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Critical Software 

 Roughly speaking a critical system is a 
system whose failure could have serious 
consequences 

 Nuclear technology 

 Transportation 

Automotive 

Train 

Avionics 

 ………… 
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Critical Software (2) 

 In addition , other consequences are 
relevant to determine the critical aspect of 
a software: 

Financial aspect 

 Loosing of equipment, bug correction 

 Equipment callback (automotive) 

Bad advertising 

 Intel famous bug 
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Software Classification 

Example of the aeronautics norm 
DO178B: 
 
A Catastrophic (human life 

loss) 

B Dangerous (serious injuries, 
loss of goods) 

C Major (failure or loss of the 
system) 

D Minor (without consequence 
on the system) 

E Without effect 

Depending of  the level of risk 
of the system, different kinds 
of verification are required 
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 Software Classification (avionics) 

Minor acceptable situation 

Major 

Dangerous Unacceptable situation 

catastrophic 10-3 / hour 10-6 / 
hour 

10-9/hour 10-12
/hour 

probabilities probable rare very rare very 
improbable 
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How Develop critical software ? 

Classical Development  V Cycle  

investigation 
Qualification 
    in laboratory 
    in operation 

specification 

design 

development tests 

integration 

validation 

tests white box 

tests  black box 

tests of integrated system 
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How Develop Critical Software ?  

 Cost of critical software development: 
 Specification : 10% 

 Design: 10% 

 Development: 25% 

 Integration tests: 5% 

 Validation: 50% 

 Fact: 

Earlier an error is detected, more expensive its 
correction is. 
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Cost of Error Correction 

error detection time 

cost of 
error 

correction 

Put the effort  on the upstream phase 

development based on models 
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How Develop Critical Software ?  

 Goals of critical software specification: 

Define application needs 

 specific domain engineers 

Allowing application development 

 Coherency 

 Completeness 

Allowing application functional validation 

 Express properties to be validated 

 
 Formal models usage 
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Critical software specification 

 First Goal: must yield a formal description 
of the application needs: 

Standard to allowing communication between 
computer science engineers and non computer 
science ones 

General enough to allow different  kinds of 
application: 

 Synchronous (and/or) 

 Asynchronous (and/or) 

 Algorithmic 
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Critical software specification  

 Second Goal: allowing errors detection 
carried out upstream: 

Validation of the specification: 

 Coherency 

 Completeness 

 Proofs  

Test 

 Quick prototype development 

 Specification simulation 
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Example of non completeness 

From Ariane 5: 

helium tank 
low 

hydrogen tank 
low 

action action 

Simultaneous 
events ? 

unspecified action 
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Critical Software Specification (3) 

 Third goal: make easier the  transition from  
specification to design (refinement) 

Reuse of specification simulation tests 

Formalization of design 

Code generation 

 Sequential/distributed 

 Toward a target language 

 Embedded/qualified code 
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Relying on Formal Methods 

test reuse 
test coverage 

test generation 
MODEL 

proofs 

code 

automatic code 
generation 

functional 
validation 

abstract 
interpretation 

simulation 

no more 
integration tests 
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Critical Software Validation 

 What is a correct software? 

No execution errors, time constraints 
respected, compliance of results. 

 Solutions: 

At model level : 

 Simulation 

 Formal proofs 

At implementation level: 

 Test 

 Abstract interpretation 
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Validation Methods 

 Testing 

Run the program on set of inputs and check 
the results 

 Static Analysis 

Examine the source code to increase 
confidence that it works as intended  

 Formal Verification 

Argue formally that the application always 
works as intended 
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Testing  

 Dynamic verification process applied at 
implementation level. 

 Feed the system (or one if its components) 
with a set of input data values: 

Input data set not too large to avoid huge time 
testing procedure. 

Maximal coverage of different cases required. 
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Testing (2) 

Program Testing 

Concrete semantics 

Test coverage errors 

all program executions 

executions tested ok 

undetected 
failure 

“Testing only highlights 
bugs but not ensure their 
absence “ (E. Dijkstra) 
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Static Analysis 

 The aim of static analysis is to search for 
errors without running the program. 

  Abstract interpretation = replace data of 
the program by an abstraction in order to 
be able to compute program properties. 

