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Alexis Joly1 Hervé Goëau2 Hervé Glotin3 Concetto Spampinato4 Pierre
Bonnet5 Willem-Pier Vellinga6 Robert Planque6 Andreas Rauber7 Bob Fisher8

Henning Müller9

1 Inria, LIRMM, Montpellier, France
2 Inria, Saclay, France

3 IUF & Univ. de Toulon, France
4 University of Catania, Italy

5 CIRAD, France
6 Xeno-canto foundation, The Netherlands

7 Vienna Univ. of Tech., Austria
8 Edinburgh Univ., UK
9 HES-SO, Switzerland

Abstract. Using multimedia identification tools is considered as one
of the most promising solution to help bridging the taxonomic gap and
build accurate knowledge of the identity, the geographic distribution and
the evolution of living species. Large and structured communities of na-
ture observers (e.g. eBird, Xeno-canto, Tela Botanica, etc.) as well as
big monitoring equipments have actually started to produce outstanding
collections of multimedia records. Unfortunately, the performance of the
state-of-the-art analysis techniques on such data is still not well under-
stood and is far from reaching the real world’s requirements. The Life-
CLEF lab proposes to evaluate these challenges around 3 tasks related to
multimedia information retrieval and fine-grained classification problems
in 3 living worlds. Each task is based on large and real-world data and
the measured challenges are defined in collaboration with biologists and
environmental stakeholders in order to reflect realistic usage scenarios.
This paper presents more particularly the 2014 edition of LifeCLEF, i.e.
the pilot one. For each of the three tasks, we report the methodology
and the datasets as well as the official results and the main outcomes.

1 LifeCLEF lab overview

1.1 Motivations

Building accurate knowledge of the identity, the geographic distribution and the
evolution of living species is essential for a sustainable development of humanity
as well as for biodiversity conservation. Unfortunately, such basic information
is often only partially available for professional stakeholders, teachers, scientists
and citizens, and more often incomplete for ecosystems that possess the highest
diversity, such as tropical regions. A noticeable cause and consequence of this



sparse knowledge is that identifying living plants or animals is usually impos-
sible for the general public, and often a difficult task for professionals, such as
farmers, fish farmers or foresters, and even also for the naturalists and specialists
themselves. This taxonomic gap [58] was actually identified as one of the main
ecological challenges to be solved during the Rio’s United Nations Conference in
1992.

In this context, using multimedia identification tools is considered as one of
the most promising solution to help bridging the taxonomic gap [39, 19, 11, 55, 49,
1, 54, 32]. With the recent advances in digital devices, network bandwidth and
information storage capacities, the production of multimedia data has indeed
become an easy task. In parallel, the emergence of citizen sciences and social
networking tools has fostered the creation of large and structured communities
of nature observers (e.g. eBird10, Xeno-canto11, Tela Botanica12, etc.) that have
started to produce outstanding collections of multimedia records. Unfortunately,
the performance of the state-of-the-art multimedia analysis techniques on such
data is still not well understood and are far from reaching the real world’s re-
quirements in terms of identification tools [32]. Most existing studies or available
tools typically identify a few tens or hundreds of species with moderate accuracy
whereas they should be scaled-up to take one, two or three orders of magnitude
more, in terms of number of species (the total number of living species on earth
is estimated to be around 10K for birds, 30K for fishes, 300K for plants and
more than 1.2M for invertebrates [7]).

1.2 Evaluated Tasks

The LifeCLEF lab proposes to evaluate these challenges in the continuity of
the image-based plant identification task [33] that was run within ImageCLEF
lab during the last three years with an increasing number of participants. It
however radically enlarges the evaluated challenge towards multimodal data by
(i) considering birds and fish in addition to plants (ii) considering audio and video
contents in addition to images (iii) scaling-up the evaluation data to hundreds of
thousands of life media records and thousands of living species. More concretely,
the lab is organized around three tasks:

PlantCLEF: an image-based plant
identification task

BirdCLEF: an audio-based bird iden-
tification task

FishCLEF: a video-based fish identi-
fication task

10 http://ebird.org/
11 http://www.xeno-canto.org/
12 http://www.tela-botanica.org/



