
 UbiComp Middleware  and Verification 

Annie Ressouche  

Inria-sam (stars) 

annie.ressouche@inria.fr 



Ubiquitous Middleware Application 
Validation 

•Ubiquitous and adaptive middleware  may  
be used to design critical applications 

•Ensure a safe usage of these middleware 
wrt component behavior 

•Apply general techniques used to develop 
critical software 



Outline 

1. Critical system validation 

2. Model-checking solution 

1. Model specification 

2. Model-checking techniques 

3. Application to component based adaptive 
middleware 

1. Middleware critical component as synchronous 
models to allow validation 

2. The  Scade solution 

 



Outline 

1. Critical system validation 

2. Model-checking solution 

1. Model specification 

2. Model-checking techniques 

3. Application to component based adaptive 
middleware 

1. Middleware critical component as synchronous 
models to allow validation 

2. The  Scade solution 

 



Critical Software 

A critical software is a software whose failing 

has serious consequences: 

• Nuclear technology 

• Transportation 

•Automotive 

•Train 

•Aircraft construction 

 … 

 



Critical Software 

•  In addition, other consequences are relevant 
to determine the critical aspect of software: 

• Financial aspect 

• Loosing equipment, bug correction 

• Equipment callback (automotive) 

• Bad advertising 



Software Classification 

A Catastrophic (human life loss) 

B Dangerous (serious injuries, loss 
of goods) 

C Major (failure or loss of the 
system) 

D Minor (without consequence on 
the system) 

E Without effect 

Example of the aeronautics norm 
DO178B: 
 

Depending of  the level of risk 
of the system, different kinds 
of verification are required 



Software Classification 

Minor acceptable situation 

Major 

Dangerous Unacceptable situation 

catastrophic 10-3 / hour 10-6 / 
hour 

10-9/hour 10-12
/hour 

probabilities probable rare very rare very 
improbable 



How Develop critical software ? 

Classical Development  U Cycle  

investigation 
Qualification 
    in laboratory 
    in operation 

specification 

design 

development tests 

integration 

validation 

tests white box 

tests  black box 

tests of integrated system 

08/01/2014 9 



How Develop Critical Software ?  

• Cost of critical software development: 
• Specification : 10% 

• Design: 10% 

• Development: 25% 

• Integration tests: 5% 

• Validation: 50% 

• Fact: 

– Earlier an error is detected,  less expensive its 
correction is. 

 
08/01/2014 10 



Cost of Error Correction  

08/01/2014 11 

error detection time 

cost of 
error 

correction 

Put the effort  on the upstream phase 

development based on models 



How Develop Critical Software ?  

• Goals of critical software specification: 

– Define application needs 

•  specific domain engineers 

– Allowing application development 

• Coherency 

• Completeness 

– Allowing application functional validation 

• Express properties to be validated 

 
 Formal model usage 

08/01/2014 12 



Critical Software Specification  

• First Goal: must yield a formal description 

of the application needs: 

– Standard to allowing communication between 

computer science engineers and non computer 

science ones 

– General enough to allow different  kinds of 

application: 

• Synchronous (and/or) 

• Asynchronous (and/or) 

• Algorithmic 
08/01/2014 13 



Critical Software Specification  

• Second Goal: allowing errors detection 

carried out upstream: 

– Validation of the specification: 

• Coherency 

• Completeness 

• Proofs  

– Test 

• Quick prototype development 

• Specification simulation 

 
08/01/2014 14 



Critical Software Specification  

08/01/2014 15 

Example of non completeness 
From Ariane 5: 

helium 
tank low 

hydrogen 
tank low 

action action 

Simultaneous 
events ? 

unspecified action 



Critical Software Specification  

• Third goal: make easier the  transition from  

specification to design (refinement) 

– Reuse of specification simulation tests 

– Formalization of design 

– Code generation 

• Sequential/distributed 

• Toward a target language 

• Embedded/qualified code 

 
08/01/2014 16 



How Develop Critical Software 

test reuse 
test coverage 

test generation 
MODEL 

proofs 

code 

automatic code 
generation 

functional 
validation 

abstract 
interpretation 

simulation 

no more 
integration tests 



Application to Middleware 

COMPONENT 
MODEL 

proofs 

WComp 
Bean 

automatic code 
generation 

functional 
validation 

simulation In WComp 



Critical Software Validation 

• What is a correct software? 

– No execution errors, time constraints 
respected, compliance of results. 

• Solutions: 

– At model level : 
• Simulation 

• Formal proofs 

– At implementation level: 
• Test 

• Abstract interpretation 



Validation Methods 

• Testing 

– Run the program on set of inputs and check the 
results 

• Static Analysis 

– Examine the source code to increase confidence 
that it works as intended  

• Formal Verification 

– Argue formally that the application always works as 
intended 

 



Testing 

• Dynamic verification process applied at 

implementation level. 