 Abstraction must ensure : 

A(P) “correct”  P correct 

 But A(P) “incorrect”   ? 
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Static Analysis: example 

abstraction: integer by intervals 

1: x:= 1; 

2: while (x < 1000) { 

3:   x := x+1; 

4: } 

x1 = [1,1] 

x2 = x1 U x3 ∩ [-∞, 999] 

x3 = x2  [1,1] 

x4 = x1 U x3  ∩ [1000, ∞] 

Abstract interpretation theory  values are fix 

point equation solutions. 



08/01/2014 Critical Software 

Formal verification 

 What about functional validation ? 

Does the program compute the expected 
outputs? 

Respect of time constraints (temporal 
properties)  

Intuitive partition of temporal properties: 

 Safety properties: something bad never happens 

 Liveness properties: something good eventually 
happens 
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Safety and Liveness Properties 

 Example: the beacon counter in a train: 

Count the difference between beacons and 
seconds 

Decide when the train is ontime, late, early 
 ontime : difference = 0 

 late : difference > 3 and it was ontime before or 
difference > 1 and it was already late before 

 early : difference < -3 and it was   ontime before or 
difference < -1 and it was ontime  before 
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Safety and Liveness Properties 

 Some properties: 

1. It is impossible to be late and early; 

2.  It is impossible to directly pass from late to 
early; 

3. It is impossible to remain late only one instant; 

4. If the train stops, it will eventually get late 

 Properties 1, 2, 3 : safety 

 Property 4 : liveness 

It refers to unbound future 
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Safety and Liveness Properties 
Checking 

 Use of model checking techniques 

 Model checking goal: prove safety and 
liveness properties of a system in analyzing 
a model of the system. 

 Model checking techniques require: 

 model of the system  

 express properties 

 algorithm to check properties on the model ( 
decidability) 
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Model Checking Techniques 

 Model = automata which is the set of  
program behaviors 

 Properties expression = temporal logic: 

 LTL : liveness properties  

 CTL: safety properties 

 Algorithm = 

 LTL : algorithm  exponential wrt the formula 
size and linear wrt automata size. 

CTL: algorithm linear wrt formula size  and wrt 
automata size 

 



Model Checking Model Specification  

• Model = automata which is the set of  program 
behaviors 
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Model Specification  

• Model = automata which is the set of  program 
behaviors 

• An automata is composed of: 
1. A finite set of states (Q) 

2. A finite alphabet of actions (A) 

3. An initial state  (qinit   € Q) 

4. A transition relation  (R in  Q x Q) 
5. A labeling function  λ : Q x Q → A 

 

28 

Notation:  a transition is denoted  q1        q2 
a 



Model Specification  

• Model = automata which is the set of  program 
behaviors 

 Example: Traffic Light 

trigger: tick, reset 

action:green,orange,red 

reset 

tick/green 

tick/orange 

tick/red 

tick/green reset 

reset 
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           Model Specification 



Model  Specification  

How design automata as system behaviors ? 

 

Use synchronous languages to specify critical 
systems. 

 

Synchronous programs = automata 

 

 



 
Model Specification with Synchronous  

Languages 

1. Synchronous languages  have a simple formal 
model (a finite automaton) making formal 
reasoning tractable. 

2. Synchronous languages support concurrency 
and offer an implicit or explicit means to 
express parallelism. 
 

3. Synchronous languages are devoted to design 
reactive real-time systems. 

 



Determinism & Reactivity 

• Synchronous languages are deterministic and 
reactive 

• Determinism: 

• The same input sequence always yields the 
same output sequence 

• Reactivity: 

• The program must react(*) to any stimulus 

• Implies absence of deadlock  
• (*) Does not necessary generate outputs, the reaction may change  internal state only. 

 

 



Synchronous Reactive Systems (1)  

Environment

Read 
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Synchronous Reactive Systems (2)  

Environment

Computations 
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Synchronous Reactive Systems (3)  

Environment

Write 

Atomic execution: read, compute, write 
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Synchronous Hypothesis 

• Synchronous languages work on a logical 
time. 

• The time is  

– Discrete 

– Total ordering of instants. 

• A reaction executes in one instant. 

• Actions that compose the reaction may be 
partially ordered. 

