
Critical Real Time Software Verification

A. Ressouche*

 (*) Inria Sophia Antipolis-Méditerranée

08/01/2014 Critical Software

Outline

1. Critical software design

2. Critical software validation techniques

3. Model checking

1. Model specification

2. Synchronous languages

3. Scade

4. Model Checking Technique

1. Property definition

2. Validation technique

08/01/2014 Critical Software

08/01/2014 Critical Software

Critical Software

 Roughly speaking a critical system is a
system whose failure could have serious
consequences

 Nuclear technology

 Transportation

Automotive

Train

Avionics

 …………

08/01/2014 Critical Software

Critical Software (2)

 In addition , other consequences are
relevant to determine the critical aspect of
a software:

Financial aspect

 Loosing of equipment, bug correction

 Equipment callback (automotive)

Bad advertising

 Intel famous bug

08/01/2014 Critical Software

Software Classification

Example of the aeronautics norm
DO178B:

A Catastrophic (human life

loss)

B Dangerous (serious injuries,
loss of goods)

C Major (failure or loss of the
system)

D Minor (without consequence
on the system)

E Without effect

Depending of the level of risk
of the system, different kinds
of verification are required

08/01/2014 Critical Software

 Software Classification (avionics)

Minor acceptable situation

Major

Dangerous Unacceptable situation

catastrophic 10-3 / hour 10-6 /
hour

10-9/hour 10-12
/hour

probabilities probable rare very rare very
improbable

08/01/2014 Critical Software

How Develop critical software ?

Classical Development V Cycle

investigation
Qualification
 in laboratory
 in operation

specification

design

development tests

integration

validation

tests white box

tests black box

tests of integrated system

08/01/2014 Critical Software

How Develop Critical Software ?

 Cost of critical software development:
 Specification : 10%

 Design: 10%

 Development: 25%

 Integration tests: 5%

 Validation: 50%

 Fact:

Earlier an error is detected, more expensive its
correction is.

08/01/2014 Critical Software

Cost of Error Correction

error detection time

cost of
error

correction

Put the effort on the upstream phase

development based on models

08/01/2014 Critical Software

How Develop Critical Software ?

 Goals of critical software specification:

Define application needs

 specific domain engineers

Allowing application development

 Coherency

 Completeness

Allowing application functional validation

 Express properties to be validated

 Formal models usage

08/01/2014 Critical Software

Critical software specification

 First Goal: must yield a formal description
of the application needs:

Standard to allowing communication between
computer science engineers and non computer
science ones

General enough to allow different kinds of
application:

 Synchronous (and/or)

 Asynchronous (and/or)

 Algorithmic

08/01/2014 Critical Software

Critical software specification

 Second Goal: allowing errors detection
carried out upstream:

Validation of the specification:

 Coherency

 Completeness

 Proofs

Test

 Quick prototype development

 Specification simulation

08/01/2014 Critical Software

Example of non completeness

From Ariane 5:

helium tank
low

hydrogen tank
low

action action

Simultaneous
events ?

unspecified action

08/01/2014 Critical Software

Critical Software Specification (3)

 Third goal: make easier the transition from
specification to design (refinement)

Reuse of specification simulation tests

Formalization of design

Code generation

 Sequential/distributed

 Toward a target language

 Embedded/qualified code

08/01/2014 Critical Software

Relying on Formal Methods

test reuse
test coverage

test generation
MODEL

proofs

code

automatic code
generation

functional
validation

abstract
interpretation

simulation

no more
integration tests

08/01/2014 Critical Software

Critical Software Validation

 What is a correct software?

No execution errors, time constraints
respected, compliance of results.

 Solutions:

At model level :

 Simulation

 Formal proofs

At implementation level:

 Test

 Abstract interpretation

08/01/2014 Critical Software

Validation Methods

 Testing

Run the program on set of inputs and check
the results

 Static Analysis

Examine the source code to increase
confidence that it works as intended

 Formal Verification

Argue formally that the application always
works as intended

08/01/2014 Critical Software

Testing

 Dynamic verification process applied at
implementation level.

 Feed the system (or one if its components)
with a set of input data values:

Input data set not too large to avoid huge time
testing procedure.

Maximal coverage of different cases required.