• Feed the system (or one if its components) 

with a set of input data values: 

– Input data set not too large to avoid huge time 

testing procedure. 

– Maximal coverage of different cases required. 

 

 
08/01/2014 21 



Program Testing 

Concrete semantics 

Test coverage 
errors 

all program executions 

executions tested ok 

undetected 
failure 

“Testing only highlights 
bugs but not ensure their 
absence “ (E. Dijkstra) 

08/01/2014 22 



Static Analysis 

• The aim of static analysis is to search for 

errors without running the program. 

•  Abstract interpretation = replace data of 

the program by an abstraction in order to 

be able to compute program properties. 

• Abstraction must ensure : 

• A(P) “correct”  P correct 

• But A(P) “incorrect”   ? 

08/01/2014 23 



Static Analysis: example 

abstraction: integer by intervals 

1: x:= 1; 

2: while (x < 1000) { 

3:   x := x+1; 

4: } 

x1 = [1,1] 

x2 = x1 U x3 ∩ [-∞, 999] 

x3 = x2  [1,1] 

x4 = x1 U x3  ∩ [1000, ∞] 

Abstract interpretation theory  values 

are fix point equation solutions. 

08/01/2014 24 



Formal Verification 

• What about functional validation ? 

– Does the program compute the expected outputs? 

– Respect of time constraints (temporal properties)  

– Intuitive partition of temporal properties: 

• Safety properties: something bad never happens 

• Liveness properties: something good eventually 
happens 



Safety and Liveness 
Properties 

• Example: the beacon counter in a train: 

– Count the difference between beacons and seconds 

– Decide when the train is ontime, late, early 

– ontime : difference = 0 

– late : difference > 3 and it was ontime before or 
difference > 1 and it was already late before 

– early : difference < -3 and it was   ontime before or 
difference < -1 and it was ontime  before 

 



Safety and Liveness 
Properties 

• Some properties: 

1. It is impossible to be late and early; 

2.  It is impossible to directly pass from late to early; 

3. It is impossible to remain late only one instant; 

4. If the train stops, it will eventually get late 

• Properties 1, 2, 3 : safety 

• Property 4 : liveness 



Safety and Liveness Properties 

Some properties: 

1. It is impossible to be late and early; 

2.  It is impossible to directly pass from late to early; 

3. It is impossible to remain late only one instant; 

4. If the train stops, it will eventually get late 

Properties 1, 2, 3 : safety 

Property 4 : liveness (refer to unbound future) 



Outline 

1. Critical system validation 

2. Model-checking solution 

1. Model specification 

2. Model-checking techniques 

3. Application to component based adaptive 
middleware 

1. Middleware critical component as synchronous 
models to allow validation 

2. The  Scade solution 

 



Safety and Liveness Properties 
Checking 

• Use of model checking technique 

• Model checking goal: prove safety and 
liveness properties of a system in analyzing 
a model of the system. 

• Model checking techniques require: 

–  model of the system  

–  express properties 

–  algorithm to check properties againts the 
model ( decidability) 

 



Model Checking Techniques 

• Model = automata which is the set of  program 
behaviors 

• Properties expression = temporal logic: 

–  LTL : liveness properties  

–  CTL: safety properties 

• Algorithm = 

–  LTL : algorithm  exponential wrt the formula size 
and linear wrt automata size. 

– CTL: algorithm linear wrt formula size  and wrt 
automata size 

 



Model Checking Model 
Specification  

• Model = automata which is the set of  program 
behaviors 

 

32 08/01/2014 32 



Model Specification  

• Model = automata which is the set of  program 
behaviors 

• An automata is composed of: 
1. A finite set of states (Q) 

2. A finite alphabet of actions (A) 

3. An initial state  (qinit   € Q) 

4. A transition relation  (R in  Q x Q) 
5. A labeling function  λ : Q x Q → A 

 

33 

Notation:  a transition is denoted  q1        q2 
a 



Model Specification  

• Model = automata which is the set of  program 
behaviors 

 Example: Traffic Light 

trigger: tick, reset 

action:green,orange,red 

reset 

tick/green 

tick/orange 

tick/red 

tick/green reset 

reset 



Model Checking  

How design automata as system behaviors ? 

 

Use synchronous languages to specify critical 

systems. 

 

Synchronous programs = automata 

 

 



 
Model Specification with Synchronous  

Languages 

1. Synchronous languages  have a simple formal 
model (a finite automaton) making formal 
reasoning tractable. 

2. Synchronous languages support concurrency 
and offer an implicit or explicit means to express 
parallelism. 

3. Synchronous languages are devoted to design 
reactive systems. 



Determinism & Reactivity 

• Synchronous languages are deterministic and reactive 

• Determinism: 
• The same input sequence always yields the same output 

sequence 

• Reactivity: 
• The program must react(*) to any stimulus 

• Implies absence of deadlock  
• (*) Does not necessary generate outputs, the reaction may change  internal state only. 