Use N as time base 



Synchronous Hypothesis  

• Communications between actors are also 
supposed to be instantaneous. 

• All parts of a synchronous model receive 
exactly the same information 
(instantaneous broadcast). 

• Outcome: Outputs are simultaneous with 
Inputs (they are said to be synchronous)  

• Thanks to these strong hypotheses, 
program execution is fully deterministic. 



Reactive ? 

• Different ways to “react” to the environment: 

– Event driven system: 

• Receive events 

• Answer by sending events 

– Data flow system: 

• Receive data continuously 

• Answer by treating data continuously 
also 

Some systems 
have components of 

both kinds 



Event Driven Reactive System 

landing 

open gear door 

gear door opened gear down 

push down gear block gear 

Langing gear management 



Data Flow Reactive System (Example) 

sensors 

navigation 

guidance 

piloting 

operators 

P
e
ri
o
d
ic

 p
ro

ce
ss

u
s 

• get measures 

• where am I ? 

• where go I ? 

• command computation 

• command to operators 

Control/Command  vehicle 



Imperative and Declarative languages 

 Different ways to express synchronous 
programs: 

1. Imperative languages rely on implicitly or 
explicitly finite state machines, well suited 
to design event driven reactive system 

2. Declarative languages rely on operator 
networks computing data flows, well suited 
to design data flow reactive system 
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Event Driven = FSM 

Event  driven applications can be designed: 
1. As simple finite sate machines (= 

automata) 
2. As the synchronous product of finite 

state machines 
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Data Flow = Operator Networks 

 LUSTRE  programs can be interpreted as 
networks of operators. 

 Data « flow » to operators where they are 
consumed. Then, the operators generate 
new data. (Data Flow description). 

op1 

op2 

op3 

Operator 

Token 

(data) 
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An example of Data Flow 
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Data Flow 
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Data Flow 
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Data Flow 
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Data Flow 
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Data Flow 
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Functional Point of View 

DIT FFT 

P P’ 

Q Q’ 
*'

*'

k

N

k

N

P

Q

W

W

P Q

P Q

 

 
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Flows, Clocks 

 A flow is a pair made of 

A possibly infinite sequence of values of 
a given type 

A clock representing a sequence of 
instants 

X:T      (x1, x2, … , xn,  … ) 



Data Flow Synchronous Languages 

1. Data flow programs compute output flows 
from input flows using: 
1. Variables (= flows)  
2. Equation:    x = E means         xk = Ek 

3. Assertion: Boolean expression that should 
be always true. 

2. Data flow programs define new data flow 
operators. 

k
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Substitution principle:  
if X = E  then E can be substituted for X 

anywhere in the program and conversely 

Definition principle: 

A variable is fully defined by its declaration 

and the equation in which it appears as a  

left-hand side term 

Data Flow Synchronous Languages 



Data Flow Synchronous Languages 

operator  Average (X,Y:int) returns (M:int) 
M = (X + Y)/2 
     X = (X1,X2,….,Xn,…….) 
     Y = (Y1,Y2,…..,Yn,……..) 
     M = ((X1+Y1)/2, X2+Y2)/2,……,(Xn+Yn)/2,….) 

Average 

X:int 

Y:int 

M:int 



08/01/2014 Critical Software 

Constants 
0, 1, …, true, false, …,  1.52, ... 

Expressions 

+ 

Imported  

types and  

operators 

int 

bool 

real 
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 « Combinational » Operators 

Data operators 

Arithmetical: +, -, *, /, div, mod 

Logical: and, or, not, xor, => 

Conditional:  if … then … else ... 

Casts: int, real 

YopXYopXkYopX kkk
 )(,

« Point-wise » operators 
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« Combinational » Operator IF 

 if operator 

  operator Max (a,b : real) returns (m: real) 
let  
    m = if (a >= b) then a else b; 
tel 

functional «if then else »; it is not a 
statement 
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« Combinational » Operator IF 

 if operator 

  operator Max (a,b : real) returns (m: real) 
let  
    m = if (a >= b) then a else b; 
tel 

let  
    if (a >= b) then m = a ; 
   else  m = b; 
tel 
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Memorizing 

Take the past into account! 