As described in more detail in the following sections, each task is based on big
and real-world data and the measured challenges are defined in collaboration
with biologists and environmental stakeholders so as to reflect realistic usage
scenarios. For this pilot year, the three tasks are mainly concerned with species
identification, i.e., helping users to retrieve the taxonomic name of an observed
living plant or animal. Taxonomic names are actually the primary key to orga-
nize life species and to access all available information about them either on the
web, or in herbariums, in scientific literature, books or magazines, etc. Identify-
ing the taxon observed in a given multimedia record and aligning its name with
a taxonomic reference is therefore a key step before any other indexing or in-
formation retrieval task. More focused or complex challenges (such as detecting
species duplicates or ambiguous species) could be evaluated in coming years.

The three tasks are primarily focused on content-based approaches (i.e. on the
automatic analyses of the audio and visual signals) rather than on interactive
information retrieval approaches involving textual or graphical morphological
attributes. The content-based approach to life species identification has several
advantages. It is first intrinsically language-independent and solves many of the
multi-lingual issues related to the use of classical text-based morphological keys
that are strongly language dependent and understandable only by few experts
in the world. Furthermore, an expert of one region or a specific taxonomic group
does not necessarily know the vocabulary dedicated to another group of living
organisms. A content-based approach can then be much more easily generaliz-
able to new floras or faunas contrary to knowledge-based approaches that require
building complex models manually (ontologies with rich descriptions, graphical
illustrations of morphological attributes, etc.). On the other hand, LifeCLEF
lab is inherently cross-modal through the presence of contextual and social data
associated to the visual and audio contents. This includes geo-tags or location
names, time information, author names, collaborative ratings or comments, ver-
nacular names (common names of plants or animals), organ or picture type tags,
etc. The rules regarding the use of these meta-data in the evaluated identifica-
tion methods will be specified in the description of each task. Overall, these rules
are always designed so as to reflect real possible usage scenarios while offering
the largest diversity in the affordable approaches.

1.3 Main contributions

The main outcomes of LifeCLEF evaluation campaign are the following:

– give a snapshot of the performances of state-of-the-art multimedia techniques
towards building real-world life species identification systems

– provide large and original data sets of biological records, and then allow
comparison of multimedia-based identification techniques

– boost research and innovation on this topic in the next few years and encour-
age multimedia researchers to work on trans-disciplinary challenges involving
ecological and environmental data



Fig. 1. Thematic map of the 127 registrants to LifeCLEF 2014

– foster technological ports from one domain to another and exchanges be-
tween the different communities (information retrieval, computer vision, bio-
accoustic, machine learning, etc.)

– promote citizen science and nature observation as a way to describe, analyse
and preserve biodiversity

In 2014, 127 research groups worldwide did registered to at least one task of
the lab. Figure 1 displays the distribution of the registrants per task showing that
some of them were interested specifically in one task whereas some others were
interested in several or all of them. Of course, as in any evaluation campaign,
only a small fraction of this raw audience did cross the finish line by submitting
runs (actually 22 of them). But still, this shows the high attractiveness of the
proposed datasets and challenges as well as the potential emergence of a wide
community interested in life media analysis.

2 Task1: PlantCLEF

2.1 Context

Content-based image retrieval approaches are nowadays considered to be one
of the most promising solution to help bridge the botanical taxonomic gap, as
discussed in [22] or [37] for instance. We therefore see an increasing interest in
this trans-disciplinary challenge in the multimedia community (e.g. in [26, 12,
36, 41, 28, 5]). Beyond the raw identification performances achievable by state-
of-the-art computer vision algorithms, the visual search approach offers much



more efficient and interactive ways of browsing large floras than standard field
guides or online web catalogs. Smartphone applications relying on such image-
based identification services are particularly promising for setting-up massive
ecological monitoring systems, involving hundreds of thousands of contributors
at a very low cost.

The first noticeable progress in this way was achieved by the US consor-
tium at the origin of LeafSnap13. This popular iPhone application allows a fair
identification of 185 common American plant species by simply shooting a cut
leaf on a uniform background (see [37] for more details). A step beyond was
achieved recently by the Pl@ntNet project [32] which released a cross-platform
application (iPhone [21], android14 and web 15) allowing (i) to query the system
with pictures of plants in their natural environment and (ii) to contribute to
the dataset thanks to a collaborative data validation workflow involving Tela
Botanica16 (i.e. the largest botanical social network in Europe).

