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Abstract. Resultants provide conditions for the solvability of polyno-
mial equations and allow reducing polynomial system solving to linear
algebra computations. Sparse resultants depend on the Newton polytopes
of the input equations. This polytope is the convex hull of the exponent
vectors corresponding to the nonzero monomials of the equations (viewed
as lattice points in the Cartesian space of dimension equal to the number
of variables). In this work we consider the case of multihomogeneous sys-
tems, previously studied in the case where all equations share the same
Newton polytope. We generalize certain constructions to mixed systems,
whose Newton polytopes are scaled copies of one polytope, thus taking
a step towards systems with arbitrary supports. First, we specify matri-
ces whose determinant equals the resultant and characterize the systems
that admit such formulae. Bézout-type determinantal formulae do not
exist, but we describe all possible Sylvester-type and hybrid formulae.
We establish tight bounds for the corresponding degree vectors, as well as
precise domains where these concentrate; the latter are new even for the
unmixed case. Second, we make use of multiplication tables and strong
duality theory to specify resultant matrices explicitly, in the general case.
Our public-domain Maple implementation includes efficient storage of
complexes in memory, and construction of resultant matrices.

1 Introduction

Resultants provide efficient ways for studying and solving polynomial systems
by means of their matrices. This paper considers the sparse (or toric) resultant,
which exploits a priori knowledge on the structure of the equations. We con-
centrate on systems where the variables can be partitioned into groups so that
every polynomial is homogeneous in each group, i.e. mixed multihomogeneous, or
mixed multigraded, systems; their study is a first step away from the theory of
homogeneous and unmixed multihomogeneous systems, towards fully exploiting
arbitrary sparse structure.

Resultant matrices are matrices whose nullspace encodes the solutions of a
system of polynomial equations. They reduce the problem of finding common ze-
ros to linear algebra computations that are well studied and fast implementations
are available for their computation. The entries of these matrices are (functions
on the) coefficients of the polynomials. If these coefficients are indeterminates,
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then the determinant of the resultant matrix is an irreducible polynomial in these
indeterminates which vanishes iff the system has a common root, thus providing
a condition of solvability of the system.

The construction of a resultant (matrix) starts from a system of n+ 1 equa-
tions in n variables. This is typically called an over-constrained affine system,
in the sense that there are more constraints (equations) than variables. Such a
system is expected to have no common solutions, hence the resultant matrix is
expected to be of full rank, except from the case when there is a common zero,
hence equivalently the rank of the matrix will drop.

In the univariate case, a resultant matrix of two homogeneous polynomials
f0, f1 in one variable and of arbitrary degrees, i.e. polynomials of the projective
space P1, is given by the classic Sylvester matrix. This matrix is said to be
optimal for the system, in the sense that the dimension of it’s nullspace is always
equal to the number of solutions. This is a desired property that is usually not
satisfied in multivariate settings.

For instance, a well known generalization of this matrix to multivariate sys-
tems is Macaulay’s matrix for systems in Pn, i.e. homogeneous polynomials in
n+ 1 varibles. Here every equation fi is assumed to have all the possible terms
of total degree ≤ di, i = 0, 1, . . . , n. The disadvantage of this matrix is exactly
that it is not optimal for the system. Nevertheless, optimal matrices are known
to exist only for certain classes of polynomial systems, including some which we
consider in this paper.

Sparse resultant matrices are of different types. On the one end of the spec-
trum are the pure Sylvester-type matrices, filled in by polynomial coefficients;
such are Sylvester’s and Macaulay’s matrices. On the other end are the pure
Bézout-type matrices, filled in by coefficients of the Bezoutian polynomial. Hy-
brid matrices contain blocks of both pure types.

There is a strong relation between resultants and abstract constructions of
algebraic geometry. These constructions can as well be treated computationally
and lead to matrices that express the resultant. More specifically, we provide
a computational treatment of Weyman complexes (defined formally later on),
which yield the resultant as the determinant of a complex. For the class of
systems we consider, these complexes are parametrized by a degree vector m;
when the complex has two terms, its determinant is that of a matrix expressing
the map between these terms, and equals the resultant. In this case, there is a
determinantal formula, and the corresponding vector m is determinantal . The
resultant matrix is then said to be exact, or optimal, in the sense that there is
no extraneous factor in the determinant polynomial, thus the nullspace of the
matrix corresponds describes the solutions of the system and only those. As is
typical in all such approaches, including this paper, the polynomial coefficients
are assumed to be sufficiently generic for the resultant.

