
HAL Id: hal-02835953
https://hal.inria.fr/hal-02835953

Submitted on 7 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compromis espace-temps pour le problème de k plus
courts chemins simples

Ali Al Zoobi, David Coudert, Nicolas Nisse

To cite this version:
Ali Al Zoobi, David Coudert, Nicolas Nisse. Compromis espace-temps pour le problème de k plus
courts chemins simples. ALGOTEL 2020 – 22èmes Rencontres Francophones sur les Aspects Algo-
rithmiques des Télécommunications, Sep 2020, Lyon, France. pp.4. �hal-02835953�

https://hal.inria.fr/hal-02835953
https://hal.archives-ouvertes.fr

Compromis espace-temps pour le problème
de k plus courts chemins simples †‡

Ali Al Zoobi 1 et David Coudert 1 et Nicolas Nisse1

1 Université Côte d’Azur, Inria, CNRS, I3S, France

Le problème de trouver k plus courts chemins simples (sans répétition de sommets) entre deux sommets dans un graphe
a été largement étudié du point de vue de l’ingénierie algorithmique. Kurz et Mutzel (2016) ont proposé l’algorithme
SB (pour Sidetrack Based) basé sur le concept de déviations, qui est actuellement la méthode la plus rapide en pratique.
Dans ce travail, nous proposons deux améliorations de cet algorithme. Nous montrons tout d’abord comment accélérer
l’algorithme SB en utilisant des mises à jour dynamiques d’arbres de plus courts chemins. Nos simulations réalisées sur
certains réseaux routiers avec environ un demi-million de sommets et un million d’arcs montrent que notre amélioration
donnent une accélération moyenne d’un facteur 1,5 à 2 avec une consommation de mémoire similaire à celle de l’algo-
rithme SB. Notre principale contribution est un second algorithme réalisant un compromis entre temps d’exécution et
mémoire utilisée. Notre algorithme permet de réduire significativement la mémoire de travail (d’un facteur 1,5 à 2) au
prix d’une légère augmentation du temps d’exécution.
Mots-clefs : k plus courts chemins simples, algorithmes de graphes, compromis complexité espace-temps

1 Introduction
The classical k shortest paths problem (kSP) returns the top-k shortest paths (SP) between a source and

a destination in a digraph. This problem has numerous applications in various kinds of networks (road and
transportation networks, communications networks, social networks, etc.) and is also used as a building
block for solving optimization problems. Let D = (V,A) be a digraph with n vertices and m arcs, and with
a weight function ω : A→ R+ on its arcs. A (directed) s-t path is a sequence (s = v0,v1, · · · ,vl = t) of
vertices starting from s and ending at t, such that (vi,vi+1) ∈ A for all 0≤ i < l. It is called simple if it has
no repeated vertices, i.e., vi 6= v j for all 0≤ i < j ≤ l. The weight of a path is the sum of the weights of its
arcs and the distance dD(u,v) between two vertices u,v ∈V is the minimum weight of a u-v path in D. A set
P of s-t paths is a top-k set of s-t paths if |P |= k and no s-t path not in P has weight strictly less than some
path in P . Eppstein’s algorithm [Epp98] has the best time-complexity, O(m+n logn+ k), for this problem.

An important variant of this problem is the k shortest simple paths problem (kSSP) which adds the
constraint that reported paths must be simple. The algorithm with the best known time complexity for
solving the kSP problem has been proposed by Yen [Yen71], with time complexity in O(kn(m+ n logn)).
Since, several proposals have been made to improve the practical efficiency of the algorithm [Fen14,KM16].

Recently, Kurz and Mutzel [KM16] obtained a tremendous practical running time improvement. The
key idea of their Sidetrack Based (SB) algorithm was to postpone as much as possible the computation
of trees that are done earlier by Yen’s algorithm. We present a slight improvement of SB algorithm and a
modification of it allowing to establish a tradeoff between the running time and the memory consumption.
Our contribution. Section 2 presents Kurz and Mutzel’s SB algorithm with a particular attention to the used
data structures. This allows us, in Section 3, to describe a first slight improvement, using dynamic updates
of shortest path trees, and resulting to a notable speed up of SB algorithm, with an average speed up by a
factor of 1.5 to 2 and with a similar working memory consumption. Our main contribution, presented in
Section 3, is a more involved adaptation of the SB algorithm, enabling to significantly reduce the working
memory (with a factor of 1.5 to 2) at the cost of a small increase of the running time. We conclude with the
results of our simulations comparing the performances of our algorithms with the previous ones.