As promising as these applications are, their performances are however still
far from the requirements of a real-world social-based ecological surveillance
scenario. Allowing the mass of citizens to produce accurate plant observations
requires to equip them with much more accurate identification tools. Measuring
and boosting the performances of content-based identification tools is therefore
crucial. This was precisely the goal of the ImageCLEF17 plant identification task
organized since 2011 in the context of the worldwide evaluation forum CLEF18.
In 2011, 2012 and 2013 respectively 8, 10 and 12 international research groups did
cross the finish line of this large collaborative evaluation by benchmarking their
images-based plant identification systems (see [22], [23] and [33] for more details).
Data mobilised during these 3 first years can be consulted at the following url19,
geographic distribution of theses botanical records can be seen on Figure 2.

Contrary to previous evaluations reported in the literature, the key objec-
tive was to build a realistic task closer to real-world conditions (different users,
cameras, areas, periods of the year, individual plants, etc.). This was initially
achieved through a citizen science initiative initiated 4 years ago in the context
of the Pl@ntNet project [32] in order to boost the image production of Tela
Botanica social network. The evaluation data was enriched each year with the
new contributions and progressively diversified with other input feeds (Annota-
tion and cleaning of older data, contributions made through Pl@ntNet mobile
applications). The plant task of LifeCLEF 2014 is directly in the continuity of
this effort. Main novelties compared to the last years are the following: (i) an ex-
plicit multi-image query scenario (ii) the supply of user ratings on image quality

13 http://leafsnap.com/
14 https://play.google.com/store/apps/details?id=org.plantnet
15 http://identify.plantnet-project.org/
16 http://www.tela-botanica.org/
17 http://www.imageclef.org/
18 http://www.clef-initiative.eu/
19 http://publish.plantnet-project.org/project/plantclef



Fig. 2. Distribution map of botanical records of the Plant task 2013.

in the meta-data (iii) a new type of view called ”Branch” additionally to the 6
previous ones (iv) basically more species (about 500 which is an important step
towards covering the entire flora of a given region).

2.2 Dataset

More precisely, PlantCLEF 2014 dataset is composed of 60,962 pictures belong-
ing to 19,504 observations of 500 species of trees, herbs and ferns living in a
European region centered around France. This data was collected by 1608 dis-
tinct contributors. Each picture belongs to one and only one of the 7 types of
view reported in the meta-data (entire plant, fruit, leaf, flower, stem, branch,
leaf scan) and is associated with a single plant observation identifier allowing to
link it with the other pictures of the same individual plant (observed the same
day by the same person). It is noticeable that most image-based identification
methods and evaluation data proposed in the past were so far based on leaf
images (e.g. in [37, 6, 12] or in the more recent methods evaluated in [23]). Only
few of them were focused on flower’s images as in [42] or [4]. Leaves are far
from being the only discriminant visual key between species but, due to their



Fig. 3. 6 plant species sharing the same common name for laurel in French, belonging
to distinct species.

shape and size, they have the advantage to be easily observed, captured and
described. More diverse parts of the plants however have to be considered for
accurate identification. As an example, the 6 species depicted in Figure 3 share
the same French common name of ”laurier” even though they belong to different
taxonomic groups (4 families, 6 genera).

The main reason is that these shrubs, often used in hedges, share leaves
with more or less the same-sized elliptic shape. Identifying a laurel can be very
difficult for a novice by just observing leaves, while it is undisputably easier with
flowers. Beyond identification performances, the use of leaves alone has also some
practical and botanical limitations. Leaves are not visible all over the year for
a large fraction of plant species. Deciduous species, distributed from temperate
to tropical regions, can’t be identified by the use of their leaves over different
periods of the year. Leaves can be absent (ie. leafless species), too young or
too much degraded (by pathogen or insect attacks), to be exploited efficiently.
Moreover, leaves of many species are intrinsically not enough informative or very
difficult to capture (needles of pines, thin leaves of grasses, huge leaves of palms,
...).
Another originality of PlantCLEF dataset is that its social nature makes it
closer to the conditions of a real-world identification scenario: (i) images of the
same species are coming from distinct plants living in distinct areas (ii) pictures
are taken by different users that might not used the same protocol to acquire
the images (iii) pictures are taken at different periods in the year. Each image
of the dataset is associated with contextual meta-data (author, date, locality
name, plant id) and social data (user ratings on image quality, collaboratively
validated taxon names, vernacular names) provided in a structured xml file. The
gps geo-localization and the device settings are available only for some of the
images.
Table 4 gives some examples of pictures with decreasing averaged users ratings
for the different types of views. Note that the users of the specialized social
network creating these ratings (Tela Botanica) are explicitely asked to rate the