 
 



Synchronous Reactive Programs (1)  

Environment

Read 

08/01/2014 38 



Synchronous Reactive Programs (1)  

Environment

Computations 

08/01/2014 39 



Synchronous Reactive Programs (1)  

Environment

Write 

Atomic execution: read, compute, write 

08/01/2014 40 



Synchronous Hypothesis 

• Synchronous languages work on a logical time. 

• The time is  

– Discrete 

– Total ordering of instants. 

• A reaction executes in one instant. 

• Actions that compose the reaction may be 
partially ordered. 

Use N as time base 



Synchronous Hypothesis  

• Communications between actors are also 
supposed to be instantaneous. 

• All parts of a synchronous model receive 
exactly the same information (instantaneous 
broadcast). 

• Outcome: Outputs are simultaneous with 
Inputs (they are said to be synchronous)  

• Thanks to these strong hypotheses, program 
execution is fully deterministic. 



Reactive ? 

• Different ways to “react” to the environment: 

– Event driven system: 

• Receive events 

• Answer by sending events 

– Data flow system: 

• Receive data continuously 

• Answer by treating data continuously also 

Some systems 
have components of 
both kinds 



Event Driven Reactive 
System 

landing 

open gear door 

gear door opened gear down 

push down gear block gear 

Langing gear management 



Data Flow Reactive System 
(Example) 

sensors 

navigation 

guidance 

piloting 

operators 

P
e
ri
o
d
ic

 p
ro

ce
ss

u
s 

• get measures 

• where am I ? 

• where go I ? 

• command computation 

• command to operators 

Control/Command  vehicle 



Imperative and 

Declarative languages 

• Different ways to express synchronous 

programs: 

1. Imperative languages rely on implicitly or 

explicitly finite state machines, well suited 

to design event driven reactive system 

2. Declarative languages rely on operator 

networks computing data flows, well suited 

to design data flow reactive system 

08/01/2014 46 



Event Driven = FSM 

Event  driven applications can be designed: 
1. As simple finite sate machines (= automata) 
2. As the synchronous product of finite state 

machines 



Data flow = Operator Networks 

Data flow  programs can be interpreted as 
networks of operators. 

Data « flow » to operators where they are 
consumed. Then, the operators generate new data. 
(Data Flow description). 

op1 

op2 

op3 

Operator 

Token 

(data) 



Flows, Clocks 

• A flow is a pair made of 

– A possibly infinite sequence of values of a 
given type 

– A clock representing a sequence of instants 

X:T      (x1, x2, … , xn,  … ) 



An example of Data Flow 

08/01/2014 50 



Data Flow 

08/01/2014 51 



Data Flow 

08/01/2014 52 



Data Flow 

08/01/2014 53 



Data Flow 

08/01/2014 54 



Data Flow 

08/01/2014 55 



Data Flow Synchronous Languages 

1. Data flow programs compute output flows from 
input flows using: 
1. Variables (= flows)  
2. Equation:    x = E means         xk = Ek 

3. Assertion: Boolean expression that should be 
always true. 

2. Data flow programs define new data flow 
operators. 

k



Data Flow Synchronous Languages 

operator  Average (X,Y:int) returns (M:int) 
M = (X + Y)/2 

    X = (X1,X2,….,Xn,…….) 

     Y = (Y1,Y2,…..,Yn,……..) 
     M = ((X1+Y1)/2, (X2+Y2)/2,……,(Xn+Yn)/2,….) 

Average 

X:int 

Y:int 

M:int 



Data Flow Synchronous Languages 

Memorizing  to take the past into account: 
1. pre (previous): 

        X = (x1,x2,….,xn,……) :  
pre(X) = (nil, x1,x2,….,xn,……)  
nil undefined value denoting uninitialized 
memory 

2. → (initialize):  
X = (x1,x2,….,xn,……), Y = (y1,y2,….,yn,……) :  
X → Y = (x1,y2,….,yn,……)  



Sequential examples 

n= 0 → pre(n) + 1 
 

operator MinMax (x:int) returns (min,max:int): 
min = x→ if (x < pre(min) then x else pre(min) 
max = x → if (x > pre(max) then x else pre(max) 
 

x= (3, 4, 5, 2, 7, ….) 
min = (3, 3, 3, 2, 2,…) 
max = (3, 4, 5, 5, 7,…) 

08/01/2014 59 



Sequential examples 

operator CT (init:int) returns (c:int): 
 c = init → pre(c) + 2 
 
 
operator  DoubleCall (even:bool) returns (n:int) 

n= if (even) then CT(0) else CT(1) 
DoubleCall (ff,ff,tt,tt,ff,ff,tt,tt,ff) = ? 
                 