†The full version of this paper can be found here: https://hal.archives-ouvertes.fr/hal-02465317.
‡This work has been supported by the UCAJEDI Investments in the Future project managed by the National Research Agency (ANR-

15-IDEX-01), project MULTIMOD (ANR-17-CE22-0016), project Digraphs (ANR-19-CE48-0013), and by Région Sud PACA.

https://hal.archives-ouvertes.fr/hal-02465317

Ali Al Zoobi et David Coudert et Nicolas Nisse

2 Kurz and Mutzel’s algorithm
We give a short presentation of Kurz and Mutzel’s Sidetrack Based (SB) algorithm in order to explain

our contributions in the next section. Let (D = (V,A),ω) be an arc-weighted digraph, s, t ∈ V and k ∈ N.
The goal of SB algorithm is to compute a top-k set P of simple shortest s-t paths (assuming they exist).
Compact representation of a path. The SB algorithm is based on a data structure generalizing the repre-
sentation of a path proposed by Eppstein [Epp98]. Let us present this data structure briefly below.

An in-branching T rooted at t is a sub-digraph of D that induces a tree containing t and such that every
u ∈V (T)\{t} has exactly one out-neighbor (that is, all paths in T go toward t) and, for every u ∈V (T), the
weight of the (unique) u-t path Put(T) in T equals dD(u, t), i.e, Put(T) is a shortest u-t path (both in T and
D). Let P = (v0,v1, · · · ,vr) be any path in D and i < r. Any arc a = viw 6= vivi+1 is called a deviation of P
at vi. Any path Q = (v0, · · · ,vi,w,w1, · · · ,w` = t) where w,w1, · · · ,w` = t is a shortest wt path in D is called
an extension of P at a (or at vi). Note that neither P nor Q is required to be simple.

Kurz and Mutzel’s proposed a compact representation of paths using sequences of in-branchings and
deviations. Precisely, the sequence ε = (T0,e0,T1,e1, · · · ,Th,eh,Th+1) (with ei = (vi,wi) for all i≤ h) repre-
sents the path P starting at s, following T0 until the tail v0 of e0, then the deviation e0, then T1 until it reaches
the tail v1 of e1, etc. until it reaches the head wh of eh, plus (possibly) a path from wh to t in Th+1. That
is, P is the sequence of vertices of the paths Psv0(T0),Pw0v1(T1), · · · ,Pwh−1vh(Th) followed by the vertices of
Pwht(Th+1) if this latter path exists. Two consecutive in-branchings Ti and Ti+1 are not necessarily distinct.
SB algorithm ensures that, if P is an s-t path (i.e., if Pwht(Th+1) exists), then the subpath Pre f of P going
from s to wh (v0, · · · ,wh) is always simple and P is not simple only if Pwht(Th+1) intersects Pre f .
Sidetrack Based (SB) Algorithm. We are now ready to present SB algorithm. Roughly, SB algorithm uses
a set C to manage candidate paths that are encoded using the above data structure. Sequentially, it extracts
a shortest element ε from C . If ε represents a simple path P, this path is added to the output P and the
representations of its extensions are computed and added to C . Otherwise, SB algorithm attempts to modify
ε by instantiating its last in-branching (this is one bottleneck both for the time and space complexities since
an in-branching is actually computed by applying Dijkstra’s algorithm, and is stored). If this computation
leads to the representation of a simple path, then it is added to C . Otherwise, ε is discarded. SB algorithm
goes on iteratively until it has found k paths. The initialisation consists in computing a first in-branching T0
in D (using Dijkstra’s alg.) and so a shortest s-t (simple) path Pst(T0) and adding its representation to C .

More precisely, the set C is a min-heap in which the weight of an element is a lower bound on the weight
of the path it represents. Each element µ in C has the form µ = (ε = (T0,e0, · · · ,eh = (vh,wh),Th+1), lb,ζ)
where each in-branching Th′ (with h′ ≤ h) is already computed and lb is a lower bound of the weight of the
path represented by ε. The value ζ is a boolean indicating whether the path represented by ε is known to be
simple. If so, it will follow from the construction that Th+1 has already been computed, else Th+1 must be
first computed to know if ε represents a simple path. For the initialization, the in-branching T0 is computed
and the element ((T0),ω(Pst(T0)),ζ = 1) is inserted in C .

SB algorithm iteratively extracts elements from C by minimum weight (with a priority to representa-
tion of simple paths to break ties) until k paths are obtained or C is empty. When an element µ = (ε =
(T0,e0, · · · ,eh = (vh,wh),Th+1), lb,ζ) is extracted from C , two cases are distinguished :