We study multivariate over-constrained systems that have a certain structure,
which generalizes the homogeneous structure as follows: We consider equations
where the variables {x1, x2, . . . , xn} are partitioned into r groups of l1, l2, . . . , lr
variables, with n = l1+ · · ·+ lr. Also, the degree of every equation in the variable
groups is a multiple of a base degree d = (d0, . . . , dr) ∈ Nr, i.e. deg fi = sid. We
call this a scaled multihomogeneous system; it’s structure is fully defined by l,d
and s = (s0, . . . , sn) ∈ Nn+1.



Example 1. The data l = (1, 1), d = (1, 1), s = (1, 1, 2) define a system of two
bilinear and one biquadratic equation.

f0 = a0 + a1x1 + a2x2 + a3x1x2

f1 = b0 + b1x1 + b2x2 + b3x1x2

f2 = c0 + c1x1 + c2x2 + c3x1x2 + c4x1
2 + c5x1

2x2 + c6x2
2 + c7x1x2

2 + c8x1
2x2

2

Here the variable groups are {x1}, {x2}, and are equations are in de-homogenized
(affine) form. If for every group we add a homogenizing variable, the k−th group
has lk + 1 homogeneous variables: {x1, y1}, {x2, y2} e.g. F0 = a0y1y2 +a1x1y2 +
a2y1x2 + a3x1x2 is the corresponding homogenized equation for f0.

We shall illustrate the use of our Maple implementation, discussed in Sect. 5,
on this example. First, we check that this data is determinantal, using Thm. 2:
> has deter( l, d, s);

true
Below we apply a search for all possible determinantal vectors, by examining

all vectors in the boxes of Cor. 1. The condition used here is that the dimension
of K2 and K−1 is zero, which is both necessary and sufficient.
> allDetVecs( l, d, s) ;

[[2, 0, 4], [0, 2, 4], [3, 0, 6], [2, 1, 6], [2,−1, 6], [1, 2, 6], [1, 1, 6],
[1, 0, 6], [0, 3, 6], [0, 1, 6], [−1, 2, 6], [3, 1, 8], [1, 3, 8], [1,−1, 8],

[−1, 1, 8], [3,−1, 10], [−1, 3, 10]]
The vectors are listed with matrix dimension, as the third coordinate. The

search returned 17 vectors; the fact that the number of vectors is odd reveals that
there exists a self-dual vector. The critical degree is ρ = (2, 2), thus m = (1, 1)
yields the self-dual formula. Since the remaining 16 vectors come in dual pairs,
we only mention one formula for each pair; finally, the first three formulae listed
have a symmetric counterpart, due to the symmetries present to our data, so it
suffices to list 6 distinct formulae.

Using Thm. 2 we can compute directly determinantal boxes:
> detboxes( l, d, s) ;

[[−1, 1], [1, 3]], [[1, 3], [−1, 1]]
Note that the determinantal vectors are exactly the vectors in these boxes.

These intersect at m = (1, 1) which yields the self-dual formula. In this example
minimum dimension formulae correspond to the centers of the intervals, at m =
(2, 0) and m = (0, 2) as noted in Conj. 1.

A pure Sylvester matrix comes from the vector
> m:= vector([d[1]*convert(op(s),‘+‘)-1, -1]);

m = (3,−1)
We compute the complex:

> K:= makeComplex(l,d,s,m):
> printBlocks(K); printCohs(K);

K1,2 → K0,1

H1(1,−3)⊕H1(0,−4)2 → H1(2,−2)2 ⊕H1(1,−3)
The dual vector (−1, 3) yields the same matrix transposed. The block type

of the matrix is deduced by the first command, whereas printCohs returns the
full description of the complex. The dimension is given by the multihomogeneous
Bézout bound, cf. Lem. 1, which is equal to:
> mbezout( l, d, s) ;
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It corresponds to a “twisted” Sylvester matrix:

> makematrix(l,d,s,m);

−b1 −b3 0 a1 a3 0 0 0 0 0

−b0 −b2 0 a0 a2 0 0 0 0 0

0 −b1 −b3 0 a1 a3 0 0 0 0

0 −b0 −b2 0 a0 a2 0 0 0 0

−c4 −c5 −c8 0 0 0 a1 0 a3 0

−c1 −c3 −c7 0 0 0 a0 a1 a2 a3

−c0 −c2 −c6 0 0 0 0 a0 0 a2

0 0 0 −c4 −c5 −c8 b1 0 b3 0

0 0 0 −c1 −c3 −c7 b0 b1 b2 b3

0 0 0 −c0 −c2 −c6 0 b0 0 b2


The rest of the matrices are presented in block format; the same notation

is used for both the map and its matrix. Note that the dimension of these
maps depend on m, which we omit to write. Also, B(xk) stands for the partial
Bézoutian wrt variables xk.