08/01/2014 60 



Sequential examples 

operator CT (init:int) returns (c:int): 
 c = init → pre(c) + 2 

CT(0) = (0,2,4,6,8,10,12,14,16,18,….) 
CT(1) = (1,3,5,7,9,11,13,15,17,19,….) 

operator  DoubleCall (even:bool) returns (n:int) 
n= if (even) then CT(0) else CT(1) 

DoubleCall (ff,ff,tt,tt,ff,ff,tt,tt,ff) = ? 
                (1,3,4,6,9,11,12,14,17) 

08/01/2014 61 



Modulo Counter 

operator MCounter (incr:bool; modulo : int)  
                             returns (cpt:int); 
   var count : int; 
   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
   
 



Modulo Counter Clock 

operator MCounterClock (incr:bool;  
                                     modulo : int)  
                          returns(cpt:int; 
                                     modulo_clock: bool); 
   var count : int;   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
   
 

modulo_clock = count != cpt; 



Modulo Counter Clock 

var count : int;   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
     modulo_clock = count != cpt; 

 

MCounterClock(true,3): 
count:                   0 1 2 3 1 2 3…… 
cpt =                      0 1 2 0 1 2 0…….. 
modulo_clock =  ff ff ff tt ff ff tt …. 



Timer 

operator Timer returns (hour, minute, second:int); 
var hour_clock, minute_clock, day_clock : bool; 
 
(second, minute_clock) = MCounterClock(true, 60); 
(minute, hour_clock) = MCounterClock(minute_clock,60); 
(hour, dummy_clock) = MCounterClock(hour_clock, 24); 
 



Data Flow Programs Compilation 

 Data flow programs are compiled into automata 



Data Flow Program Compilation 

operator WD (set, reset, deadline:bool) 
                         returns (alarm:bool); 
var is_set:bool;  
  alarm = is_set and deadline; 
  is_set = false -> if set then true  
                               else if reset then false  
                                       else pre(is_set); 
  assert not(set and reset); 
tel. 



Data Flow Program Compilation 

First, the program is translated into pseudo code: 
if _init then // first instant (or reaction) 
   is_set := false; alarm := false; 
    _init := false; 
else   // following reactions 
   if set then is_set := true 
   else 
      if reset then is_set := false;  
      endif 
   endif 
   alarm := is_set and deadline; 
endif 
 



Data Flow Program Compilation 

3 states: 
S0: _init = true and pre(is_set) = nil 
S1: _init = false and pre(is_set) = false 
S2: _init = false  and pre(is_set) = true 

For WD, we consider  2 state variables: 
_init (true, false, false, ….) and pre(is_set) 

Choose state variables : _init and variables which 
have pre. 

08/01/2014 69 



Data Flow Program Compilation 

S1: 

 

 

       _init := false  

       pre(is_set) := false 

 

 

 

S0: alarm := false;       

initial 

08/01/2014 70 

if _init then // first instant (or 
reaction) 
   is_set := false; alarm := false; 
    _init := false; 
else   // following reactions 
   if set then is_set := true 
   else 
      if reset then is_set := false;  
      endif 
   endif 
   alarm := is_set and deadline; 
endif 



Lustre Program Compilation 

S1: if set then 

        alarm:= deadline; 

        go to S2; 

      else 

        alarm := false; 

        go to S1; 

 

S2:  
 
 
       _init = false; 
       pre(is_set) := true; 
 
 
 
 

S0: alarm := false;       

initial 

¬set 

set 

08/01/2014 71 

if _init then // first instant (or 
reaction) 
   is_set := false; alarm := false; 
    _init := false; 
else   // following reactions 
   if set then is_set := true 
   else 
      if reset then is_set := false;  
      endif 
   endif 
   alarm := is_set and deadline; 
endif 



Lustre Program Compilation 

S1: if set then 

        alarm:= deadline; 

        go to S2; 

      else 

        alarm := false; 

        go to S1; 

 

S2:  
 
 
       _init = false; 
       pre(is_set) := true; 
 
 
 
 

S0: alarm := false;       

initial 

¬set 

set 

08/01/2014 72 



Lustre Program Compilation 

S1: if set then 

        alarm:= deadline; 

        go to S2; 

      else 

        alarm := false; 

        go to S1; 

 

S2: if set then  
         alarm := deadline;  
         go to S2; 
      else 
        if reset then 
            alarm := false; 
            go to S1; 
        else 
            alarm := deadline; 
        go to S2; 

S0: alarm := false;       

initial 

¬set ¬reset 

reset 

set 

08/01/2014 73 

if _init then // first instant (or 
reaction) 
   is_set := false; alarm := false; 
    _init := false; 
else   // following reactions 
   if set then is_set := true 
   else 
      if reset then is_set := false;  
      endif 
   endif 
   alarm := is_set and deadline; 
endif 