 1 2 1 1( , , , , ) : ( ) nil, , , ,n nX x x x pre X x x  

pre (previous): 

-> (initialize):  sometimes call “followed by” 

1 2 1 2

1 2

( , , , , ) , ( , , , , ) :

( ) ( , , , , )

n n

n

X x x x Y y y y

X Y x y y

 

  

Undefined value denoting uninitialized memory: nil 
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« Sequential » Examples 

n   =   0   pre(n) +1 

+ 1 

0 

 

pre 

n 
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Sequential » Examples 

operator MinMax (X:int) returns (min,max:int); 

 

 min = X -> if (X < pre min) then X else pre 
min; 

 max = X -> if (X > pre max) then X else pre 
max; 



Sequential examples 

operator CT (init:int) returns (c:int): 
 c = init → pre(c) + 2 
 
 
operator  DoubleCall (even:bool) returns 
(n:int) 

n= if (even) then CT(0) else CT(1) 
DoubleCall (ff,ff,tt,tt,ff,ff,tt,tt,ff) = ? 
                 

08/01/2014 63 



Sequential examples 

operator CT (init:int) returns (c:int): 
 c = init → pre(c) + 2 
CT(0) = (0,2,4,6,8,10,12,14,16,18,….) 
CT(1) = (1,3,5,7,9,11,13,15,17,19,….) 
operator  DoubleCall (even:bool) returns 
(n:int) 

n= if (even) then CT(0) else CT(1) 
DoubleCall (ff,ff,tt,tt,ff,ff,tt,tt,ff) = ? 
                (1,3,4,6,9,11,12,14,17) 
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Recursive definitions 

Temporal recursion 

 Usual. Use pre and -> 

 e.g.: nat = 1 -> pre nat + 1 

 

Instantaneous recursion 

 e.g.: X = 1.0 / (2.0 – X) 

 Forbidden in Lustre, even if a solution 
exists! 

 Be carefull with cross-recursion. 
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Clocks 

Basic clock 

 Discrete time induced by the input sequence 

 Derived clocks (slower) 

when (filter operator): 
   E when C is the sub-sequence of E obtained by 
keeping only the values of indexes ek for which 

ck=true 
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Examples of clocks 

Basic cycles 

 

 

C1 

 

Cycles of C1 

 

 

C2 

 

Cycles of C2 
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Example of sampling 

nat,odd:int 

halfBaseClock:bool 

nat = 0 -> pre nat +1; 

halfBaseClock =  

 true -> not pre halfBaseClock; 

odd = nat when halfBaseClock; 
nat is a flow on the basic clock; 
odd is a flow on halfBaseClock 

Exercice: write even 



Modulo Counter 

operator MCounter (incr:bool; modulo : int)  
                             returns (cpt:int); 
   var count : int; 
   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
   

 



Modulo Counter Clock 

operator MCounterClock (incr:bool;  
                                     modulo : int)  
                          returns(cpt:int; 
                                     modulo_clock: bool); 
   var count : int;   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
   

 
modulo_clock = count != cpt; 



Modulo Counter Clock 

var count : int;   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
     modulo_clock = count != cpt; 

 

MCounterClock(true,3): 
count:                    0 1 2 3 1 2 3…… 
cpt =                     0 1 2 0 1 2 0…….. 
modulo_clock =      ff ff ff tt ff ff tt …. 



Timer 

operator Timer returns (hour, minute, second:int); 
   
   var hour_clock, minute_clock, day_clock : bool; 

 

   (second, minute_clock) =  
                        MCounterClock(true, 60); 
   (minute, hour_clock) = 
                       MCounterClock(minute_clock,60); 
   (hour, dummy_clock) =           
                       MCounterClock(hour_clock, 24); 
 



Data Flow Programs Compilation 

 Data flow programs are compiled into automata 



Data Flow Program Compilation 

operator WD (set, reset, deadline:bool) 
                         returns (alarm:bool); 
var is_set:bool;  
  alarm = is_set and deadline; 
  is_set = false -> if set then true  
                               else if reset then false  
                                       else pre(is_set); 
  assert not(set and reset); 
 