For m = (3, 1) we get K1,1 ⊕ K1,2 → K0,0, or H0(2, 0)2 ⊕ H1(0,−2)2 →
H0(3, 1): [

M(f0)
M(f1)
B(x2)

]

For m = (3, 0), K1,2 → K0,0 ⊕K0,1 H
1(1,−2) ⊕ H1(0,−3)2 → H0(3, 0) ⊕

H1(1,−2)2: [
0

M(f0)
−M(f1)

B(x2)

]

Form = (2, 1), we compute K1,1⊕K1,3 → K0,0, or H1(1, 0)2⊕H2(−2,−3)→
H0(2, 1): [

M(f1)
M(f2)

∆(0,1),(2,1)

]
If m = (1, 1), K1,1⊕K1,3 → K0,0⊕K0,2, yielding H0(0, 0)2⊕H2(−3,−3)→

H0(1, 1)⊕H2(−2,−2)2: f0
f1

0

∆(1,1),(1,1) M(f0) −M(f1)


We write here fi instead of M(fi), since this matrix is just the 1 × 4 vector of
coefficients of fi.



Form = (2, 0), we getK1,2⊕K1,3 → K0,0⊕K0,1, orH1(0,−2)⊕H2(−2,−4)→
H0(2, 0)⊕H1(0,−2): [

B(x2) 0
∆(2,0),(0,2) B(x1)

]
This is the minimum dimension determinantal complex, yielding a 4× 4 matrix.

Multihomogeneous systems are encountered in several areas e.g. [3], [8]. Few
foundational works exist, such as [13], where bigraded systems are analyzed,
or [11], where straight-line programs are applied. Our work continues that of
[7,14,16], where the unmixed case has been treated, and generalizes their results.
As noticed above, we focus on systems whose Newton polytopes are scaled copies
of one polytope, thus taking a step towards systems with arbitrary supports. This
is the first work that treats mixed multihomogeneous equations, and provides
explicit resultant matrices.

The main contributions of this paper are as follows: Firstly, we establish the
analog of the bounds given in [7, Sect. 3]; in so doing, we simplify their proof in
the unmixed case. We characterize the scaled systems that admit a determinantal
formula, either pure or hybrid. If pure determinantal formulae exist, we explicitly
provide the m-vectors that correspond to them. In the search for determinantal
formulae we discover box domains that consist of determinantal vectors thus
improving the blind search for these vectors adopted in [7]. We conjecture that a
formula of minimum dimension can be recovered from the centers of such boxes,
analogous to the homogeneous case. We make the differentials in the Weyman
complex explicit and provide details of the computation. Note that the actual
construction of the matrix, given the terms of the complex, is nontrivial. Finally,
we deliver a complete, publicly available Maple package for the computation of
multihomogeneous resultant matrices. Based on the software of [7], it has been
enhanced with new functions, including some which had not been implemented
even for the unmixed case, such as the construction of resultant matrices and
the efficient storage of complexes.

The rest of the paper is organized as follows. We start with sparse resultants
and Weyman complexes in Sect. 2 below. Sect. 3 presents bounds on the coor-
dinates of all determinantal vectors and classifies the systems that admit hybrid
and pure determinantal formulae; explicit vectors are provided for pure formu-
lae and minimum dimension choices are conjectured. In Sect. 4 we construct the
actual matrices; we present Sylvester- and Bézout-type constructions that also
lead to hybrid matrices. We conclude with a short presentation of our Maple
implementation.