Lustre Program Compilation 

S1: if set then 

        alarm:= deadline; 

        go to S2; 

      else 

        alarm := false; 

        go to S1; 

 

S2: if set then  
         alarm := deadline;  
         go to S2; 
      else 
        if reset then 
            alarm := false; 
            go to S1; 
        else 
            alarm := deadline; 
        go to S2; 

S0: alarm := false;       

initial 

¬set ¬reset 

reset 

set 

08/01/2014 74 



Model Checking Technique 

• Model = automata which is the set of  program 
behaviors 

• Properties expression = temporal logic: 
–  LTL : liveness properties  

–  CTL: safety properties 

• Algorithm = 
–  LTL : algorithm  exponential wrt the formula size and 

linear wrt automata size. 

– CTL: algorithm linear wrt formula size  and wrt 
automata size 

 
75 



Properties Checking 

• Liveness Property  : 

–    automata  B() 

–  L(B()) =   decidable 

–   |= M  : L(M  B(~)) =  

 
 



Safety Properties 

• CTL formula characterization: 

– Atomic formulas 

– Usual logic operators: not, and, or ()  

– Specific temporal operators: 

• EX , EF , EG  

• AX , AF , AG  

• EU(1 ,2), AU(1 ,2) 



Safety Properties Verification  

We call Sat() the set of states where  is true. 

 M |=     iff sinit  Sat(). 

Algorithm: 

Sat()  = { s |  |= s} 

 Sat(not ) = S\Sat() 

 Sat(1 or 2) = Sat(1) U Sat(2) 

 Sat (EX ) =  {s |  t  Sat() , s → t}   (Pre Sat()) 

 Sat (EG ) = gfp ((x) =  Sat()  Pre(x)) 

 Sat (E(1 U 2)) = lfp ((x) = Sat(2) U (Sat(1)  Pre(x)) 

 



Example 

s0 
s1 

s2 

s3 s4 

atomic formulas: a, b, c a b 

a,b,c 

c 
b,c 

EG (a or b)  gfp ((x) =  Sat(a or b)  Pre(x)) 

({s0, s1, s2, s3, s4}) = Sat (a or b)  Pre({s0, s1, s2, s3, s4}) 

({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}  {s0, s1, s2, s3, s4} 

({s0, s1, s2, s3,s4}) = {s0, s1, s2, s4} 

08/01/2014 79 



Example 

s0 
s1 

s2 

s3 s4 

atomic formulas: a, b, c a b 

a,b,c 
c b,c 

EG (a or b) ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4} 

({s0, s1, s2, s4}) = Sat (a or b)  Pre({s0, s1, s2,, s4}) 

({s0, s1, s2,  s4}) = {s0, s1, s2, s4} 

S0 |= EG( a or b) 

08/01/2014 80 



• Problem: the size of automata 

• Solution: symbolic model checking 

• Usage of BDD (Binary Decision Diagram) 

to encode both automata and formula. 

• Each Boolean function  has a unique 

representation 

• Shannon decomposition: 
• f(x0,x1,…,xn) = f(1, x1,…., xn) v f(0, x1,…,xn) 

Model Checking 

Implementation 

08/01/2014 81 



Model Checking 

Implementation 

• When applying  recursively Shannon 

decomposition on all variables, we obtain 

a tree where leaves are either 1 or 0. 

• BDD  are: 

– A concise representation of the Shannon tree 

–  no useless node (if x then g else g  g) 

– Share common sub graphs 

 

08/01/2014 82 



Model Checking 

Implementation (2) 

(x1  y1) v (x0  y0  x1) 

0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 

x0 

x1 

y0 

y1 y1 

y0 

y1 y1 

x1 

y0 

y1 y1 

y0 

y1 y1 

0 1 

1 
08/01/2014 83 



Model Checking 

Implementation (2) 

(x1  y1) v (x0  y0  x1) 
x0 

0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 

0 

1 

1 
x1 

y0 

y1 y1 

y0 

y1 y1 

x1 

y0 

y1 y1 

y0 

y1 y1 

08/01/2014 84 



Model Checking 

Implementation (2) 

(x1  y1) v (x0  y0  x1) 
x0 0 1 

x1 

y0 

y1 y1 

0 1 0 1 

x1 

y0 

y1 y1 

0 

0 1 1 1 

0 

08/01/2014 85 



Model Checking 

Implementation (2) 

(x1  y1) v (x0  y0  x1) 
x0 0 1 

x1 

y1 

0 1 

x1 

y0 

y1 y1 

0 1 1 1 

0 0 

08/01/2014 86 



Model Checking 

Implementation (2) 

x0 0 1 
x1 

y1 

0 1 

x1 

y0 

y1 

1 1 

0 
0 

(x1  y1) v (x0  y0  x1) 

08/01/2014 87 



Model Checking 

Implementation (2) 

x0 0 1 

x1 

y1 

0 1 

x1 

y0 

1 

0 
0 

(x1  y1) v (x0  y0  x1) 

08/01/2014 88 



Model Checking 

Implementation (2) 

x0 0 1 

x1 

y1 

0 1 

x1 

y0 

(x1  y1) v (x0  y0  x1) 

08/01/2014 89 



Model Checking 

Implementation(3) 

• Implicit representation of the of states set 

and of the transition relation of automata 

with BDD. 