08/01/2014 Critical Software

Testing (2)

Program Testing

Concrete semantics

Test coverage errors

all program executions

executions tested ok

undetected
failure

“Testing only highlights
bugs but not ensure their
absence “ (E. Dijkstra)

08/01/2014 Critical Software

Static Analysis

 The aim of static analysis is to search for
errors without running the program.

 Abstract interpretation = replace data of
the program by an abstraction in order to
be able to compute program properties.

 Abstraction must ensure :

A(P) “correct”  P correct

 But A(P) “incorrect”  ?

08/01/2014 Critical Software

Static Analysis: example

abstraction: integer by intervals

1: x:= 1;

2: while (x < 1000) {

3: x := x+1;

4: }

x1 = [1,1]

x2 = x1 U x3 ∩ [-∞, 999]

x3 = x2  [1,1]

x4 = x1 U x3 ∩ [1000, ∞]

Abstract interpretation theory  values are fix

point equation solutions.

08/01/2014 Critical Software

Formal verification

 What about functional validation ?

Does the program compute the expected
outputs?

Respect of time constraints (temporal
properties)

Intuitive partition of temporal properties:

 Safety properties: something bad never happens

 Liveness properties: something good eventually
happens

08/01/2014 Critical Software

Safety and Liveness Properties

 Example: the beacon counter in a train:

Count the difference between beacons and
seconds

Decide when the train is ontime, late, early
 ontime : difference = 0

 late : difference > 3 and it was ontime before or
difference > 1 and it was already late before

 early : difference < -3 and it was ontime before or
difference < -1 and it was ontime before

08/01/2014 Critical Software

Safety and Liveness Properties

 Some properties:

1. It is impossible to be late and early;

2. It is impossible to directly pass from late to
early;

3. It is impossible to remain late only one instant;

4. If the train stops, it will eventually get late

 Properties 1, 2, 3 : safety

 Property 4 : liveness

It refers to unbound future

08/01/2014 Critical Software

Safety and Liveness Properties
Checking

 Use of model checking techniques

 Model checking goal: prove safety and
liveness properties of a system in analyzing
a model of the system.

 Model checking techniques require:

 model of the system

 express properties

 algorithm to check properties on the model (
decidability)

08/01/2014 Critical Software

Model Checking Techniques

 Model = automata which is the set of
program behaviors

 Properties expression = temporal logic:

 LTL : liveness properties

 CTL: safety properties

 Algorithm =

 LTL : algorithm exponential wrt the formula
size and linear wrt automata size.

CTL: algorithm linear wrt formula size and wrt
automata size

Model Checking Model Specification

• Model = automata which is the set of program
behaviors

27 08/01/2014 27

Model Specification

• Model = automata which is the set of program
behaviors

• An automata is composed of:
1. A finite set of states (Q)

2. A finite alphabet of actions (A)

3. An initial state (qinit € Q)

4. A transition relation (R in Q x Q)
5. A labeling function λ : Q x Q → A

28

Notation: a transition is denoted q1 q2
a

Model Specification

• Model = automata which is the set of program
behaviors

 Example: Traffic Light

trigger: tick, reset

action:green,orange,red

reset

tick/green

tick/orange

tick/red

tick/green reset

reset

08/01/2014 Critical Software

 Model Specification

Model Specification

How design automata as system behaviors ?

Use synchronous languages to specify critical
systems.

Synchronous programs = automata

Model Specification with Synchronous

Languages

1. Synchronous languages have a simple formal
model (a finite automaton) making formal
reasoning tractable.

2. Synchronous languages support concurrency
and offer an implicit or explicit means to
express parallelism.

3. Synchronous languages are devoted to design
reactive real-time systems.

Determinism & Reactivity

• Synchronous languages are deterministic and
reactive

• Determinism:

• The same input sequence always yields the
same output sequence

• Reactivity:

• The program must react(*) to any stimulus

• Implies absence of deadlock
• (*) Does not necessary generate outputs, the reaction may change internal state only.

Synchronous Reactive Systems (1)

Environment

Read

08/01/2014 34

Synchronous Reactive Systems (2)

Environment

Computations

08/01/2014 35

Synchronous Reactive Systems (3)

Environment

Write

Atomic execution: read, compute, write

08/01/2014 36

Synchronous Hypothesis

• Synchronous languages work on a logical
time.