2 Resultants via complexes

We define the resultant, and connect it to complexes by homological con-
structions. Take the product X := Pl1 × · · · × Plr of projective spaces over
an algebraically closed field F of characteristic zero, for r ∈ N. Its dimension
equals the number of affine variables n =

∑r
k=1 lk. We consider polynomi-

als over X of scaled degree: their multidegree is a multiple of a base degree
d = (d1, . . . , dr) ∈ Nr, say deg fi = sid. We assume s0 ≤ · · · ≤ sn and
gcd(s0, . . . , sn) = 1, so that the data l,d, s = (s0, . . . , sn) ∈ Nn+1 fully character-
ize the system. We denote by S(d) the vector space of multihomogeneous forms of



degree d defined over X. These are homogeneous of degree dk in the variables xk
for k = 1, . . . , r. A system of type (l,d, s) belongs to V = S(s0d)⊕· · ·⊕S(snd).

Definition 1. Consider a generic scaled multihomogeneous system f = (f0, . . . , fn)
defined by the cardinalities l ∈ Nr, base degree d ∈ Nr and s ∈ Nn+1. The mul-
tihomogeneous resultant R(f0, . . . , fn) = Rl,d,s(f0, . . . , fn) is the unique up to
sign, irreducible polynomial of Z[V ], which vanishes iff there exists a common
root of f0, . . . , fn in X.

This polynomial exists for any data l, d, s, since it is an instance of the sparse
resultant. It is itself multihomogeneous in the coefficients of each fi, with degree
given by the multihomogeneous Bézout bound:

Lemma 1. The resultant polynomial is homogeneous in the coefficients of each
fi, i = 0, . . . , n, with degree

degfi R =

(
n

l1, . . . , lr

)
dl11 · · · dlrr s0 · · · sn

si
.

This yields the total degree of the resultant, that is,
∑n
i=0 degfi R.

The rest of the section gives details on the underlying theory. The vanishing
of the multihomogeneous resultant can be expressed as the failure of a complex
of sheaves to be exact. This allows to construct a class of complexes of finite-
dimensional vector spaces whose determinant is the resultant polynomial. This
definition of the resultant was introduced by Cayley [10, App. A], [15].

For u ∈ Zr, Hq (X,OX(u)) denotes the q-th cohomology of X with coeffi-
cients in the sheaf O(u). Throughout this paper we write for simplicity Hq(u),
even though we also keep the reference to the space whenever it is different than
X, for example H0(Plk , uk). To a polynomial system f = (f0, . . . , fn) over V ,
we associate a finite complex of sheaves K• on X :

0→ Kn+1 → · · ·
δ2−→ K1

δ1−→ K0
δ0−→ · · · → K−n → 0 (1)

This complex (whose terms are defined in Def. 2 below) is known to be exact
iff f0, . . . , fn share no zeros in X; it is hence generically exact. When passing
from the complex of sheaves to a complex of vector spaces there exists a degree
of freedom, expressed by a vector m = (m1, . . . ,mr) ∈ Zr. For every given f
we specialize the differentials δi : Ki → Ki−1, i = 1− n, . . . , n+ 1 by evaluating
at f to get a complex of finite-dimensional vector spaces. The main property is
that the complex is exact iff R(f0, . . . , fn) 6= 0 [15, Prop. 1.2].

The main construction that we study is this complex, which we define in our
setting. It extends the unmixed case, where for given p the direct sum collapses
to
(
n+1
p

)
copies of a single cohomology group.

Definition 2. For m ∈ Zr, ν = −n, . . . , n+ 1 and p = 0, . . . , n+ 1 set

Kν,p =
⊕

0≤i1<···<ip≤n

Hp−ν

(
m−

p∑
θ=1

siθd

)
where the direct sum is over all possible indices i1 < · · · < ip. The Weyman

complex K• = K•(l,d, s,m) is generically exact and has terms Kν =

n+1⊕
p=0

Kν,p.



This generalizes the classic Cayley-Koszul complex. The determinant of the
complex can be expressed as a quotient of products of minors from the δi. It is
invariant under different choices of m ∈ Zr and equals the multihomogeneous
resultant R(f0, . . . , fn).

2.1 Combinatorics of K•

We present a combinatorial description of the terms in our complex, appli-
cable to the unmixed case as well. For details on the co-homological tools that
we use, see [10].

By the Künneth formula, we have the decomposition

Hq (α) =

jk∈{0,lk}⊕
j1+···+jr=q

r⊗
k=1

Hjk
(
Plk , αk

)
, (2)

where q = p − ν and the direct sum runs over all integer sums j1 + · · · + jr =
q, jk ∈ {0, lk}. In particular, H0(Plk , αk) is isomorphic to S(αk), the graded piece
of S in degree αk, or if you prefer the space of all homogeneous polynomials in
lk + 1 variables with total degree αk, where α = m− zd ∈ Zr for z ∈ Z.