•  BDD allows 
• canonical representation 

• test of emptiness immediate (bdd =0) 

• complementarity immediate (1 = 0) 

• union and intersection  not immediate 

• Pre immediate 

 
08/01/2014 90 



 Model Checking 

Implementation (4) 

• But BDD efficiency depends on the 

number of variables 

• Other method: SAT-Solver 

– Sat-solvers answer the question: given a 

propositional formula, is there exist a 

valuation of the formula variables such that 

this formula holds 

–  first algorithm (DPLL) exponential (1960)  

08/01/2014 91 



 Model Checking 

Implementation (4) 

• SAT-Solver algorithm: 

– formula  CNF formula  set of clauses 

– heuristics to choose variables 

– deduction engine: 

• propagation  

• specific reduction rule application (unit clause) 

• Others reduction rules 

–  conflict analysis + learning 

08/01/2014 92 



Model Checking  

Implementation (5) 

• SAT-Solver usage: 

–  encoding of the paths  of length k by 

propositional formulas 

–  the existence of a path of length k (for a given 

k) where a temporal property  is true can be 

reduce to the satisfaction of a propositional 

formula  

–  theorem: given  a temporal property and M 

a model, then M |=    n  such that           

M |= n   ( n < |S| . 2 ||) 

 08/01/2014 93 



Bounded Model Checking 

• SAT-Solver are used in complement of 

implicit (BDD based) methods. 

• M |=  

– verify ¬  on all paths of length k (k bounded) 

–  useful to quickly extract counter examples  

08/01/2014 94 



Bounded Model Checking 

Given a property p 
Is there a state reachable in k steps, which 
satisfies ¬p ? 

p p p p ¬p 

s0 s1 s2 Sk-1 sk 

…….. 

08/01/2014 95 



Bounded Model Checking 

The reachable states in k steps are captured by: 
             I(s0)       T(s0,s1)        ………..       T(sk-1, sk) 
The property p fails in one of the k steps 

V V V 

¬p(s0) V ¬p(s1) V ¬p(s2) …… V ¬p(sk-1) V ¬p(sk) 

The safety property p is valid up to step k iff Ω(k) is 
unsatisfiable: 

Ω(k) = I(s0)     (        T(si, si+1) )     (       ¬p(si))  

v V 

i=0 

k-1 

v 

V     
i=0 

k 

08/01/2014 96 



Bounded Model Checking 

K=0 

BMC(M,ρ,k) 

k≥ CT 

SAT 

UnSAT K++ 

M |= ρ 

M |=ρ 

CT is the completeness threshold 
08/01/2014 97 



Bounded Model Checking 

• Computing CT is as hard as model checking. 

• Idea: Compute an over-approximation to the 

actual CT 

– Consider the system as a graph. 

– Compute CT from structure of  the graph. 

•  Example: for AGρ properties, CT is the 

longest shortest path between any two 

reachable states, starting from initial state 

08/01/2014 98 



Model Checking with 
Observers 

• Express safety properties as observers. 

• An observer is a program which observes the 
program and outputs ok when the property 
holds and failure when its fails 

program 

observer 

inputs outputs 

ok 
failure 



Model Checking with 
observers (2) 

P: aircraft autopilot and security system 

P aircraft_altitude landing_order 

 aircraft_altitude 

200 

landing_order not 

alarm 

alarm 

and 

implies 
 



Properties Validation 

• Taking into account the environment 

– without any assumption on the environment, 
proving properties is difficult 

–  but the environment is indeterminist 

• Human presence no predictable 

• Fault occurrence 

• … 

– Solution: use assertion to make hypothesis on the 
environment and make it determinist 



Properties Validation (2) 

• Express safety properties as observers. 

• Express constraints about the environment as 
assertions. 

program 

observer 

inputs outputs 

ok 
failure 

assertions assume 



Properties Validation (3) 

• if assume remains true, then ok  also 
remains true  (or failure false). 

program 

observer 

inputs outputs 

ok 
failure 

assertions assume 



Outline 

1. Critical system validation 

2. Model-checking solution 

1. Model specification 

2. Model-checking techniques 

3. Application to component based adaptive 
middleware 

1. Middleware critical component as synchronous 
models to allow validation 

2. The  Scade solution 

 



Practical Issues 

Application to Component Based 

Adaptive Middleware for 

Ubiquitous Computing  



Component Modeling 

• Adaptive middleware (as Wcomp) 

component listen to input events and 

provide output methods in reaction. 