• The time is

– Discrete

– Total ordering of instants.

• A reaction executes in one instant.

• Actions that compose the reaction may be
partially ordered.

Use N as time base

Synchronous Hypothesis

• Communications between actors are also
supposed to be instantaneous.

• All parts of a synchronous model receive
exactly the same information
(instantaneous broadcast).

• Outcome: Outputs are simultaneous with
Inputs (they are said to be synchronous)

• Thanks to these strong hypotheses,
program execution is fully deterministic.

Reactive ?

• Different ways to “react” to the environment:

– Event driven system:

• Receive events

• Answer by sending events

– Data flow system:

• Receive data continuously

• Answer by treating data continuously
also

Some systems
have components of

both kinds

Event Driven Reactive System

landing

open gear door

gear door opened gear down

push down gear block gear

Langing gear management

Data Flow Reactive System (Example)

sensors

navigation

guidance

piloting

operators

P
e
ri
o
d
ic

 p
ro

ce
ss

u
s

• get measures

• where am I ?

• where go I ?

• command computation

• command to operators

Control/Command vehicle

Imperative and Declarative languages

 Different ways to express synchronous
programs:

1. Imperative languages rely on implicitly or
explicitly finite state machines, well suited
to design event driven reactive system

2. Declarative languages rely on operator
networks computing data flows, well suited
to design data flow reactive system

08/01/2014 42

Event Driven = FSM

Event driven applications can be designed:
1. As simple finite sate machines (=

automata)
2. As the synchronous product of finite

state machines

08/01/2014 Critical Software

Data Flow = Operator Networks

 LUSTRE programs can be interpreted as
networks of operators.

 Data « flow » to operators where they are
consumed. Then, the operators generate
new data. (Data Flow description).

op1

op2

op3

Operator

Token

(data)

08/01/2014 Critical Software

An example of Data Flow

08/01/2014 Critical Software

Data Flow

08/01/2014 Critical Software

Data Flow

08/01/2014 Critical Software

Data Flow

08/01/2014 Critical Software

Data Flow

08/01/2014 Critical Software

Data Flow

08/01/2014 Critical Software

Functional Point of View

DIT FFT

P P’

Q Q’
*'

*'

k

N

k

N

P

Q

W

W

P Q

P Q

 

 

08/01/2014 Critical Software

Flows, Clocks

 A flow is a pair made of

A possibly infinite sequence of values of
a given type

A clock representing a sequence of
instants

X:T (x1, x2, … , xn, …)

Data Flow Synchronous Languages

1. Data flow programs compute output flows
from input flows using:
1. Variables (= flows)
2. Equation: x = E means xk = Ek

3. Assertion: Boolean expression that should
be always true.

2. Data flow programs define new data flow
operators.

k

08/01/2014 Critical Software

Substitution principle:
if X = E then E can be substituted for X

anywhere in the program and conversely

Definition principle:

A variable is fully defined by its declaration

and the equation in which it appears as a

left-hand side term

Data Flow Synchronous Languages

Data Flow Synchronous Languages

operator Average (X,Y:int) returns (M:int)
M = (X + Y)/2
 X = (X1,X2,….,Xn,…….)
 Y = (Y1,Y2,…..,Yn,……..)
 M = ((X1+Y1)/2, X2+Y2)/2,……,(Xn+Yn)/2,….)

Average

X:int

Y:int

M:int

08/01/2014 Critical Software

Constants
0, 1, …, true, false, …, 1.52, ...

Expressions

+

Imported

types and

operators

int

bool

real

08/01/2014 Critical Software

 « Combinational » Operators

Data operators

Arithmetical: +, -, *, /, div, mod

Logical: and, or, not, xor, =>

Conditional: if … then … else ...

Casts: int, real

YopXYopXkYopX kkk
)(,

« Point-wise » operators

08/01/2014 Critical Software

« Combinational » Operator IF

 if operator

 operator Max (a,b : real) returns (m: real)
let
 m = if (a >= b) then a else b;
tel

functional «if then else »; it is not a
statement

08/01/2014 Critical Software

« Combinational » Operator IF

 if operator

 operator Max (a,b : real) returns (m: real)
let
 m = if (a >= b) then a else b;
tel

let
 if (a >= b) then m = a ;
 else m = b;
tel

08/01/2014 Critical Software

Memorizing

Take the past into account!

