >> emit O2

||

emit O3

end

09/01/2017 92

LE Language

module Parallel:

Input:I;

Output: O1, O2,O3;
Mealy Machine

Register:

X0: 0: X0next;

X1: 0 : X1next;

X0next = X0 and not X1;

X1next = X0 and X1 or not X1 and I

or not X0 and X1;

O1 = not X0 and not X1;

O2 = X0 and not X1 and I;

O3 = not X0 and not X1;

09/01/2017 93

LE Compilation

• Compilation into implicit Mealy machines (Boolean

equation systems with registers)

• Compilation ⇒ sort equation systems

• Challenge: modular compilation ?

– ⇒ face causality problem

– causality = no evaluation cycle in equation systems

– total order prevents modularity

– issue: compute partial orders

09/01/2017 94

LE Compilation

• Sorting algorithms:

1. Apply CPM on dependency graphs of equation

systems to compute ranges of evaluation levels for

variables (efficient)

2. apply fix point theory:

• Compute variable evaluation levels as fix point of a monotonic

increasing function

• Uniqueness of fixpoints we can consider a global sorting as

well as a local and separate sorting

09/01/2017 95

CLEM Simulation and

Verification

• Simulation:

– Based on either blif_simul an interpretor for blif code

generated by CLEM or cles a lec code interpretor

• Verification:

1. NuSMV model checker (code generated)

2. blif_check for small application

09/01/2017 96

Synchronous Component
Design with CLEM

Synchronous modeling

Explicit Mealy machine
designed with Galaxy

or
Implicit Mealy machine

designed as Boolean
equations in Clem

O1 = i1
and i2……

Automata

Bool. equations

Constraints

Validation with CLEM

validated

component

C

C

C

Generate

C code

LE

design
simulation Validatation

Use Case Issue in CLEM

09/01/2017 99

TrafficLight NS

G
alaxy

Use Case Issue in CLEM

09/01/2017 100

TrafficLight EW

G
alaxy

Use Case Issue in CLEM

09/01/2017 101

||

top

greensNS
redNS
yellowNS
greenEW
redEW
yellowEW

Verification in CLEM

09/01/2017 102

||

||

Observer

NuSMV:
AG(!failure) false

Use Case Issue in CLEM

09/01/2017 103

||

||

Constraint

Constraint Expression in

CLEM

09/01/2017 104

module CrossRoadConstraint:

Input: greenNS, redNS, yellowNS, greenEW, redEW, yellowEW;

Output: greenNSC, redNSC, yellowNSC, greenEWC, redEWC,

yellowEWC;

local isNS, isEW

{

Mealy Machine

isNS = greenNS or redNS or yellowNS;

isEW = greenEW or redEW or yellowEW;

greenNSC = greenNS and isEW;

redNSC = redNS and isEW;

yellowNSC = yellowNS and isEW;

greenEWC = greenEW and isNS;

redEWC = redEW and isNS;

yellowEWC = yellowEW and isNS;

}

end

Use Case Issue in CLEM

09/01/2017 105

||

||

Constraint

Property Ok

LE Validated Component

09/01/2017 106

module CrossRoad:
Input: top
Output: greenNSC, redNSC, yellowNSC, greenEWC, redEWC,
yellowEWC;
local greenNS, redNS, yellowNS, greenEW, redEW, yellowEW
{
run TrafficLightNS
||
run TrafficLightEW
||
run CrossRoadConstraint
}
end

C Code Generation

09/01/2017 107

LE

Validated

CrossRoad

C Code Generation

run automaton

reset automaton

CrossRoad.h:
extern void CrossRoad_reset_automaton

(int top, int*yellowNS, int*redNS, int*greenNS, int*yellowEW, int*greenEW, int*redEW);
extern void CrossRoad_automaton

(int top, int*yellowNS, int*redNS, int*greenNS, int*yellowEW, int*greenEW, int*redEW);

CrossRoad.c:
Register definition as global variables; CrossRoad_reset_automaton; CrossRead_automaton.

Creating a CEP using

MQTT Approach

09/01/2017 108

Automaton
=

CEP

Mosquitto
Brocker

su
b

sc
ri

b
e

r

p
u

b
lish

e
r

MQTT Client