Data Flow Program Compilation 

First, the program is translated into pseudo 
code: 
if _init then // first instant (or reaction) 
   is_set := false; alarm := false; 
   _init := false; 
else   // following reactions 
   if set then is_set := true 
   else 
      if reset then is_set := false;  
      endif 
   endif 
   alarm := is_set and deadline; 
endif 

 



Data Flow Program Compilation 

3 states: 
S0: _init = true and pre_is_set = nil 
S1: _init = false and pre_is_set = false 
S2: _init = false  and pre_is_set = true 

For WD, we consider  2 state variables: 
_init (true, false, false, ….) and pre_is_set 

Choose state variables : _init and variables 
which have pre. 
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Data Flow Program Compilation 

S1: 
 
 

       _init := false  
       pre_is_set= false 

 
 
 

S0: alarm := false;       

initial 
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if _init then // first instant (or reaction) 
   is_set := false; alarm := false 
_  init := false; 
else   // following reactions 
   if set then is_set := true 
   else 
      if reset then is_set := false;  
      endif 
   endif 
   alarm := is_set and deadline; 
endif 



Data Flow Program Compilation 

S1: 
 if set then 
        alarm:= deadline; 
        go to S2; 
      else 
        alarm := false; 
        go to S1; 

 

S2:  
 
 

       _init = false; 
       pre(is_set) := true; 

 
 
 
 

S0: alarm := false;       

initial 

¬set 

set 
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if _init then // first instant (or 
reaction) 
   is_set := false; alarm := false; 
    _init := false; 
else   // following reactions 
   if set then is_set := true 
   else 
      if reset then is_set := false;  
      endif 
   endif 
   alarm := is_set and deadline; 
endif 



Data Flow Program Compilation 

S1: if set then 
        alarm:= deadline; 

        go to S2; 
      else 

        alarm := false; 
        go to S1; 

 

S2:  
 
 

       _init = false; 
       pre_is_set := true; 

 
 
 

S0: alarm := false;       

initial 

¬set 

set 
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Lustre Program Compilation 

S1: if set then 
        alarm:= deadline; 

        go to S2; 
      else 

        alarm := false; 
        go to S1; 

 

S2: 
 if set then  
         alarm := deadline;  
         go to S2; 
      else 
        if reset then 
            alarm := false; 
            go to S1; 
        else 
            alarm := deadline; 
        go to S2; 

S0: alarm := false;       

initial 

¬set ¬reset 

reset 

set 
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if _init then // first instant (or 
reaction) 
   is_set := false; alarm := false; 
    _init := false; 
else   // following reactions 
   if set then is_set := true 
   else 
      if reset then is_set := false;  
      endif 
   endif 
   alarm := is_set and deadline; 
endif 



Lustre Program Compilation 

S1: if set then 
        alarm:= deadline; 

        go to S2; 
      else 

        alarm := false; 
        go to S1; 

 

S2: if set then  
         alarm := deadline;  

         go to S2; 
      else 

        if reset then 
            alarm := false; 

            go to S1; 
        else 

            alarm := deadline; 
        go to S2; 

S0: alarm := false;       

initial 

¬set ¬reset 

reset 

set 
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Model Checking  of Data Flow 
programs with Observers 

 Express safety properties as observers. 

 An observer is a program which observes 
the program and outputs ok when the 
property holds and failure when its fails 

program 

observer 

inputs outputs 

ok 
failure 
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Properties Validation 

 Taking into account the environment 

without any assumption on the environment, 
proving properties is difficult 

 but the environment is indeterminist 

 Human presence no predictable 

 Fault occurrence 

 … 

Solution: use assertion to make hypothesis on 
the environment and make it determinist 
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Properties Validation (2) 

 Express safety properties as observers. 