 1 2 1 1(, , , ,) : () nil, , , ,n nX x x x pre X x x  

pre (previous):

-> (initialize): sometimes call “followed by”

1 2 1 2

1 2

(, , , ,) , (, , , ,) :

() (, , , ,)

n n

n

X x x x Y y y y

X Y x y y

 

  

Undefined value denoting uninitialized memory: nil

08/01/2014 Critical Software

« Sequential » Examples

n = 0  pre(n) +1

+ 1

0



pre

n

08/01/2014 Critical Software

Sequential » Examples

operator MinMax (X:int) returns (min,max:int);

 min = X -> if (X < pre min) then X else pre
min;

 max = X -> if (X > pre max) then X else pre
max;

Sequential examples

operator CT (init:int) returns (c:int):
 c = init → pre(c) + 2

operator DoubleCall (even:bool) returns
(n:int)

n= if (even) then CT(0) else CT(1)
DoubleCall (ff,ff,tt,tt,ff,ff,tt,tt,ff) = ?

08/01/2014 63

Sequential examples

operator CT (init:int) returns (c:int):
 c = init → pre(c) + 2
CT(0) = (0,2,4,6,8,10,12,14,16,18,….)
CT(1) = (1,3,5,7,9,11,13,15,17,19,….)
operator DoubleCall (even:bool) returns
(n:int)

n= if (even) then CT(0) else CT(1)
DoubleCall (ff,ff,tt,tt,ff,ff,tt,tt,ff) = ?
 (1,3,4,6,9,11,12,14,17)

08/01/2014 64

08/01/2014 Critical Software

Recursive definitions

Temporal recursion

 Usual. Use pre and ->

 e.g.: nat = 1 -> pre nat + 1

Instantaneous recursion

 e.g.: X = 1.0 / (2.0 – X)

 Forbidden in Lustre, even if a solution
exists!

 Be carefull with cross-recursion.

08/01/2014 Critical Software

Clocks

Basic clock

 Discrete time induced by the input sequence

 Derived clocks (slower)

when (filter operator):
 E when C is the sub-sequence of E obtained by
keeping only the values of indexes ek for which

ck=true

08/01/2014 Critical Software

Examples of clocks

Basic cycles

C1

Cycles of C1

C2

Cycles of C2

1

true

1

false

2

false

3

true

2

true

1

4

true

3

false

5

false

6

true

4

true

2

7

false

8

true

5

true

3

08/01/2014 Critical Software

Example of sampling

nat,odd:int

halfBaseClock:bool

nat = 0 -> pre nat +1;

halfBaseClock =

 true -> not pre halfBaseClock;

odd = nat when halfBaseClock;
nat is a flow on the basic clock;
odd is a flow on halfBaseClock

Exercice: write even

Modulo Counter

operator MCounter (incr:bool; modulo : int)
 returns (cpt:int);
 var count : int;

 count = 0 -> if incr pre (cpt) + 1
 else pre (cpt);
 cpt = count mod modulo;

Modulo Counter Clock

operator MCounterClock (incr:bool;
 modulo : int)
 returns(cpt:int;
 modulo_clock: bool);
 var count : int;
 count = 0 -> if incr pre (cpt) + 1
 else pre (cpt);
 cpt = count mod modulo;

modulo_clock = count != cpt;

Modulo Counter Clock

var count : int;
 count = 0 -> if incr pre (cpt) + 1
 else pre (cpt);
 cpt = count mod modulo;
 modulo_clock = count != cpt;

MCounterClock(true,3):
count: 0 1 2 3 1 2 3……
cpt = 0 1 2 0 1 2 0……..
modulo_clock = ff ff ff tt ff ff tt ….