Fig. 4. Examples of PlantCLEF pictures with decreasing averaged users ratings for the
different types of views

images according to their plant identification ability and their accordance to the
pre-defined acquisition protocol for each view type. This is not an aesthetic or
general interest judgement as in most social image sharing sites.

2.3 Task Description

The task was evaluated as a plant species retrieval task based on multi-image
plant observations queries. The goal is to retrieve the correct plant species among
the top results of a ranked list of species returned by the evaluated system. Con-
trary to previous plant identification benchmarks, queries are not defined as
single images but as plant observations, meaning a set of one to several images
depicting the same individual plant, observed by the same person, the same day.
Each image of a query observation is associated with a single view type (entire
plant, branch, leaf, fruit, flower, stem or leaf scan) and with contextual meta-
data (data, location, author). Semi-supervised and interactive approaches were
allowed but as a variant of the task and therefore evaluated independently from
the fully automatic methods. None of the participants, however, did use such
approaches in the 2014 campaign.



In practice, the whole PlantCLEF dataset was split in two parts, one for training
(and/or indexing) and one for testing. The training set was delivered to the par-
ticipants in January 2014 and the test set two months later so that participants
had some times to become familiar with the data and train their systems. After
the delivery of the test set, participants had two additional months to run their
system on the undetermined plant observations and finally send their resuls files.
Participants were allowed to submit up to 4 distinct runs. More concretely, the
test set was built by randomly choosing 1/3 of the observations of each species
whereas the remaining observations were kept in the reference training set. The
xml files containing the meta-data of the query images were purged so as to
erase the taxon name (the ground truth), the vernacular name (common name
of the plant) and the image quality ratings (that would not be available at query
stage in a real-world mobile application). Meta-data of the observations in the
training set were kept unaltered.

The metric used to evaluate the submitted runs was a score related to the
rank of the correct species in the returned list. Each query observation was
attributed with a score between 0 and 1 reflecting equal to the inverse of the
rank of the correct species (equal to 1 if the correct species is the top-1 decreas-
ing quickly while the rank of the correct species increases). An average score was
then computed across all plant observation queries. A simple mean on all plant
observation queries would however introduce some bias. Indeed, we remind that
the PlantCLEF dataset was built in a collaborative manner. So that few con-
tributors might have provided much more observations and pictures than many
other contributors who provided few. Since we want to evaluate the ability of a
system to provide the correct answers to all users, we rather measure the mean
of the average classification rate per author. Finally, our primary metric was
defined as the following average classification score S:

S =
1

U

U∑
u=1

1

Pu

Pu∑
p=1

1

Nu,p
su,p (1)

where U is the number of users, Pu the number of individual plants observed
by the u-th user, Nu,p the number of pictures of the p-th plant observation of
the u-th user, su,p is the score between 1 and 0 equals to the inverse of the rank
of the correct species.

2.4 Participants and Results

74 research groups worldwide registered to the plant task (31 of them being ex-
clusively registered to the bird task). Among this large raw audience, 10 research
groups did cross the finish line by submitting runs (from 1 to 4 depending on
the teams). Details on the participants and the methods used in the runs are
synthesised in the overview working note of the task [25] and further developed
in the individual working notes of the participants who submitted one (BME



TMIT [53], FINKI [15], I3S [29], IBM AU [13], IV-Processing [18], MIRACL
[34], PlantNet [27], QUT [52], Sabanki-Okan [59], SZTE [44]). We here only re-
port the official scores of the 27 collected runs and discuss the main outcomes
of the task.