By Serre duality, for any α ∈ Zr, we know that

Hq(α) ' Hn−q(−l− 1−α)∗, (3)

where ∗ denotes dual, and 1 ∈ Nr a vector full of ones. Furthermore, we identify
H lk(Plk , αk) as the dual space S(−αk − lk − 1)∗. This is the space of linear
functions Λ : S(αk) → F. Sometimes we use the negative symmetric powers to
interpret dual spaces, see also [16, p.576]. This notion of duality is naturally
extended to the direct sum of cohomologies: the dual of a direct sum is the
direct sum of the duals of the summands. The next proposition (Bott’s formula)
implies that this dual space is nontrivial iff −αk − lk − 1 ≥ 0.

Proposition 1. [2] For any α ∈ Zr and k ∈ {1, . . . , r},
(a) Hj(Plk , αk) = 0, ∀j 6= 0, lk,
(b) H lk(Plk , αk) 6= 0⇔ αk < −lk, dimH lk(Plk , αk) =

(−αk−1
lk

)
.

(c) H0(Plk , αk) 6= 0⇔ αk ≥ 0, dimH0(Plk , αk) =
(
αk+lk
lk

)
.

Definition 3. Given l,d ∈ Nr and s ∈ Nn+1, define the critical degree vector
ρ ∈ Nr by ρk := dk

∑n
θ=0 sθ − lk − 1, for all k = 1, . . . r.

The Künneth formula (2) states that Hq(α) is a sum of products. We can
give a better description:

Lemma 2. If Hq(α) is nonzero, then it is equal to a product Hj1(Plk , αk) ⊗
· · · ⊗Hjr (Plk , αk) for some integers j1, . . . , jr with jk ∈ {0, lk},

∑r
k=1 jk = q.

Throughout this paper we denote [u, v] := {u, u+ 1, . . . , v}. By Prop. 1, the
set of integers z such that both H0(Plk ,mk−zdk) and H lk(Plk ,mk−zdk) vanish
is:

Pk :=

(
mk

dk
,
mk + lk
dk

]
∩ Z.

All formulae (including determinantal ones) come in dual pairs, thus gener-
alizing [7, Prop.4.4].



Lemma 3. Assume m,m′ ∈ Zr satisfy m + m′ = ρ, where ρ is the critical
degree vector. Then, Kν(m) is dual to K1−ν(m′) for all ν ∈ Z. In particular,
m is determinantal iff m′ is determinantal, yielding matrices of the same size,
namely dim(K0(m)) = dim(K1(m′)).

3 Determinantal formulae

Determinantal formulae occur only if there is exactly one nonzero differential,
so the complex consists of two consecutive nonzero terms. The determinant of the
complex is the determinant of this differential. We now specify this differential;
for the unmixed case cf. [16, Lem.3.3].

Lemma 4. If m ∈ Zr is determinantal then the nonzero part of the complex is
δ1 : K1 → K0.

3.1 Bounds for determinantal vectors

We generalize the bounds in [7, Sect.3] to the mixed case, for the coordinates
of all determinantal m−vectors. We follow a simpler and more direct approach
based on a global view of determinantal complexes.

Lemma 5. If a vector m ∈ Zr is determinantal then the corresponding
⋃r

1 Pk
is contained in [0,

∑n
0 si].

We derive the folloing

Theorem 1. For determinantal m ∈ Zr, for all k we have max{−dk,−lk} ≤

mk ≤ dk
n∑
0

si − 1 + min{dk − lk, 0}.

Our implementation in Sect. 5 conducts a search in the box defined by the
above bounds. For eachm in the box, the dimension of K2 and K−1 is calculated;
if both are zero the vector is determinantal. Finding these dimensions is time
consuming; the following lemma provides a cheap necessary condition to check
before calculating them.

Lemma 6. If m ∈ Zr is determinantal then there exist indices k, k′ ∈ [1, r]

such that mk < dk(sn−1 + sn) and mk′ ≥ dk′
∑n−2

0 si − lk′ .

3.2 Characterization and explicit vectors

A formula is determinantal iff it holds K2 = K−1 = 0. In this section we
provide necessary and sufficient conditions for the data l, d, s to admit a deter-
minantal formula; we call this data determinantal. Also, we derive multidimen-
sional integer intervals (boxes) that yield determinantal formulae and conjecture
that minimum dimension formulae appear near the center of these intervals.