Timer

operator Timer returns (hour, minute, second:int);

 var hour_clock, minute_clock, day_clock : bool;

 (second, minute_clock) =
 MCounterClock(true, 60);
 (minute, hour_clock) =
 MCounterClock(minute_clock,60);
 (hour, dummy_clock) =
 MCounterClock(hour_clock, 24);

Data Flow Programs Compilation

 Data flow programs are compiled into automata

Data Flow Program Compilation

operator WD (set, reset, deadline:bool)
 returns (alarm:bool);
var is_set:bool;
 alarm = is_set and deadline;
 is_set = false -> if set then true
 else if reset then false
 else pre(is_set);
 assert not(set and reset);

Data Flow Program Compilation

First, the program is translated into pseudo
code:
if _init then // first instant (or reaction)
 is_set := false; alarm := false;
 _init := false;
else // following reactions
 if set then is_set := true
 else
 if reset then is_set := false;
 endif
 endif
 alarm := is_set and deadline;
endif

Data Flow Program Compilation

3 states:
S0: _init = true and pre_is_set = nil
S1: _init = false and pre_is_set = false
S2: _init = false and pre_is_set = true

For WD, we consider 2 state variables:
_init (true, false, false, ….) and pre_is_set

Choose state variables : _init and variables
which have pre.

08/01/2014 76

Data Flow Program Compilation

S1:

 _init := false
 pre_is_set= false

S0: alarm := false;

initial

08/01/2014 77

if _init then // first instant (or reaction)
 is_set := false; alarm := false
_ init := false;
else // following reactions
 if set then is_set := true
 else
 if reset then is_set := false;
 endif
 endif
 alarm := is_set and deadline;
endif

Data Flow Program Compilation

S1:
 if set then
 alarm:= deadline;
 go to S2;
 else
 alarm := false;
 go to S1;

S2:

 _init = false;
 pre(is_set) := true;

S0: alarm := false;

initial

¬set

set

08/01/2014 78

if _init then // first instant (or
reaction)
 is_set := false; alarm := false;
 _init := false;
else // following reactions
 if set then is_set := true
 else
 if reset then is_set := false;
 endif
 endif
 alarm := is_set and deadline;
endif

Data Flow Program Compilation

S1: if set then
 alarm:= deadline;

 go to S2;
 else

 alarm := false;
 go to S1;

S2:

 _init = false;
 pre_is_set := true;

S0: alarm := false;

initial

¬set

set

08/01/2014 79

Lustre Program Compilation

S1: if set then
 alarm:= deadline;

 go to S2;
 else

 alarm := false;
 go to S1;

S2:
 if set then
 alarm := deadline;
 go to S2;
 else
 if reset then
 alarm := false;
 go to S1;
 else
 alarm := deadline;
 go to S2;

S0: alarm := false;

initial

¬set ¬reset

reset

set

08/01/2014 80

if _init then // first instant (or
reaction)
 is_set := false; alarm := false;
 _init := false;
else // following reactions
 if set then is_set := true
 else
 if reset then is_set := false;
 endif
 endif
 alarm := is_set and deadline;
endif

Lustre Program Compilation

S1: if set then
 alarm:= deadline;

 go to S2;
 else

 alarm := false;
 go to S1;

S2: if set then
 alarm := deadline;

 go to S2;
 else

 if reset then
 alarm := false;

 go to S1;
 else

 alarm := deadline;
 go to S2;

S0: alarm := false;

initial

¬set ¬reset

reset

set

08/01/2014 81

08/01/2014 Critical Software

Model Checking of Data Flow
programs with Observers

 Express safety properties as observers.

 An observer is a program which observes
the program and outputs ok when the
property holds and failure when its fails

program

observer

inputs outputs

ok
failure

08/01/2014 Critical Software

Properties Validation

 Taking into account the environment

without any assumption on the environment,
proving properties is difficult

 but the environment is indeterminist

 Human presence no predictable

 Fault occurrence

 …

Solution: use assertion to make hypothesis on
the environment and make it determinist

08/01/2014 Critical Software

Properties Validation (2)

 Express safety properties as observers.