Figure 7 therefore shows the main official score obtained by each run of the
task.

Fig. 5. Official results of the LifeCLEF 2014 Plant Identification Task.

The best results are indisputably obtained by the three last runs of the IBM
AU team (IBM AU run 2-4 ). This confirms that using Fisher Vector encoding
and linear support vector machines still provides the best state-of-the-art perfor-
mances as in many other fine-grained image classification benchmarks. On the
other side, the convolutional neural network used in the first run of the same
team (IBM AU run 1 ) didn’t succeed in outperforming the handcratfed visual
features used in the 4 runs of the Pl@ntNet team (whereas they are known to
perform very well in generalist benchmarks such as ImageNET). The main rea-
son, as discussed in the working note of IBM AU team [13], is that deep models
usually require much training data to learn their millions of parameters and
avoid overfitting (e.g. up to 1000 images per class within ImagNet). To solve
this issue, deep neural networks are usually pre-trained on generalist classifica-
tion tasks before being fine-tuned on the targeted task. But as using external
training data was not authorized in PlantCLEF 2014, this approach could not
be evaluated by the participants. Allowing such approaches in next campaigns



might be possible but is a tricky problem as we need to garanty that none of
the images of test set could be found somewhere on the web (queries of the 2014
campaign are for instance publicaly available on TelaBotanica website).
Despite the supremacy of IBM fisher vectors runs, it is surprising to see that
the performances of BME TMIT runs, which are based on a very close train-
ing model, reached much lower performances. It demonstrates that different
implementations and parameters tuning can bring very different performances
(e.g. 512x60 fisher vectors dimensions for IBM AU vs. 258x80 for BME TMIT).
Another outcome of the task was that the second best performing method from
PlantNet was already among the best performing methods in previous plant iden-
tification challenges [2] although LifeCLEF dataset is much bigger and somehow
more complex because of the social dimension of the data. This demonstrates
the genericity and stability of the underlying matching method and feautures.
This year, few teams attempted to explore the use of metadata. The date was
exploited in the Sabanki-Okan runs, only on flowers or fruits, but we don’t have a
point of comparison in order to see if the use of this information was useful or not.
Miracl team attempted to combine the whole textual and structural informations
contained in the xml files, but it has been showed to degrade the performances
of their pure visual approach. Note that for the first year, after three years of un-
successful attempts during the previous ImageCLEF Plant Identification Tasks,
none of the teams tried to use the locality and GPS information.

3 Task2: BirdCLEF

3.1 Context

The bird and the plant identification tasks share similar usage scenarios. The
general public as well as professionals like park rangers, ecology consultants, and
of course, the ornithologists themselves might actually be users of an automated
bird identifying system, typically in the context of wider initiatives related to
ecological surveillance or biodiversity conservation. Using audio records rather
than bird pictures is justified by current practices [11, 55, 54, 10]. Birds are actu-
ally not easy to photograph as they are most of the time hidden, perched high in
a tree or frightened by human presence, and they can fly very quickly, whereas
audio calls and songs have proved to be easier to collect and very discriminant.
Only three noticeable previous initiatives on bird species identification based
on their songs or calls in the context of worldwide evaluation took place, in
2013. The first one was the ICML4B bird challenge joint to the international
Conference on Machine Learning in Atlanta, June 2013. It was initiated by the
SABIOD MASTODONS CNRS group20, the university of Toulon and the Na-
tional Natural History Museum of Paris [20]. It included 35 species, and 76
participants submitted their 400 runs on the Kaggle interface. The second chal-
lenge was conducted by F. Brigs at MLSP 2013 workshop, with 15 species, and

20 http://sabiod.org



79 participants in August 2013. The third challenge, and biggest in 2013, was or-
ganised by University of Toulon, SABIOD and Biotope, with 80 species from the
Provence, France. More than thirty teams participated, reaching 92% of average
AUC. The description of the ICML4B best systems are given into the on-line
book [3], including for some of them reference to some useful scripts.
In collaboration with the organizers of these previous challenges, BirdCLEF 2014
goes one step further by (i) significantly increasing the species number by al-
most an order of magnitude (ii) working on real-world social data built from
hundreds of recordists (iii) moving to a more usage-driven and system-oriented
benchmark by allowing the use of meta-data and defining information retrieval
oriented metrics. Overall, the task is expected to be much more difficult than
previous benchmarks because of the higher confusion risk between the classes,
the higher background noise and the higher diversity in the acquisition condi-
tions (devices, recordists uses, contexts diversity, etc.). It will therefore probably
produce substantially lower scores and offer a better progression margin towards
building real-world generalist identification tools.