Let π[k] :=
∑
π(i)≤π(k) li. If π = Id this is Id[k] = l1 + · · · + lk. We now

characterize determinantal data:



Theorem 2. The data l, d, s admit a determinantal formula iff there exists π :
[1, r]→ [1, r] s.t.

dk

n∑
n−π[k]+2

si − lk < dk

π[k−1]+1∑
0

si, ∀k.

Corollary 1. For any permutation π : [1, r] → [1, r], the vectors m ∈ Zr con-
tained in the box

dk

n∑
n−π[k]+2

si − lk ≤ mk ≤ dk
π[k−1]+1∑

0

si − 1

for k = 1, . . . , r are determinantal.

If r = 1 then a minimum dimension formula lies in the center of an interval [5].
We conjecture that a similar explicit choice also exists for r > 1. Experimental
results indicate that minimum dimension formulae tend to appear near the center
of the nonempty boxes:

Conjecture 1. If the data l, d, s is determinantal then determinantal formulae of
minimum dimension lie close to the center of the nonempty boxes of Cor. 1.

3.3 Pure formulae

A determinantal formula is pure if it is of the form K1,a → K0,b for a, b ∈
[0, n+1] with a > b. These formulae are either Sylvester- or Bézout-type, named
after the matrices for the resultant of two univariate polynomials.

In the unmixed case both kinds of pure formulae exist exactly when for all
k ∈ [1, r] it holds that min{lk, dk} = 1 [14,7]. The following theorem extends
this characterization to the scaled case, by showing that only pure Sylvester
formulae are possible and the only data that admit such formulae are univariate
and bivariate-bihomogeneous systems.

Theorem 3. If s 6= 1 a pure Sylvester formula exists iff r ≤ 2 and l = (1) or
l = (1, 1). If l1 = n = 1 the degree vectors are given by

m = d1

1∑
0

si − 1 and m′ = −1

whereas if l = (1, 1) the vectors are given by

m =

(
−1, d2

2∑
0

si − 1

)
and m′ =

(
d1

2∑
0

si − 1,−1

)
.

Pure Bézout determinantal formulae cannot exist.

If s = 1 pure determinantal formulae are possible for arbitrary n, r and a
pure formula exists iff for all k, lk = 1 or dk = 1 [7, Thm. 4.5]; if a pure Sylvester
formula exists for a, b = a − 1 then another exists for a = 1, b = 0 [7, p. 15].
Observe in the proof above that this is not the case if s 6= 1, n = 2, thus the
construction of the corresponding matrices for a 6= 1 now becomes important
and highly nontrivial, in contrast to [7].



4 Explicit matrix construction

In this section we provide algorithms for the construction of the resultant
matrix expressed as the matrix of the differential δ1 in the natural monomial
basis and we clarify all the different morphisms that may be encountered.

Before we continue, let us justify the necessity of our matrices, using the
data l = d = (1, 1) and s = (1, 1, 2), that is, a system of two bilinear and one
biquadratic equation. It turns out that a (hybrid) resultant matrix of minimum
dimension is of size 4×4. The standard Bézout-Dixon construction has size 6×6
but its determinant is identically zero, hence it does not express the resultant of
the system.

The matrices constructed are unique up to row and column operations, re-
flecting the fact that monomial bases may be considered with a variety of differ-
ent orderings. The cases of pure Sylvester or pure Bézout matrix can be seen as
a special case of the (generally hybrid, consisting of several blocks) matrix we
construct in this section.

In order to construct a resultant matrix we must find the matrix of the linear
map δ1 : K1 → K0 in some basis, typically the natural monomial basis, provided
that K−1 = 0. In this case we have a generically surjective map with a maximal
minor divisible by the sparse resultant. If additionally K2 = 0 then dimK1 =
dimK0 and the determinant of the square matrix is equal to the resultant, i.e.
the formula is determinantal. We consider restrictions δa,b : K1,a → K0,b for
any direct summand K1,a, K0,b of K1, K0 respectively. Every such restriction
yields a block of the final matrix of size defined by the corresponding dimensions.
Throughout this section the symbols a and b will refer to these indices.