 Express constraints about the environment
as assertions.

program

observer

inputs outputs

ok
failure

assertions assume

08/01/2014 Critical Software

Properties Validation (3)

 if assume remains true, then ok also
remains true (or failure false).

program

observer

inputs outputs

ok
failure

assertions assume

08/01/2014 Critical Software

Safety and Liveness Properties

 Example: the beacon counter in a train:

Count the difference between beacons and
seconds

Decide when the train is ontime, late, early
operator train (sec, bea : bool) returns (ontime, early, late: bool)

diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0);
 early = (true -> pre ontime) and (diff > 3) or
 (false -> pre early) and (diff > 1);
 late = (true -> pre ontime) and (diff < -3) or
 (false -> pre late) and (diff < -1);
 ontime = not (early or late);

08/01/2014 Critical Software

 Train Safety Properties

 It is impossible to be late and early;

 ok = not (late and early)

 It is impossible to directly pass from late to
early;

 ok = true -> (not early and pre late);

 It is impossible to remain late only one
instant;

 Plate = false -> pre late;
PPlate = false -> pre Plate;
ok = not (not late and Plate and not PPlate);

08/01/2014 Critical Software

Train Assumptions

 property = assumption + observer: “ if the
train keeps the right speed, it remains on
time”

 observer = ok = ontime

 assumption:

naïve: assume = (bea = sec);

 more precise : bea and sec alternate:

 SF = Switch (sec and not bea, bea and not sec);
BF = Switch (bea and not sec, sec and not bea);
assume = (SF => not sec) and (BF => not bea);

SCADE: Safety-Critical Application
Development Environment

 Scade has been developped to address
safety-critical embedded application design

 The Scade suite KCG code generator has
been qualified as a development tool
according to DO-178B norm at level A.

08/01/2014 Critical Software

SCADE

 Scade has been used to develop, validate
and generate code for:

 avionics:

 Airbus A 341: flight controls

 Airbus A 380: Flight controls, cockpit display, fuel
control, braking, etc,..

 Eurocopter EC-225 : Automatic pilot

 Dassault Aviaation F7X: Flight Controls, landing
gear, braking

 Boeing 787: Landing gear, nose wheel steering,
braking

08/01/2014 Critical Software

 System Design

 Both data flows and state machines

 Simulation

Graphical simulation, automatic GUI integration

 Verification

Apply observer technique

 Code Generation

 certified C code

SCADE

Critical Software 08/01/2014

Modulo Counter

operator MCounter (incr:bool; modulo : int)
 returns (cpt:int);
 var count : int;

 count = 0 -> if incr pre (cpt) + 1
 else pre (cpt);
 cpt = count mod modulo;

Modulo Counter

count = 0 -> if incr pre (cpt) + 1
 else pre (cpt);
 cpt = count mod modulo;

Modulo Counter Clock

operator MCounterClock (incr:bool;
 modulo : int)
 returns(cpt:int;
 modulo_clock: bool);
 var count : int;
 count = 0 -> if incr pre (cpt) + 1
 else pre (cpt);
 cpt = count mod modulo;

modulo_clock = count <> cpt;

Modulo Counter Clock

Timer

operator Timer
 returns (hour, minute, second:int);
 var hour_clock, minute_clock, day_clock : bool;

 (second, minute_clock) =
 MCounterClock(true, 60);
 (minute, hour_clock) =
 MCounterClock(minute_clock,60);
 (hour, dummy_clock) =
 MCounterClock(hour_clock, 24);

Timer

SCADE: state machines

 Input and output: same interface

 States:

 Possible hierarchy

 Start in the initial state

 Content = application behavior

 Transitions:

 From a state to another one

 Triggered by a Boolean condition

08/01/2014 98

SCADE: state machines

state

transition

trigger

When ON, ison = true

When off, ison = false

08/01/2014 99

08/01/2014 Critical Software

SCADE: model checking

Observers in Scade

P: aircraft autopilot and security system

P aircraft_altitude landing_order

 aircraft_altitude

200

landing_order not

alarm

alarm

and

implies


SCADE: model checking

Observer technique

posture model

posture model specification in
scade

08/01/2014 101

SCADE: model checking

Observer technique

posture
observer

posture verification

failure

lying: true; sitting:true;standing:true

08/01/2014 102

SCADE: model checking

Observer technique

posture
observer

posture verification

valid

assume (lying # sitting # standing)

08/01/2014 103

SCADE: code generation

 KCG generates certifiable code (DO-178
compliance)

 Clean code, rigid structure (easy
integration)

 Interfacing potential with user-defined
code (c/c++)