 Express constraints about the environment 
as assertions. 

program 

observer 

inputs outputs 

ok 
failure 

assertions assume 
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Properties Validation (3) 

 if assume remains true, then ok  also 
remains true  (or failure false). 

program 

observer 

inputs outputs 

ok 
failure 

assertions assume 
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Safety and Liveness Properties 

 Example: the beacon counter in a train: 

Count the difference between beacons and 
seconds 

Decide when the train is ontime, late, early 
operator train (sec, bea : bool) returns (ontime, early, late: bool) 
 
diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0); 
        early = (true -> pre ontime) and (diff > 3) or 
                    (false -> pre early) and (diff > 1); 
        late  = (true -> pre ontime) and (diff < -3)  or 
                   (false -> pre late) and (diff < -1); 
        ontime = not (early or late); 
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 Train Safety Properties 

 It is impossible to be late and early; 

 ok = not (late and early) 

 It is impossible to directly pass from late to 
early; 

 ok = true -> (not early and pre late); 

 It is impossible to remain late only one 
instant; 

 Plate = false -> pre late;                                         
PPlate = false -> pre Plate;                                                     
ok = not (not late and Plate and not PPlate); 
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Train Assumptions 

 property = assumption + observer: “ if the 
train keeps the right speed, it remains on 
time”   

 observer =  ok = ontime 

 assumption: 

naïve: assume = (bea = sec); 

 more precise : bea and sec alternate: 

 SF = Switch (sec and  not bea, bea and not sec);         
BF = Switch (bea and not sec, sec and not bea);        
assume = (SF => not sec) and (BF => not bea); 

 

 

 



SCADE: Safety-Critical Application 
Development Environment 

 Scade has been developped to address  
safety-critical embedded application design 

 The Scade suite KCG code generator has 
been qualified  as a development tool 
according to DO-178B norm at level A. 
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SCADE 

 Scade has been used to  develop, validate 
and generate code for: 

 avionics: 

 Airbus A 341: flight controls 

 Airbus A 380: Flight controls, cockpit display, fuel 
control, braking, etc,.. 

 Eurocopter EC-225 : Automatic pilot 

 Dassault Aviaation F7X: Flight Controls, landing 
gear, braking 

 Boeing 787: Landing gear, nose wheel steering, 
braking 
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 System Design 

 Both data flows and state machines 

 Simulation 

Graphical simulation, automatic GUI integration 

 Verification 

Apply observer  technique 

 Code Generation 

 certified  C code 

 

 

SCADE 
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Modulo Counter 

operator MCounter (incr:bool; modulo : int)  
                             returns (cpt:int); 
   var count : int; 
   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
   

 



Modulo Counter 

count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 

   



Modulo Counter Clock 

operator MCounterClock (incr:bool;  
                                     modulo : int)  
                          returns(cpt:int; 
                                     modulo_clock: bool); 
   var count : int;   
     count = 0 -> if incr pre (cpt) + 1 
                        else pre (cpt); 
     cpt =  count mod modulo; 
  
 

modulo_clock = count <> cpt; 



Modulo Counter Clock 



Timer 

operator Timer  
              returns (hour, minute, second:int); 
  var hour_clock, minute_clock, day_clock : bool; 
 
   (second, minute_clock) =  
                      MCounterClock(true, 60); 
   (minute, hour_clock) =  
                      MCounterClock(minute_clock,60); 
   (hour, dummy_clock) = 
                      MCounterClock(hour_clock, 24); 
 



Timer 



SCADE: state machines 

 Input and output: same interface  

 States: 

 Possible hierarchy 

 Start in the initial state 

 Content = application behavior 

 Transitions: 

 From a state to another one 

 Triggered by a Boolean condition 
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SCADE: state machines 

state 

transition 

trigger 

When ON, ison = true 

When off, ison = false 
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SCADE: model checking 

Observers in Scade 

P: aircraft autopilot and security system 

P aircraft_altitude landing_order 

 aircraft_altitude 

200 

landing_order not 

alarm 

alarm 

and 

implies 
 



SCADE: model checking 

Observer technique 

posture model 

posture model specification in 
scade 
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SCADE: model checking 

Observer technique 

posture 
observer 

posture verification 

failure 

lying: true; sitting:true;standing:true 
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SCADE: model checking 

Observer technique 

posture 
observer 

posture verification 

valid 

assume (lying # sitting # standing)  
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SCADE: code generation 

 KCG generates certifiable code (DO-178 
compliance) 

 Clean code, rigid structure (easy 
integration) 

 Interfacing potential with user-defined 
code (c/c++) 
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SCADE: code generation 
structures 

  InC_<operator_name> 

 structure C 

 one member for each input 

  OutC_<operator_name> 

Structure C 

 one member for each output and each state 

Other members for output/state computations 
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SCADE: code generation 
structures  