• They could be critical and response time 

sensitive 

– They should support formal validation 

–  They should be deterministic 

• Component behavior specification as 

synchronous model 
08/01/2014 106 



Synchronous Models 

To sum up : 
1. Synchronous models can be designed 

as event-driven controllers or as data 
flow operator networks 

2. They always represent automata 
3. Model-checking techniques apply 

 

08/01/2014 107 



Application to Adaptive Middleware 

• Our goal is to validate critical component of 
component based adaptive middleware for 
ubiquitous computing 
• critical component will provide a synchronous 
model of their behaviors  to allow model-
checking techniques application as validation 
• This synchronous model will be translated into 
a specific  component called a synchronous 
monitor 
 08/01/2014 108 



Use Case 

 

Old adults monitoring in an instrumented home 
08/01/2014 109 



Use Case 

 

• Use case: observe kitchen usage 

1. Camera sensor (to locate the person) 

2. Fridge (contact sensor on the door) and a timer to 

know how long the door is opened 

3. Posture sensor (accelerometers) to know if the 

person is standing, sitting or lying 

• Goal: send the appropriate alarm (strong, 

weak or warning) 

08/01/2014 110 



Use Case Implementation 

 

• The Alarm, component is critical, 3 

synchronous monitors will be introduced to 

specify the Alarm component behaviors w.r.t 

the fridge, the posture and the camera 

components 

08/01/2014 111 



Use Case Implementation 

 

Posture 
synchronous 
monitor 

08/01/2014 112 



The SCADE solution 

• How design  the posture component ? 

• How validate its behaviors ? 

• How introduce it in the overall design ? 

Rely on SCADE tool  

08/01/2014 113 



SCADE: Safety-Critical 

Application Development 

Environment 

• Scade has been developed to address  

safety-critical embedded application 

design 

• The Scade suite KCG code generator has 

been qualified  as a development tool 

according to DO-178B norm at level A. 

08/01/2014 114 



SCADE 

• Scade has been used to  develop, validate 

and generate code for: 

–  avionics: 

• Airbus A 341: flight controls 

• Airbus A 380: Flight controls, cockpit display, fuel 

control, braking, etc,.. 

• Eurocopter EC-225 : Automatic pilot 

• Dassault Aviaation F7X: Flight Controls, landing 

gear, braking 

• Boeing 787: Landing gear, nose wheel steering, 

braking 
08/01/2014 115 



• System Design 

–  Both data flows and state machines 

• Simulation 

– Graphical simulation, automatic GUI integration 

• Verification 

– Apply observer  technique 

• Code Generation 

–  certified  C code 

 

SCADE 

08/01/2014 116 



Modulo Counter 

operator MCounter (incr:bool; modulo : int)  
                             returns (cpt:int); 
   var count : int; 
   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
   
 



Modulo Counter 

count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 

   



Modulo Counter Clock 

operator MCounterClock (incr:bool;  
                                     modulo : int)  
                          returns(cpt:int; 
                                     modulo_clock: bool); 
   var count : int;   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
   
 

modulo_clock = count <> cpt; 



Modulo Counter Clock 



Timer 

operator Timer returns (hour, minute, second:int); 
var hour_clock, minute_clock, day_clock : bool; 
 
   (second, minute_clock) = MCounterClock(true, 60); 
   (minute, hour_clock) = 
                             MCounterClock(minute_clock,60); 
   (hour, dummy_clock) = 
                             MCounterClock(hour_clock, 24); 
 



Timer 



SCADE: state machines 

• Input and output: same interface  

• States: 

–  Possible hierarchy 

–  Start in the initial state 

–  Content = application behavior 

• Transitions: 

–  From a state to another one 

–  Triggered by a Boolean condition 

 
08/01/2014 123 



SCADE: state machines 

state 

transition 

trigger 

When ON, ison = true 

When off, ison = false 
08/01/2014 124 



SCADE: model checking 

Observer technique 

posture model 

posture model 
specification in scade 

08/01/2014 125 



SCADE: model checking 

Observer technique 

posture 
observer 

posture verification 
failure 

lying: true; sitting:true;standing:true 

08/01/2014 126 



SCADE: model checking 

Observer technique 

posture 
observer 

posture verification 

valid 

assume (lying # sitting # standing)  

08/01/2014 127 



SCADE: code generation 

• KCG generates certifiable code (DO-178 

compliance) 

• Clean code, rigid structure (easy 

integration) 

• Interfacing potential with user-defined 

code (c/c++) 