08/01/2014 104

SCADE: code generation
structures

 InC_<operator_name>

 structure C

 one member for each input

 OutC_<operator_name>

Structure C

 one member for each output and each state

Other members for output/state computations

08/01/2014 105

SCADE: code generation
structures

 Reaction function

 for a transition (or a reaction) computes the
output and the new state

 void <operator_name>
(Inc_<operator_name> * inC,
outC_<operator_name>* outc)

 Reset function

 To reset the reaction and the structures

 void <operator_name>_reset
(outC_<operator_name>* outc

08/01/2014 106

SCADE: code generation
files

 Generated files

 <operator_name>.h : type and function
declarations for code integration

 <operator_name>.c : implementation of
reaction and reset functions

 kcg_types.(h,c) to define types in C

 kcg_conts.(h,c) to define contants

08/01/2014 107

08/01/2014 Critical Software

CHECKING TEMPORAL
PROPERTIES

08/01/2014 Critical Software

Properties Checking

 Liveness Property  :

   automata B()

 L(B()) =  décidable

  |= M : L(M  B(~)) = 

 Scade allows only to verify safety
properties, thus we will study such
properties verification techniques.

08/01/2014 Critical Software

Safety Properties

 CTL formula characterization:

Atomic formulas

Usual logic operators: not, and, or ()

Specific temporal operators:

 EX , EF , EG 

 AX , AF , AG 

 EU(1 ,2), AU(1 ,2)

08/01/2014 Critical Software

Safety Properties Verification (1)

 Mathematical framework:
 S : finite state, (P (S), ) is a complete lattice

with S as greater element and  as least one.

 f : P (S) P (S) :

 f is monotonic iff  x,y  P (S), x  y  f(x)  f(y)

 f is -continue iff for each decreasing sequence
f( xi) =  f(xi)

 f is -continue iff for each increasing sequence
f( xi) =  f(xi)

08/01/2014 Critical Software

Safety Properties Verification (2)

 Mathematical framework:

 if S is finite then monotonic  -continue et
-continue.

 x is a fix point iff of f iff f(x) = x

x is a least fix point (lfp) iff y such that
f(y) = y, x  y

x is a greatest fix point (gfp) iff y such that
f(y) = y, y  x

08/01/2014 Critical Software

Safety Properties Verification (3)

 Theorem:

f monotonic  f has a lfp (resp glp)

 lfp(f) =  fn()

 gfp(f) =  fn(S)

Fixpoints are limits of approximations

08/01/2014 Critical Software

Safety Properties Verification (4)

 We call Sat() the set of states where  is
true.

 M |=  iff sinit  Sat().

 Algorithm:
 Sat() = { s |  |= s}

 Sat(not ) = S\Sat()

 Sat(1 or 2) = Sat(1) U Sat(2)

 Sat (EX ) = {s |  t  Sat() , s → t} (Pre Sat())

 Sat (EG ) = gfp ((x) = Sat()  Pre(x))

 Sat (E(1 U 2)) = lfp ((x) = Sat(2) U (Sat(1) 
Pre(x))

08/01/2014 Critical Software

Example

s0
s1

s2

s3 s4

atomic formulas: a, b, c a b

a,b,c

c
b,c

EG (a or b) gfp ((x) = Sat()  Pre(x))

({s0, s1, s2, s3, s4}) = Sat (a or b)  Pre({s0, s1, s2, s3, s4})

({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}  {s0, s1, s2, s3, s4}

({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}

08/01/2014 Critical Software

Example

s0
s1

s2

s3 s4

atomic formulas: a, b, c a b

a,b,c

c
b,c

EG (a or b) ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}

({s0, s1, s2, s4}) = Sat (a or b)  Pre({s0, s1, s2,, s4})

({s0, s1, s2, s4}) = {s0, s1, s2, s4}

S0 |= EG(a or b)

08/01/2014 Critical Software

Model checking implementation

 Problem: the size of automata

 Solution: symbolic model checking

 Usage of BDD (Binary Decision Diagram) to
encode both automata and formula.

 Each Boolean function has a unique
representation

 Shannon decomposition:
 f(x0,x1,…,xn) = f(1, x1,…., xn) v f(0, x1,…,xn)

08/01/2014 Critical Software

Model Checking Implementation

 When applying recursively Shannon
decomposition on all variables, we obtain a
tree where leaves are either 1 or 0.