 Reaction function 

 for a transition (or a reaction) computes the 
output and the new state 

 void <operator_name> 
(Inc_<operator_name> * inC,  
outC_<operator_name>* outc) 

 Reset function 

 To reset the reaction and the structures 

 void <operator_name>_reset 
(outC_<operator_name>* outc 
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SCADE: code generation 
files 

 Generated files 

 <operator_name>.h : type and function 
declarations for code integration 

 <operator_name>.c : implementation of 
reaction and reset functions 

 kcg_types.(h,c) to define types in C 

 kcg_conts.(h,c)  to define contants 
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CHECKING TEMPORAL 
PROPERTIES 
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Properties Checking 

 Liveness Property  : 

   automata  B() 

 L(B()) =   décidable 

  |= M  : L(M  B(~)) =  

  Scade  allows  only to verify safety 
properties, thus we will study such 
properties verification techniques. 
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Safety Properties 

 CTL formula characterization: 

Atomic formulas 

Usual logic operators: not, and, or ()  

Specific temporal operators: 

 EX , EF , EG  

 AX , AF , AG  

 EU(1 ,2), AU(1 ,2) 
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Safety Properties Verification (1) 

 Mathematical framework:  
 S : finite state, (P (S), ) is a complete lattice 

with S as greater element and  as least one. 

 f : P (S)              P (S) : 

 f is monotonic iff  x,y  P (S), x  y  f(x)  f(y) 

  f is -continue iff for each decreasing sequence  
f( xi) =  f(xi) 

  f is -continue iff for each increasing sequence   
f( xi) =  f(xi) 
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Safety Properties Verification (2) 

 Mathematical framework:  

 if S is finite then monotonic   -continue et 
-continue. 

  x is a fix  point iff of f iff f(x) = x 

x is a least fix point (lfp) iff y  such that     
f(y) = y, x  y 

x is a greatest fix point (gfp) iff y  such that     
f(y) = y, y  x 
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Safety Properties Verification (3) 

 Theorem: 

f monotonic  f has a lfp (resp glp) 

  lfp(f) =  fn() 

 gfp(f) =  fn(S) 

 

Fixpoints are limits of approximations  



08/01/2014 Critical Software 

Safety Properties Verification (4) 

 We call Sat() the set of states where  is 
true. 

  M |=     iff sinit  Sat(). 

 Algorithm: 
 Sat()  = { s |  |= s} 

  Sat(not ) = S\Sat() 

  Sat(1 or 2) = Sat(1) U Sat(2) 

  Sat (EX ) =  {s |  t  Sat() , s → t}   (Pre Sat()) 

  Sat (EG ) = gfp ((x) =  Sat()  Pre(x)) 

  Sat (E(1 U 2)) = lfp ((x) = Sat(2) U (Sat(1)  
Pre(x)) 
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Example 

s0 
s1 

s2 

s3 s4 

atomic formulas: a, b, c a b 

a,b,c 

c 
b,c 

EG (a or b)  gfp ((x) =  Sat()  Pre(x)) 

({s0, s1, s2, s3, s4}) = Sat (a or b)  Pre({s0, s1, s2, s3, s4}) 

({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}  {s0, s1, s2, s3, s4} 

({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4} 
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Example 

s0 
s1 

s2 

s3 s4 

atomic formulas: a, b, c a b 

a,b,c 

c 
b,c 

EG (a or b) ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4} 

({s0, s1, s2, s4}) = Sat (a or b)  Pre({s0, s1, s2,, s4}) 

({s0, s1, s2,  s4}) = {s0, s1, s2, s4} 

S0 |= EG( a or b) 
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Model checking implementation 

 Problem: the size of automata 

 Solution: symbolic model checking 

 Usage of BDD (Binary Decision Diagram) to 
encode both automata and formula. 

 Each Boolean function  has a unique 
representation 

 Shannon decomposition: 
 f(x0,x1,…,xn) = f(1, x1,…., xn) v f(0, x1,…,xn) 
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Model Checking Implementation 

 When applying  recursively Shannon 
decomposition on all variables, we obtain a 
tree where leaves are either 1 or 0. 