4.1 Sylvester blocks

The Sylvester-type formulae we consider generalize the classical univariate
Sylvester matrix and the multigraded Sylvester matrices of [14] by introducing
multiplication matrices with block structure. Even though these Koszul mor-
phisms are known to correspond to some Sylvester blocks since [16] (see Prop. 2
below), the exact interpretation of the morphisms into matrix formulae had not
been made explicit until now.

By [16, Prop. 2.5, Prop. 2.6] we have the following

Proposition 2. [16] If a− 1 < b then δa,b = 0. Moreover, if a− 1 = b then δa,b
is a Sylvester map.

If a = 1 and b = 0 then every coordinate of m is non-negative and there are only
zero cohomologies involved in K1,1 =

⊕
iH

0(m−sid) and K0,0 = H0(m). This
map is a well known Sylvester map expressing the multiplication (g0, . . . , gn) 7−→∑n
i=0 gifi. The entries of the matrix are indexed by the exponents of the basis

monomials of
⊕

i S(m−sid) and S(m) as well as the chosen polynomial fi. Also,
by Serre duality a block K1,n+1 → K0,n corresponds to the dual of K1,1 → K0,0,
i.e. to the degree vector ρ−m, and yields the same matrix transposed.

The following theorem constructs corresponding Sylvester-type matrix in the
general case.



Theorem 4. The entry of the transposed matrix of δa,b : K1,a → K0,a−1 in row
(I,α) and column (J,β) is{

0, if J 6⊂ I,
(−1)k+1coef (fik ,x

u) , if I \ J = {ik},

where I = {i1 < i2 < · · · < ia} and J = {j1 < j2 < · · · < ja−1}, I, J ⊆
{0, . . . , n}. Moreover, α,β ∈ Nn run through the exponents of monomial bases of

Ha−1(m−d
∑a
θ=1 siθ ), H

a−1(m−d
∑a−1
θ=1 sjθ ), and u ∈ Nn, with ut = |βt−αt|.

4.2 Bézout blocks

A Bézout-type block comes from a map of the form δa,b : K1,a → K0,b

with a − 1 > b. In the case a = n + 1, b = 0 this is a map corresponding to
the Bezoutian of the system, whereas in other cases some Bézout-like matrices
occur, from square subsystems obtained by hiding certain variables.

Consider the Bézoutian, or Morley form(cf. [12]), of f0, . . . , fn. This is a
polynomial of multidegree (ρ, ρ) in F[x̄, ȳ] and can be decomposed as

∆ :=

ρ1∑
u1=0

· · ·
ρr∑

ur=0

∆u(x̄) · ȳu

where ∆u(x̄) ∈ S has deg∆u(x̄) = ρ − u. Here x̄ = (x̄1, . . . , x̄r) is the set of
homogeneous variable groups and ȳ = (ȳ1, . . . , ȳr) a set of new variables with
the same cardinalities.

The Bezoutian gives a linear map∧n+1
V →

⊕
mk≤ρk

S(ρ−m)⊗ S(m).

where the space on the left is the (n + 1)-th exterior algebra of V = S(s0d) ⊕
· · · ⊕ S(snd) and the direct sum runs over all vectors m ∈ Zr with mk ≤ ρk for
all k ∈ [1, r].

In particular, the graded piece of ∆ in degree (ρ−m,m) in (x̄, ȳ) is

∆ρ−m,m :=
∑

uk=mk

∆u(x̄) · ȳu

for all monomials ȳu of degree m and coefficients in F[x̄] of degree ρ −m. It
yields a map S(ρ −m)∗ −→ S(m) known as the Bézoutian in degree m of
f0, . . . , fn. The differential of K1,n+1 → K0,0 can be chosen to be exactly this
map, since evidently K0,0 = H0(m) ' S(m) and

K1,n+1 = Hn

(
m−

n∑
0

sid

)
' S

(
−m+

n∑
0

sid+ l + 1

)∗
according to Serre duality recalled in Sect. 2.1, thus we get K1,n+1 = S(ρ−m)∗.



The polynomial ∆ defined above has n + r homogeneous variables, hence
it is not clear how it can be computed by matrix constructions. We show one
construction of some part ∆ρ−m,m using an affine Bézoutian.

Denote xk = (xk1, . . . , xk,lk) the (dehomogenized) k-th variable group, and
yk = (yk1, . . . , yk,lk). As a result the totality of variables is x = (x1, . . . ,xr) and
y = (y1, . . . ,yr).