3.2 Dataset

The training and test data of the bird task is composed by audio recordings
collected by Xeno-canto (XC)21. Xeno-canto is a web-based community of bird
sound recordists worldwide with about 1500 active contributors that have al-
ready collected more than 150,000 recordings of about 9000 species. Nearly 500
species from Brazilian forests are used in the BirdCLEF dataset, representing
the 500 species of that region with the highest number of recordings, totalling
about 14,000 recordings produced by hundreds of users. Figure 6 illustrates the
geographical distribution of the dataset samples.

To avoid any bias in the evaluation related to the used audio devices, each
audio file has been normalized to a constant bandwidth of 44.1 kHz and coded
over 16 bits in wav mono format (the right channel is selected by default). The
conversion from the original Xeno-canto data set was done using ffmpeg, sox
and matlab scripts. The optimized 16 Mel Filter Cepstrum Coefficients for bird
identification (according to an extended benchmark [16]) have been computed
with their first and second temporal derivatives on the whole set. They were
used in the best systems run in ICML4B and NIPS4B challenges.

Audio records are associated with various meta-data including the species
of the most active singing bird, the species of the other birds audible in the
background, the type of sound (call, song, alarm, flight, etc.), the date and
location of the observations (from which rich statistics on species distribution can
be derived), some textual comments of the authors, multilingual common names
and collaborative quality ratings. All of them were produced collaboratively by
Xeno-canto community.

21 http://www.xeno-canto.org/



Fig. 6. Xeno-canto audio recordings distribution centered around Brazil area

3.3 Task Description

Participants are asked to determine the species of the most active singing birds
in each query file. The background noise can be used as any other meta-data,
but it is forbidden to correlate the test set of the challenge with the original
annotated Xeno-canto data base (or with any external content as many of them
are circulating on the web). More precisely and similarly to the plant task, the
whole BirdCLEF dataset has been split in two parts, one for training (and/or
indexing) and one for testing. The test set was built by randomly choosing 1/3
of the observations of each species whereas the remaining observations were kept
in the reference training set. Recordings of the same species done by the same
person the same day are considered as being part of the same observation and
cannot be split across the test and training set. The xml files containing the
meta-data of the query recordings were purged so as to erase the taxon name
(the ground truth), the vernacular name (common name of the bird) and the
collaborative quality ratings (that would not be available at query stage in a
real-world mobile application). Meta-data of the recordings in the training set
are kept unaltered.

The groups participating to the task will be asked to produce up to 4 runs
containing a ranked list of the most probable species for each query records of



the test set. Each species will have to be associated with a normalized score
in the range [0; 1] reflecting the likelihood that this species is singing in the
sample. The primary metric used to compare the runs will be the Mean Average
Precision averaged across all queries. Additionally, to allow easy comparisons
with the previous Kaggle ICML4B and NIPS4B benchmarks, the AUC under
the ROC curve will be computed for each species, and averaged over all species.

3.4 Participants and Results

87 research groups worldwide registered to the bird task (42 of them being ex-
clusively registered to the bird task). Among this large raw audience, 10 research
groups, coming from 9 distinct countries, did cross the finish line by submitting
runs (from 1 to 4 depending on the teams). Details on the participants and the
methods used in the runs are synthesised in the overview working note of the
task [24] and further developed in the individual working notes of the partici-
pants who submitted one (MNB TSA [38], QMUL [51], Inria Zenith [31], HTL
[46], Utrecht Univ. [57], Golem [40], SCS [43]). We here only report the official
scores of the 29 collected runs and discuss the main outcomes of the task.

Fig. 7. Official scores of the LifeCLEF Bird Identification Task. mAP 1 is the Mean
Average Precision averaged across all queries taking int account the Background species
(while mAP2 is considering only the foreground species.