Case ζ = 1. Then, ε represents a simple path P=(v0 = s, · · · ,vi =wh, · · · ,vr = t) and all the in-branchings
Ti’s have already been computed. In this case, the path P is added to the output P . Then, for every
i≤ j < r, and for every deviation e=(v j,w) at v j, let Pwt(Th+1) be the shortest path from w to t in Th+1
and let Q(v j,e) = (v0, · · · ,v j,w,Pwt(Th+1)). If Q(v j,e) is simple (this can be verified efficiently using
a trick of Feng [Fen14]), the representation µ′ = ((T0,e0, · · · ,eh,Th+1,e = (v j,w),Th+1), lb(e),ζ = 1)
is added to C with lb(e) = ω(Q(v j,e)) as a key (note that the computation of lb(e) is done in
constant time since, in particular, Th+1 is already computed). Otherwise (Q(v j,e) is not simple),
the representation µ′′ = (ε′′ = (T0,e0, · · · ,eh,Th+1,e = (v j,w),T ′), lb(e),ζ = 0) is added to C , where
T ′ is the name of the in-branching of D \ {v0, · · · ,v j} whose actual computation is postponed, and
lb(e) = ω(Q(v j,e)) is a lower bound on the weight of the path represented by ε′′.

Case ζ = 0. In this case, the algorithm checks for the existence of a wh-t path Pwt(Th+1). To do so,
the in-branching Th+1 (whose computation has been postponed) is computed. Note that Th+1 is an

Compromis espace-temps pour le problème de k plus courts chemins simples

in-branching in D \ {v0, · · · ,vh}, which ensures that, if Pwt(Th+1) is found, the path Pnew = (s =
v0, · · · ,vh,Pwht(Th+1)) is guaranteed to be simple. Moreover, Pnew has weight ω(Pnew) = ω((s =
v0, · · · ,vh,wh))+ω(Pwht(Th+1)). Then, the representation µ′ = (ε′ = (T0,e0, · · · ,eh = (vh,wh),Th+1),
ω(Pnew),ζ = 1) is added to C . Finally, if no wh-t path can be found in Th+1, µ is discarded.

So far, SB algorithm has out-performed all other algorithms for solving the k-Shortest Simple Paths problem
in terms of running time (e.g., it is ten times faster than Feng’s algorithm [Fen14] in large networks). Ho-
wever, it has the drawback to have an important consumption of working memory (much more than Feng’s
algorithm that stores a single in-branching, while keeping the whole description of paths it computes).

3 Our Contributions
SB* Algorithm. First, we propose a slight modification of SB algorithm (called SB*). Precisely, each time
a representation (T0,e0,T1 · · · ,eh−1 = (uh−1,vh−1),Th,eh = (uh,vh),Th+1) of a non simple path is extracted
from C with Th+1 not computed yet (i.e., it is only a name), while SB algorithm computes Th+1 from scratch
our algorithm does not. Instead, SB* algorithm creates a copy T of Th, discards vertices of the path from
vh−1 to uh in Th, and updates the in-branching T using standard methods for updating an in-branching.Then,
the name Th+1 is instantiated as the new in-branching T . It is clear that SB* algorithm computes (and store)
exactly the same number of in-branchings as SB algorithm. As demonstrated by the simulations below, SB*
algorithm is up to twice faster than SB algorithm with the same memory consumption.
Parsimonious SB Algorithm. Now, let us present our main algorithm, called PSB, which is an adaptation of
SB algorithm allowing to reduce the memory consumption due to the storage of all in-branchings computed
by SB algorithm. Here, we only focus on the differences between SB and PSB algorithms.

The main difference is that PSB algorithm stores two types of elements in C . The first type, of the form
(ε = (T0,e0,T1,e1, · · · ,Th,eh = (vh,wh),Th+1), lb), represents a simple s-t path P of weight lb. Contrary
to SB algorithm, the in-branching Th+1 has not necessarily been computed yet. The second type, of the
form (ε,Dev, lb), contains an extra field Dev (explained below) and, in this case, all of the in-branchings
T1, · · · ,Th+1 are already computed.

Let us start considering a step of PSB algorithm when an element µ = (ε = (T0,e0,T1,e1, · · · ,Th,eh =
(vh,wh),Th+1), lb) representing a simple path P is extracted from C . Th+1 is computed at this step (if not
already done) which allows to output P. Then, PSB algorithm adds P = (s = v0, · · · ,vi = wh, · · · ,vr = t) to
P and (as SB algorithm) for every v ∈ {vi, · · · ,vr}, and every deviation e with tail v, the extension Q(v,e)
is considered. If Q(v,e) is simple (again, checking whether an extension is simple or not is done using the
trick of Feng), then µ′ = ((T0,e0,T1,e1, · · · ,Th,eh,Th+1,e,Th+1),ω(Q(v,e))) is added to C . Otherwise, the
deviation e is added to a set Dev (initially empty). Once all deviations have been considered, the (unique)
element (ε,Dev, lb′) is added to C , where lb′ = min f j=(u j ,u′j)∈Dev ω(Q(u j, f j)). That is, Dev is the set of all
“non simple deviations” of P at the vertices between wh and t, and lb′ is a lower bound on the weight of the
extensions at a deviation in Dev. The important difference between SB and PSB algorithms comes from the
fact that non simple extensions are considered as a unique object by PSB.