We set wt, t = 1, . . . n − 1 the conjunction of the first t variables of y and
the last n− t variables of x.

If a = n+ 1, b = 0 the affine Bézoutian construction follows from the expan-
sion of ∣∣∣∣∣∣∣

f0(x) f0(w1) · · · f0(wn−1) f0(y)
...

...
...

...
fn(x) fn(w1) · · · fn(wn−1) fn(y)

∣∣∣∣∣∣∣ /
r∏

k=1

lk∏
j=1

(xkj − ykj)

as a polynomial in F[y] with coefficients in F[x]. Hence the entry indexed α,β
of the Bézoutian in some degree can be computed as the coefficient of xαyβ of
this polynomial.

5 Implementation

We have implemented the search for formulae and construction of the corre-
sponding resultant matrices in Maple. Our code is based on that of [7, Sect. 8]
and extends it to the scaled case. We also introduce new features, including con-
struction of the matrices of Sect. 4; hence we deliver a full package for multihomo-
geneous resultants, available at www-sop.inria.fr/galaad/amantzaf/soft.html.

Our implementation has three main parts; given data (l,d, s) it discovers all
possible determinantal formula; this part had been implemented for the unmixed
case in [7]. Moreover, for a specific m−vector the corresponding resultant com-
plex is computed and saved in memory in an efficient representation. As a final
step the results of Sect. 4 are being used to output the resultant matrix coming
from this complex. The main routines of our software are illustrated in Table 1.

routine function

Makesystem output polynomials of type (l,d, s)
mBezout compute the m-Bézout bound
allDetVecs enumerate all determinantal m−vectors
detboxes output the vector boxes of Cor. 1

MakeComplex Compute the complex of an m−vector
printBlocks print complex as ⊕aK1,a → ⊕bK0,b

printCohs print complex as ⊕Hq(u)→ ⊕Hq(v)

multmap construct matrix M(fi) : S(u)→ S(v)
Sylvmat construct Sylv. matrix K1,p → K0,p−1

Bezoutmat construct Bézout matrix K1,a → K0,b

makeMatrix construct matrix K1 → K0

Table 1. The main routines of our software.

http://www-sop.inria.fr/galaad/amantzaf/soft.html


The computation of all the m−vectors can be done by searching the box
defined in Thm. 1 and using the filter in Lem. 6. For every candidate, we check
whether the terms K2 and K−1 vanish to decide if it is determinantal.

For a vector m, the resultant complex can be computed in an efficient data
structure that captures its combinatorial information and allows us to compute
the corresponding matrix. More specifically, a nonzero cohomology summand
Kν,p is represented as a list of pairs (cq, ep) where cq = {k1, . . . , kt} ⊆ [1, r] such

that q =
∑t
i=1 lki = p − ν and ep ⊆ [0, n] with #ep = p denotes a collection of

polynomials (or a basis element in the exterior algebra). Furthermore, a term
Kν is a list of Kν,p’s and a complex a list of terms Kν .

The construction takes place block by block. We iterate over all morphisms
δa,b and after identifying each of them the corresponding routine constructs a
Sylvester or Bézout block. Note that these morphisms are not contained in the
representation of the complex, since they can be retrieved from the terms K1,a

and K0,b.

Example 2. (Cont’d) Let us present an illustration of how the matrices we
constructed provide resultants that were previously not computable, even up
to extraneous factors. Recall the instance l = d = (1, 1) and s = (1, 1, 2) of
Sect. 1. This data defines a system of two bilinear and one biquadratic equation.
The resulting matrices for this particular example have already been presented
in Sect. 1. We used multires1 to try to compute the Macaulay matrix of this
system, which is of size 28× 28.
> read mhomo-scaled.mpl:
> l:=vector([1,1]): d:=l: s:= vector([1,1,2]):
> f:= Makesystem(l,d,s):
> read multires.mpl:
> M:=mresultant( f, [x1, x2] ): det(M);

0
Thus the determinant vanishes identically. We try again to compute the resultant
using the standard Bézout-Dixon construction
> B:= mbezout( f, [x1, x2] ): det(B);

0
The size of this matrix is 6× 6 but again its determinant is identically zero, due
to the sparsity present to the supports, hence it neither expresses the multiho-
mogeneous resultant, nor provides any information on the roots of the system.
Instead, our software constructed optimal, generically non-singular matrices of
dimensions ranging from 4× 4 to 10× 10.
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