 BDD are:

A concise representation of the Shannon tree

 no useless node (if x then g else g  g)

Share common sub graphs

08/01/2014 Critical Software

Model Checking Implementation (2)

(x1  x0) v ((x1 v y1)  (x0  y0))

x0

x1

y1

1

x1

y0
y0

0 1

0

Model Checking Implementation (2)

(x1  y1) v (x0  y0  x1)

0 0 0 0 0 1 0 1 0 0 0 0 0 1 1

x0

x1

y0

y1 y1

y0

y1 y1

x1

y0

y1 y1

y0

y1 y1

0 1

1

08/01/2014 120

Model Checking Implementation (2)

(x1  y1) v (x0  y0  x1)

x0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 1

0

1

1

x1

y0

y1 y1

y0

y1 y1

x1

y0

y1 y1

y0

y1 y1

08/01/2014 121

Model Checking Implementation (2)

(x1  y1) v (x0  y0  x1)

x0 0 1

x1

y0

y1 y1

0 1 0 1

x1

y0

y1 y1

0

0 1 1 1

0

08/01/2014 122

Model Checking Implementation (2)

(x1  y1) v (x0  y0  x1)

x0 0 1

x1

y1

0 1

x1

y0

y1 y1

0 1 1 1

0 0

08/01/2014 123

Model Checking Implementation (2)

x0 0 1

x1

y1

0 1

x1

y0

y1

1 1

0
0

(x1  y1) v (x0  y0  x1)

08/01/2014 124

Model Checking Implementation (2)

x0 0 1

x1

y1

0 1

x1

y0

1

0
0

(x1  y1) v (x0  y0  x1)

08/01/2014 125

Model Checking Implementation (2)

x0 0 1

x1

y1

0 1

x1

y0

(x1  y1) v (x0  y0  x1)

08/01/2014 126

08/01/2014 Critical Software

Model Checking Implementation(3)

 Implicit representation of the of states set
and of the transition relation of automata
with BDD.

 BDD allows
 canonical representation

 test of emptiness immediate (bdd =0)

 complementarity immediate (1 = 0)

 union and intersection not immediate

 Pre immediate

08/01/2014 Critical Software

 Model Checking Implementation (4)

 But BDD efficiency depends on the number
of variables

 Other method: SAT-Solver

Sat-solvers answer the question: given a
propositional formula, is there exist a valuation
of the formula variables such that this formula
holds

 first algorithm (DPLL) exponential (1960)

08/01/2014 Critical Software

 Model Checking Implementation (4)

 SAT-Solver algorithm:

formula  CNF formula  set of clauses

heuristics to choose variables

deduction engine:

 propagation

 specific reduction rule application (unit clause)

 Others reduction rules

 conflict analysis + learning

08/01/2014 Critical Software

Model Checking Implementation (5)

 SAT-Solver usage:

 encoding of the paths of length k by
propositional formulas

 the existence of a path of length k (for a given
k) where a temporal property  is true can be
reduce to the satisfaction of a propositional
formula

 theorem: given  a temporal property and M
a model, then M |=    n such that
M |= n  (n < |S| . 2 ||)

08/01/2014 Critical Software

Bounded Model Checking

 SAT-Solver are used in complement of
implicit (BDD based) methods.

 M |= 

verify ¬  on all paths of length k (k bounded)

 useful to quickly extract counter examples

Bounded Model Checking

08/01/2014 Critical Software

Given a property p

Is there a state reachable in k cycles, which satisfies ¬p ?

p p p p ¬p

s0 s1 s2 Sk-1 sk

……..

Bounded Model Checking

08/01/2014 Critical Software

The reachable states in k steps are captured by:

 I(s0) T(s0,s1) ……….. T(sk-1, sk)

The property p fails in one of the k steps

V V V
¬p(s0) V ¬p(s1) V ¬p(s2) …… V ¬p(sk-1) V ¬p(sk)

The safety property p is valid up to step k iff Ω(k)
is unsatisfiable:

Ω(k) = I(s0) T(si, si+1) ¬p(si)

v
V

i=0

k-1

v V
i=0

k

Bounded Model Checking

08/01/2014 Critical Software

K=0

BMC(M,ρ,k)

k≥ CT

SAT

UnSAT K++

M |= ρ

M |=ρ

CT is the completeness threshold