Now, let us consider a step when PSB algorithm extracts an element µ=(ε=(T0,e0,T1,e1, · · · , Th,eh,Th+1),
Dev = { f1, · · · , f j = (u j,u′j), · · · , fl}, lb) from C . As mentioned above, in this case, ε encodes a simple s-t
path (v0, · · · ,vr). Let 1≤ min≤ l be the smallest integer such that lb = ω(Q(umin, fmin)). Then, PSB algo-
rithm proceeds as follows. For j decreasing from l to min, an in-branching T ′j in D \ {v0, · · · ,vi j = u j} is
computed (but not stored !) until a path Pu′jt

(T ′j) from u′j to t is discovered (if no such path exists, j is decrea-
sed by one). If Pu′jt

(T ′j) exists, then ε j = (T0,e0,T1,e1, · · · , Th,eh,Th+1, f j,T ′j) represents a simple s-t path of
weight lb j = ω((v0, · · · ,vi j))+ω(f j)+ω(Pu′jt

(T ′j)). Then, the element µ j = (ε j, lb j) is added to C , but T ′j
is not stored (PSB algorithm might have to recompute it later). A 2nd key improvement is that to speed up
the computation, T ′j is actually computed by updating T ′j+1.Then, only when j = min, the in-branching T ′min
is stored and µmin = (εmin, lbmin) is added to C . The reason why T ′min is stored (while other T ′j are not) is that
µmin is expected to be extracted soon from C (because the path represented by εmin is expected to be short)
and we want to avoid the recomputation of T ′min. Finally, the element µ′ = (ε,Dev′ = { f1, · · · , fmin−1}, lb′)
is added to C , where lb′ is the minimum weight over the non simple deviations in Dev′.

Ali Al Zoobi et David Coudert et Nicolas Nisse

(a) Running time (ms), SB* vs. SB (b) Running time (ms), PSB vs. SB (c) Nbr. of stored trees, PSB vs. SB

(d) Running time (ms), SB vs. SB* (e) Running time (ms), SB vs. PSB (f) Nbr. of stored trees, PSB vs. SB

FIGURE 1: Comparison of the running time of SB versus SB* (Fig. 1a) and SB versus PSB (Fig. 1b) on Rome (resp.
Fig. 1d and Fig. 1e on Colorado), and comparison of the number of stored trees for SB versus PSB (Fig. 1c) on Rome,
(resp. Fig. 1f on Colorado). Each dot corresponds to one pair source/destination, among 1 000 randomly chosen pairs.

The correctness follows from the one of the SB algorithm. Moreover, since most of the computed in-
branchings are not stored, the working memory used by PSB is significantly smaller than for SB algorithm.
Experimental evaluation. We have implemented the algorithms SB, SB* and PSB in C++ and our code is
publicly available at https://gitlab.inria.fr/dcoudert/k-shortest-simple-paths. We have
evaluated the performances of these algorithms on several road networks [DGJ]. Here we present the ones
in a “small” network (Rome, n = 3353, m = 8870) and in a “large” one (Colorado, n = 435666, m =
1057066). All computations have been done on a computer equipped with 2 quad-core 3.20GHz Intel
Xeon W5580 processors and 64GB of RAM. Our simulations show that our improvement SB* of SB
algorithm allows to decrease the running-time by a factor between 1,5 and 2 in average. In particular, for
both networks, SB* algorithm is, for most of the queries, faster than SB algorithm (Figures (1a) and (1d)).
The simulations comparing PSB and SB algorithms show a significant reduction of the working memory
(number of stored trees) when using PSB (Figures (1c) and (1f)). In term of running time, SB algorithm is
slightly faster in average but Figures (1b) and (1e) indicate that globally, they are quite comparable.
Conclusion. To obtain a better tradeoff between space and time, a future work consist in determining a
threshold τ such that an in-branching T is stored only if it is used to extract a path with weight at most τ.

Références
[DGJ] C. Demetrescu, A. Goldberg, and D. Johnson. 9th dimacs implementation challenge - shortest paths.

[Epp98] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28(2) :652–673, 1998.

[Fen14] G. Feng. Finding k shortest simple paths in directed graphs : A node classification algorithm. Networks,
64(1) :6–17, 2014.

[KM16] D. Kurz and P. Mutzel. A sidetrack-based algorithm for finding the k shortest simple paths in a directed graph.
In Int. Symp. on Alg. and Comp. (ISAAC), volume 64 of LIPIcs, pages 49 :1–49 :13, 2016.

[Yen71] J. Y. Yen. Finding the k shortest loopless paths in a network. Management Science, 17(11) :712–716, 1971.

https://gitlab.inria.fr/dcoudert/k-shortest-simple-paths

	Introduction
	Kurz and Mutzel's algorithm
	Our Contributions