08/01/2014 128 



SCADE: code generation 

structures 

•  InC_<operator_name> 

–  structure C 

–  one member for each input 

•  OutC_<operator_name> 

– Structure C 

–  one member for each output and each state 

– Other members for output/state computations 

08/01/2014 129 



SCADE: code generation 

structures  

• Reaction function 

–  for a transition (or a reaction) computes the 

output and the new state 

–  void <operator_name> (Inc_<operator_name> 

* inC,  outC_<operator_name>* outc) 

• Reset function 

–  To reset the reaction and the structures 

–  void <operator_name>_reset 

(outC_<operator_name>* outc 

08/01/2014 130 



SCADE: code generation 

files 

• Generated files 

–  <operator_name>.h : type and function 

declarations for code integration 

–  <operator_name>.c : implementation of 

reaction and reset functions 

–  kcg_types.(h,c) to define types in C 

–  kcg_conts.(h,c)  to define contants 

08/01/2014 131 



Critical Component Validation  
with SCADE 

CC 

C 

C 

C 



Critical Component Validation  
with SCADE 

SCADE 

design 
simule validate 

CC 
validated 

component 

C 

C 

C 

generate 



Critical Component Validation  
with SCADE for WComp 

CC 
validated 

component 

C 

C 

C 

generate 

C code 

C# Bean 

wrapping = 



Example:TrafficLight Design in 

Wcomp Middleware 

•  Design a  TrafficLight in WComp: 

1. Specify a TrafficLight synchronous 

monitor with Scade: 
• 3 lights : green, orange, red 

• Switch from green to orange, orange to red, red to green 

2. Connect the monitor to TrafficLight 

Wcomp component 

08/01/2014 135 



Example:TrafficLight  Design 

in Wcomp Middleware 

TrafficLight

Monitor 

design 

simule validate 

CC 
validated 

component 

C 

C 

C 

generate 

08/01/2014 136 



Generate  TrafficLight Monitor Bean 

Example:TrafficLight  Design 
in Wcomp Middleware 

C code 

C# Bean 

TrafficLightMonitor.[hc] 

TrafficLightMonitor_functions.c 

TrafficLightMonitor.cs 

08/01/2014 137 



Example:TrafficLight Design 

in Wcomp Middleware 

TrafficLightMonitor.[hc]: 

Generated from scade design 

outC_TrafficLight structure containing an entry for each 

output of TrafficLight (green, red, orange) 

TrafficLight to perform a step in the automaton. 

TrafficLightMonitor_functions.c: 

 User supplied 

 Export  structures and functions defined in TrafficLight.c 

 Define a function to allocate outC_TrafficLight structure 

 Define  functions to get output respective values                                         
ex: get_green(outC_TrafficLight* out)   

 08/01/2014 138 



TrafficLightMonitor_functions.c 

C code 

C# Bean 

TrafficLightMonitor.[hc] 

TrafficLight.cs 

Example:TrafficLight  
Design 

TrafficLight_Scade.dll 

08/01/2014 139 



Example:TrafficLight Design 

in Wcomp Middleware 

TrafficLightMonitor.cs: 

Define class TrafficLightMonitorBean as extension of 

EventedDrawable Wcomp bean. 

Import functions from TrafficLight_Scade.dll 

Bean starting method: TrafficLightMonitorBean  creates 

the output structure 

Step function: doStep:  

Call of step function of the TrafficLightMonitor_Scade dll 

Get the respective values of  green, red and orange from the 

output structure 

 

 
08/01/2014 140 



Example:TrafficLight Design 

in Wcomp Middleware 

TrafficLightMonitor.cs: 

Definition of events: RedChanged, RedOffChanged, 

GreenChanged, GreenOffChanged, 

OrangeChanged,OrangeOffChanged connected to 

methods of TrafficLight Wcomp bean: 

 

 
TrafficLight 

Monitor 

Bean 

RedChanged → RedOn() 
RedOffChanged → RedOff() 
GreenChanged → GreenOn() 

GreenOffChanged → GreenOff() 
OrangeChanged → YellowOn() 
OrangeOffChanged → YellowOff() 

08/01/2014 141 



Synchronous Monitor 

Composition 



Synchronous Monitor 

Composition 



Synchronous Monitor 

Composition 

Solution: 
composition under 
constraint :  

ζ 



Synchronous Monitor 

Composition 

ζ Property :         preserves safety property:  

ζ 

ζ 

synchronous product   +         
constraint function 

= 

M1 verifies Φ then M1         M2 verifies Φ also 

The constraint function tells us how multiple 
accesses are combined 



Synchronous Monitor 

Composition 



Synchronous Monitor 

Composition 

ζ  definition: 
warningi = warning 
weak_alarm2 & weak_alarm3 =  
strong_alarm 

08/01/2014 147 



Synchronous Monitor 

Composition 

08/01/2014 148 



Synchronous Monitor 

Composition 

weak_alarm2 & weak_alarm3 implies strong_alarm 

08/01/2014 149 



Use case Implementation in 

WComp 

validated 

alarm Bean 