 BDD  are: 

A concise representation of the Shannon tree 

 no useless node (if x then g else g  g) 

Share common sub graphs 
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Model Checking Implementation (2) 

(x1  x0) v (( x1 v y1)  (x0  y0)) 

x0 

x1 

y1 

1 

x1 

y0 
y0 

0 1 

0 



Model Checking Implementation (2) 

(x1  y1) v (x0  y0  x1) 

0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 

x0 

x1 

y0 

y1 y1 

y0 

y1 y1 

x1 

y0 

y1 y1 

y0 

y1 y1 

0 1 

1 
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Model Checking Implementation (2) 

(x1  y1) v (x0  y0  x1) 

x0 

0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 

0 

1 

1 

x1 

y0 

y1 y1 

y0 

y1 y1 

x1 

y0 

y1 y1 

y0 

y1 y1 
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Model Checking Implementation (2) 

(x1  y1) v (x0  y0  x1) 

x0 0 1 

x1 

y0 

y1 y1 

0 1 0 1 

x1 

y0 

y1 y1 

0 

0 1 1 1 

0 
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Model Checking Implementation (2) 

(x1  y1) v (x0  y0  x1) 

x0 0 1 

x1 

y1 

0 1 

x1 

y0 

y1 y1 

0 1 1 1 

0 0 
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Model Checking Implementation (2) 

x0 0 1 

x1 

y1 

0 1 

x1 

y0 

y1 

1 1 

0 
0 

(x1  y1) v (x0  y0  x1) 
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Model Checking Implementation (2) 

x0 0 1 

x1 

y1 

0 1 

x1 

y0 

1 

0 
0 

(x1  y1) v (x0  y0  x1) 
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Model Checking Implementation (2) 

x0 0 1 

x1 

y1 

0 1 

x1 

y0 

(x1  y1) v (x0  y0  x1) 
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Model Checking Implementation(3) 

 Implicit representation of the of states set 
and of the transition relation of automata 
with BDD. 

  BDD allows 
 canonical representation 

 test of emptiness immediate (bdd =0) 

 complementarity immediate (1 = 0) 

 union and intersection  not immediate 

 Pre immediate 
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 Model Checking Implementation (4) 

 But BDD efficiency depends on the number 
of variables 

 Other method: SAT-Solver 

Sat-solvers answer the question: given a 
propositional formula, is there exist a valuation 
of the formula variables such that this formula 
holds 

 first algorithm (DPLL) exponential (1960)  
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 Model Checking Implementation (4) 

 SAT-Solver algorithm: 

formula  CNF formula  set of clauses 

heuristics to choose variables 

deduction engine: 

 propagation  

 specific reduction rule application (unit clause) 

 Others reduction rules 

 conflict analysis + learning 
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Model Checking  Implementation (5) 

 SAT-Solver usage: 

 encoding of the paths  of length k by 
propositional formulas 

 the existence of a path of length k (for a given 
k) where a temporal property  is true can be 
reduce to the satisfaction of a propositional 
formula  

 theorem: given  a temporal property and M 
a model, then M |=    n  such that           
M |= n   ( n < |S| . 2 ||) 
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Bounded Model Checking 

 SAT-Solver are used in complement of 
implicit (BDD based) methods. 

 M |=  

verify ¬  on all paths of length k (k bounded) 

 useful to quickly extract counter examples  



Bounded Model Checking 
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Given a property p 
 
Is there a state reachable in k cycles, which satisfies ¬p ? 

p p p p ¬p 

s0 s1 s2 Sk-1 sk 

…….. 



Bounded Model Checking 
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The reachable states in k steps are captured by: 
 
             I(s0)     T(s0,s1)   ………..    T(sk-1, sk) 
 
The property p fails in one of the k steps 

V V V 
¬p(s0) V ¬p(s1) V ¬p(s2) …… V ¬p(sk-1) V ¬p(sk) 

The safety property p is valid up to step k iff Ω(k) 
is unsatisfiable: 

Ω(k) = I(s0)          T(si, si+1)          ¬p(si)  

v 
V 

i=0 

k-1 

v V     
i=0 

k 



Bounded Model Checking 
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K=0 

BMC(M,ρ,k) 

k≥ CT 

SAT 

UnSAT K++ 

M |= ρ 

M |=ρ 

CT is the completeness threshold 