Figure 7 therefore displays the two distinct measured mean Average Preci-
sion (mAP) for each run, the first one (mAP1) considering only the foreground



specie of each test recording and the other (mAP2) considering additionally the
species listed in the Background species field of the metadata. Note that differ-
ent colors have been used to easily differentiate the methods making use of the
metadata from the purely audio-based methods.

The first main outcome is that the two best performing methods were already
among the best performing methods in previous bird identification challenges [3,
20] although LifeCLEF dataset is much bigger and somhow more complex be-
cause of the social dimension of the data. This clearly demonstrates the generic-
ity and stability of the underlying methods. The best performing runs of MNB
TSA group notably confirmed that using matching probabilities of segments as
features was once again a good choice. In their working note [38], Lassek et al.
actually show that the use of such Segment-Probabilities clearly outperforms
the other feature sets they used (0.49 mAP compared to 0.30 for the OpenSmile
features [17] and 0.12 for the metadata features). The approach however remains
very time consuming as several days on 4 computers were required to process
the whole LifeCLEF dataset.
Then, the best performing (purely) audio-based runs of QMUL confirmed that
unsupervised feature learning is a simple and effective method to boost classifi-
cation performance by learning spectro-temporal regularities in the data. They
actually show in their working note that their pooling method based on spherical
k-means actually produces much more effective features than the raw initial low
level features (MFCC based features). The principal practical issue with such
unsupervised feature learning is that it requires large data volumes to be effec-
tive. However, this exhibits a synergy with the large data volumes used within
LifeCLEF. This might also explain the rather good performances obtained by
the runs of Inria ZENITH group who used hash-based indexing techniques of
MFCC features and approximate nearest neigbours classifiers. The underlying
hash-based partition and embedding method actually works as an unsupervised
feature learning method.

4 Task3: FishCLEF

4.1 Context

Underwater video monitoring has been widely used in recent years for marine
video surveillance, as opposed to human manned photography or net-casting
methods, since it does not influence fish behavior and provides a large amount
of material at the same time. However, it is impractical for humans to man-
ually analyze the massive quantity of video data daily generated, because it
requires much time and concentration and it is also error prone. Automatic fish
identification in videos is therefore of crucial importance, in order to estimate
fish existence and quantity [50, 49, 47]. Moreover, it would help supporting ma-
rine biologists to understand the natural underwater environment, promote its
preservation, and study behaviors and interactions between marine animals that



Fig. 8. 4 snapshots of 4 cameras monitoring the Taiwan’s Kenting site

are part of it. Beyond this, video-based fish species identification finds applica-
tions in many other contexts: from education (e.g. primary/high schools) to the
entertainment industry (e.g. in aquarium).

To the best of our knowledge, this is the first worldwide initiative on auto-
matic image and video based fish species identification.

4.2 Dataset

The underwater video dataset used for FishCLEF, is derived from the Fish4Knowledge22

video repository, which contains about 700k 10-minute video clips that were
taken in the past five years to monitor Taiwan coral reefs. The Taiwan area is
particularly interesting for studying the marine ecosystem, as it holds one of the
largest fish biodiversities of the world with more than 3000 different fish species
whose taxonomy is available at 23. The dataset contains videos recorded from
sunrise to sunset showing several phenomena, e.g. murky water, algae on camera
lens, etc., which makes the fish identification task more complex. Each video has
a resolution of 320x240 with 8 fps and comes with some additional metadata
including date and localization of the recordings. Figure 8 shows 4 snapshots of
4 cameras monitoring the coral reef by Taiwan’s Kenting site and it illustrates
the complexity of automatic fish detection and recognition in real-life settings.

More specifically, the FishCLEF dataset consists of about 3000 videos with
several thousands of detected fish. The fish detections were obtained by pro-

22 www.fish4knowledge.eu
23 http://fishdb.sinica.edu.tw/



cessing such underwater videos with video analysis tools [48] and then manually
labeled using the system in [35].

4.3 Task Description

The dataset for the video-based fish identification task will be released in two
times: the participants will first have access to the training set and a few months
later, they will be provided with the testing set. The goal is to automatically
detect fish and its species. The task comprises three sub-tasks: 1) identifying
moving objects in videos by either background modeling or object detection
methods, 2) detecting fish instances in video frames and then 3) identifying
species (taken from a subset of the most seen fish species) of fish detected in
video frames.

Participants could decide to compete for only one subtask or all subtasks.
Although tasks 2 and 3 are based on still images, participants are invited to
exploit motion information extracted from videos to support their strategies.

As scoring functions, the authors are asked to produce:

– ROC curves for sub-task one. In particular, precision, recall and F-measures
measured when comparing, on a pixel basis, the ground truth binary masks
and the output masks of the object detection methods are required;

– Recall for fish detection in still images as a function of bounding box over-
lap percentage: a detection is considered true positive if the PASCAL score
between it and the corresponding object in the ground truth is over 0.7;

– Average recall and recall per fish species for the fish recognition subtask.

The participants to the above tasks will be asked to produce several runs
containing a list of detected fish together with their species (only for subtask 3).
When dealing fish species identification, a ranked list of the most probable species
(and the related likelihood values) for each detected fish must be provided.

4.4 Participants and Results

About 50 teams registered to the fish task, but only two of them finally submit-
ted runs: one, the I3S team, for subtask 3 and one, the LSIS/DYNI team, for
subtask 4.

The strategy employed by the I3S team [9] for fish identification and recog-
nition (subtask 3) consisted of, first, applying a background modeling approach
based on Mixture of Gaussian for moving object segmentation. SVM learning
using keyframes of species as positive entries and background of current video as
negative entries was used for fish species classification. The results achieved by
the I3S team were compared to the baseline provided by the organizers (ViBe
[8] background modeling approach for fish detection combined to VLFeat BoW
[56] for fish species recognition). While the average recall obtained by the I3S
team was lower than the baseline’s recall, the precision was improved, thus im-
plying that their fish species classification approach was reliable more than the



fish detection approach. On average More detailed results can be found in the
working note of the task [14].

The LSIS/DYNI team submitted three runs for subtask 4 [30]. Each run fol-
lowed the strategy proposed in [45] which, basically, consisted of extracting low
level features, patch encoding, pooling with spatial pyramid for local analysis
and a linear large-scale supervised classication by averaging posterior proba-
bilities estimated through linear regression of linear SVM’s outputs. No image
specific pre-processing regarding illumination correction or background subtrac-
tion was performed. Results show that the method of LSIS/DYNI team clearly
outperforms the baseline (VLFeat BoW [56]) and achieves near-perfect classifi-
cation on several species. It is however important to note that the image-based
recognition task (subtask 4) was easier than subtask 3 since (i) it didn’t need
any fish detection module (which is the most complex part in video-based fish
identification) and (ii) only ten fish species were included in the ground truth.

5 Conclusions and Perspectives

With more than 120 hundreds research groups who downloaded LifeCLEF datasets
and 22 of them who submitted runs, the pilot edition of LifeCLEF was a suc-
cess showing a high interest of the proposed challenges in several communities
(computer vision, multimedia, bio-accoustic, machine learning). The results of
the plant and the bird tasks did show that very promising identification perfor-
mances can be reached even with such an unprecedent number of species in the
repsective training sets (i.e. 500 species for each task). This is clearly a good
news with regard to the ecological urgency in building effective identification
tools. However, we believe that some consistent progresses are still needed if we
would like to use such tools for automatically monitoring real-world ecosystems.
One of the key challenge is notably to deal with the long tail of species that are
represented with much less images than the top-500 most common species that
we targeted within BirdCLEF and PlantCLEF 2014. For the next camapigns,
we will notably discuss the possibility of using the whole Pl@ntNet dataset that
covers more than 5000 species but in which many species are represented with
very few samples. Concerning the fish task, we believe that the main reason
of the lower participation is its highest complexity. Video contents are actually
much harder to manage and implies several difficult subtasks before being able
to apply classical image classification techniques. Also, the cost of annotating
the raw video contents makes it difficult to produce large-scale ground-truth
and training data. But on the other side, this shows the importance of building
automatic methods for processing such huge data.
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Lifeclef plant identification task 2014.
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identification based on social image data. Ecological Informatics, 2013.
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